JP2011090873A - Flat secondary battery module - Google Patents

Flat secondary battery module Download PDF

Info

Publication number
JP2011090873A
JP2011090873A JP2009243242A JP2009243242A JP2011090873A JP 2011090873 A JP2011090873 A JP 2011090873A JP 2009243242 A JP2009243242 A JP 2009243242A JP 2009243242 A JP2009243242 A JP 2009243242A JP 2011090873 A JP2011090873 A JP 2011090873A
Authority
JP
Japan
Prior art keywords
unit
secondary battery
adjacent
cell
battery module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009243242A
Other languages
Japanese (ja)
Inventor
Mikio Oguma
幹男 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009243242A priority Critical patent/JP2011090873A/en
Publication of JP2011090873A publication Critical patent/JP2011090873A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve the safety of a flat secondary battery module suitable for large current charging and discharging that is used as a power supply for an electric vehicle, etc. <P>SOLUTION: The flat secondary battery module comprises a plurality of stacked unit cells and a current blocking unit, wherein the current blocking unit has an electric path blocking mechanism that blocks an electric path by using an expansion force of an adjacent unit cell adjacent to the current blocking unit, and the unit cells are flat. In the flat secondary battery module, a bypass circuit that is connected in parallel to each of the unit cells and has a bypass resistance section and a switch section and a charge/discharge control unit having a bypass control and output section are provided. The switch section is connected to the bypass control and output section and the charge/discharge control unit has a unit cell voltage detection unit for detecting a terminal voltage of each unit cell. The bypass control and output unit controls the open/close of the switch section in such a manner that the remaining capacity of the adjacent unit cell may be larger than that of the other unit cells. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、扁平形二次電池モジュールに関する。   The present invention relates to a flat secondary battery module.

従来、電気自動車やハイブリッド車などの電源として用いる大電流充放電用途の二次電池には、いわゆる円筒密閉形の単電池を多数個(例えば40〜100個)直列に接続したモジュールが用いられ、単電池に内蔵された電極群は、耐振性を向上させるため、空芯ではなく、樹脂などで作られた捲芯に電極とセパレータを巻き付けて構成されている。   Conventionally, a secondary battery for high-current charge / discharge applications used as a power source for an electric vehicle or a hybrid vehicle uses a module in which many so-called cylindrical sealed single cells (for example, 40 to 100) are connected in series, In order to improve vibration resistance, the electrode group built in the unit cell is configured by winding an electrode and a separator around a core made of resin instead of an air core.

大電流による充放電に耐えるためには、集電構造に特段の工夫が要求される。   In order to withstand charge / discharge caused by a large current, a special device is required for the current collecting structure.

特許文献1及び特許文献2には、電極の長辺端部に多数のタブ(リード片)を設け、これらのタブを集電部材に超音波溶接などの手段により接合した円筒形の二次電池が開示されている。   In Patent Document 1 and Patent Document 2, a cylindrical secondary battery in which a large number of tabs (lead pieces) are provided at the ends of the long sides of an electrode, and these tabs are joined to a current collecting member by means such as ultrasonic welding. Is disclosed.

特許文献3には、可撓性部材を電池容器とした単一電池または可撓性部材を電池容器とし積層状態で直列ないし直並列に接続された複数個の単電池を有する二次電池モジュールにおいて、貫通穴が形成され前記単一電池または前記複数個の単電池のうち一側に配設された単電池に対峙するように配置された第1の接続部材と、前記単一電池または前記一側に配設された単電池と前記第1の接続部材との間に配置され前記第1の接続部材に形成された貫通穴を貫通可能な突出部を有する押しゴマと、前記第1の接続部材の前記押しゴマと反対側に前記第1の接続部材と対峙するように配置され前記第1の接続部材との接合部を有する第2の接続部材とを備え、前記第1および第2の接続部材のいずれか一方が前記単一電池または前記一側に配設された単電池に接続されており、かつ、いずれか他方が外部出力端子に接続されており、前記単一電池または前記複数個の単電池のいずれかが膨張したときに、前記押しゴマの突出部が前記第1の接続部材に形成された貫通穴を貫通して前記接合部が破断することを特徴とする二次電池モジュールが開示されている。   Patent Document 3 discloses a secondary battery module having a single battery having a flexible member as a battery container or a plurality of single cells connected in series or series-parallel in a stacked state with the flexible member as a battery container. A first connecting member formed so as to face the single battery or the single battery arranged on one side among the plurality of single cells, and the single battery or the one Pushing sesame having a protruding portion that is disposed between the unit cell disposed on the side and the first connection member and that can penetrate a through hole formed in the first connection member, and the first connection A second connecting member disposed on the opposite side of the member to the push sesame and facing the first connecting member and having a joint with the first connecting member, the first and second Either one of the connecting members is disposed on the single battery or the one side And the other one is connected to an external output terminal, and when either the single cell or the plurality of single cells expands, the pushing sesame protrudes A secondary battery module is disclosed in which a portion penetrates a through hole formed in the first connecting member and the joint portion is broken.

特許文献4には、複数個の二次電池が直列に接続された電池群を制御する電池群制御装置において、前記電池群制御装置の起動時に、前記二次電池の各々の無負荷電圧を測定する無負荷電圧測定手段と、容量調整用の抵抗及びスイッチを有し、前記二次電池の各々に並列に接続され、前記二次電池の各々に流れる充放電電流をバイパスさせるバイパス回路と、前記二次電池の各々の残存容量が略均等となるように、前記二次電池の各々に流れる充放電電流をバイパスさせるための時間を算出し、該算出した時間に応じて対応するバイパス回路のスイッチをオン状態に制御する制御手段と、を備え、前記制御手段は、前記無負荷電圧測定手段で測定された二次電池の各々の無負荷電圧を残存容量に変換して該変換した残存容量の平均値を算出し、前記変換した残存容量と前記算出した残存容量の平均値との差が予め設定された設定値を越える二次電池について、前記電池群の充放電時に、前記残存容量と前記残存容量の平均値との差分の電気量に相当する時間、対応するバイパス回路のスイッチをオン状態に制御して該二次電池に流れる充放電電流をバイパスさせることを特徴とする電池群制御装置が開示されている。   In Patent Document 4, in a battery group control device that controls a battery group in which a plurality of secondary batteries are connected in series, the no-load voltage of each of the secondary batteries is measured when the battery group control device is activated. A no-load voltage measuring means, a bypass circuit having a resistance and a switch for capacity adjustment, connected in parallel to each of the secondary batteries, and bypassing a charge / discharge current flowing through each of the secondary batteries, A time for bypassing the charging / discharging current flowing through each of the secondary batteries is calculated so that the remaining capacity of each of the secondary batteries is substantially equal, and a switch of the corresponding bypass circuit corresponding to the calculated time Control means for controlling the on-state of the secondary battery, the control means converts the no-load voltage of each of the secondary batteries measured by the no-load voltage measuring means into a remaining capacity, and Calculate the average value For a secondary battery in which the difference between the converted remaining capacity and the calculated average value of the remaining capacity exceeds a preset value, the remaining capacity and the average value of the remaining capacity at the time of charge / discharge of the battery group A battery group control device is disclosed in which a charge / discharge current flowing through the secondary battery is bypassed by controlling a switch of a corresponding bypass circuit to be in an ON state for a time corresponding to the difference in the amount of electricity.

特開平11−312537号公報Japanese Patent Laid-Open No. 11-312537 特開平11−312510号公報Japanese Patent Application Laid-Open No. 11-312510 特開2008−153203号公報JP 2008-153203 A 特開2007−244142号公報JP 2007-244142 A

円筒形電池は複数個並べたときに空間占有率が低く、体積効率に劣るため、扁平形の容器を用いた、いわゆる扁平形電池が提案されており、同体積の円筒形電池に比べて表面積が大きくなるため、放熱性能にも優れるという副次的効果も得られる。   Since a plurality of cylindrical batteries have low space occupancy and poor volumetric efficiency when they are arranged, a so-called flat battery using a flat container has been proposed and has a surface area compared to a cylindrical battery of the same volume. Therefore, a secondary effect of excellent heat dissipation performance can be obtained.

従来の円筒密閉形電池においては、万一、充電装置の故障や誤用などのために過充電状態となった場合に備え、過充電時のガス発生による内圧上昇を利用して、電池内部に設けた脆弱な部分を破断させることによって爆発に至る前に電流を遮断する機構の組込みが容易であった。   In the case of a conventional sealed cylindrical battery, in the unlikely event that it becomes overcharged due to a failure or misuse of the charging device, it is installed inside the battery using the increase in internal pressure due to gas generation at the time of overcharging. It was easy to incorporate a mechanism that cuts off the current before the explosion occurred by breaking the fragile part.

しかし、ラミネート電池や扁平形金属容器を用いたいわゆる扁平形電池は、その薄さが災いし、このような電流遮断機構を個々の単電池に内蔵させることが困難である。このため、万一、過充電状態となった場合、電流を遮断することができず、ついには発火や爆発に至るという問題があった。   However, a so-called flat battery using a laminated battery or a flat metal container suffers from thinness, and it is difficult to incorporate such a current interrupting mechanism in each single cell. For this reason, in the unlikely event that an overcharged state occurs, there is a problem that the current cannot be interrupted and eventually fire or explosion occurs.

一方、扁平形容器は、内圧が上昇すると、円筒形容器に比べて扁平の側面が大きく膨張するという特徴がある。   On the other hand, the flat container has a feature that when the internal pressure rises, the flat side surface expands greatly compared to the cylindrical container.

そこで、発明者は、既に、モジュールの端部に位置する単電池に隣接して、過充電によって単電池の内圧が上昇して容器が膨張したときに、その膨張力を利用して電路を遮断する機構を提案している(特許文献3)。   Therefore, the inventor has already cut off the electric circuit using the expansion force when the internal pressure of the single cell rises due to overcharging and the container expands adjacent to the single cell located at the end of the module. The mechanism which performs is proposed (patent document 3).

ところが、単電池の容量は、製造上ある程度のばらつきが避けられない。このため、容量が比較的大きな単電池が電流遮断機構に隣接して配置された場合、直列に接続されて同一の電流値で充放電されても、他の単電池より過充電になりにくいことになる。   However, the capacity of the unit cell cannot be avoided to some extent in manufacturing. For this reason, when a unit cell having a relatively large capacity is arranged adjacent to the current interrupting mechanism, even if connected in series and charged / discharged at the same current value, it is less likely to be overcharged than other unit cells. become.

そこで、特許文献3においては、電流遮断機構に隣接する単電池の容量を、他の単電池の容量より3%〜9%小さくするという方法を提案した。しかしながら、予めわずかに容量の異なる2種類の単電池を作り分けて組込むという方法は、製造面から見れば煩わしく、望ましい解決手段とは言い難いものであった。   Therefore, Patent Document 3 has proposed a method in which the capacity of a single cell adjacent to the current interrupt mechanism is made 3% to 9% smaller than the capacity of other single cells. However, the method of creating and incorporating two types of single cells having slightly different capacities in advance is troublesome from the viewpoint of manufacturing and is not a desirable solution.

本発明の目的は、電気自動車などの電源として用いられる大電流充放電に適した扁平形二次電池モジュールの安全性を向上することにある。   An object of the present invention is to improve the safety of a flat secondary battery module suitable for large current charge / discharge used as a power source for an electric vehicle or the like.

本発明の扁平形二次電池モジュールは、積層された複数個の単電池と、電流遮断部とを含み、前記電流遮断部は、前記電流遮断部に隣接する隣接単電池の膨張力を利用して電路を遮断する電路遮断機構を有し、前記単電池が扁平形である扁平形二次電池モジュールであって、それぞれの前記単電池に並列接続され、かつ、バイパス抵抗部及びスイッチ部を有するバイパス回路と、バイパス制御出力部を有する充放電制御部とが設置され、前記スイッチ部は、前記バイパス制御出力部に接続され、前記充放電制御部は、それぞれの前記単電池の端子電圧を検出する単電池電圧検出部を有し、前記バイパス制御出力部は、前記スイッチ部の開閉を制御し、前記隣接単電池の残存容量を他の前記単電池の残存容量より多く保つように制御することを特徴とする。   The flat secondary battery module of the present invention includes a plurality of stacked unit cells and a current interrupting unit, and the current interrupting unit utilizes the expansion force of an adjacent unit cell adjacent to the current interrupting unit. A flat secondary battery module in which the unit cell is a flat type, and is connected in parallel to each unit cell, and has a bypass resistor unit and a switch unit. A bypass circuit and a charge / discharge control unit having a bypass control output unit are installed, the switch unit is connected to the bypass control output unit, and the charge / discharge control unit detects a terminal voltage of each unit cell. And the bypass control output unit controls opening and closing of the switch unit, and controls the remaining capacity of the adjacent unit cells to be larger than the remaining capacity of the other unit cells. The And butterflies.

本発明によれば、大電流充放電に適した扁平形二次電池モジュールの安全性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the safety | security of the flat secondary battery module suitable for large current charging / discharging can be improved.

本発明による実施例である二次電池モジュールを示す模式構成図である。It is a schematic block diagram which shows the secondary battery module which is an Example by this invention. 本発明に係る単電池のバイパス回路を示す模式構成図である。It is a schematic block diagram which shows the bypass circuit of the cell which concerns on this invention. 本発明に係る充放電制御装置を含む二次電池システムを示す模式構成図である。It is a schematic block diagram which shows the secondary battery system containing the charging / discharging control apparatus which concerns on this invention. 本発明による他の実施例である二次電池モジュールを示す模式構成図である。It is a schematic block diagram which shows the secondary battery module which is another Example by this invention. 本発明による他の実施例である二次電池モジュールを示す模式構成図である。It is a schematic block diagram which shows the secondary battery module which is another Example by this invention.

本発明は、扁平形の二次電池で構成されたモジュールに関するものであり、特に、ハイブリッド車や電気自動車の電源に適した大容量の扁平形二次電池モジュールに関するものである。   The present invention relates to a module composed of a flat secondary battery, and more particularly to a large capacity flat secondary battery module suitable for a power source of a hybrid vehicle or an electric vehicle.

本発明の扁平形二次電池モジュールにおいては、単一の容量の単電池を用いる。しかし、電池は、残存容量によって端子電圧が異なることを利用して、システム起動時に各単電池の無負荷電圧を測定する。ここで、残存容量は、電池の充填状態(SOC:State Of Charge)を表す量であり、これが多いほど電池の充電が進行していることを示す。   In the flat secondary battery module of the present invention, a single battery having a single capacity is used. However, the battery measures the no-load voltage of each unit cell at the time of system startup by utilizing the fact that the terminal voltage varies depending on the remaining capacity. Here, the remaining capacity is an amount representing a state of charge (SOC) of the battery, and the larger the value, the more the battery is charged.

システムには予め求められた端子電圧と残存容量との変換テーブルあるいは変換式を記憶しておくことができるため、これによって、各単電池の無負荷電圧から、それぞれの残存容量を知ることができる。これを基に、電流遮断機構(電流遮断部とも呼ぶ。)に隣接する単電池(以下、隣接単電池と呼ぶこともある。)の残存容量を、他の単電池の残存容量より多くなるように、各単電池に設けられたバイパス回路をONにする時間を算出し、調整動作を行う。   Since the system can store a conversion table or conversion formula between the terminal voltage and the remaining capacity obtained in advance, the remaining capacity can be known from the no-load voltage of each unit cell. . Based on this, the remaining capacity of a unit cell (hereinafter also referred to as an adjacent unit cell) adjacent to a current blocking mechanism (also referred to as a current blocking unit) is made larger than the remaining capacity of other unit cells. Then, the time for turning on the bypass circuit provided in each unit cell is calculated, and the adjustment operation is performed.

その結果、電流遮断機構に隣接する単電池は、他の単電池よりわずかながら高い充電状態に保たれることとなる。   As a result, the unit cells adjacent to the current interruption mechanism are kept in a slightly higher charge state than the other unit cells.

隣接単電池の残存容量は、他の前記単電池の残存容量より3〜9%多く保つように制御されることが望ましい。   It is desirable that the remaining capacity of the adjacent unit cell is controlled to be 3 to 9% higher than the remaining capacity of the other unit cells.

単電池容器がアルミニウム合金などで形成されている場合、相隣る単電池の間に空気流路を設けることが望ましい。   When the unit cell container is formed of an aluminum alloy or the like, it is desirable to provide an air flow path between adjacent unit cells.

本発明によれば、単電池の容量にわずかなばらつきがあっても、これを補うことができる。すなわち、万一、充電装置の故障などでモジュールの充電状態が継続した場合には、電流遮断機構に隣接する単電池が最初に過充電状態となり、内部で発生するガスの圧力で容器が膨張し、電流遮断機構(電流遮断部)が作動して確実に電路を遮断させることが可能となる。   According to the present invention, even if there is a slight variation in the capacity of the unit cells, this can be compensated. In other words, in the unlikely event that the charging state of the module continues due to a failure of the charging device, the unit cell adjacent to the current interruption mechanism is first overcharged, and the container expands due to the pressure of the gas generated inside. The electric current interruption mechanism (current interruption part) is actuated to reliably interrupt the electric circuit.

なお、電路を遮断する方式としては、電流遮断部に隣接する隣接単電池の膨張力を利用して機械的に電路を破断する方式が望ましい。この方式を、電路を遮断する機構(電路遮断機構)と呼ぶこともできる。   In addition, as a system which interrupts | blocks an electric circuit, the system which breaks an electric circuit mechanically using the expansion force of the adjacent cell adjacent to a current interruption part is desirable. This method can also be called a mechanism for interrupting an electric circuit (electric circuit interrupting mechanism).

以下、本発明について実施例を用いて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

1.単電池の作製
正極活物質としてリチウム遷移金属複合酸化物、負極活物質として炭素粒子を用いる、いわゆるリチウム二次電池を作製した。正極及び負極を、セパレータを介して捲回し、アルミニウム箔を中間層として含むラミネートフィルムを用いた扁平形容器に収容した後、電解液を注入し、単電池とした。単電池の設計容量は10Ahである。
1. Production of Single Battery A so-called lithium secondary battery using lithium transition metal composite oxide as the positive electrode active material and carbon particles as the negative electrode active material was produced. The positive electrode and the negative electrode were wound through a separator and accommodated in a flat container using a laminate film containing an aluminum foil as an intermediate layer, and then an electrolytic solution was injected to obtain a unit cell. The design capacity of the unit cell is 10 Ah.

2.モジュールの作製
図1は、本発明による実施例である二次電池モジュールを示す模式構成図である。
2. Production of Module FIG. 1 is a schematic configuration diagram showing a secondary battery module according to an embodiment of the present invention.

本図においては、単電池1を8個重ねて直列に接続して電池群を形成し、これをアルミニウム合金製のモジュールフレーム2に収容してある。また、モジュールフレーム2の内部であって、電池群の一端を構成する単電池1に隣接する部位に電流遮断部11を設置してある。電流遮断部11は、押しゴマ4及び狭隘部6を有する導電板5並びに突起部8を設けた固定板7を含む。固定板7は、モジュールフレーム2の内壁に固定されている。電池群の一端を構成する単電池1には、受圧板3が付設してある。   In this figure, eight unit cells 1 are stacked and connected in series to form a battery group, which is accommodated in a module frame 2 made of aluminum alloy. In addition, a current interrupting unit 11 is installed in a part of the module frame 2 adjacent to the unit cell 1 constituting one end of the battery group. The current interrupting part 11 includes a conductive plate 5 having a push block 4 and a narrow part 6 and a fixing plate 7 provided with a protruding part 8. The fixing plate 7 is fixed to the inner wall of the module frame 2. A pressure plate 3 is attached to the unit cell 1 constituting one end of the battery group.

電池群からは、正極端子9及び負極端子10がモジュールフレーム2の外部に引き出されている。   A positive electrode terminal 9 and a negative electrode terminal 10 are drawn out of the module frame 2 from the battery group.

電池群が膨張した際には、受圧板3によって押しゴマ4が押され、狭隘部6において導電板5が破断される。これにより、電池群への電流の供給が遮断される。   When the battery group expands, the pressing plate 4 is pushed by the pressure receiving plate 3, and the conductive plate 5 is broken at the narrow portion 6. Thereby, the supply of current to the battery group is interrupted.

図2は、本発明に係る単電池のバイパス回路を示す模式構成図である。   FIG. 2 is a schematic configuration diagram showing a bypass circuit of a unit cell according to the present invention.

本図においては、単電池21の両極端子28、29は、リード線101(ビニル被覆電線)によりバイパス回路22に接続してある。バイパス回路22は、充放電制御部25に接続してある。   In this figure, the bipolar terminals 28 and 29 of the unit cell 21 are connected to the bypass circuit 22 by lead wires 101 (vinyl-coated wires). The bypass circuit 22 is connected to the charge / discharge control unit 25.

バイパス回路22は、バイパス抵抗部23及びスイッチ部24を有し、バイパス抵抗部23とスイッチ部24とは直列に接続されている。バイパス回路22のスイッチ部24としては、電界効果トランジスタ(Field Effect Transistor、FET)を用いている。   The bypass circuit 22 includes a bypass resistor unit 23 and a switch unit 24, and the bypass resistor unit 23 and the switch unit 24 are connected in series. A field effect transistor (Field Effect Transistor, FET) is used as the switch unit 24 of the bypass circuit 22.

ここで、1個の単電池21に対して1個のバイパス回路22を集積回路(IC)等としてまとめて設置してもよいし、複数個の単電池21に対応する複数個のバイパス回路22を1個の集積回路(IC)等としてまとめて設置してもよい。また、複数個の単電池21を直列接続した電池群に対して複数個のバイパス回路22及び充放電制御部25を1個の集積回路(IC)等としてまとめて設置してもよい。   Here, one bypass circuit 22 may be collectively installed as an integrated circuit (IC) or the like for one unit cell 21, or a plurality of bypass circuits 22 corresponding to the plurality of unit cells 21. May be collectively installed as one integrated circuit (IC) or the like. In addition, a plurality of bypass circuits 22 and a charge / discharge control unit 25 may be collectively installed as one integrated circuit (IC) or the like for a battery group in which a plurality of unit cells 21 are connected in series.

バイパス回路22は、充放電制御部25のA/D変換部27に接続してある。また、バイパス回路22のスイッチ部24は、充放電制御部25のバイパス制御出力部26に接続してある。バイパス制御出力部26は、バイパス抵抗の開閉を制御する。   The bypass circuit 22 is connected to the A / D conversion unit 27 of the charge / discharge control unit 25. The switch unit 24 of the bypass circuit 22 is connected to the bypass control output unit 26 of the charge / discharge control unit 25. The bypass control output unit 26 controls opening and closing of the bypass resistor.

また、充放電制御部25は、それぞれの単電池21の端子電圧を検出する単電池電圧検出部を有する。   In addition, the charge / discharge control unit 25 includes a single cell voltage detection unit that detects a terminal voltage of each single cell 21.

3.充放電制御装置の作製
図3は、本発明に係る充放電制御部を含む二次電池システムを示す模式構成図である。
3. Production of Charge / Discharge Control Device FIG. 3 is a schematic configuration diagram showing a secondary battery system including a charge / discharge control unit according to the present invention.

本図において、二次電池システム34は、8個の単電池21で構成される電池群と、それぞれの単電池21に並列に接続されたバイパス回路22と、充放電制御部25とを含む。電池群の一端には、電流遮断部33が接続してあり、電池群の両端には、正極端子31及び負極端子32が設けてある。   In this figure, the secondary battery system 34 includes a battery group including eight unit cells 21, a bypass circuit 22 connected in parallel to each unit cell 21, and a charge / discharge control unit 25. A current interrupting unit 33 is connected to one end of the battery group, and a positive electrode terminal 31 and a negative electrode terminal 32 are provided at both ends of the battery group.

充放電制御部25は、システム起動時にそれぞれの単電池21の端子電圧を計測し、予め算出され、記録されている端子電圧と残存容量との相関関係を表す変換テーブルに基づいて、単電池21の端子電圧を残存容量に換算する。   The charge / discharge control unit 25 measures the terminal voltage of each unit cell 21 at the time of system startup, and is based on a conversion table that represents a correlation between the terminal voltage calculated in advance and recorded and the remaining capacity. The terminal voltage is converted into the remaining capacity.

電池群の両端に位置する単電池21を隣接単電池と呼ぶ。隣接単電池に接続されたバイパス制御出力部26(図2参照)からの信号により、隣接単電池の残存容量を、他の単電池21より多く保つように制御している。   The unit cells 21 located at both ends of the battery group are referred to as adjacent unit cells. Control is performed so that the remaining capacity of the adjacent unit cell is kept higher than that of the other unit cells 21 by a signal from the bypass control output unit 26 (see FIG. 2) connected to the adjacent unit cell.

本実施例において、単電池は、充電状態30〜70%の範囲で端子電圧約0.01Vが、残存容量で1%に相当する。   In the present embodiment, the unit cell corresponds to a terminal voltage of about 0.01 V in the charged state range of 30 to 70% and a remaining capacity of 1%.

本実施例においては、単電池21の設計容量を10Ahとしている。この設計容量の1%は0.1Ahに相当する。   In this embodiment, the design capacity of the unit cell 21 is 10 Ah. 1% of this design capacity corresponds to 0.1 Ah.

電流遮断部33に隣接する単電池21の充電状態を、その他の単電池の充電状態より3〜9%高く保つために必要とされるそれぞれの単電池21の所要放電量は、上記の相関関係から容易に計算することができる。   The required discharge amount of each unit cell 21 required to keep the state of charge of the unit cell 21 adjacent to the current interrupting unit 33 3-9% higher than the state of charge of the other unit cells is the above correlation. Can be easily calculated from

本実施例において、充電状態30〜70%の範囲における単電池21の平均端子電圧は3.6Vであり、それぞれの単電池21に接続されたバイパス抵抗を56Ωとしてあるため、1%相当の電気量0.1Ahを放電させるには、バイパス回路22をおよそ93分間ONとすればよいことになる。   In this embodiment, the average terminal voltage of the single cells 21 in the charged state range of 30 to 70% is 3.6 V, and the bypass resistance connected to each single cell 21 is 56Ω, so that the electric power equivalent to 1% In order to discharge the amount of 0.1 Ah, the bypass circuit 22 may be turned on for about 93 minutes.

図1に示す二次電池モジュールを5種類、20台作製し、過充電状態としたときの電流遮断機構の作用効果を調べた。   Five types and 20 of the secondary battery modules shown in FIG. 1 were produced, and the effect of the current interruption mechanism when overcharged was examined.

電流遮断機構に隣接する単電池以外は10±0.05Ahのものを選別して使用し、電流遮断機構に隣接した単電池のみ、捲回時に電極の長さを少しずつ長くして、容量を10Ahから11.2Ahまで変化させた。   Except for the single cell adjacent to the current interruption mechanism, select 10 ± 0.05Ah and use only the single cell adjacent to the current interruption mechanism by gradually increasing the length of the electrode during winding. It was changed from 10 Ah to 11.2 Ah.

このようにして得られたモジュールを1Cで充放電し、隣接単電池の残存容量が、その他の単電池の残存容量より3〜9%大きな値となるよう調節してから約1時間静置し、次いで、1Cでの連続充電に投入した。結果は表1に示す通りである。ここで、1Cとは、1時間率充放電電流値(単位はA)であり、本実施例においては10Aである。   The module thus obtained is charged and discharged at 1 C, and is left to stand for about 1 hour after adjusting the remaining capacity of the adjacent unit cells to be 3 to 9% larger than the remaining capacity of the other unit cells. Then, it was put into continuous charging at 1C. The results are as shown in Table 1. Here, 1C is a 1-hour rate charge / discharge current value (unit is A), and is 10A in this embodiment.

Figure 2011090873
表中、○は電流遮断機構により安全に電流を遮断できたことを示し、×は電流遮断機構が作動する前にいずれかの単電池が破裂または発火に至ったことを示している。
Figure 2011090873
In the table, ◯ indicates that the current can be safely interrupted by the current interrupting mechanism, and × indicates that one of the cells has ruptured or ignited before the current interrupting mechanism is activated.

残存容量の差が9%であれば、電流遮断機構に隣接する単電池の容量が、その他の単電池より1.2Ahすなわち12%大きくても、発火に至る前に電流遮断機構が作動して電路が遮断され、安全に停止させることができた。隣接単電池とその他の単電池の容量との差が0.4Ahすなわち4%であれば、残存容量の差を3%としても安全に停止させることができた。   If the difference between the remaining capacities is 9%, even if the capacity of the unit cell adjacent to the current interrupting mechanism is 1.2 Ah, that is, 12% larger than the other unit cells, the current interrupting mechanism is activated before firing. The electric circuit was cut off and it was possible to stop it safely. If the difference between the capacity of the adjacent unit cell and the other unit cell was 0.4 Ah, that is, 4%, the remaining capacity difference could be safely stopped even if the difference was 3%.

実際の単電池の製造時における容量のばらつきは、せいぜい±3%程度であるため、本実施例の構成によれば、十分な安全性を確保することができる。   Since the variation in capacity at the time of actual cell manufacturing is about ± 3% at most, the configuration of this embodiment can ensure sufficient safety.

残存容量の差を12%より大きくすると、電流遮断機構に隣接した単電池の寿命が損なわれるため望ましくない。   If the difference between the remaining capacities is larger than 12%, the life of the unit cell adjacent to the current interruption mechanism is impaired, which is not desirable.

図1の二次電池モジュールにおいては、電流遮断部11が電池群の一端に組込まれているが、より確実な作動を得るためには、図4に示すように、電池群の両端に電流遮断部11を組込むことが望ましい。いずれか一方でも電流遮断部11が作動すれば、充放電電流が遮断されるため、作動がより確実となり、安全性を一層向上させることができる。   In the secondary battery module of FIG. 1, the current interrupting unit 11 is incorporated at one end of the battery group. In order to obtain a more reliable operation, the current interrupting unit 11 is interrupted at both ends of the battery group as shown in FIG. 4. It is desirable to incorporate the part 11. If either one of the current interrupting units 11 operates, the charge / discharge current is interrupted, so that the operation becomes more reliable and the safety can be further improved.

一般に、円筒形電池の場合、全ての単電池に電流遮断部を組込んでいる。これに対して、本発明に係る扁平形二次電池モジュールの場合、3個以上の単電池を直列に接続してモジュールを形成すれば、電流遮断部を両端に組込んだとしても、電流遮断部の数が、全ての単電池に電流遮断部を組込んでいる円筒形電池の場合に比べて少なくてすみ、コスト低減の効果も得られる。   In general, in the case of a cylindrical battery, a current interrupting unit is incorporated in every single cell. On the other hand, in the case of the flat secondary battery module according to the present invention, if a module is formed by connecting three or more single cells in series, even if current interrupting parts are incorporated at both ends, The number of parts can be reduced as compared with the case of the cylindrical battery in which the current interrupting part is incorporated in all the unit cells, and the effect of cost reduction can be obtained.

図1及び図4においては、ラミネート電池を例として示したが、アルミニウム合金などの金属製容器を用いる扁平形電池の場合も、内圧が上昇すると、側壁の平面部分が円筒形電池の場合より大きく膨張するため、金属製容器の扁平形二次電池モジュールにも、本発明を全く同様に適用することができる。   In FIGS. 1 and 4, a laminated battery is shown as an example. However, in the case of a flat battery using a metal container such as an aluminum alloy, when the internal pressure rises, the plane portion of the side wall becomes larger than in the case of a cylindrical battery. Since it expands, the present invention can be applied to a flat secondary battery module of a metal container in exactly the same manner.

図5は、アルミニウム合金などの金属製容器を用いた扁平形二次電池モジュールを示す模式構成図である。   FIG. 5 is a schematic configuration diagram showing a flat secondary battery module using a metal container such as an aluminum alloy.

本実施例においては、それぞれの単電池1の間に幅2mmの空気流路51を設けてある。これは、発熱する単電池1を冷却するためのものである。この場合、モジュールフレーム2は空気ダクトとして機能し、ファンなどによりモジュールフレーム2に送風することによって空気流路51に空気を流通させ、強制対流伝熱により単電池1を冷却するようになっている。   In the present embodiment, an air flow path 51 having a width of 2 mm is provided between each unit cell 1. This is for cooling the unit cell 1 that generates heat. In this case, the module frame 2 functions as an air duct, and air is circulated through the air flow path 51 by blowing air to the module frame 2 by a fan or the like, and the unit cell 1 is cooled by forced convection heat transfer. .

本実施例の場合、モジュールの両端部以外に設置された単電池1が膨張したとしても、膨張した単電池1の形状変化によってモジュールの両端部に設置された単電池1(隣接単電池)が電流遮断部11の方向に押し出されるという作用に至るまでに時間差が生じ、膨張した単電池1が破裂する前に電流遮断部11を作動させることが困難となる場合がある。   In the case of the present embodiment, even if the unit cells 1 installed at the ends other than the both ends of the module expand, the unit cells 1 (adjacent unit cells) installed at both ends of the module due to the shape change of the expanded unit cell 1. There may be a time difference before reaching the action of pushing out in the direction of the current interrupting part 11, and it may be difficult to operate the current interrupting part 11 before the expanded unit cell 1 bursts.

このため、モジュールの両端部に設置された単電池1(隣接単電池)が最初に膨張するように残存容量を制御する必要がある。この制御、すなわち隣接単電池の残存容量が他の単電池1よりも多くなるように維持する制御を、図3に示すバイパス回路22及び充放電制御部25を用いて行うことにより、扁平形二次電池モジュールの充電操作を安全に停止させることができる。   For this reason, it is necessary to control the remaining capacity so that the single cells 1 (adjacent single cells) installed at both ends of the module expand first. By performing this control, that is, control for maintaining the remaining capacity of the adjacent unit cells to be larger than that of the other unit cells 1 by using the bypass circuit 22 and the charge / discharge control unit 25 shown in FIG. The charging operation of the secondary battery module can be safely stopped.

1:単電池、2:モジュールフレーム、3:受圧板、4:押しゴマ、5:導電板、6:狭隘部、7:固定板、8:突起部、9:正極端子、10:負極端子、11:電流遮断部。   1: single cell, 2: module frame, 3: pressure receiving plate, 4: push sesame, 5: conductive plate, 6: narrow portion, 7: fixing plate, 8: protrusion, 9: positive electrode terminal, 10: negative electrode terminal, 11: Current interruption part.

Claims (4)

積層された複数個の単電池と、電流遮断部とを含み、前記電流遮断部は、前記電流遮断部に隣接する隣接単電池の膨張力を利用して電路を遮断する電路遮断機構を有し、前記単電池が扁平形である扁平形二次電池モジュールであって、それぞれの前記単電池に並列接続され、かつ、バイパス抵抗部及びスイッチ部を有するバイパス回路と、バイパス制御出力部を有する充放電制御部とが設置され、前記スイッチ部は、前記バイパス制御出力部に接続され、前記充放電制御部は、それぞれの前記単電池の端子電圧を検出する単電池電圧検出部を有し、前記バイパス制御出力部は、前記スイッチ部の開閉を制御し、前記隣接単電池の残存容量を他の前記単電池の残存容量より多く保つように制御することを特徴とする扁平形二次電池モジュール。   A plurality of unit cells stacked and a current interrupting unit, the current interrupting unit having an electric circuit interrupting mechanism that interrupts an electric circuit by using an expansion force of an adjacent unit cell adjacent to the current interrupting unit; A flat secondary battery module in which the unit cell is a flat type, and is connected in parallel to each unit cell, and includes a bypass circuit having a bypass resistor unit and a switch unit, and a charging unit having a bypass control output unit. A discharge control unit is installed, the switch unit is connected to the bypass control output unit, the charge / discharge control unit has a single cell voltage detection unit for detecting a terminal voltage of each single cell, The bypass control output unit controls the opening and closing of the switch unit, and controls the remaining capacity of the adjacent unit cell to be larger than the remaining capacity of the other unit cells. 前記電路遮断機構が、前記隣接単電池の膨張力を利用して機械的に前記電路を破断することを特徴とする請求項1記載の扁平形二次電池モジュール。   The flat secondary battery module according to claim 1, wherein the electric circuit breaking mechanism mechanically breaks the electric circuit using an expansion force of the adjacent unit cell. 前記隣接単電池の残存容量を他の前記単電池の残存容量より3〜9%多く保つように制御することを特徴とする請求項1又は2に記載の扁平形二次電池モジュール。   3. The flat secondary battery module according to claim 1, wherein the remaining capacity of the adjacent unit cells is controlled to be 3 to 9% more than the remaining capacity of the other unit cells. 前記単電池の間に空気流路を設けたことを特徴とする請求項1〜3のいずれか一項に記載の扁平形二次電池モジュール。   The flat secondary battery module according to any one of claims 1 to 3, wherein an air flow path is provided between the unit cells.
JP2009243242A 2009-10-22 2009-10-22 Flat secondary battery module Pending JP2011090873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243242A JP2011090873A (en) 2009-10-22 2009-10-22 Flat secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243242A JP2011090873A (en) 2009-10-22 2009-10-22 Flat secondary battery module

Publications (1)

Publication Number Publication Date
JP2011090873A true JP2011090873A (en) 2011-05-06

Family

ID=44108951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243242A Pending JP2011090873A (en) 2009-10-22 2009-10-22 Flat secondary battery module

Country Status (1)

Country Link
JP (1) JP2011090873A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171834A (en) * 2012-02-22 2013-09-02 Autoliv Development Ab Battery pack for vehicle
CN103650211A (en) * 2011-07-25 2014-03-19 株式会社Lg化学 Battery pack having improved safety
KR101382297B1 (en) * 2012-11-07 2014-04-08 기아자동차(주) Battery module
JP2019040812A (en) * 2017-08-28 2019-03-14 カルソニックカンセイ株式会社 Assembled battery
CN111416167A (en) * 2019-01-08 2020-07-14 株式会社Lg化学 Battery module with dilatometer and battery pack including the same
CN114824595A (en) * 2021-01-22 2022-07-29 北京好风光储能技术有限公司 High-voltage battery
CN115483512A (en) * 2022-10-14 2022-12-16 厦门海辰储能科技股份有限公司 Energy storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354692A (en) * 2001-05-30 2002-12-06 Toyota Motor Corp Control device for secondary battery for use in vehicle
JP2005339932A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Battery pack
JP2007066612A (en) * 2005-08-30 2007-03-15 Toyota Motor Corp Battery structure and battery module
JP2007244142A (en) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd Control device for group of cells and cell power supply system
JP2008153204A (en) * 2006-11-21 2008-07-03 Hitachi Vehicle Energy Ltd Secondary battery module
WO2008149475A1 (en) * 2007-06-08 2008-12-11 Panasonic Corporation Power system and assembled battery controlling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354692A (en) * 2001-05-30 2002-12-06 Toyota Motor Corp Control device for secondary battery for use in vehicle
JP2005339932A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Battery pack
JP2007066612A (en) * 2005-08-30 2007-03-15 Toyota Motor Corp Battery structure and battery module
JP2007244142A (en) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd Control device for group of cells and cell power supply system
JP2008153204A (en) * 2006-11-21 2008-07-03 Hitachi Vehicle Energy Ltd Secondary battery module
WO2008149475A1 (en) * 2007-06-08 2008-12-11 Panasonic Corporation Power system and assembled battery controlling method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650211A (en) * 2011-07-25 2014-03-19 株式会社Lg化学 Battery pack having improved safety
JP2014523627A (en) * 2011-07-25 2014-09-11 エルジー・ケム・リミテッド Battery pack with improved safety
US9455436B2 (en) 2011-07-25 2016-09-27 Lg Chem, Ltd. Battery pack of improved safety
JP2013171834A (en) * 2012-02-22 2013-09-02 Autoliv Development Ab Battery pack for vehicle
KR101382297B1 (en) * 2012-11-07 2014-04-08 기아자동차(주) Battery module
US9269944B2 (en) 2012-11-07 2016-02-23 Hyundai Motor Company Battery module
JP2019040812A (en) * 2017-08-28 2019-03-14 カルソニックカンセイ株式会社 Assembled battery
CN111416167A (en) * 2019-01-08 2020-07-14 株式会社Lg化学 Battery module with dilatometer and battery pack including the same
CN111416167B (en) * 2019-01-08 2021-07-02 株式会社Lg化学 Battery module with dilatometer and battery pack including the same
CN114824595A (en) * 2021-01-22 2022-07-29 北京好风光储能技术有限公司 High-voltage battery
CN114824595B (en) * 2021-01-22 2023-12-01 好风光储能技术(成都)有限公司 High-voltage battery
CN115483512A (en) * 2022-10-14 2022-12-16 厦门海辰储能科技股份有限公司 Energy storage device
CN115483512B (en) * 2022-10-14 2023-09-08 厦门海辰储能科技股份有限公司 Energy storage device

Similar Documents

Publication Publication Date Title
JP6047810B2 (en) Secondary battery, secondary battery module including the same, and secondary battery pack
JP5804540B2 (en) Battery pack with improved safety
KR100881641B1 (en) Middle or Large-sized Battery Pack Having Safety System
JP5976108B2 (en) Battery pack with improved safety
JP4550078B2 (en) Safety switch using heat shrinkable tube and secondary battery including the same
KR100914839B1 (en) Battery Module of Improved Safety and Middle or Large-sized Battery Pack Containing the Same
EP2741391B1 (en) Battery pack with improved safety
JP5952418B2 (en) Battery pack with improved safety
RU2468477C2 (en) Accumulator battery of middle or large size of increased security
JP2011090873A (en) Flat secondary battery module
JP4730705B2 (en) Battery pack
JP6344245B2 (en) Battery module
JP2006269345A (en) Overvoltage detecting method, device, and battery pack
KR20090131573A (en) Current interrupt device when battery is over-charged
JP2015510673A (en) Battery cell assembly with improved safety and battery module including the same
JPWO2019150704A1 (en) Inflow current cutoff method of battery system and battery system, power supply device and power storage device including battery system
KR20130089376A (en) Secondary battery having temperature sensor
JP7371021B2 (en) A battery module with improved safety, a battery pack including the battery module, and a vehicle including the battery pack
EP1987555B1 (en) Safety apparatus using high power battery
JPWO2019150706A1 (en) Short current cutoff method for battery system and battery system, electric vehicle and power storage device equipped with battery system
JP2019145453A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119