JP2011091961A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2011091961A
JP2011091961A JP2009244580A JP2009244580A JP2011091961A JP 2011091961 A JP2011091961 A JP 2011091961A JP 2009244580 A JP2009244580 A JP 2009244580A JP 2009244580 A JP2009244580 A JP 2009244580A JP 2011091961 A JP2011091961 A JP 2011091961A
Authority
JP
Japan
Prior art keywords
stator
magnetic pole
phase
motor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009244580A
Other languages
Japanese (ja)
Inventor
Tsutomu Michioka
力 道岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009244580A priority Critical patent/JP2011091961A/en
Publication of JP2011091961A publication Critical patent/JP2011091961A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor with rotors arranged to face each other with a gap provided on both surface sides of a stator, which is of low cost, smaller than before, and light weight. <P>SOLUTION: In a novel motor 1a, a stator 4 is arranged between two rotors 3a and 3b pivoted on a motor shaft 2. Magnetic poles 32a-32c are so arranged as tripartitioned in radial direction at respective magnetic pole positions in circumferential direction of the plane facing the stator 4 of the rotors 3a and 3b. Two-phase coils 6u and 6wa are concentrically provided on at least one surface of the stator 4, and annular coils 6u, 6v, 6wa, and 6wb for excitation in each phase are distributed on both surfaces of the stator 4. Magnetic poles 42a, 42b, and 42c are so arranged as to deviate in circumferential direction, on the inner peripheral side and outer peripheral side of the coils 6u-6wb of each phase on both surfaces of the stator 4. A pair of magnetic poles excited in radial direction are formed on both surfaces of the stator 4 by energizing the coils 6u-6wb of each phase in the order of phase to rotate the rotors 3a and 3b. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ステータの両面側にギャップを設けてロータを対向配置した構造のモータに関する。   The present invention relates to a motor having a structure in which a gap is provided on both sides of a stator and rotors are arranged to face each other.

従来、同軸にステータ及びロータを配置したモータの一例として、クローポール型モータが提案されている(例えば、特許文献1(要約書、[請求項1]、段落[0002]、[0003]、[0053]−[0063]、図6等)参照)。   Conventionally, a claw pole type motor has been proposed as an example of a motor in which a stator and a rotor are coaxially arranged (for example, Patent Document 1 (abstract, [claim 1], paragraphs [0002], [0003], [0003] 0053]-[0063], FIG.

図6は特許文献1に記載のクローポール型モータのステータ構造を示し、ステータ119は、U、V、Wの各相のステータリング131、132、133と、U相のコイル134、V相のコイル135a、135b、W相のコイル136とを備える。各相のステータリング131、132、133はモータ軸方向Lに重ね合わされて配置される。   6 shows a stator structure of a claw pole type motor described in Patent Document 1. The stator 119 includes U, V, and W phase stator rings 131, 132, and 133, a U phase coil 134, and a V phase coil. And coils 135a and 135b and a W-phase coil 136. The stator rings 131, 132, 133 of each phase are arranged so as to overlap in the motor axial direction L.

U相のステータリング131は、周方向に等間隔に配置されて径方向内向きに延びる9個のティース131bと、これらのティース131bから更に径方向内向きに延びる磁極131cとを備える。同様に、V相のステータリング132は、径方向内側に伸びた9個のティース132bと、これらのティース132bから更に径方向内向きに延びる磁極132cとを備える。また、W相のステータリング133は、9個のティース133bと、これらのティース133bから更に径方向内向きに延びる磁極133cとを備える。   The U-phase stator ring 131 includes nine teeth 131b that are arranged at equal intervals in the circumferential direction and extend inward in the radial direction, and magnetic poles 131c that extend further inward in the radial direction from these teeth 131b. Similarly, the V-phase stator ring 132 includes nine teeth 132b extending radially inward, and magnetic poles 132c extending further radially inward from the teeth 132b. The W-phase stator ring 133 includes nine teeth 133b and a magnetic pole 133c extending further inward in the radial direction from the teeth 133b.

さらに、ステータ119の内側にロータが設けられ、該ロータは磁極としての複数の各永久磁石が周方向に配設されている。   Further, a rotor is provided inside the stator 119, and a plurality of permanent magnets as magnetic poles are arranged in the circumferential direction in the rotor.

そして、各相のコイル134、135a,135b、136を順次に切替えて通電することにより、ロータが回転駆動される。   The coils 134, 135a, 135b, and 136 of each phase are sequentially switched and energized to rotate the rotor.

つぎに、ステータとロータがモータ軸方向にギャップを設けて対向した状態に配置されるモータとしてはアキシャルギャップモータがよく知られている。そして、このアキシャルギャップモータにおいて、ステータの両面側にロータがモータ軸方向にギャップを設けて対向した状態に配置されることについてもよく知られている。そして、このアキシャルギャップモータにおいて、小型化、軽量化を図り、モータ損を少なくするため、ステータの両面側にギャップを設けてロータを対向配置し、ステータに励磁用のコイルを巻回した外周側の磁極と内周側の磁極とを配置することが提案されている(例えば、特許文献2(請求項4、段落[0010]−[0015]、図1等)参照)。   Next, an axial gap motor is well known as a motor in which the stator and the rotor are arranged in a state of facing each other with a gap provided in the motor axial direction. In this axial gap motor, it is also well known that the rotor is disposed in a state of being opposed to each other by providing a gap in the motor axial direction on both sides of the stator. In this axial gap motor, in order to reduce the size and weight, and reduce motor loss, a gap is provided on both sides of the stator, the rotor is arranged oppositely, and the outer peripheral side is wound with an exciting coil around the stator. (See, for example, Patent Document 2 (claim 4, paragraphs [0010]-[0015], FIG. 1)).

図7は特許文献2に記載のアキシャルギャップモータ200を示し、(a)はそのステータ211から見たロータ212aの磁極面の平面図、(b)は(a)のB−B線に沿って切断したアキシャルギャップモータ200の断面図である。アキシャルギャップモータ200は、ステータ211と、その両面側にギャップ(隙間)を設けて配置された一対の回転ロータ212a、212bを備え、ロータ212a、212bは、モータ軸213に軸支されている。   FIG. 7 shows an axial gap motor 200 described in Patent Document 2, wherein (a) is a plan view of the magnetic pole surface of the rotor 212a viewed from the stator 211, and (b) is along the line BB in (a). 2 is a cross-sectional view of a cut axial gap motor 200. FIG. The axial gap motor 200 includes a stator 211 and a pair of rotating rotors 212a and 212b arranged with a gap (gap) provided on both sides thereof. The rotors 212a and 212b are supported by a motor shaft 213.

ステータ211は、各相のコイル214を巻回した複数の外側コア215が周方向に略等間隔に配置され、各外側コア215の内側にコイル214を巻回した内側コア216が配置されている。すなわち、ステータ211は周方向の略等間隔の各磁極の位置に、コイル214を巻回した外側コア215と内側コア216が同心円状に接近して配置されている。そして、各位置のコア215、216のコイル214は通電の電気角が180度異なり、例えばU相の+U(N極)、−U(S極)の磁極対に励磁される。   In the stator 211, a plurality of outer cores 215 around which coils 214 of each phase are wound are arranged at substantially equal intervals in the circumferential direction, and an inner core 216 around which coils 214 are wound is arranged inside each outer core 215. . That is, in the stator 211, the outer core 215 and the inner core 216 around which the coil 214 is wound are arranged concentrically in close proximity to the positions of the magnetic poles at substantially equal intervals in the circumferential direction. The coils 214 of the cores 215 and 216 at each position differ in electrical angle of energization by 180 degrees and are excited by, for example, U-phase + U (N pole) and -U (S pole) magnetic pole pairs.

ロータ212a、212bは、ヨーク217a、217bと、磁極を形成するそれぞれ複数個の外側永久磁石218a、内側永久磁石218bを備え、それぞれ非磁性部材からなる隔壁部219により略4等分され、磁気的に隔離された4つの区画を有する。なお、ステータ211に対向する永久磁石218a、218bは、ステータ211のコア215、216に対応して配置され、周方向及び径方向に異なる極性である。   The rotors 212a and 212b include yokes 217a and 217b and a plurality of outer permanent magnets 218a and inner permanent magnets 218b that form magnetic poles, respectively, and are divided into approximately four equal parts by a partition 219 made of a non-magnetic member. Has four compartments isolated from each other. The permanent magnets 218a and 218b facing the stator 211 are arranged corresponding to the cores 215 and 216 of the stator 211, and have different polarities in the circumferential direction and the radial direction.

そして、各相のコイル214の順次の通電により、ステータ211の各相の磁極対につき、例えば図7(b)の磁路r、同図(a)の磁路r2が形成されてロータ212a、212bが回転する。このとき、モータ軸213に直交する端面を通る磁路r2が短くなってモータ損失が減少する。   Then, by sequentially energizing the coils 214 of each phase, for example, the magnetic path r of FIG. 7B and the magnetic path r2 of FIG. 212b rotates. At this time, the magnetic path r2 passing through the end surface orthogonal to the motor shaft 213 is shortened, and the motor loss is reduced.

特開2005−20981号公報JP 2005-20981 A 特開2007−236130号公報JP 2007-236130 A

図6のステータ構造の従来例モータの場合、ステータ119の各磁極131c、132c、133cは、各ティース131b、132b、133bから径方向内向きに延びるとともに、一定の磁極面積を確保するため、L字状に屈曲してモータ軸Lの方向に延びている。そのため、各ティース131b、132b、133bのモータ軸L方向の長さが磁極131c、132c、133cのモータ軸L方向の長さより短くなる。また、各ティース131b、132b、133bの周方向の幅は、隣接する他相の磁極132c、133c、131cおよびティース132b、133b、131bへの磁束の漏れを防ぐため、あまり広くできない。したがって、各ティース131b、132b、133bの磁路断面積が各磁極131c、132c、133cの磁極表面積に比べて小さくなる。その結果、各ティース131b、132b、133bで磁気飽和が生じやすく、大きなモータ出力を得にくい。また、各磁極131c、132c、133cをモータ軸L方向に延長する構造であるので、その分、軸方向に長くなってモータ体格や質量が大きくなり、十分な小型化および軽量化が図られない。   In the case of the conventional motor having the stator structure shown in FIG. 6, the magnetic poles 131c, 132c, and 133c of the stator 119 extend radially inward from the teeth 131b, 132b, and 133b and secure a certain magnetic pole area. It bends in a letter shape and extends in the direction of the motor shaft L. Therefore, the length of each of the teeth 131b, 132b, 133b in the motor axis L direction is shorter than the length of the magnetic poles 131c, 132c, 133c in the motor axis L direction. In addition, the circumferential width of each of the teeth 131b, 132b, and 133b cannot be made very wide in order to prevent leakage of magnetic flux to the adjacent other-phase magnetic poles 132c, 133c, and 131c and the teeth 132b, 133b, and 131b. Therefore, the magnetic path cross-sectional areas of the teeth 131b, 132b, and 133b are smaller than the magnetic pole surface areas of the magnetic poles 131c, 132c, and 133c. As a result, magnetic saturation is likely to occur in each of the teeth 131b, 132b, 133b, and it is difficult to obtain a large motor output. Further, since each magnetic pole 131c, 132c, 133c extends in the direction of the motor axis L, the length of the magnetic pole 131c, 132c, 133c becomes longer in the axial direction, resulting in an increase in the size and mass of the motor. .

図7のアキシャルギャップモータ200の場合、1個のステータ211を2個のロータ212a、212bで共用するので、ロータ212a、212b毎にステータを設ける場合より小型、軽量になる。しかしながら、ステータ211の各磁極の位置の外側コア215と内側コア216には、それぞれコイル214が巻かれており、これらのコイル214の厚さの分だけ、外側コア215および内側コア216の磁極は、外周側、磁極間、および内周側の長さが短くなって磁極面積が小さくなる。そのため、十分なモータ出力が得られない。また、コイル214は各磁極の外側コア215および内側コア216に個別に巻かれるため、生産性が悪く、多量のコイル線が必要になってモータ体格や質量が大きくなる。そのため、高価になるとともに十分な小型化および軽量化が図られない。   In the case of the axial gap motor 200 of FIG. 7, since one stator 211 is shared by the two rotors 212a and 212b, it is smaller and lighter than when a stator is provided for each of the rotors 212a and 212b. However, coils 214 are wound around the outer core 215 and the inner core 216 at the positions of the magnetic poles of the stator 211, and the magnetic poles of the outer core 215 and the inner core 216 are equivalent to the thickness of these coils 214. The lengths of the outer peripheral side, between the magnetic poles, and the inner peripheral side are shortened to reduce the magnetic pole area. Therefore, sufficient motor output cannot be obtained. In addition, since the coil 214 is individually wound around the outer core 215 and the inner core 216 of each magnetic pole, the productivity is poor, and a large amount of coil wire is required, which increases the motor size and mass. Therefore, it is expensive and cannot be sufficiently reduced in size and weight.

本発明は、ステータの両面側にギャップを設けてロータを対向配置した構造のモータにおいて、安価で従来にない小型、軽量な構成のモータを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a motor having a structure that is inexpensive and has an unprecedented small size and light weight in a motor having a structure in which a gap is provided on both sides of a stator and rotors are arranged to face each other.

上記した目的を達成するために、本発明のモータは、モータ軸に軸支された2個のロータ間にステータを配設し、前記両ロータの前記ステータに対向する面の周方向の各磁極位置に突極構造の磁極を径方向に3分割した状態に配置し、少なくとも一方の片面に2相のコイルを同心状に設けるようにして前記ステータの両面に各相の励磁用の環状のコイルを分散配置し、前記ステータの両面の周方向の各磁極位置において前記各相のコイルそれぞれの内周側、外周側に突極構造の磁極を周方向にずらした状態に配置し、前記各相のコイルの相順の通電により、前記ステータの両面の各磁極位置において、通電相のコイルを挟んで径方向に当該相の励磁された磁極対を形成するようにしたことを特徴としている(請求項1)。   In order to achieve the above-described object, a motor according to the present invention includes a stator disposed between two rotors that are pivotally supported by a motor shaft, and each magnetic pole in a circumferential direction of a surface of the two rotors facing the stator. Arranged in a state where the magnetic poles of the salient pole structure are divided into three in the radial direction at positions, and two-phase coils are provided concentrically on at least one side, and an annular coil for exciting each phase on both sides of the stator Are arranged in a state in which the magnetic poles of the salient pole structure are shifted in the circumferential direction on the inner peripheral side and the outer peripheral side of the coils of the respective phases at the respective magnetic pole positions in the circumferential direction on both surfaces of the stator. By energizing the coils in the phase sequence, magnetic pole pairs in which the phases are excited are formed in the radial direction across the coils of the energized phase at each magnetic pole position on both surfaces of the stator. Item 1).

また、本発明のモータの前記ステータは、両面の径方向内周側に同相に励磁される磁極対が形成されることを特徴としている。(請求項2)。   The stator of the motor of the present invention is characterized in that a pair of magnetic poles excited in the same phase is formed on the radially inner peripheral side of both surfaces. (Claim 2).

さらに、本発明のモータは、前記両ロータの径方向の磁極の隙間により、前記ステータの前記各相の環状のコイルの前記ステータから突出した部分が回転自在に嵌入される凹部が形成されることを特徴としている(請求項3)。   Furthermore, in the motor of the present invention, a recess is formed in which a portion protruding from the stator of the annular coil of each phase of the stator is rotatably inserted by a gap between the magnetic poles in the radial direction of the two rotors. (Claim 3).

請求項1に係る本発明のモータの場合、ステータの両面側にギャップを設けてロータを対向配置したアキシャルギャップモータの構造であり、ステータと両ロータの対向する突極構造の磁極面積が大きく、モータ軸方向に短くでき、しかも、1個のステータを用いて2組のロータ・ステータの構造を形成することができ、モータ軸方向に一層短くできる。さらに、ステータに同心状に分散配置された各相の励磁用の環状のコイルの相順の通電により、例えば3相駆動の場合、ステータには、少なくとも片面の周方向の各磁極位置に径方向および周方向にずらして2相の磁極対が相毎に一括して形成され、もう片面の周方向の各磁極位置に同様の磁極配置で少なくとも残りの1相の磁極対が一括して形成され、クローポール型モータの特徴も備える。   In the case of the motor of the present invention according to claim 1, the structure is an axial gap motor in which a gap is provided on both sides of the stator and the rotor is disposed oppositely, and the magnetic pole area of the salient pole structure in which the stator and both rotors face each other is large. It can be shortened in the motor axial direction, and two rotor / stator structures can be formed by using one stator, which can be further shortened in the motor axial direction. Further, for example, in the case of three-phase driving, the stator has a radial direction at each magnetic pole position in the circumferential direction of one side by energizing the annular coils for excitation of each phase concentrically arranged in the stator in the phase sequence. Further, two-phase magnetic pole pairs are formed in a lump for each phase, shifted in the circumferential direction, and at least the remaining one-phase magnetic pole pairs are formed in a lump in the same magnetic pole arrangement at each magnetic pole position in the circumferential direction on the other side. Also features a claw pole type motor.

そして、ステータの両面側にロータを配置したアキシャルギャップモータの特徴を備えることにより、ステータとロータの対向する磁極面積を十分に大きくでき、磁気飽和が生じにくく、大きなモータ出力を得易い。しかも、モータ軸方向に短くなってモータ体格や質量が小さくなり、十分な小型化および軽量化が図られる。   And by providing the feature of the axial gap motor which has arrange | positioned the rotor on the both surfaces side of a stator, the magnetic pole area which a stator and a rotor oppose can fully be enlarged, magnetic saturation does not arise easily, and it is easy to obtain a big motor output. In addition, the motor is shortened in the motor axial direction, the motor size and mass are reduced, and sufficient size and weight can be reduced.

また、クローポール型モータの特徴を備え、ステータの各相の磁極対の励磁が相毎に1個の環状のコイルで一括し行えるため、磁極毎に個別にコイルを巻く場合に比して生産性が向上するとともに、必要なコイル線が極めて少なくなり、モータ体格や質量を小さくすることができ、安価に形成できるとともに十分な小型化および軽量化を図ることができる。なお、コイルが環状であるため、その点でも製作し易く、生産性が向上する。   In addition, it has the characteristics of a claw pole type motor, and the magnetic pole pairs of each phase of the stator can be excited by one annular coil for each phase, so it is produced in comparison with the case where coils are individually wound for each magnetic pole. As a result, the required coil wire can be extremely reduced, the motor size and mass can be reduced, the motor can be formed at low cost, and sufficient size and weight can be reduced. In addition, since a coil is cyclic | annular, it is easy to manufacture also in that point, and productivity improves.

したがって、ステータの両面側にギャップを設けてロータを対向配置した構造であって従来にない新規な構成に形成され、安価で十分な小型化および軽量化を図って大きな出力が得られる画期的なモータを提供することができる。   Therefore, it has a structure in which a gap is provided on both sides of the stator and the rotors are arranged opposite to each other, and it is formed in a novel structure that has not been heretofore. A simple motor can be provided.

請求項2に係る本発明のモータの場合、とくに3相駆動の場合に、例えば、ステータの一方の片面に径方向に外周側からU、Wの2相、他方の片面に径方向に外周側からV、Wの2相の磁極対を形成し、両面の径方向内周側に同相(W相)に励磁される磁極対を形成することにより、両面の内周側の磁極面積が外周側より小さくなるW相の磁極対を、ステータの両面に形成し、外周側のU相、V相の磁極対と同じコイルの総交錯磁束数が得られる利点がある。   In the case of the motor of the present invention according to claim 2, particularly in the case of three-phase driving, for example, one side of the stator is radially outer on the one side of the stator, and two phases U and W are radially outer on the other side. To form a two-phase magnetic pole pair of V and W, and form a magnetic pole pair excited in the same phase (W phase) on the radially inner peripheral side of both surfaces, so that the magnetic pole area on the inner peripheral side of both surfaces is the outer peripheral side There is an advantage that a smaller W-phase magnetic pole pair is formed on both sides of the stator, and the total number of crossing magnetic fluxes of the same coil as that of the U-phase and V-phase magnetic pole pairs on the outer peripheral side can be obtained.

請求項3に係る本発明のモータの場合、両ロータの径方向の磁極の隙間が形成する凹部に、ステータの両面の各コイルの突出した部分が回転自在に嵌入されるため、モータ軸方向の長さを一層短くでき、モータの一層の小型化を図ることができる。また、漏れインダクタンスが減少して発生トルクが増大する利点もある。   In the case of the motor according to the third aspect of the present invention, the protruding portions of the coils on both surfaces of the stator are rotatably inserted into the recesses formed by the gaps between the magnetic poles in the radial direction of both rotors. The length can be further shortened, and the motor can be further reduced in size. There is also an advantage that the leakage inductance is reduced and the generated torque is increased.

本発明の一実施形態のモータを示し、(a)はモータ軸方向の断面図、(b)はロータの裏面図である。The motor of one Embodiment of this invention is shown, (a) is sectional drawing of a motor axial direction, (b) is a back view of a rotor. (a)、(b)は図1のモータのステータの一例の両面の平面図である。(A), (b) is a top view of both surfaces of an example of the stator of the motor of FIG. (a)、(b)は図1のモータの磁路の一例、他の例の説明図である。(A), (b) is explanatory drawing of an example of the magnetic path of the motor of FIG. 1, and another example. (a)、(b)はそれぞれ図1のモータのステータの他の例の両面の平面図である。(A), (b) is a top view of both surfaces of the other example of the stator of the motor of FIG. 1, respectively. 本発明の他の実施形態のモータを示し、(a)はモータ軸方向の断面図、(b)はロータの裏面図である。The motor of other embodiment of this invention is shown, (a) is sectional drawing of a motor axial direction, (b) is a back view of a rotor. 従来モータの一例のステータの一部を切り取った状態の斜視図である。It is a perspective view in the state where a part of stator of an example of the conventional motor was cut off. (a)は従来モータの他の例のステータ側から見たロータの磁極面の平面図、(b)は(a)のB−B線に沿うモータの断面図である。(A) is a top view of the magnetic pole surface of the rotor seen from the stator side of the other example of the conventional motor, (b) is sectional drawing of the motor which follows the BB line of (a).

つぎに、本発明をより詳細に説明するため、実施形態について、図1〜図6を参照して詳述する。   Next, in order to describe the present invention in more detail, embodiments will be described in detail with reference to FIGS.

(一実施形態)
一実施形態について、図1〜図4を参照して説明する。
(One embodiment)
An embodiment will be described with reference to FIGS.

図1(a)は本実施形態の3相(相順にU相、V相、W相)駆動のモータ1aの断面図であり、モータ1aは、ステンレス等の非磁性体のモータ軸2の出力側(紙面左側)から順に、ロータ3a、ステータ4、ロータ3bを一定の隙間(ギャップ)を設けて対抗するように配設して形成されている。   FIG. 1A is a cross-sectional view of a three-phase (phase-sequence U-phase, V-phase, W-phase) driving motor 1a of the present embodiment. The motor 1a is an output of a non-magnetic motor shaft 2 such as stainless steel. The rotor 3a, the stator 4 and the rotor 3b are sequentially arranged from the side (left side of the drawing) so as to face each other with a certain gap (gap).

(ロータ3a、3bの構成)
ロータ3a、3bは同じ形状のいわゆるリラクタンスモータのロータ(リラクタンスロータ)と同じであり、それぞれ円板状(平面視多角形形状を含む)のロータヨーク31を備える。
(Configuration of rotors 3a and 3b)
The rotors 3a and 3b are the same as a rotor (reluctance rotor) of a so-called reluctance motor having the same shape, and each includes a disk-like (including a polygonal shape in plan view) rotor yoke 31.

図1(b)は同図(a)の矢印線αの方向に見た場合のロータ3aの裏面図であり、ロータヨーク31は中心にモータ軸2が貫通してモータ軸2に軸支されている。さらに、ロータヨーク31のステータ4に対向する片面(磁極面)には、周方向の略等間隔(例えば45度間隔)の8磁極位置それぞれに、突極構造の複数の磁極32a、32b、32cが径方向に略等間隔に3分割された状態に配置されている。磁極32a、32b、32cはステータヨーク31の径方向の外周側、中間、内周側の磁極であり、磁極32a、32b、32cの間には適当な隙間が設けられている。なお、磁極32a、32b、32cは、例えば圧粉磁心により形成され、周方向の各磁極位置が径方向に扇形になるため、外周側の磁極32aは平面視が横長の扇形、中間の磁極32bは平面視がほほ正方形、内周側(最もモータ軸2寄り)の磁極32cは平面視が縦長の扇形になり、磁極面積は、外周側の磁極32aが最も大きく、内周側の磁極32cが最も小さくなり、面積比は外周側、中間の磁極32a、32bを1とすると、内周側の磁極32cは略1/2である。   FIG. 1B is a rear view of the rotor 3a when viewed in the direction of the arrow line α in FIG. 1A, and the rotor yoke 31 is pivotally supported by the motor shaft 2 through the motor shaft 2 in the center. Yes. Further, on one surface (magnetic pole surface) of the rotor yoke 31 facing the stator 4, a plurality of magnetic poles 32a, 32b, 32c having a salient pole structure are provided at eight magnetic pole positions at substantially equal intervals in the circumferential direction (for example, 45 ° intervals). It is arranged in a state of being divided into three at substantially equal intervals in the radial direction. The magnetic poles 32a, 32b, and 32c are magnetic poles on the outer circumferential side, the middle, and the inner circumferential side in the radial direction of the stator yoke 31, and appropriate gaps are provided between the magnetic poles 32a, 32b, and 32c. The magnetic poles 32a, 32b, and 32c are formed of, for example, dust cores, and each magnetic pole position in the circumferential direction has a fan shape in the radial direction. Therefore, the magnetic pole 32a on the outer peripheral side has a fan shape that is horizontally long in plan view, and an intermediate magnetic pole 32b. Is substantially square in the plan view, and the magnetic pole 32c on the inner peripheral side (most closest to the motor shaft 2) has a vertically long fan shape in the plan view. The magnetic pole area of the magnetic pole 32a on the outer peripheral side is the largest, and the magnetic pole 32c on the inner peripheral side is Assuming that the area ratio is the smallest, the outer peripheral side and the intermediate magnetic poles 32a and 32b are 1, the inner peripheral magnetic pole 32c is approximately ½.

また、磁極32a、32bの隙間が形成する環状の凹状溝および、磁極32b、32cの隙間が形成する環状の凹状溝により、後述するステータ4の励磁用の環状の各コイルが回転自在に嵌入される凹部5が形成されている。   Further, an annular coil for excitation of the stator 4 to be described later is rotatably fitted by an annular concave groove formed by a gap between the magnetic poles 32a and 32b and an annular concave groove formed by a gap between the magnetic poles 32b and 32c. A recess 5 is formed.

(ステータ4の構成)
ステータ4は、中心にモータ軸2の遊挿孔が形成された円板状のステータヨーク41を備え、その両面がロータ3a、3bの磁極面それぞれに対向する。
(Configuration of stator 4)
The stator 4 includes a disk-shaped stator yoke 41 having a loose insertion hole for the motor shaft 2 at the center, and both surfaces thereof face the magnetic pole surfaces of the rotors 3a and 3b.

図2(a)、(b)はステータヨーク41のロータ3a、3bに対向する磁極面41a、41bを示し、磁極面41a、41bにはロータ3a、3bの磁極位置に対応させて、それぞれ周方向に等間隔の例えば8磁極位置Pが設定され、さらに、これらの磁極位置Pはそれぞれ周方向に2分割され、磁極32a、32b、32cに対応する磁極42a、42b、42cが後述するように配置される。   2 (a) and 2 (b) show magnetic pole surfaces 41a and 41b facing the rotors 3a and 3b of the stator yoke 41. The magnetic pole surfaces 41a and 41b correspond to the magnetic pole positions of the rotors 3a and 3b, respectively. For example, eight magnetic pole positions P are set at equal intervals in the direction. Further, these magnetic pole positions P are each divided into two in the circumferential direction, and the magnetic poles 42a, 42b, and 42c corresponding to the magnetic poles 32a, 32b, and 32c are described later. Be placed.

また、本実施例の場合、ステータ4の磁極面41a、41bの径方向内周側にW相(同相)に励磁される磁極対を形成するため、磁極面41aにU、Wの2相の励磁用のコイル6u、6waが径方向に同心状に設けられ、磁極面41bのコイル6u、6waの裏面位置にV、Wの2相の励磁用のコイル6v、6wbが同心状に設けられ、磁極面41a、41bにそれぞれ2個のコイル6u、6v、6wa、6wbが設けられている。なお、各コイル6u、6v、6wa、6wbは同心円形状(多角形または円周上の一部を直線とした形状も含む)であり、場合によっては絶縁用のインシュレータに被覆される。   Further, in the case of this embodiment, in order to form a magnetic pole pair excited in the W phase (in-phase) on the radially inner peripheral side of the magnetic pole surfaces 41a and 41b of the stator 4, two magnetic phases U and W are formed on the magnetic pole surface 41a. Excitation coils 6u and 6wa are provided concentrically in the radial direction, and V and W two-phase excitation coils 6v and 6wb are provided concentrically at the back surface of the coils 6u and 6wa on the magnetic pole surface 41b. Two coils 6u, 6v, 6wa and 6wb are provided on the magnetic pole surfaces 41a and 41b, respectively. Each of the coils 6u, 6v, 6wa, 6wb is concentric (including a polygon or a shape in which a part of the circumference is a straight line), and is covered with an insulating insulator depending on the case.

そして、磁極面41aのコイル6u、6waはロータ3aの磁極32a、32b、32cの隙間に対向する位置に設けられ、磁極面41aから突出した部分がロータ3aの2つの凹部5に回転自在に嵌入される。また磁極面41bのコイル6v、6wbはロータ3bの磁極32a、32b、32cの隙間に対向する位置に設けられ、磁極面41bから突出した部分がロータ3bの2つの凹部5に回転自在に嵌入される。このようにすることによって、モータ1aはモータ軸2方向の長さが一層短くなって小型化し、また、漏れインダクタンスが少なくなってトルクが増大する。   The coils 6u and 6wa of the magnetic pole surface 41a are provided at positions facing the gaps between the magnetic poles 32a, 32b and 32c of the rotor 3a, and the portions protruding from the magnetic pole surface 41a are rotatably fitted in the two recesses 5 of the rotor 3a. Is done. The coils 6v and 6wb of the magnetic pole surface 41b are provided at positions facing the gaps between the magnetic poles 32a, 32b and 32c of the rotor 3b, and the portions protruding from the magnetic pole surface 41b are rotatably fitted in the two recesses 5 of the rotor 3b. The By doing so, the motor 1a is further reduced in length in the direction of the motor shaft 2 and further reduced in size, and the leakage inductance is reduced and the torque is increased.

ところで、磁極面41a、41bのいずれか一方の径方向内周側にのみW相に励磁される磁極対を形成する場合は、例えば磁極面4bのコイル6wbは省かれる。   By the way, when the magnetic pole pair excited in the W phase is formed only on the radially inner peripheral side of one of the magnetic pole surfaces 41a and 41b, for example, the coil 6wb on the magnetic pole surface 4b is omitted.

つぎに、図2(a)に破線で区切った磁極面41aの各磁極位置Pにおいて、コイル6u、6waで区切られる径方向の3分割の領域に、突極構造の磁極42a、42b、42cが、それぞれの径方向の中心線が周方向にずれるように、位置をずらして配置される。具体的には、各磁極位置Pの一方の分割位置P1に同じ磁極面積の磁極42a、42bが配置され、他方の分割位置P2に磁極42bとその半分の磁極面積の磁極42cとが配置される。そして、分割位置P1、P2の磁極42bは一体に結合しているので、各磁極位置Pにおいて、結合した周方向に横長の磁極42bの紙面右側寄りに磁極42aが配置され、紙面左寄りに磁極42cが配置された状態になる。このとき、中間の結合した磁極42bの磁極面積は最も大きく、外周側の磁極42aの磁極面積はその半分になり、内周側の磁極42cの磁極面積は結合した磁極42bの1/4の磁極面積になる。   Next, at each magnetic pole position P of the magnetic pole surface 41a divided by the broken line in FIG. 2A, the magnetic poles 42a, 42b, 42c having a salient pole structure are formed in the three-regions in the radial direction divided by the coils 6u, 6wa. The positions are shifted so that the respective center lines in the radial direction are shifted in the circumferential direction. Specifically, the magnetic poles 42a and 42b having the same magnetic pole area are arranged at one division position P1 of each magnetic pole position P, and the magnetic pole 42b and the magnetic pole 42c having a half magnetic pole area are arranged at the other division position P2. . Since the magnetic poles 42b at the divided positions P1 and P2 are integrally coupled, at each magnetic pole position P, the magnetic pole 42a is disposed on the right side of the horizontally elongated magnetic pole 42b in the coupled circumferential direction, and the magnetic pole 42c is on the left side of the paper. Will be placed. At this time, the magnetic pole area of the intermediate coupled magnetic pole 42b is the largest, the magnetic pole area of the outer peripheral magnetic pole 42a is half of that, and the magnetic pole area of the inner peripheral magnetic pole 42c is 1/4 of the magnetic pole 42b of the combined magnetic pole 42b. It becomes an area.

同様に、図2(b)に破線で区切った磁極面41bの各磁極位置Pにおいても、コイル6u、6waで区切られる径方向の3分割の領域に、突極構造の磁極42a、42b、42cが、それぞれの径方向の中心線が周方向にずれるように配置される。具体的には、各磁極位置Pの一方の分割位置P1に同じ磁極面積の磁極42a、42bが配置され、他方の分割位置P2に磁極42bとその半分の磁極面積の磁極42cとが配置される。このとき、分割位置P1、P2の磁極42bが一体に結合しているので、各磁極位置Pにおいては、結合した周方向に横長の磁極42bの紙面左側寄りに磁極42aが配置され、紙面右寄りに磁極42cが配置された状態になり、結合した磁極42bの磁極面積は最も大きく、外周側の磁極42aの磁極面積はその半分になり、内周側の磁極42cの磁極面積は結合した磁極42bの1/4の磁極面積になる。   Similarly, also in each magnetic pole position P of the magnetic pole surface 41b divided by the broken line in FIG. 2B, the magnetic poles 42a, 42b, 42c having the salient pole structure are divided into three regions in the radial direction divided by the coils 6u, 6wa. However, each radial center line is arranged so as to be shifted in the circumferential direction. Specifically, the magnetic poles 42a and 42b having the same magnetic pole area are arranged at one division position P1 of each magnetic pole position P, and the magnetic pole 42b and the magnetic pole 42c having a half magnetic pole area are arranged at the other division position P2. . At this time, since the magnetic poles 42b at the divided positions P1 and P2 are integrally coupled, at each magnetic pole position P, the magnetic pole 42a is arranged on the left side of the horizontally elongated magnetic pole 42b in the coupled circumferential direction, and on the right side of the paper. The magnetic pole 42c is arranged, the magnetic pole area of the combined magnetic pole 42b is the largest, the magnetic pole area of the magnetic pole 42a on the outer peripheral side is half that, and the magnetic pole area of the magnetic pole 42c on the inner peripheral side is the same as that of the combined magnetic pole 42b. The magnetic pole area is 1/4.

なお、図1においては、ステータ4の磁極面41a側は図2(a)のβ―β線で切断した断面を示し、磁極面41b側は図2(b)のγ―γ線で切断した断面を示す。   In FIG. 1, the magnetic pole surface 41a side of the stator 4 shows a cross section cut along the β-β line in FIG. 2 (a), and the magnetic pole surface 41b side is cut along the γ-γ line in FIG. 2 (b). A cross section is shown.

そして、モータ1aは3相の駆動電流が各相のコイル6u、6v、6wに相順に切替えて給電される。このとき、磁極面41a、41bのコイル6u、6vは、径方向の隣接する磁極42a、結合した磁極42bが各磁極位置Pの磁極42a、42b、42cの中で2番目、最大(1番目)の磁極面積となることから、単独で逆方向又は同じ方向にU相、V相それぞれの駆動電流が給電される。また、磁極面41a、41bのコイル6wa、6wbは径方向の隣接する磁極42cが各磁極位置Pの最小の磁極面積になることから、電流が増加しないように直列に接続されて互いに逆方向又は同方向にW相の駆動電流が給電され、両面の磁極を利用することにより、コイルの総交錯磁束数を他相と略同じにする。   The motor 1a is supplied with power by switching the three-phase driving current to the coils 6u, 6v, 6w of the respective phases in phase order. At this time, the coils 6u and 6v of the magnetic pole surfaces 41a and 41b are the second and largest (first) of the magnetic poles 42a, 42b and 42c whose magnetic pole positions P are adjacent to each other in the radial direction. Therefore, the U-phase and V-phase drive currents are fed independently in the reverse direction or the same direction. Also, the coils 6wa and 6wb of the magnetic pole surfaces 41a and 41b are connected in series so that the current does not increase because the adjacent magnetic poles 42c in the radial direction have the smallest magnetic pole area at each magnetic pole position P. A W-phase drive current is fed in the same direction and the magnetic poles on both sides are used, so that the total number of crossed magnetic fluxes of the coils is substantially the same as that of the other phases.

このとき、コイル6uを挟んで径方向に隣接する磁極面41aの各磁極位置Pの磁極42a、42bは、例えば磁極42aをN極(U+)、磁極42bをS極(U−)とするU相の磁極対を構成する。コイル6vを挟んで径方向に隣接する磁極面41bの各磁極位置Pの磁極42a、42bは、例えば磁極42aをS極(V−)、磁極42bをN極(V+)とするV相の磁極対を構成する。また、コイル6wa、6wbを挟んで径方向に隣接する磁極面41a、41bの各磁極位置Pの磁極42b、42cは、例えば、磁極42bをN極(W+)、磁極42cをS極(W−)とするW相の磁極対、その逆のW相の磁極対を形成する。そして、各相のコイルの総交錯磁束数は略同じになる。   At this time, the magnetic poles 42a and 42b at the magnetic pole positions P of the magnetic pole surfaces 41a adjacent in the radial direction across the coil 6u are, for example, U having the magnetic pole 42a as the N pole (U +) and the magnetic pole 42b as the S pole (U−). The magnetic pole pair of the phase is configured. The magnetic poles 42a and 42b at each magnetic pole position P of the magnetic pole surface 41b adjacent in the radial direction across the coil 6v are, for example, V-phase magnetic poles having the magnetic pole 42a as the S pole (V−) and the magnetic pole 42b as the N pole (V +). Configure a pair. Further, the magnetic poles 42b and 42c at the magnetic pole positions P of the magnetic pole faces 41a and 41b adjacent in the radial direction across the coils 6wa and 6wb are, for example, the magnetic pole 42b as an N pole (W +) and the magnetic pole 42c as an S pole (W−). ) And the opposite W-phase magnetic pole pair. The total number of crossing magnetic fluxes of the coils of each phase is substantially the same.

図3(a)は磁極面41a、41bの各磁極位置Pの磁極42b、42cが、逆向きの電流で励磁される場合の各相の磁路を破線矢印で示し、この場合は、磁極面41a、41bのW相の磁路は逆向きで独立して形成される。   FIG. 3A shows the magnetic path of each phase when the magnetic poles 42b and 42c at the magnetic pole positions P of the magnetic pole faces 41a and 41b are excited by currents in opposite directions by broken line arrows. The W-phase magnetic paths 41a and 41b are formed independently in the reverse direction.

図3(b)は磁極面41a、41bの各磁極位置Pの磁極42b、42cが、同じ向きの電流で励磁される場合の各相の磁路を破線矢印で示し、この場合は、磁極面41a、41bのW相の磁路は同じ向きの共通の磁路を形成する。   FIG. 3B shows the magnetic path of each phase when the magnetic poles 42b and 42c at the magnetic pole positions P of the magnetic pole faces 41a and 41b are excited by the current in the same direction by broken line arrows. The W-phase magnetic paths 41a and 41b form a common magnetic path in the same direction.

そして、図3(a)、(b)のいずれの場合にも、通電相の切替えに基づくステータ4の磁極対の磁極面41aのU相、磁極面41bのV相、磁極面41a、41bのW相の順次の切替えにより、ロータ3a、3bの磁極面31の磁極32a、32b、32cと、ステータ4の磁極面41a、41bの各相の磁極対との磁気吸引により、ロータ3a、3bがリラクタンスロータのようにトルクが発生して回転し、モータ1aは、安定した四象限トルク発生が可能な最小の相数(3相)で駆動される。このとき、ロータヨーク41は、径方向と周方向にも磁束を分散するため、モータ1aはその分薄く、軽量化できる。   3A and 3B, the U phase of the magnetic pole surface 41a of the magnetic pole pair of the stator 4 based on the switching of the energized phase, the V phase of the magnetic pole surface 41b, and the magnetic pole surfaces 41a and 41b. By sequentially switching the W phase, the rotors 3a, 3b are brought into magnetic contact by the magnetic poles 32a, 32b, 32c of the magnetic pole surface 31 of the rotors 3a, 3b and the magnetic pole pairs of the respective phases of the magnetic pole surfaces 41a, 41b of the stator 4. Torque is generated and rotated like a reluctance rotor, and the motor 1a is driven with the minimum number of phases (three phases) capable of generating stable four-quadrant torque. At this time, since the rotor yoke 41 disperses the magnetic flux also in the radial direction and the circumferential direction, the motor 1a can be made thinner and lighter.

なお、図3(a)の場合は、磁路がステータヨーク41を貫通しないので、ステータヨーク41の磁路に影響しない外周部や内周部を凹溝状に肉抜きして一層の軽量化を図ることができる。また、図3(b)の場合は、磁路がステータヨーク41を貫通するのでステータヨーク41のコイルWa、Wbの近傍の磁束密度が低くなる部分を削って薄くし、一層の軽量化を図ることができる。   In the case of FIG. 3A, since the magnetic path does not penetrate the stator yoke 41, the outer peripheral portion and the inner peripheral portion that do not affect the magnetic path of the stator yoke 41 are thinned into concave grooves to further reduce the weight. Can be achieved. In the case of FIG. 3B, since the magnetic path penetrates the stator yoke 41, the portion of the stator yoke 41 in the vicinity of the coils Wa and Wb where the magnetic flux density is low is cut and thinned to further reduce the weight. be able to.

そして、モータ1aはステータ4の両面側にギャップを設けてロータ3a、3bを対向配置したアキシャルギャップモータの構造であり、ステータ4と両ロータ3a、3bの対向する突極構造の磁極面積が大きく、モータ軸2方向に短くでき、しかも、1個のステータ4を用いて2組のロータ・ステータの構造を形成することができ、モータ軸2方向に一層短くできる。さらに、ステータ4に同心状に分散配置された各相の励磁用の環状のコイル6u、6v、6wa、6wbの相順の通電により、3相駆動において、ステータ4には、少なくとも磁極面(片面)41aの周方向の各磁極位置Pに径方向および周方向にずらして2相U、Wの磁極対が相毎に一括して形成され、磁極面(もう片面)41bの各磁極位置Pに同様の磁極配置で残りの1相VとW相の磁極対が一括して形成され、クローポール型モータの特徴も備える。   The motor 1a has a structure of an axial gap motor in which gaps are provided on both sides of the stator 4 and the rotors 3a and 3b are arranged opposite to each other. The magnetic pole area of the salient pole structure in which the stator 4 and the rotors 3a and 3b are opposed to each other is large. Further, it can be shortened in the direction of the motor shaft 2, and the structure of two sets of rotors / stators can be formed by using one stator 4, and can be further shortened in the direction of the motor shaft 2. Furthermore, in the three-phase drive by energizing the annular coils 6u, 6v, 6wa, 6wb for exciting each phase concentrically arranged in the stator 4 in the three-phase drive, the stator 4 has at least a magnetic pole surface (single surface). ) Two-phase U and W magnetic pole pairs are formed collectively for each phase at the respective magnetic pole positions P in the circumferential direction of 41a and shifted in the radial direction and circumferential direction, and each magnetic pole position P on the magnetic pole surface (the other side) 41b is formed. With the same magnetic pole arrangement, the remaining one-phase V and W-phase magnetic pole pairs are formed in a lump and also have the characteristics of a claw pole motor.

そして、ステータ4の両面側にロータ3a、3bを配置したアキシャルギャップモータの特徴を備えることにより、ステータ4とロータ3a、3bの対向する磁極面積を十分に大きくでき、モータ1aは、磁気飽和が生じにくく、大きなモータ出力を得易い。しかも、モータ軸2方向に短くなってモータ体格や質量が小さくなり、モータ1aの十分な小型化および軽量化が図られる。   By providing the feature of the axial gap motor in which the rotors 3a and 3b are disposed on both sides of the stator 4, the opposing magnetic pole areas of the stator 4 and the rotors 3a and 3b can be sufficiently increased. It is difficult to generate and it is easy to obtain a large motor output. In addition, the motor is shortened in the direction of the motor shaft 2 and the motor size and mass are reduced, so that the motor 1a can be sufficiently reduced in size and weight.

また、モータ1aはクローポール型モータの特徴を備え、ステータ4の環状の各コイル6u、6v、6wa、6wbそれぞれによって、磁極面41a、41bの各1相の複数の磁極42a、42b、42cを一括して励磁できる。そのため、(i)磁極の励磁用のコイル数が少なくなって生産性が向上する。(ii)各コイル6u、6v、6wa、6wbは磁極42a、42b、42cそれぞれに個別に巻くよりも合計のコイル周長が短くなる。そのため、コイル線(エナメル線)の使用量が少なくなり、各コイル6u、6v、6wa、6wbが軽量かつ安価になってモータ1aが安価で小型、軽量になる。(iii)各コイル6u、6v、6wa、6wbが環状であるため製作し易い利点もある。(iv)ステータヨーク41を2つのロータ3a、3bのステータのヨークに共用することにより、ロータ3a、3b毎にステータを配置する場合に比してステータ4を軽量化できる。(v)各コイル6u、6v、6wa、6wbをそれぞれ1つのスロットに収容してステータ4に配置する構成であるため、絶縁信頼性が向上する利点もある。   The motor 1a has a feature of a claw pole type motor, and each of the annular coils 6u, 6v, 6wa, 6wb of the stator 4 has a plurality of one-phase magnetic poles 42a, 42b, 42c on the magnetic pole surfaces 41a, 41b. Can be excited at once. Therefore, (i) the number of coils for exciting the magnetic poles is reduced and the productivity is improved. (Ii) The total coil peripheral length of each of the coils 6u, 6v, 6wa, 6wb is shorter than that of each of the magnetic poles 42a, 42b, 42c wound individually. Therefore, the amount of coil wire (enameled wire) used is reduced, the coils 6u, 6v, 6wa and 6wb are light and inexpensive, and the motor 1a is inexpensive, small and light. (Iii) Since each coil 6u, 6v, 6wa, 6wb is annular, there is also an advantage that it is easy to manufacture. (Iv) By sharing the stator yoke 41 for the stator yokes of the two rotors 3a and 3b, the stator 4 can be reduced in weight as compared with the case where the stator is arranged for each of the rotors 3a and 3b. (V) Since each coil 6u, 6v, 6wa, 6wb is accommodated in one slot and arranged in the stator 4, there is an advantage that the insulation reliability is improved.

さらに、ステータヨーク41の外周部および内周部を凹溝状に肉抜きしてステータ4の一層の軽量化を図ることができる。また、ステータヨーク41のコイルWa、Wbの近傍の磁束密度が低くなる部分を削って薄くし、ステータ4を軽量化することも可能である。なお、肉抜き等した部分に樹脂を充填してもよい。   Furthermore, the outer circumference and inner circumference of the stator yoke 41 can be cut into a concave groove shape to further reduce the weight of the stator 4. Further, the portion of the stator yoke 41 in the vicinity of the coils Wa and Wb where the magnetic flux density is low can be cut and thinned to reduce the weight of the stator 4. In addition, you may fill resin into the part which carried out the meat removal etc.

したがって、ステータ4の両面側にギャップを設けてロータ3a、3bを対向配置した構造であって従来にない新規な構成に形成され、安価で十分な小型化および軽量化を図って大きな出力が得られる画期的なモータ1aを提供することができる。   Therefore, a gap is provided on both sides of the stator 4 so that the rotors 3a and 3b are opposed to each other, and the rotor 4 is formed in a new structure that has not been obtained in the past. The revolutionary motor 1a can be provided.

また、ステータ4の両磁極面41a、41bそれぞれの内周側の磁極面積が小さいW相の磁極対を、両磁極面41a、41bに形成して直列に接続したことにより、W相の通電電流を増加することなく、磁極面41a、41bの外周側のU相、V相の磁極対と同じコイルの総交錯磁束数が得られる利点がある。   Further, a W-phase magnetic pole pair having a small magnetic pole area on the inner peripheral side of each of the magnetic pole surfaces 41a and 41b of the stator 4 is formed on both the magnetic pole surfaces 41a and 41b and connected in series, so There is an advantage that the total number of crossing magnetic fluxes of the same coil as that of the U-phase and V-phase magnetic pole pairs on the outer peripheral side of the magnetic pole surfaces 41a and 41b can be obtained without increasing.

ところで、ステータ4の磁極面41a、41bの各磁極位置Pにおいて、分割磁極位置P1、P2は隙間を設けて設定してもよい。   By the way, in each magnetic pole position P of the magnetic pole surfaces 41a and 41b of the stator 4, the divided magnetic pole positions P1 and P2 may be set with a gap.

図4(a)、(b)は分割磁極位置P1、P2を、隙間を設けて設定した場合の磁極面41a、41bを示し、この場合、磁極面41a、41bの各磁極位置Pにおいて、2つの磁極42bが分離した状態で配置されるので、磁極42a、2つの磁極42b、磁極42cの磁極面積比は、磁極42aを1とすると、両磁極42bは1、磁極42cは1/2となる。   4A and 4B show magnetic pole surfaces 41a and 41b when the divided magnetic pole positions P1 and P2 are set with a gap, and in this case, at each magnetic pole position P of the magnetic pole faces 41a and 41b, 2 Since the two magnetic poles 42b are arranged in a separated state, the magnetic pole area ratio of the magnetic pole 42a, the two magnetic poles 42b, and the magnetic pole 42c is 1 when the magnetic pole 42a is 1, and the magnetic pole 42b is 1 and the magnetic pole 42c is 1/2. .

そして、この場合も、分割磁極位置P1、P2を、隙間を設けずに密接して設定した場合と同様の効果を相することができる。   In this case, the same effect as that obtained when the divided magnetic pole positions P1 and P2 are set closely without providing a gap can be obtained.

(他の実施形態)
他の実施形態について、図5を参照して説明する。
(Other embodiments)
Another embodiment will be described with reference to FIG.

図5(a)は本実施形態の3相(相順にU相、V相、W相)駆動のモータ1bのモータ軸2方向の断面を示し、図5(b)は同図(a)の矢印線εの方向に見た場合のロータ3aの磁極面の永久磁石による磁化状態を示す。それらの図面において、図1〜図4と同一の符号は同一もしくは相当するものを示す。   FIG. 5A shows a cross section in the direction of the motor shaft 2 of the three-phase (phase-sequence U phase, V phase, W phase) motor 1b of the present embodiment, and FIG. 5B is a diagram of FIG. The magnetization state by the permanent magnet of the magnetic pole surface of the rotor 3a when viewed in the direction of the arrow line ε is shown. In these drawings, the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding elements.

そして、本実施形態のモータ1bが一実施形態のモータ1aと異なる点は、まず、モータ1aのロータ3a、3bに代えて、ステータ4の両磁極面41a、41b側に、ロータ3c、3dを配置した点である。   The motor 1b of the present embodiment is different from the motor 1a of the embodiment in that the rotors 3c and 3d are first arranged on both magnetic pole surfaces 41a and 41b side of the stator 4 in place of the rotors 3a and 3b of the motor 1a. This is the point that was placed.

ロータ3c、3dは、ロータ3a、3bの周方向の各磁極位置における径方向の突極構造の磁極32a、32b、32cに代えて、突極構造の永久磁石の磁極32d、32e、32fが配置される。このとき、磁極32d、32e、32fの極性は相互に逆(径方向に隣り合うものでは互いに異なる)ものであればよく、例えば、外周側の磁極32dから順にN極、S極、N極に設定されている。また、磁極32d、32e、32fの隙間には、径方向に着磁された厚みの薄い補助磁石33a、33bが設けられる。それらの極性は補助磁石33a、33bが接する磁極32d、32e、32fの磁極面の極性と同じ極性に設定される。   In the rotors 3c and 3d, instead of the magnetic poles 32a, 32b and 32c having the salient pole structure in the radial direction at the respective magnetic pole positions in the circumferential direction of the rotors 3a and 3b, the magnetic poles 32d, 32e and 32f of the permanent magnet having the salient pole structure are arranged. Is done. At this time, the polarities of the magnetic poles 32d, 32e, and 32f only need to be opposite to each other (the ones adjacent to each other in the radial direction are different from each other). Is set. In addition, thin auxiliary magnets 33a and 33b magnetized in the radial direction are provided in the gaps between the magnetic poles 32d, 32e, and 32f. Their polarities are set to the same polarities as the magnetic pole surfaces of the magnetic poles 32d, 32e, and 32f with which the auxiliary magnets 33a and 33b are in contact.

そして、補助磁石33a、33bの表面の位置は、磁極32d、32e、32fの磁極面より凹んでおり、ステータ4の磁極面41a、41bに同心状に配置されたコイル6u、6v、6wa、6wbの突出している部分は、ロータ3c、3dの各凹部5に問題なく回転自在に嵌入される。   The positions of the surfaces of the auxiliary magnets 33a and 33b are recessed from the magnetic pole surfaces of the magnetic poles 32d, 32e and 32f, and the coils 6u, 6v, 6wa and 6wb are arranged concentrically on the magnetic pole surfaces 41a and 41b of the stator 4. The protruding portion is inserted into the respective recesses 5 of the rotors 3c and 3d so as to be freely rotatable.

つぎに、コイル6u、6v、6wa、6wbの通電による各相の磁極対の励磁方向は、磁極面41a、41bの外周側のコイル6u、6vと内周側のコイル6wa、6wbとで互いに逆向きに設定され、磁極面41a、41bの径方向の各磁極対がロータ3c、3dの径方向の各磁に逆極性になって磁路を形成するように設定される。具体的には、図5(a)に示すように、紙面左側から見て、コイル6u、6vは反時計回りに、コイル6wa、6wbは時計回りに通電され、外周側のU相、V相は外周側がS極、内周側がN極に励磁され、内周側のW相は外周側がN極、内周側がS極に励磁される。   Next, the excitation directions of the magnetic pole pairs of the respective phases by energization of the coils 6u, 6v, 6wa, 6wb are opposite to each other in the coils 6u, 6v on the outer peripheral side of the magnetic pole surfaces 41a, 41b and the coils 6wa, 6wb on the inner peripheral side. The magnetic pole pairs in the radial direction of the magnetic pole faces 41a and 41b are set so as to be opposite in polarity to the magnetic poles in the radial direction of the rotors 3c and 3d to form a magnetic path. Specifically, as shown in FIG. 5A, when viewed from the left side of the paper, the coils 6u and 6v are energized counterclockwise, and the coils 6wa and 6wb are energized clockwise, and the outer U phase and V phase are energized. Is excited to the S pole on the outer peripheral side and the N pole on the inner peripheral side, and the W phase on the inner peripheral side is excited to the N pole on the outer peripheral side and the S pole on the inner peripheral side.

上記のように構成されたモータ1bは、ロータ3c、3dの磁極32d、32e、32fの永久磁石の磁束と、補助磁石33a、33bの磁束とにより、モータ1aに比して磁束量が増加してトルク量が増大し、しかも、ロータ3c、3dの磁極32d、32e、32fの高さ、およびロータヨーク31をロータ3a、3bのものより薄くしてモータ1bをさらに小型化することができる。   The motor 1b configured as described above has an increased amount of magnetic flux compared to the motor 1a due to the magnetic flux of the permanent magnets 32d, 32e, and 32f of the rotors 3c and 3d and the magnetic flux of the auxiliary magnets 33a and 33b. Thus, the amount of torque can be increased, and the height of the magnetic poles 32d, 32e, 32f of the rotors 3c, 3d and the rotor yoke 31 can be made thinner than those of the rotors 3a, 3b to further reduce the size of the motor 1b.

そして、永久磁石構造のモータ1bは、コイルを中性点に接続して通常の三相インバータでの駆動が可能であり、既存の永久磁石埋め込み型モータ(IPMモータ)の駆動システムの前記IPMモータに代えて使用することができ、この種の駆動システムのコストダウンに寄与する利点もある。   The motor 1b having a permanent magnet structure can be driven by a normal three-phase inverter by connecting a coil to a neutral point, and the IPM motor of the existing permanent magnet embedded motor (IPM motor) drive system. Can be used instead, and there is also an advantage that contributes to the cost reduction of this type of drive system.

そして、本発明は上記した両実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、前記両実施形態のモータ1a、1bにおいて、ステータ4のW相のコイルを、例えば磁極面41aのコイル6waのみとし、磁極面41aにはU相、W相の2相の磁極対を形成し、磁極面41bにはV相(1相)の磁極対を形成するようにしてもよい。なお、ステータ4のW相のコイルを、磁極面41bのコイル6wbのみとしてもよいのは勿論である。   The present invention is not limited to both the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the motor 1a of both the above-described embodiments can be made. 1b, the W-phase coil of the stator 4 is, for example, only the coil 6wa of the magnetic pole surface 41a, the U-phase and W-phase two-phase magnetic pole pairs are formed on the magnetic pole surface 41a, and the V-phase is formed on the magnetic pole surface 41b. A (one-phase) magnetic pole pair may be formed. Of course, the W-phase coil of the stator 4 may be only the coil 6wb of the magnetic pole surface 41b.

また、モータ1a、1bはA相、B相、C相、D相の4相駆動のモータであってもよく、この場合は、例えば、磁極面41aのコイル6u、6waをA相、C相の励磁用のコイル、磁極面41bのコイル6v、6wbをB相、D相の励磁用のコイルにすればよい。   The motors 1a and 1b may be A-phase, B-phase, C-phase, and D-phase four-phase drive motors. In this case, for example, the coils 6u and 6wa of the magnetic pole surface 41a are connected to the A-phase and C-phase. The excitation coils and the coils 6v and 6wb on the magnetic pole surface 41b may be B-phase and D-phase excitation coils.

さらに、モータ1a、1bにおいて、ロータ3a〜3dおよびステータ4の周方向の磁極位置は8個に限るものではなく3個、5個、16個等のモータ1a、1bの回転が可能な適当な個数であればよい。   Further, in the motors 1a and 1b, the positions of the magnetic poles in the circumferential direction of the rotors 3a to 3d and the stator 4 are not limited to eight, but can be appropriately adjusted such that three, five, and sixteen motors 1a and 1b can rotate. Any number may be used.

つきに、本発明のモータは、ステータ4の両面側にギャップを設けてロータ3a、3bまたはロータ3c、3dを対向配置した構造のものを、モータ軸2の方向に複数組配置して形成してもよい。   Finally, the motor of the present invention is formed by arranging a plurality of sets of rotors 3a, 3b or rotors 3c, 3d facing each other with gaps on both sides of the stator 4 in the direction of the motor shaft 2. May be.

そして、本発明のモータは、電気自動車やハイブリッドカーの駆動モータ等の種々の用途に適用することができる。   And the motor of this invention is applicable to various uses, such as a drive motor of an electric vehicle or a hybrid car.

1a、1b モータ
2 モータ軸
3a〜3d ロータ
4 ステータ
5 凹部
6u、6v、6wa、6wb コイル
31、41a、41b 磁極面
32a〜32f、42a〜42c 磁極
1a, 1b Motor 2 Motor shaft 3a-3d Rotor 4 Stator 5 Recess 6u, 6v, 6wa, 6wb Coil 31, 41a, 41b Magnetic pole surface 32a-32f, 42a-42c Magnetic pole

Claims (3)

モータ軸に軸支された2個のロータ間にステータを配設し、
前記両ロータの前記ステータに対向する面の周方向の各磁極位置に突極構造の磁極を径方向に3分割した状態に配置し、
少なくとも一方の片面に2相のコイルを同心状に設けるようにして前記ステータの両面に各相の励磁用の環状のコイルを分散配置し、
前記ステータの両面の周方向の各磁極位置において前記各相のコイルそれぞれの内周側、外周側に突極構造の磁極を周方向にずらした状態に配置し、
前記各相のコイルの相順の通電により、前記ステータの両面の各磁極位置において、通電相のコイルを挟んで径方向に当該相の励磁された磁極対を形成するようにしたことを特徴とするモータ。
A stator is disposed between two rotors supported by the motor shaft,
The magnetic poles of the salient pole structure are arranged in a state of being radially divided into three at respective magnetic pole positions in the circumferential direction of the surfaces of the two rotors facing the stator,
An annular coil for excitation of each phase is dispersedly arranged on both surfaces of the stator so that two-phase coils are provided concentrically on at least one side,
Arranged in a state where the magnetic poles of the salient pole structure are shifted in the circumferential direction on the inner peripheral side and outer peripheral side of the coils of each phase at the respective magnetic pole positions in the circumferential direction on both surfaces of the stator,
By energizing the coils of each phase in the phase sequence, magnetic pole pairs in which the phases are excited are formed in the radial direction across the coils of the energized phase at each magnetic pole position on both surfaces of the stator. Motor.
請求項1に記載のモータにおいて、
前記ステータは、両面の径方向内周側に同相に励磁される磁極対が形成されることを特徴とするモータ。
The motor according to claim 1,
The motor is characterized in that the stator has a pair of magnetic poles excited in the same phase on the radially inner peripheral side of both surfaces.
請求項1または2に記載のモータにおいて、
前記両ロータの径方向の磁極の隙間により、前記ステータの前記各相の環状のコイルの前記ステータから突出した部分が回転自在に嵌入される凹部が形成されることを特徴とするモータ。
The motor according to claim 1 or 2,
The motor is characterized in that a concave portion in which a portion protruding from the stator of the annular coil of each phase of the stator is rotatably inserted is formed by a gap between the magnetic poles in the radial direction of the two rotors.
JP2009244580A 2009-10-23 2009-10-23 Motor Withdrawn JP2011091961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244580A JP2011091961A (en) 2009-10-23 2009-10-23 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244580A JP2011091961A (en) 2009-10-23 2009-10-23 Motor

Publications (1)

Publication Number Publication Date
JP2011091961A true JP2011091961A (en) 2011-05-06

Family

ID=44109676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244580A Withdrawn JP2011091961A (en) 2009-10-23 2009-10-23 Motor

Country Status (1)

Country Link
JP (1) JP2011091961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197230B2 (en) 2013-09-27 2015-11-24 Seiko Epson Corporation Atomic oscillator, electronic apparatus, and moving object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197230B2 (en) 2013-09-27 2015-11-24 Seiko Epson Corporation Atomic oscillator, electronic apparatus, and moving object

Similar Documents

Publication Publication Date Title
JP5472254B2 (en) Double stator type motor
EP2980969B1 (en) Synchronous reluctance motor and rotor for synchronous reluctance motor
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP5419478B2 (en) motor
JP6007020B2 (en) motor
US20150042194A1 (en) Single-phase brushless motor
JP2005143276A (en) Axial gap rotating electric machine
US11799337B2 (en) Rotating electric machine
JP2005151725A (en) Axial gap rotary electric machine
JP2013074743A (en) Rotary electric machine
US6975057B2 (en) Rotary electric machine having a stator made up of sectors assembled together
JP6211928B2 (en) Rotating electric machine with double unipolar structure
JP6048191B2 (en) Multi-gap rotating electric machine
US10236732B2 (en) Inductor type rotary motor
JP2017118691A (en) motor
US20220255386A1 (en) Coil, stator, and motor
JP7468538B2 (en) Stator and Motor
WO2017171037A1 (en) Rotor and method for designing rotor
JP2011087382A (en) Motor
JP2015154555A (en) motor
JP6675139B2 (en) Switch reluctance motor
JP2011091961A (en) Motor
JP6190694B2 (en) Rotor, stator, and motor
JP2011103716A (en) Motor
JP6096646B2 (en) motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108