JP2011093276A - Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel - Google Patents

Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel Download PDF

Info

Publication number
JP2011093276A
JP2011093276A JP2009252066A JP2009252066A JP2011093276A JP 2011093276 A JP2011093276 A JP 2011093276A JP 2009252066 A JP2009252066 A JP 2009252066A JP 2009252066 A JP2009252066 A JP 2009252066A JP 2011093276 A JP2011093276 A JP 2011093276A
Authority
JP
Japan
Prior art keywords
fiber
resin
fiber width
impregnated
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252066A
Other languages
Japanese (ja)
Inventor
Shiro Nishibe
志朗 西部
Hiroshi Tanida
博 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009252066A priority Critical patent/JP2011093276A/en
Publication of JP2011093276A publication Critical patent/JP2011093276A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously feed out prepreg fibers having a stable fiber width. <P>SOLUTION: The plurality of prepreg fibers are conveyed in parallel to one another (S100), next, the fiber width of the fed out prepreg fibers is detected (S102), then, whether the fiber width is within a predetermined range is determined (S104), if necessary, the fiber width is adjusted to become larger or smaller (S106), then, the fibers are fed out to a liner. In the case of producing a pressure vessel, the prepreg fibers which have been adjusted to the predetermined fiber width are wound on the liner (S108), thereafter, the resin is cured (S110). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、フィラメントワインディングシステム、圧力容器の製造システム、圧力容器の製造方法に関する。   The present invention relates to a filament winding system, a pressure vessel manufacturing system, and a pressure vessel manufacturing method.

酸素や窒素など、常温常圧状態における容積の大きな気体を高密度、小容量にて貯蔵するための容器として、所定の圧力により圧縮させて液体または気体として貯蔵する、圧力容器が使用されている。従来、耐圧性を有する鋼鉄製その他の金属製圧力容器が使用されてきたが、近年、天然ガスや水素ガスなどを貯蔵した圧力容器を車両などの移動体に搭載し、燃料として使用する技術に適用するため、圧力容器に対して要求される性能として、高密度化可能な耐圧性、耐久性はもちろんのこと、容器の軽量化も重要な課題となっていた。   As a container for storing a large volume of gas, such as oxygen or nitrogen, at normal temperature and pressure at a high density and a small capacity, a pressure container that is compressed by a predetermined pressure and stored as a liquid or gas is used. . Traditionally, pressure-resistant steel and other metal pressure vessels have been used, but in recent years, a technology has been developed for mounting pressure vessels that store natural gas, hydrogen gas, etc. on mobile vehicles and using them as fuel. As a performance required for the pressure vessel, the weight reduction of the vessel has become an important issue as well as the pressure resistance and durability capable of increasing the density.

一方、例えば炭素繊維強化樹脂(CFRP)などの繊維強化樹脂(FRP)を用いた圧力容器が知られている。FRP製の圧力容器は一般に、金属製圧力容器よりも軽量であるため、車両などの移動体への搭載には有利であり、また、水素用圧力容器として使用する場合における、従来の鋼鉄製容器の課題であった水素脆化その他の懸念も少ないため、特に注目されている。   On the other hand, a pressure vessel using a fiber reinforced resin (FRP) such as a carbon fiber reinforced resin (CFRP) is known. Since the pressure vessel made of FRP is generally lighter than the metal pressure vessel, it is advantageous for mounting on a moving body such as a vehicle, and is a conventional steel vessel for use as a hydrogen pressure vessel. Since there are few concerns about hydrogen embrittlement and other concerns, it has attracted particular attention.

図6は、一般的なFRP製圧力容器の構成の概略を説明するための図である。図5に示す圧力容器200は例えば、6−ナイロン(ナイロン6とも称する)、6,6−ナイロン(ナイロン66とも称する)などのナイロン樹脂、ポリエステル樹脂、ポリプロピレン樹脂などの熱可塑性樹脂で形成された中空形状のライナ130と、ライナ130の外周部分を被覆する繊維強化樹脂層(FRP層)132とを備え、構成されている。圧力容器200にはまた、少なくとも一つの口金138を有する。口金138には、図示しないバルブが接続可能に構成されており、このバルブ操作により圧力容器200の内外への高圧流体の流通を調節することができる。   FIG. 6 is a diagram for explaining the outline of the configuration of a general FRP pressure vessel. The pressure vessel 200 shown in FIG. 5 is formed of, for example, a nylon resin such as 6-nylon (also referred to as nylon 6) or 6,6-nylon (also referred to as nylon 66), a thermoplastic resin such as a polyester resin or a polypropylene resin. A hollow liner 130 and a fiber reinforced resin layer (FRP layer) 132 that covers the outer periphery of the liner 130 are provided. The pressure vessel 200 also has at least one base 138. A valve (not shown) is connectable to the base 138, and the flow of the high-pressure fluid into and out of the pressure vessel 200 can be adjusted by operating the valve.

図7は、図6に示すA−A'断面の構成の概略を示す拡大図である。繊維強化樹脂層132は一般に、長く連続した糸状の繊維束(フィラメント)に熱硬化性樹脂などの樹脂液を含浸させ、必要に応じて乾燥させたいわゆるプリプレグ繊維をライナの外周表面に巻きつけて、その後該樹脂液を硬化させることにより形成される。これにより、繊維強化樹脂層132は、図7に示すように、ライナ130の外周表面に複数回および/または複数本巻きつけられた繊維束134の間に形成されたわずかな隙間を樹脂136が埋めるような構成を有することとなる。このとき、ライナ130の材質および/または厚みの他、例えば、繊維束134の太さや巻き数を調整し、繊維強化樹脂層132の厚みを調整することにより、圧力容器200の設計圧力を制御することができる。   FIG. 7 is an enlarged view showing a schematic configuration of the AA ′ cross section shown in FIG. 6. In general, the fiber reinforced resin layer 132 is obtained by impregnating a long and continuous thread-like fiber bundle (filament) with a resin solution such as a thermosetting resin and winding a so-called prepreg fiber, which is dried as necessary, around the outer peripheral surface of the liner. Then, it is formed by curing the resin liquid. As a result, as shown in FIG. 7, the fiber reinforced resin layer 132 allows the resin 136 to pass through a slight gap formed between the fiber bundles 134 wound around the outer peripheral surface of the liner 130 a plurality of times and / or a plurality of times. It will have the structure which fills up. At this time, in addition to the material and / or thickness of the liner 130, for example, the design pressure of the pressure vessel 200 is controlled by adjusting the thickness and the number of turns of the fiber bundle 134 and adjusting the thickness of the fiber reinforced resin layer 132. be able to.

特許文献1には、粉末状の熱可塑性樹脂を複数の強化繊維からなる束に十分に付着させるために、該強化繊維の束の集束と開繊を交互に行いながら該熱可塑性樹脂の床中に連続的に導入させることについて記載されている。   In Patent Document 1, in order to sufficiently adhere a powdered thermoplastic resin to a bundle of a plurality of reinforcing fibers, the bundle of the reinforcing fibers are alternately bundled and opened while the thermoplastic resin is in the floor. Are described as being introduced continuously.

特許文献2には、繊維に樹脂を含浸させる樹脂含浸装置が、樹脂の含浸量を調整する際に除かれた樹脂量に基づいて、樹脂の含浸不足を検知することについて記載されている。   Patent Document 2 describes that a resin impregnation apparatus for impregnating fibers with a resin detects insufficient impregnation of resin based on the amount of resin removed when adjusting the amount of resin impregnation.

特開昭63−027208号公報Japanese Patent Laid-Open No. 63-027208 特開2007−210102号公報JP 2007-210102 A

ところで、樹脂液を含浸させたフィラメントをライナの外周表面に巻きつける、いわゆるフィラメントワインディング(FW)工程において、ライナとの密着性を高め、また、均一に巻きつけることにより圧力容器の性能を向上させる等のために、所定の圧力を加えるなどにより拡幅させたプリプレグ繊維を適用することが知られている。しかしながら、フィラメントまたはプリプレグ繊維の状態や、温度や湿度などの環境条件などの外的要因によっては、プリプレグ繊維に所定の圧力を加えるだけでは安定した繊維幅が確保されない場合があり得た。そして、ライナへの巻き付け時にプリプレグ繊維間に隙間が生じることにより、作製された圧力容器における安定した品質の確保が懸念される場合があり得た。   By the way, in the so-called filament winding (FW) process in which a filament impregnated with a resin liquid is wound around the outer peripheral surface of the liner, the adhesion with the liner is improved and the performance of the pressure vessel is improved by winding the filament uniformly. For this reason, it is known to apply a prepreg fiber widened by applying a predetermined pressure. However, depending on external factors such as the state of the filament or prepreg fiber and environmental conditions such as temperature and humidity, a stable fiber width may not be ensured only by applying a predetermined pressure to the prepreg fiber. In addition, there may be a concern about securing a stable quality in the manufactured pressure vessel due to a gap generated between the prepreg fibers when wound around the liner.

本発明は、圧力容器の作製に際し、安定した繊維幅を有するプリプレグ繊維を連続して送り出すことを目的とする。   An object of the present invention is to continuously send out prepreg fibers having a stable fiber width in the production of a pressure vessel.

また、本発明の他の目的は、安定した品質が確保された圧力容器を作製することである。   Another object of the present invention is to produce a pressure vessel in which stable quality is ensured.

本発明の構成は以下のとおりである。   The configuration of the present invention is as follows.

(1)ライナの外周表面に、樹脂液を含浸させた繊維束を巻きつけるフィラメントワインディングシステムであって、複数の樹脂含浸繊維束を並行させて搬送する搬送手段と、前記搬送手段から搬送された、並行する複数の樹脂含浸繊維束が形成する繊維幅を調整して送り出す送出繊維幅調整手段と、前記送出繊維幅調整手段から送り出された繊維幅を検知するセンサと、を備え、前記センサが検知した樹脂含浸繊維束の繊維幅に応じて、前記送出繊維幅調整手段から送り出される送出繊維幅を調整する、フィラメントワインディングシステム。   (1) A filament winding system in which a fiber bundle impregnated with a resin liquid is wound around the outer peripheral surface of a liner, and transporting means for transporting a plurality of resin-impregnated fiber bundles in parallel, and transported from the transporting means A feeding fiber width adjusting means for adjusting and sending out a fiber width formed by a plurality of parallel resin-impregnated fiber bundles, and a sensor for detecting a fiber width sent from the sending fiber width adjusting means. A filament winding system that adjusts the width of a delivery fiber sent out from the delivery fiber width adjusting means in accordance with the detected fiber width of a resin-impregnated fiber bundle.

(2)上記(1)に記載のフィラメントワインディングシステムにおいて、前記送出繊維幅調整手段が、可動式のローラ軸が挿通された送出繊維幅調整ローラを含み、前記センサが検知した樹脂含浸繊維束の繊維幅に応じて前記ローラ軸を可動させて、前記樹脂含浸繊維束を構成する樹脂含浸繊維の送出角度を調整することで送出繊維幅を調整する、フィラメントワインディングシステム。   (2) In the filament winding system according to the above (1), the delivery fiber width adjustment means includes a delivery fiber width adjustment roller through which a movable roller shaft is inserted, and the resin-impregnated fiber bundle detected by the sensor A filament winding system that adjusts a delivery fiber width by moving the roller shaft in accordance with a fiber width and adjusting a delivery angle of a resin-impregnated fiber constituting the resin-impregnated fiber bundle.

(3)上記(2)に記載のフィラメントワインディングシステムにおいて、前記可動式のローラ軸が、外側部分に固定端を、内側部分に可動端をそれぞれ有する一対の可動ローラ軸を含み、前記固定端を軸として前記可動ローラ軸を揺動させて、前記樹脂含浸繊維の送出角度を調整する、フィラメントワインディングシステム。   (3) In the filament winding system according to (2), the movable roller shaft includes a pair of movable roller shafts each having a fixed end on an outer portion and a movable end on an inner portion, and the fixed end is A filament winding system that adjusts a feeding angle of the resin-impregnated fiber by swinging the movable roller shaft as a shaft.

(4)中空形状のライナの外周表面に、ライナを被覆する繊維強化樹脂層を備える圧力容器の製造システムであって、樹脂液を含浸させた複数の繊維束を並行させて搬送する搬送手段と、並行する複数の樹脂含浸繊維束が形成する繊維幅を検知するセンサと、前記センサが検知した樹脂含浸繊維束の繊維幅に応じて、送り出す繊維幅を調整する送出繊維幅調整手段と、を含む、圧力容器の製造システム。   (4) A pressure vessel manufacturing system including a fiber reinforced resin layer covering the liner on the outer peripheral surface of a hollow liner, and a conveying unit that conveys a plurality of fiber bundles impregnated with a resin liquid in parallel. A sensor for detecting a fiber width formed by a plurality of parallel resin-impregnated fiber bundles, and a delivery fiber width adjusting means for adjusting a fiber width to be sent out according to the fiber width of the resin-impregnated fiber bundle detected by the sensor. Including a pressure vessel manufacturing system.

(5)中空形状のライナの外周表面に、ライナを被覆する繊維強化樹脂層を備える圧力容器の製造方法であって、複数の樹脂含浸繊維束を並行させて搬送する搬送工程と、並行する複数の樹脂含浸繊維束が形成する繊維幅を検知する検知工程と、検知した繊維幅に応じて、送り出す繊維幅を調整する送出繊維幅調整工程と、を含む、圧力容器の製造方法。   (5) A method for manufacturing a pressure vessel including a fiber reinforced resin layer covering a liner on the outer peripheral surface of a hollow liner, wherein a plurality of the resin impregnated fiber bundles are transported in parallel. A method for manufacturing a pressure vessel, comprising: a detection step of detecting a fiber width formed by the resin-impregnated fiber bundle; and a delivery fiber width adjustment step of adjusting a fiber width to be sent out according to the detected fiber width.

(6)上記(5)に記載の圧力容器の製造方法において、繊維幅を調整した樹脂含浸繊維束を前記ライナに巻きつけるフィラメントワインディング工程と、繊維束に含浸させた樹脂液を硬化させて繊維強化樹脂層を形成する硬化工程と、をさらに含む、圧力容器の製造方法。   (6) In the method for manufacturing a pressure vessel according to (5), a filament winding step of winding a resin-impregnated fiber bundle with adjusted fiber width around the liner, and a resin liquid impregnated in the fiber bundle is cured to produce a fiber And a curing step for forming a reinforced resin layer.

圧力容器の作製に際し、安定した繊維幅を有するプリプレグ繊維を連続して送り出すことができる。   In producing the pressure vessel, prepreg fibers having a stable fiber width can be continuously sent out.

本発明の実施の形態における圧力容器の製造システムの一例について、その構成の概略を説明するための図である。It is a figure for demonstrating the outline of the structure about an example of the manufacturing system of the pressure vessel in embodiment of this invention. 図1に示す送出繊維幅調整部18の一例を示す要部拡大図である。It is a principal part enlarged view which shows an example of the delivery fiber width adjustment part 18 shown in FIG. 図2に示す送出繊維幅調整ローラ26の要部の構成の概略を説明するための上面図である。FIG. 3 is a top view for explaining an outline of a configuration of a main part of a delivery fiber width adjusting roller 26 shown in FIG. 2. 図3に示す送出繊維幅調整ローラ26の通常制御による、プリプレグ繊維の送り出し状態の一例を示す上面図である。FIG. 4 is a top view showing an example of a prepreg fiber delivery state by normal control of a delivery fiber width adjusting roller shown in FIG. 3. 図3に示す送出繊維幅調整ローラ26の繊維幅拡張制御による、プリプレグ繊維の送り出し状態の一例を示す上面図である。FIG. 4 is a top view showing an example of a prepreg fiber delivery state by fiber width expansion control of a delivery fiber width adjustment roller shown in FIG. 3. 図3に示す送出繊維幅調整ローラ26の繊維幅収束制御による、プリプレグ繊維の送り出し状態の一例を示す上面図である。FIG. 4 is a top view showing an example of a prepreg fiber delivery state by fiber width convergence control of a delivery fiber width adjustment roller shown in FIG. 3. 本発明の実施の形態における圧力容器の製造方法について示したフローチャートである。It is the flowchart shown about the manufacturing method of the pressure vessel in embodiment of this invention. 圧力容器の構成の概略を示す図である。It is a figure which shows the outline of a structure of a pressure vessel. 図6に示すA−A'断面の構成の概略を示す拡大図である。It is an enlarged view which shows the outline of a structure of the AA 'cross section shown in FIG.

以下、図面を用いて詳細に説明する。   Hereinafter, it explains in detail using a drawing.

図1は、本発明の実施の形態におけるフィラメントワインディングシステム100の構成の概略を説明するための図である。図1に示すフィラメントワインディングシステム100は、巻出しボビン12a,12b,12c,12dからそれぞれ巻き出される樹脂含浸繊維束(プリプレグ繊維)10a,10b,10c,10dを並行するように搬送させる搬送部14と、挿通する樹脂含浸繊維束10a,10b,10c,10dに適切な圧力を加えて挟み込み、拡幅させる拡幅ローラ16,17と、樹脂含浸繊維束10a,10b,10c,10dの搬送繊維幅に応じて、送り出す繊維幅を調整する送出繊維幅調整部18と、を含み、構成されている。搬送部14には、テンションローラ20やアクティブダンサー22、図示しないアキュームレータなどの張力緩和装置その他の搬送補助機構が含まれ得て、必要に応じて各装置または機構を適切な箇所に配設することができる。   FIG. 1 is a diagram for explaining an outline of a configuration of a filament winding system 100 according to an embodiment of the present invention. A filament winding system 100 shown in FIG. 1 has a conveyance unit 14 that conveys resin-impregnated fiber bundles (prepreg fibers) 10a, 10b, 10c, and 10d that are unwound from unwind bobbins 12a, 12b, 12c, and 12d in parallel. Depending on the widths of the fiber-impregnated fiber bundles 10a, 10b, 10c, and 10d that are inserted into the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d and widened, And a delivery fiber width adjusting unit 18 that adjusts the fiber width to be sent out. The transport unit 14 may include a tension roller 20, an active dancer 22, a tension relief device such as an accumulator (not shown) and other transport assist mechanisms, and each device or mechanism may be disposed at an appropriate location as necessary. Can do.

図2は、図1に示す送出繊維幅調整部18の一例を示す要部拡大図である。図2に示す送出繊維幅調整部18は、図1に示す搬送部14から搬送された樹脂含浸繊維束10a,10b,10c,10dが形成する繊維幅を調整して矢印方向に送り出す送出繊維幅調整ローラ26と、送出繊維幅調整ローラ26から送り出された樹脂含浸繊維束10a,10b,10c,10dが形成する繊維幅を検知するセンサ24,25と、を備える。送出繊維幅調整ローラ26は、センサ24,25で検知された樹脂含浸繊維束10a,10b,10c,10dの送出繊維幅に応じて、ここでは図示しないライナ(図6,7参照)側へ送り出す樹脂含浸繊維束10a,10b,10c,10dの繊維幅(送出繊維幅)を調整することができる。   FIG. 2 is an enlarged view of a main part showing an example of the delivery fiber width adjusting unit 18 shown in FIG. The delivery fiber width adjusting unit 18 shown in FIG. 2 adjusts the fiber width formed by the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d conveyed from the conveyance unit 14 shown in FIG. An adjustment roller 26 and sensors 24 and 25 that detect fiber widths formed by the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d fed from the delivery fiber width adjustment roller 26 are provided. The sending fiber width adjusting roller 26 sends out to the liner (see FIGS. 6 and 7) not shown here according to the sending fiber width of the resin-impregnated fiber bundles 10a, 10b, 10c and 10d detected by the sensors 24 and 25. The fiber width (delivery fiber width) of the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d can be adjusted.

実施の形態において、送出繊維幅調整ローラ26は、適切な送出繊維幅に調整された樹脂含浸繊維束10a,10b,10c,10dを、ライナ(図6,7参照)の適切な箇所に巻きつけるために、拡幅させた樹脂含浸繊維束10a,10b,10c,10dの送り出し方向を調整するための、フレーム28,30を含む送出方向制御部材32に保持されている。送出方向制御部材32は、ライナとの相対的な位置を異ならせることにより、樹脂含浸繊維束10a,10b,10c,10dを該ライナ表面の適切な箇所に連続的に送出させるための部材であり、「アイ口」(アイクチ)と称される場合もある。   In the embodiment, the delivery fiber width adjusting roller 26 winds the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d adjusted to an appropriate delivery fiber width around appropriate portions of the liner (see FIGS. 6 and 7). For this purpose, the resin impregnated fiber bundles 10a, 10b, 10c, and 10d that have been widened are held by a delivery direction control member 32 including frames 28 and 30 for adjusting the delivery direction. The delivery direction control member 32 is a member for continuously delivering the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d to appropriate portions on the liner surface by changing the relative position to the liner. , Sometimes referred to as “eye mouth” (Ikuchi).

センサ24,25を送出繊維幅調整部18の下流側、つまりライナにより近い箇所に配置させることにより、ライナに送り出される繊維幅の調整精度をより向上させることができる。このため、送出方向制御部材32による、樹脂含浸繊維束10a,10b,10c,10dの送出精度がより高まり、ライナに対し、巻き付けムラの少ない、緊密なフィラメントワインディングを行うことができる。   By arranging the sensors 24 and 25 on the downstream side of the delivery fiber width adjustment unit 18, that is, at a position closer to the liner, the adjustment accuracy of the fiber width delivered to the liner can be further improved. For this reason, the delivery accuracy of the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d by the delivery direction control member 32 is further increased, and tight filament winding with less winding unevenness can be performed on the liner.

図3に示すように、送出繊維幅調整ローラ26には、一対の可動ローラ軸34,36が挿通されている。可動ローラ軸34,36はそれぞれ、軸受42,44で軸支されており、樹脂含浸繊維束10a,10b,10c,10dが搬送されることにより送出繊維幅調整ローラ26が回転するように構成されている。一方、可動ローラ軸34,36はまた、外側部分に固定部38,40を有しており、固定部38,40を軸として所定の角度だけ揺動可能に構成されている。   As shown in FIG. 3, a pair of movable roller shafts 34 and 36 are inserted through the delivery fiber width adjusting roller 26. The movable roller shafts 34 and 36 are respectively supported by bearings 42 and 44, and are configured such that the delivery fiber width adjusting roller 26 rotates when the resin-impregnated fiber bundles 10a, 10b, 10c and 10d are conveyed. ing. On the other hand, the movable roller shafts 34 and 36 also have fixed portions 38 and 40 on the outer portions, and are configured to be swingable by a predetermined angle about the fixed portions 38 and 40 as axes.

送出繊維幅調整ローラ26は、可動ローラ軸34,36を覆うように配置されている。可動ローラ軸34,36の揺動に伴い、その外観形状(外形)を異ならせるように変形させることができるよう、送出繊維幅調整ローラ26は所望の柔軟性と剛性とを兼備する弾性材料で構成することができる。実施の形態において、送出繊維幅調整ローラ26を構成する弾性材料として、例えば、ウレタンゴムなどのゴム材料を適用することができるが、これに限定されるものではなく、可動ローラ軸34,36の揺動に伴い変形する程度の柔軟性と、搬送される樹脂含浸繊維束10a,10b,10c,10dを適切に保持し、所望の送り出し角度で送り出すことができる程度の剛性とを兼ね備えるものであれば送出繊維幅調整ローラ26の材質およびその形状に制限はない。   The delivery fiber width adjusting roller 26 is disposed so as to cover the movable roller shafts 34 and 36. The sending fiber width adjusting roller 26 is an elastic material having both desired flexibility and rigidity so that the outer shape (outer shape) of the movable roller shafts 34 and 36 can be changed so as to vary. Can be configured. In the embodiment, for example, a rubber material such as urethane rubber can be applied as the elastic material constituting the delivery fiber width adjusting roller 26, but the elastic material is not limited thereto. What has both the flexibility to the extent that it deforms as it swings and the rigidity to allow the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d to be conveyed to be appropriately held and delivered at a desired delivery angle For example, the material and shape of the delivery fiber width adjusting roller 26 are not limited.

センサ24,25により検知された繊維幅に基づき、樹脂含浸繊維束10a,10b,10c,10dを拡幅/収束の必要なしと判断された場合には、可動ローラ軸34,36はほぼ平行な一直線状に配置されたままであり、送出繊維幅調整ローラ26は変形していない(図4A参照)。このとき、送出繊維幅調整ローラ26に搬送された樹脂含浸繊維束10a,10b,10c,10dは、そのままの繊維幅でライナ側に送り出される。   When it is determined that the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d do not need to be widened / converged based on the fiber widths detected by the sensors 24 and 25, the movable roller shafts 34 and 36 are substantially parallel straight lines. The delivery fiber width adjusting roller 26 is not deformed (see FIG. 4A). At this time, the resin-impregnated fiber bundles 10a, 10b, 10c and 10d conveyed to the sending fiber width adjusting roller 26 are sent out to the liner side with the same fiber width.

これに対し、樹脂含浸繊維束10a,10b,10c,10dを拡幅の必要ありと判断された場合には、可動ローラ軸34,36の内側部分をライナ側にそれぞれ移動させる揺動制御(拡幅制御)が行われ、これに伴い送出繊維幅調整ローラ26も変形する(図4B参照)。送出繊維幅調整ローラ26の変形に伴い、送出繊維幅調整ローラ26に搬送された樹脂含浸繊維束10a,10b,10c,10dは、その送出角度が変化し、拡幅されてライナ側に送り出される。一方、樹脂含浸繊維束10a,10b,10c,10dを収束の必要ありと判断された場合には、可動ローラ軸34,36の内側部分を上流側、つまり図1に示す搬送部14側にそれぞれ移動させる揺動制御(収束制御)が行われ、これに伴い送出繊維幅調整ローラ26も変形する(図4C参照)。送出繊維幅調整ローラ26の変形に伴い、送出繊維幅調整ローラ26に搬送された樹脂含浸繊維束10a,10b,10c,10dは、その送出角度が変化し、収束されてライナ側に送り出される。   On the other hand, when it is determined that the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d need to be widened, the swing control (widening control) for moving the inner portions of the movable roller shafts 34 and 36 to the liner side, respectively. ) And the delivery fiber width adjusting roller 26 is also deformed (see FIG. 4B). As the delivery fiber width adjustment roller 26 is deformed, the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d conveyed to the delivery fiber width adjustment roller 26 change their delivery angles and are widened and delivered to the liner side. On the other hand, when it is determined that the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d need to be converged, the inner portions of the movable roller shafts 34 and 36 are respectively located upstream, that is, toward the conveyance unit 14 shown in FIG. Oscillation control (convergence control) is performed, and the delivery fiber width adjustment roller 26 is also deformed (see FIG. 4C). As the delivery fiber width adjustment roller 26 is deformed, the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d conveyed to the delivery fiber width adjustment roller 26 have their delivery angles changed, converged, and sent to the liner side.

図1〜5を参照して、本発明の実施の形態における圧力容器の製造方法の概略について説明する。まず、繊維束に樹脂液を含浸させてなる樹脂含浸繊維束10a,10b,10c,10d(プリプレグ繊維)を、搬送部14により並行するように搬送させる(S100)。次いで、センサ24,25により、送り出された樹脂含浸繊維束10a,10b,10c,10dの繊維幅を検知する(S102)。検知された繊維幅が予め定められた範囲内にあるか否かを判定し(S104)、必要であれば送出繊維幅調整ローラ26を制御して繊維幅を拡幅または収束するように調整する(S106)。所定の繊維幅に調整された樹脂含浸繊維束10a,10b,10c,10dを、送出方向制御部材32から送り出し、ライナに巻き付け(S108)、その後、樹脂含浸繊維束10a,10b,10c,10dに含まれる樹脂を硬化させて(S110)、圧力容器が作製される。   With reference to FIGS. 1-5, the outline of the manufacturing method of the pressure vessel in embodiment of this invention is demonstrated. First, resin-impregnated fiber bundles 10a, 10b, 10c, and 10d (prepreg fibers) formed by impregnating a fiber bundle with a resin liquid are conveyed by the conveyance unit 14 in parallel (S100). Next, the sensor 24, 25 detects the fiber width of the sent resin-impregnated fiber bundles 10a, 10b, 10c, 10d (S102). It is determined whether or not the detected fiber width is within a predetermined range (S104), and if necessary, the delivery fiber width adjustment roller 26 is controlled to adjust the fiber width to be widened or converged (see FIG. S106). The resin-impregnated fiber bundles 10a, 10b, 10c, and 10d adjusted to a predetermined fiber width are sent out from the delivery direction control member 32, wound around the liner (S108), and then wound around the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d. The contained resin is cured (S110) to produce a pressure vessel.

本発明の実施の形態において、図1に示す樹脂含浸繊維束10a,10b,10c,10d(プリプレグ繊維)の材料である繊維束を構成する繊維としては、例えばガラス繊維、炭素繊維、ケブラ繊維などを用いることが可能であり、特に比強度、比剛性の観点から炭素繊維が好適に用いられる。より具体的には、T800繊維(東レ社製)、テナックスIM600(商品名)(東邦テナックス社製)などを挙げることができるが、これらに限定されない。また、繊維束の機械的強度として、引張り強度が100〜300GPa程度のものが好ましいが、これに限定されない。   In the embodiment of the present invention, as the fibers constituting the fiber bundle that is a material of the resin-impregnated fiber bundles 10a, 10b, 10c, and 10d (prepreg fibers) shown in FIG. 1, for example, glass fiber, carbon fiber, Kevlar fiber, and the like In particular, carbon fibers are preferably used from the viewpoint of specific strength and specific rigidity. More specifically, T800 fiber (manufactured by Toray Industries, Inc.), Tenax IM600 (trade name) (manufactured by Toho Tenax Co., Ltd.) and the like can be mentioned, but are not limited thereto. Further, the mechanical strength of the fiber bundle is preferably about 100 to 300 GPa in tensile strength, but is not limited thereto.

また、繊維束の幅(繊維束幅)は、使用する材料の強度に応じて適宜選択することが可能である。具体的には、2〜5mm程度のものが好適に用いられるが、これに限定されるものではない。   The width of the fiber bundle (fiber bundle width) can be appropriately selected according to the strength of the material used. Specifically, a material having a thickness of about 2 to 5 mm is preferably used, but is not limited thereto.

一方、繊維束に含浸される樹脂液として、例えば液状の熱硬化性樹脂を用いることができ、要求される性能に応じて適宜選択することが可能である。かかる熱硬化性樹脂として、例えば、エポキシ樹脂、ポリエステル樹脂などを使用することができるが、これに限定されない。また、繊維束に樹脂液を含浸させてプリグレグ繊維を作製する方法として、例えば浸漬法、スプレー法のほか、公知のあらゆる手法を適用することができるが、より好適には浸漬法である。   On the other hand, as the resin liquid impregnated in the fiber bundle, for example, a liquid thermosetting resin can be used, and can be appropriately selected according to required performance. As such a thermosetting resin, for example, an epoxy resin, a polyester resin, or the like can be used, but is not limited thereto. In addition, as a method for producing a prepreg fiber by impregnating a fiber bundle with a resin solution, for example, any known method other than the dipping method and the spray method can be applied, and the dipping method is more preferable.

さらに、送出繊維幅調整ローラ26を用いて調整されたプリプレグ繊維の繊維幅は、隣り合うプリプレグ繊維間に隙間が生じたり、過度に重なり合ったりといった巻き付けムラが生じないよう、使用される繊維束の太さや束数に応じて適宜設定することができる。なお、図1に示す実施の形態において、4束の樹脂含浸繊維束10a,10b,10c,10dを並行して搬送させる構成として例示しているが、複数のプリプレグ繊維を並行して搬送させる構成であればこれに限定されるものではなく、例えば2束や5束以上であっても良い。   Further, the fiber width of the prepreg fiber adjusted using the delivery fiber width adjusting roller 26 is such that a gap between adjacent prepreg fibers is not generated and winding unevenness such as excessive overlapping does not occur. It can set suitably according to thickness and the number of bundles. In the embodiment shown in FIG. 1, the four resin-impregnated fiber bundles 10a, 10b, 10c, and 10d are exemplified as a structure that is conveyed in parallel, but a structure that conveys a plurality of prepreg fibers in parallel. If it is, it will not be limited to this, For example, 2 bundles or 5 bundles or more may be sufficient.

本発明は、プリプレグ繊維を巻き付けて作製されるFRP製の圧力容器に利用することが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an FRP pressure vessel manufactured by winding a prepreg fiber.

10a,10b,10c,10d 樹脂含浸繊維束、12a,12b,12c,12d ボビン、14 搬送部、16,17 拡幅ローラ、18 送出繊維幅調整部、20 テンションローラ、22 アクティブダンサー、24,25 センサ、26 送出繊維幅調整ローラ、28,30 フレーム、32 送出方向制御部材、34,36 可動ローラ軸、38,40 固定部、42,44 軸受、100 フィラメントワインディングシステム、130 ライナ、132 繊維強化樹脂層、134 繊維束、136 樹脂、138 口金、200 圧力容器。   10a, 10b, 10c, 10d Resin-impregnated fiber bundle, 12a, 12b, 12c, 12d Bobbin, 14 Conveying unit, 16, 17 Widening roller, 18 Delivery fiber width adjusting unit, 20 Tension roller, 22 Active dancer, 24, 25 Sensor , 26 Delivery fiber width adjusting roller, 28, 30 frame, 32 Delivery direction control member, 34, 36 Movable roller shaft, 38, 40 Fixed part, 42, 44 Bearing, 100 Filament winding system, 130 liner, 132 Fiber reinforced resin layer 134 Fiber bundle, 136 resin, 138 base, 200 pressure vessel.

Claims (6)

ライナの外周表面に、樹脂液を含浸させた繊維束を巻きつけるフィラメントワインディングシステムであって、
複数の樹脂含浸繊維束を並行させて搬送する搬送手段と、
前記搬送手段から搬送された、並行する複数の樹脂含浸繊維束が形成する繊維幅を調整して送り出す送出繊維幅調整手段と、
前記送出繊維幅調整手段から送り出された繊維幅を検知するセンサと、
を備え、
前記センサが検知した樹脂含浸繊維束の繊維幅に応じて、前記送出繊維幅調整手段から送り出される送出繊維幅を調整することを特徴とするフィラメントワインディングシステム。
A filament winding system in which a fiber bundle impregnated with a resin liquid is wound around the outer peripheral surface of a liner,
Conveying means for conveying a plurality of resin-impregnated fiber bundles in parallel;
Sending fiber width adjusting means that adjusts and sends out the fiber width formed by a plurality of parallel resin-impregnated fiber bundles conveyed from the conveying means;
A sensor for detecting the fiber width sent from the sending fiber width adjusting means;
With
A filament winding system characterized by adjusting a delivery fiber width fed from the delivery fiber width adjusting means in accordance with a fiber width of a resin-impregnated fiber bundle detected by the sensor.
請求項1に記載のフィラメントワインディングシステムにおいて、
前記送出繊維幅調整手段が、可動式のローラ軸が挿通された送出繊維幅調整ローラを含み、
前記センサが検知した樹脂含浸繊維束の繊維幅に応じて前記ローラ軸を可動させて、前記樹脂含浸繊維束を構成する樹脂含浸繊維の送出角度を調整することで送出繊維幅を調整することを特徴とするフィラメントワインディングシステム。
The filament winding system according to claim 1, wherein
The delivery fiber width adjusting means includes a delivery fiber width adjusting roller through which a movable roller shaft is inserted,
Adjusting the delivery fiber width by moving the roller shaft in accordance with the fiber width of the resin-impregnated fiber bundle detected by the sensor and adjusting the delivery angle of the resin-impregnated fiber constituting the resin-impregnated fiber bundle. Characteristic filament winding system.
請求項2に記載のフィラメントワインディングシステムにおいて、
前記可動式のローラ軸が、外側部分に固定端を、内側部分に可動端をそれぞれ有する一対の可動ローラ軸を含み、
前記固定端を軸として前記可動ローラ軸を揺動させて、前記樹脂含浸繊維の送出角度を調整することを特徴とするフィラメントワインディングシステム。
The filament winding system according to claim 2,
The movable roller shaft includes a pair of movable roller shafts each having a fixed end on an outer portion and a movable end on an inner portion;
A filament winding system, wherein the movable roller shaft is swung about the fixed end to adjust the feeding angle of the resin-impregnated fiber.
中空形状のライナの外周表面に、ライナを被覆する繊維強化樹脂層を備える圧力容器の製造システムであって、
樹脂液を含浸させた複数の繊維束を並行させて搬送する搬送手段と、
前記搬送手段から搬送された、並行する複数の樹脂含浸繊維束が形成する繊維幅を調整して送り出す送出繊維幅調整手段と、
前記送出繊維幅調整手段から送り出された繊維幅を検知するセンサと、
を備え、
前記センサが検知した樹脂含浸繊維束の繊維幅に応じて、前記送出繊維幅調整手段から送り出される送出繊維幅を調整することを特徴とする圧力容器の製造システム。
A pressure vessel manufacturing system comprising a fiber reinforced resin layer covering a liner on the outer peripheral surface of a hollow liner,
Conveying means for conveying a plurality of fiber bundles impregnated with a resin liquid in parallel;
Sending fiber width adjusting means that adjusts and sends out the fiber width formed by a plurality of parallel resin-impregnated fiber bundles conveyed from the conveying means;
A sensor for detecting the fiber width sent from the sending fiber width adjusting means;
With
The pressure vessel manufacturing system, wherein the delivery fiber width fed from the delivery fiber width adjusting means is adjusted according to the fiber width of the resin-impregnated fiber bundle detected by the sensor.
中空形状のライナの外周表面に、ライナを被覆する繊維強化樹脂層を備える圧力容器の製造方法であって、
複数の樹脂含浸繊維束を並行させて搬送する搬送工程と、
搬送された、並行する複数の樹脂含浸繊維束が形成する繊維幅を調整して送り出す送出繊維幅調整工程と、
送り出された繊維幅を検知する検知工程と、
を含み、
前記送出繊維幅調整工程が、検知された樹脂含浸繊維束の繊維幅に応じて、ライナ側に送り出される送出繊維幅を調整する工程であることを特徴とする圧力容器の製造方法。
A method of manufacturing a pressure vessel comprising a fiber reinforced resin layer covering the liner on the outer peripheral surface of a hollow liner,
A conveying step of conveying a plurality of resin-impregnated fiber bundles in parallel;
A delivery fiber width adjustment step of adjusting and sending out the fiber width formed by the plurality of parallel resin-impregnated fiber bundles conveyed,
A detection step of detecting the sent fiber width;
Including
The method for producing a pressure vessel, wherein the sending fiber width adjusting step is a step of adjusting the sending fiber width sent to the liner side according to the detected fiber width of the resin-impregnated fiber bundle.
請求項5に記載の圧力容器の製造方法において、
調整された送出繊維幅を有する樹脂含浸繊維束を前記ライナに巻きつけるフィラメントワインディング工程と、
樹脂を硬化させて繊維強化樹脂層を形成する硬化工程と、
をさらに含むことを特徴とする圧力容器の製造方法。
In the manufacturing method of the pressure vessel according to claim 5,
A filament winding step of winding a resin-impregnated fiber bundle having an adjusted delivery fiber width around the liner;
A curing step of curing the resin to form a fiber reinforced resin layer;
A method for producing a pressure vessel, further comprising:
JP2009252066A 2009-11-02 2009-11-02 Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel Pending JP2011093276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252066A JP2011093276A (en) 2009-11-02 2009-11-02 Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252066A JP2011093276A (en) 2009-11-02 2009-11-02 Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel

Publications (1)

Publication Number Publication Date
JP2011093276A true JP2011093276A (en) 2011-05-12

Family

ID=44110728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252066A Pending JP2011093276A (en) 2009-11-02 2009-11-02 Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel

Country Status (1)

Country Link
JP (1) JP2011093276A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063592A (en) * 2011-09-16 2013-04-11 Murata Machinery Ltd Filament winding device
JP2013063591A (en) * 2011-09-16 2013-04-11 Murata Machinery Ltd Filament winding device
KR20160086459A (en) * 2015-01-09 2016-07-20 현대자동차주식회사 Winding system and Automated optical fiber to Insert method using the same
JP2016159446A (en) * 2015-02-26 2016-09-05 トヨタ自動車株式会社 Filament winding device
JP2016165850A (en) * 2015-03-10 2016-09-15 トヨタ自動車株式会社 Filament winding apparatus
US9486966B2 (en) 2014-04-04 2016-11-08 Toyota Jidosha Kabushiki Kaisha Filament winding apparatus
JP2017007104A (en) * 2015-06-16 2017-01-12 トヨタ自動車株式会社 Filament winding apparatus
JP2017196817A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Method for producing tank
US10730246B2 (en) 2016-03-24 2020-08-04 Mizuno Corporatioon Fiber-reinforced member and method for manufacturing same
EP4049836A1 (en) 2021-02-25 2022-08-31 Subaru Corporation Tape arranging device
EP4364931A1 (en) * 2022-11-01 2024-05-08 Subaru Corporation Fiber width adjustment device and method of molding composite material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063591A (en) * 2011-09-16 2013-04-11 Murata Machinery Ltd Filament winding device
JP2013063592A (en) * 2011-09-16 2013-04-11 Murata Machinery Ltd Filament winding device
US9486966B2 (en) 2014-04-04 2016-11-08 Toyota Jidosha Kabushiki Kaisha Filament winding apparatus
KR20160086459A (en) * 2015-01-09 2016-07-20 현대자동차주식회사 Winding system and Automated optical fiber to Insert method using the same
KR101646434B1 (en) 2015-01-09 2016-08-08 현대자동차주식회사 Winding system and Automated optical fiber to Insert method using the same
JP2016159446A (en) * 2015-02-26 2016-09-05 トヨタ自動車株式会社 Filament winding device
US9962886B2 (en) 2015-03-10 2018-05-08 Toyota Jidosha Kabushiki Kaisha Filament winding apparatus and method of controlling filament winding apparatus
JP2016165850A (en) * 2015-03-10 2016-09-15 トヨタ自動車株式会社 Filament winding apparatus
DE102016102128A1 (en) 2015-03-10 2016-09-15 Toyota Jidosha Kabushiki Kaisha A filament winding apparatus and method for controlling a filament winding apparatus
DE102016102128B4 (en) 2015-03-10 2019-10-10 Toyota Jidosha Kabushiki Kaisha A filament winding apparatus and method for controlling a filament winding apparatus
JP2017007104A (en) * 2015-06-16 2017-01-12 トヨタ自動車株式会社 Filament winding apparatus
US10730246B2 (en) 2016-03-24 2020-08-04 Mizuno Corporatioon Fiber-reinforced member and method for manufacturing same
JP2017196817A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Method for producing tank
EP4049836A1 (en) 2021-02-25 2022-08-31 Subaru Corporation Tape arranging device
US11919257B2 (en) 2021-02-25 2024-03-05 Subaru Corporation Tape arranging device
EP4364931A1 (en) * 2022-11-01 2024-05-08 Subaru Corporation Fiber width adjustment device and method of molding composite material

Similar Documents

Publication Publication Date Title
JP2011093276A (en) Filament winding system, system of manufacturing pressure vessel, and method of manufacturing pressure vessel
JP2011245780A (en) Tension control unit, filament winding system, and method for manufacturing of pressure vessel
WO2017022607A1 (en) Production method for fiber reinforced resin sheet material
US20210381647A1 (en) High-pressure tank, high-pressure tank mounting apparatus and method for manufacturing high-pressure tank
US11254070B2 (en) Method for producing high-pressure tank
JP6210088B2 (en) Tank manufacturing method and tank manufacturing apparatus
JP6652087B2 (en) Gas tank and its manufacturing method
JP6194909B2 (en) Filament winding equipment
US11597166B2 (en) Method of manufacturing high-pressure tank
JP6191654B2 (en) Tank manufacturing method and tank manufacturing apparatus
CN109878104B (en) Yarn winding device
JP7421944B2 (en) Tow prepreg manufacturing equipment and manufacturing method
US20190091919A1 (en) High-pressure tank fabrication method
US10591111B2 (en) Method for producing high-pressure tank
JP2021109357A (en) Method for manufacturing high-pressure tank and apparatus for manufacturing the same
JP6969343B2 (en) Filament winding device
JP2012045826A (en) Method for manufacturing pressure container
JP2011245659A (en) Method and device for manufacturing prepreg fiber
JP5707738B2 (en) High pressure tank manufacturing device, high pressure tank manufacturing method, and fiber bundle widening device
JP2008238491A (en) Frp molded body, its manufacturing method, and gas tank
JP2005337272A (en) Frp-made pressure vessel
JP2006255919A (en) Curved fiber reinforced plastic, and method and apparatus for manufacturing preform for curved fiber reinforced plastic
JP6730071B2 (en) Filament winding equipment
JP2011093277A (en) Method and apparatus for manufacturing prepreg fiber
JP6702223B2 (en) Filament winding equipment