JP2011090758A - Non-volatile semiconductor memory device - Google Patents

Non-volatile semiconductor memory device Download PDF

Info

Publication number
JP2011090758A
JP2011090758A JP2010092101A JP2010092101A JP2011090758A JP 2011090758 A JP2011090758 A JP 2011090758A JP 2010092101 A JP2010092101 A JP 2010092101A JP 2010092101 A JP2010092101 A JP 2010092101A JP 2011090758 A JP2011090758 A JP 2011090758A
Authority
JP
Japan
Prior art keywords
electrode
memory cell
conductor
insulator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092101A
Other languages
Japanese (ja)
Other versions
JP5406782B2 (en
Inventor
Yukio Tamai
幸夫 玉井
Nobuyoshi Awaya
信義 粟屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010092101A priority Critical patent/JP5406782B2/en
Publication of JP2011090758A publication Critical patent/JP2011090758A/en
Application granted granted Critical
Publication of JP5406782B2 publication Critical patent/JP5406782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods

Abstract

<P>PROBLEM TO BE SOLVED: To realize a high-integrated non-volatile semiconductor memory device with low power consumption, in which a nonlinear element having sufficient current driving performance and insulation property is provided in a memory cell. <P>SOLUTION: The non-volatile semiconductor memory device has a memory cell array in which a plurality of memory cells C are arranged in matrix in row and column directions, and in each of the memory cells C, a variable resistive element R and a nonlinear element S configured with an insulating body put between a first conductor and a second conductor are connected in series, and the nonlinear element is configured to satisfy ϕ>0.5V<SB>SL</SB>/d+0.1 and ϕ<V<SB>SL</SB>/d+0.1 when an absolute value of a rewriting voltage applied to a selective memory cell is V<SB>SL</SB>[V], and a film thickness of the insulating body is d [nm] and a height of a barrier of the nonlinear element is ϕ [eV]. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、第1電極、第2電極、及び当該両電極間に形成される可変抵抗体を有し、電気抵抗の変化により情報を記憶する不揮発性の可変抵抗素子を備えてなるメモリセルを行方向及び列方向に夫々複数配列してなるメモリセルアレイを有する半導体記憶装置に関し、より詳細には、高集積かつ省電力可能なメモリセルアレイに関する。   The present invention provides a memory cell that includes a first variable electrode, a second variable electrode, and a variable resistance element formed between the two electrodes, and includes a nonvolatile variable resistance element that stores information by a change in electrical resistance. The present invention relates to a semiconductor memory device having a memory cell array that is arranged in a plurality of rows and columns, and more particularly to a highly integrated and power-saving memory cell array.

近年、フラッシュメモリに代わる、高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory) として、FeRAM(Ferroelectric RAM)、MRAM(Magnetic RAM)、PCRAM(Phase Change RAM)、RRAM(Resistance RAM)(登録商標)等の様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及び、プロセス整合性という観点から、激しい開発競争が行われている。これらの不揮発性メモリの中でもRRAMは、高速書き換えが可能であり、かつ、材料に単純な二元系の金属酸化物が使用可能なため作製が容易で既存のCMOSプロセスとの親和性が高いという利点がある。   In recent years, as a next-generation non-volatile random access memory (NVRAM) capable of high-speed operation instead of flash memory, FeRAM (Ferroelectric RAM), MRAM (Magnetic RAM), PCRAM (Phase Change RAM), RRAM (Resistance) Various device structures such as (RAM) (registered trademark) have been proposed, and intense development competition has been conducted from the viewpoint of high performance, high reliability, low cost, and process consistency. Among these non-volatile memories, RRAM can be rewritten at high speed, and since simple binary metal oxides can be used as materials, it is easy to fabricate and has high compatibility with existing CMOS processes. There are advantages.

低コストという点では、単純な2端子型の不揮発性メモリが、メモリセル面積が4Fのクロスポイント構造のメモリセルアレイを実現できる点で有利である。当該2端子型不揮発メモリとしては、RRAM、PCRAM、スピン注入型MRAMなどが挙げられる。 In terms of low cost, a simple two-terminal nonvolatile memory is advantageous in that a memory cell array with a memory cell area of 4F 2 can be realized. Examples of the two-terminal nonvolatile memory include RRAM, PCRAM, and spin injection MRAM.

クロスポイント構造のメモリセルアレイの最も単純な構成は、メモリセル内に選択素子を持たない1R型のメモリセルからなるものである。図14と図15に、1R型メモリセルからなる1R型のメモリセルアレイの例(回路構成図)を、書き換え及び読み出し時の印加電圧と併せて示す。ビット線(B1〜B3)と、ワード線(W1〜W3)と、それらの交点上に可変抵抗素子R(R11〜R33)がマトリクス状に配置されることで、メモリセルアレイが構成されている。選択メモリセルの可変抵抗素子に書き換え及び読み出しを行なう最も簡単な方法は、図14に示されているように、選択メモリセル(例えば、R22)につながるビット線、ワード線間にのみ電圧VSLを印加するものであるが、非選択のメモリセルにも電流(リーク電流)が流れるため、消費電流が増大し、読み出しが難しくなるという問題がある。この問題を低減する駆動方法として、非選択ビット線、非選択ワード線にも電圧を印加するものがあり、例えば1/2バイアス法が挙げられる。 The simplest configuration of a memory cell array having a cross-point structure is a 1R type memory cell having no selection element in the memory cell. 14 and 15 show an example (circuit configuration diagram) of a 1R type memory cell array including 1R type memory cells, together with applied voltages at the time of rewriting and reading. A bit array (B1 to B3), word lines (W1 to W3), and variable resistance elements R (R 11 to R 33 ) are arranged in a matrix on the intersections thereof, thereby forming a memory cell array. Yes. As shown in FIG. 14, the simplest method for rewriting and reading the variable resistance element of the selected memory cell is to apply the voltage V only between the bit line and the word line connected to the selected memory cell (for example, R 22 ). Although SL is applied, current (leakage current) also flows through unselected memory cells, which causes a problem that current consumption increases and reading becomes difficult. As a driving method for reducing this problem, there is a method of applying a voltage to unselected bit lines and unselected word lines, for example, a 1/2 bias method.

1/2バイアス法では、図15に示されるように、選択メモリセル(例えば、R22)の行或いは列の何れか一方のみが同一の半選択メモリセルには選択メモリセルへ印加される書き換え電圧或いは読み出し電圧の半分が印加される。しかしながらこの方式であっても、アレイ規模が大きくなると、この半選択電圧によるディスターブ、半選択メモリセルに流れる電流(リーク電流)による消費電流増大といった問題が生じる可能性がある。半選択メモリセルに流れる総電流はアレイ規模に比例して大きくなり、それに伴い駆動回路の電流駆動能力を高める必要が生じ、結果、駆動回路を大きくする必要が生じる。更に、半選択メモリセルに流れる総電流が大きくなると、ビット線、ワード線での電圧降下が無視できない程度に大きくなってくる。1/2バイアス法では、理想的には、選択メモリセルと半選択メモリセルにしか電流は流れないが、上記電圧降下が生じると、理想的な電位分布がくずれ、非選択メモリセルにも電流が流れるようになってしまう。個々の非選択メモリセルに夫々流れる電流がわずかであっても、アレイ全体では無視できなくなり、消費電流の増大をもたらす。これを抑制するには、アレイブロック規模を小さく限定する必要があるが、面積利用効率の悪化をもたらし結果的に高コストを招くこととなる。 In the 1/2 bias method, as shown in FIG. 15, rewriting in which only one of the rows or columns of the selected memory cell (for example, R 22 ) is applied to the same half-selected memory cell is applied to the selected memory cell. A voltage or half of the read voltage is applied. However, even with this method, when the array size is increased, problems such as disturbance due to the half-selected voltage and increase in current consumption due to current (leakage current) flowing through the half-selected memory cell may occur. The total current flowing through the half-selected memory cells increases in proportion to the array size, and accordingly, it is necessary to increase the current driving capability of the driving circuit, and as a result, the driving circuit needs to be enlarged. Further, when the total current flowing through the half-selected memory cells increases, the voltage drop at the bit line and word line increases to a level that cannot be ignored. In the ½ bias method, ideally, current flows only in the selected memory cell and the half-selected memory cell. However, when the voltage drop occurs, the ideal potential distribution is disrupted, and current flows in the unselected memory cell. Will begin to flow. Even a small amount of current flowing through each unselected memory cell cannot be ignored in the entire array, resulting in an increase in current consumption. In order to suppress this, it is necessary to limit the size of the array block to a small size. However, the area utilization efficiency is deteriorated, resulting in high cost.

上記問題を回避するための構成として、1D1R型のメモリセルアレイが提案されている。これは、非線形素子と可変抵抗素子を直列接続したものをメモリセルとしたものである。非線形素子としては、例えば、特許文献1及び特許文献2のpnダイオード、特許文献3のバリスタ、特許文献4のMIM(Metal-Insulator-Metal)素子、特許文献5のシリコン窒化膜等を用いることができる。   As a configuration for avoiding the above problem, a 1D1R type memory cell array has been proposed. This is a memory cell in which a non-linear element and a variable resistance element are connected in series. As the nonlinear element, for example, a pn diode of Patent Documents 1 and 2, a varistor of Patent Document 3, an MIM (Metal-Insulator-Metal) element of Patent Document 4, a silicon nitride film of Patent Document 5, and the like are used. it can.

特開2006−140489号公報JP 2006-140489 A 特開2007−165873号公報JP 2007-165873 A 特開2006−203098号公報JP 2006-203098 A 米国特許第6753561号明細書US Pat. No. 6,753,561 特開2008−235637号公報JP 2008-235637 A

低ビットコストの不揮発性メモリを実現するためには、メモリセルの大きさを小さくし、アレイ規模を大きくしなくてはならない。メモリセルを小さくするには、可変抵抗素子と非線形素子の両者を小さくする必要があり、高電流密度で電流を流すことのできる非線形素子が要求される。   In order to realize a low bit cost nonvolatile memory, the size of the memory cell must be reduced and the array scale must be increased. In order to reduce the memory cell, it is necessary to reduce both the variable resistance element and the non-linear element, and a non-linear element capable of flowing a current at a high current density is required.

一方、アレイ規模が大きくなると、半選択メモリセルに流れる総電流はアレイ規模に比例して大きくなるため、消費電力が増大する。低消費電力の不揮発性メモリを実現するためには、半選択メモリセルに流れるリーク電流を効率的に抑制できるように、非線形素子は、印加電圧を下げると急峻に電流が遮断される電流電圧特性を有している必要がある。   On the other hand, when the array scale increases, the total current flowing through the half-selected memory cells increases in proportion to the array scale, and thus power consumption increases. In order to realize a low power consumption nonvolatile memory, the non-linear element has a current-voltage characteristic in which the current is sharply cut off when the applied voltage is lowered so that the leakage current flowing through the half-selected memory cell can be efficiently suppressed. It is necessary to have.

上記特許文献1〜5の各例においては、非線形素子の電流駆動能力が不十分であるか、或いは現実的な電流駆動能力を実現するための素子構造が明らかでないとともに、クロスポイント構造のメモリセルアレイで用いる際に必要な遮断特性について明らかとなっていない。   In each of the above-mentioned Patent Documents 1 to 5, the current drive capability of the nonlinear element is insufficient, or the device structure for realizing the realistic current drive capability is not clear, and the memory cell array having a cross-point structure It is not clarified about the necessary shut-off characteristics when using it.

本発明は、上記問題点に鑑みてなされたもので、その目的は、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積の不揮発性半導体記憶装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a low power consumption and highly integrated nonvolatile semiconductor memory device including a memory cell having a nonlinear element having sufficient current drive capability and cutoff characteristics. Is to provide.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と、第2電極と、前記第1電極及び前記第2電極と直接接続する可変抵抗体を備え、前記第1電極と前記第2電極の間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子と、第1導電体と第2導電体の間に絶縁体を挟持してなる非線形素子と、を備え、前記可変抵抗素子と前記非線形素子が前記第2電極と前記第1導電体を接続することにより直列に接続されたメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、行方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、所定の基準電位を、行方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、前記基準電位を基準としてVSL/2[V]を、
列方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL[V]を、列方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL/2[V]を、夫々印加し、前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、前記絶縁体の膜厚をd[nm]とし、y=10×VSL/dとすると、前記絶縁体の伝導帯の底のエネルギーと、前記第1導電体と前記第2導電体の少なくとも何れか一方のフェルミ準位とのエネルギー差[eV]が、a+by+c以下で、かつ、a+by+c以上であり、ここで、a=−3.09×10−3(1−x)、b=1.32×10−1(1−x)、c=4.10×10−2、a=−8.83×10−3+1.70×10−5+5.94×10−4x−2.31×10−3、b=4.94×10−1+3.53×10−2+5.87×10−2x+7.54×10−2、c=7.62×10−1+5.03×10−2+9.24×10−2x+4.97×10−2であることを第1の特徴とする。
In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention includes a first electrode, a second electrode, and a variable resistor that is directly connected to the first electrode and the second electrode. A variable resistance element in which a resistance state transitions between two or more different states by applying a voltage between an electrode and the second electrode, and the first resistance state after the transition is held in a nonvolatile manner; A non-linear element having an insulator sandwiched between a conductor and a second conductor, and the variable resistance element and the non-linear element are connected in series by connecting the second electrode and the first conductor. A non-volatile semiconductor memory device having a memory cell array in which a plurality of connected memory cells are arranged in a matrix in the row and column directions, respectively, and a selected memory to be rewritten from among the memory cells in the memory cell array Cell When rewriting information stored in the selected memory cell, a predetermined reference potential is applied to either the first electrode or the second conductor of the memory cell selected in the row direction. V SL / 2 [V] on the basis of the reference potential is applied to either the first electrode or the second conductor of the memory cell that is not selected in the row direction.
V SL [V] is applied to either the first electrode or the second conductor of the memory cell selected in the column direction with reference to the reference potential, and the memory cell that is not selected in the column direction. V SL / 2 [V] is applied to either the first electrode or the second conductor with the reference potential as a reference, and between the first electrode and the second conductor of the selected memory cell. Of the absolute value V SL of the rewrite voltage applied to, the ratio of the voltage applied to the variable resistance element is x, the film thickness of the insulator is d [nm], and y = 10 × V SL / d Then, the energy difference [eV] between the energy at the bottom of the conduction band of the insulator and the Fermi level of at least one of the first conductor and the second conductor is a 1 y 2 + b 1 y + c 1 or less and a 2 y 2 + b 2 y + c 2 or more, where a 1 = −3.09 × 10 −3 (1-x) 2 , b 1 = 1.32 × 10 −1 (1-x), c 1 = 4.10 × 10 −2 , a 2 = −8.83 × 10 −3 x 3 + 1.70 × 10 −5 x 2 + 5.94 × 10 −4 x−2.31 × 10 −3 , b 2 = 4.94 × 10 −1 x 3 + 3.53 × 10 −2 x 2 + 5.87 × 10 −2 x + 7.54 × 10 −2 , c 2 = 7.62 × 10 −1 x 3 + 5.03 × 10 −2 x 2 +9 The first characteristic is .24 × 10 −2 x + 4.97 × 10 −2 .

上記第1の特徴の不揮発性半導体記憶装置に依れば、書き換え電圧VSL、絶縁体の膜厚d、書き換え電圧VSLのうち可変抵抗素子に分圧される割合x、及び、上記のエネルギー差が上述の関係式を満足することにより、30nm×30nm〜100nm×100nmの大きさの微細な可変抵抗素子に、同程度の大きさの非線形素子を通じて0.1MA/cm〜10MA/cmの書き替え電流を流すことができ、かつ、32×32程度以上の、1Kbit以上のメモリセルアレイの1/2バイアス法による書き換えにおいて、半選択メモリセルに流れる電流の総和を、選択メモリセルに流れる電流と同程度以下にすることができる。これにより、半選択メモリセルに流れるリーク電流が抑えられ、低消費電力で、かつ高集積の不揮発性メモリを実現できる。また、上記非線形素子は電流の向きによらず、同様の非線形特性を持たせることができるため、書き込み、消去に互いに逆向きの電流を用いるMRAM、RRAM等に用いることが可能である。 According to the nonvolatile semiconductor memory device of the first feature, the rewrite voltage V SL , the insulator film thickness d, the ratio x of the rewrite voltage V SL divided by the variable resistance element, and the energy by the difference satisfies the relational expression described above, 30 nm × 30 nm to 100 nm × the size of the fine variable resistive element 100nm, 0.1MA / cm 2 ~10MA / cm 2 through a comparable size of the non-linear element In the rewriting of the memory cell array of 1 Kbit or more of about 32 × 32 or more by the 1/2 bias method, the sum of the currents flowing in the half-selected memory cells flows in the selected memory cells. It can be less than or equal to the current. As a result, a leak current flowing through the half-selected memory cells is suppressed, and a highly integrated nonvolatile memory with low power consumption can be realized. Further, since the nonlinear element can have the same nonlinear characteristic regardless of the direction of current, it can be used for MRAM, RRAM, etc. that use currents in opposite directions for writing and erasing.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と、第2電極と、前記第1電極と直接及び前記第2電極と絶縁体を介して間接に接続する可変抵抗体を備え、前記第1電極と前記第2電極間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子を有するメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、行方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか一方に、所定の基準電位を、行方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか一方に、前記基準電位を基準としてVSL/2[V]を、列方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL[V]を、列方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL/2[V]を、夫々印加し、前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、前記絶縁体の膜厚をd[nm]とし、y=10×VSL/dとすると、前記絶縁体の伝導帯の底のエネルギーと前記第2電極のフェルミ準位とのエネルギー差[eV]、或いは、前記絶縁体の伝導帯の底と前記可変抵抗体の伝導帯の底とのエネルギー差[eV]の少なくとも何れか一方が、a+by+c以下で、かつ、a+by+c以上であり、ここで、a=−3.09×10−3(1−x)、b=1.32×10−1(1−x)、c=4.10×10−2、a=−8.83×10−3+1.70×10−5+5.94×10−4x−2.31×10−3、b=4.94×10−1+3.53×10−2+5.87×10−2x+7.54×10−2、c=7.62×10−1+5.03×10−2+9.24×10−2x+4.97×10−2であることを第2の特徴とする。 In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention includes a first electrode, a second electrode, a variable that is directly connected to the first electrode and indirectly connected to the second electrode via an insulator. A resistor is provided, and by applying a voltage between the first electrode and the second electrode, the resistance state transitions between two or more different states, and one resistance state after the transition is held in a nonvolatile manner A non-volatile semiconductor memory device having a memory cell array in which a plurality of memory cells each having a variable resistance element are arranged in a matrix in the row and column directions, and is a target of rewriting from among the memory cells in the memory cell array. When selecting the selected memory cell and rewriting the information stored in the selected memory cell, either the first electrode or the second electrode of the memory cell selected in the row direction , A predetermined reference potential, either one of the first electrode or the second electrode of said memory cells in unselected in the row direction, the V SL / 2 [V] as the basis of the reference potential, in the column direction V SL [V] is applied to either the first electrode or the second electrode of the selected memory cell with reference to the reference potential, and the first electrode of the memory cell that is not selected in the column direction or Rewriting is performed between the first electrode of the selected memory cell and the second conductor by applying V SL / 2 [V] to the other of the second electrodes with reference to the reference potential. The ratio of the voltage applied to the variable resistance element in the absolute value V SL of the voltage is x, the film thickness of the insulator is d [nm], and y = 10 × V SL / d. The energy of the bottom of the conduction band of the body and the ferrule of the second electrode At least one of the energy difference [eV] from the mi level or the energy difference [eV] between the bottom of the conduction band of the insulator and the bottom of the conduction band of the variable resistor is a 1 y 2 + b 1 y + c 1 or less and a 2 y 2 + b 2 y + c 2 or more, where a 1 = −3.09 × 10 −3 (1-x) 2 , b 1 = 1.32 × 10 − 1 (1-x), c 1 = 4.10 × 10 −2 , a 2 = −8.83 × 10 −3 x 3 + 1.70 × 10 −5 x 2 + 5.94 × 10 −4 x-2 .31 × 10 −3 , b 2 = 4.94 × 10 −1 x 3 + 3.53 × 10 −2 x 2 + 5.87 × 10 −2 x + 7.54 × 10 −2 , c 2 = 7.62 × 10 -1 x 3 + 5.03 second being a × 10 -2 x 2 + 9.24 × 10 -2 x + 4.97 × 10 -2 To.

上記第2の特徴の不揮発性半導体記憶装置は、可変抵抗体と第2電極との間に絶縁体を挿入した素子をメモリセルとして用いるもので、当該素子は、書き換え電圧の印加により抵抗状態が不揮発的に変化し、可変抵抗素子としてのメモリ動作を行うことができると同時に、非線形素子としての機能も発揮するように構成されている。即ち、可変抵抗体と第2電極が夫々、絶縁体を挟持する導電体の役割を有している。上記第1の特徴の不揮発性半導体記憶装置と同様に、書き換え電圧VSL、絶縁体の膜厚d、書き換え電圧VSLのうち可変抵抗素子に分圧される割合x、及び、上記のエネルギー差が上述の関係式を満足することにより、半選択メモリセルに流れるリーク電流が抑えられ、低消費電力で、かつ高集積の不揮発性メモリを実現できる。 The nonvolatile semiconductor memory device according to the second feature uses an element in which an insulator is inserted between a variable resistor and a second electrode as a memory cell, and the element has a resistance state when a rewrite voltage is applied. It is configured to change in a nonvolatile manner so that a memory operation as a variable resistance element can be performed, and at the same time, a function as a non-linear element is exhibited. That is, the variable resistor and the second electrode each serve as a conductor that sandwiches the insulator. Similar to the nonvolatile semiconductor memory device of the first feature, the rewrite voltage V SL , the thickness d of the insulator, the ratio x of the rewrite voltage V SL divided by the variable resistance element, and the energy difference However, if the above relational expression is satisfied, the leakage current flowing through the half-selected memory cells can be suppressed, and a low power consumption and highly integrated nonvolatile memory can be realized.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と、第2電極と、前記第1電極及び前記第2電極と直接接続する可変抵抗体を備え、前記第1電極と前記第2電極の間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子と、第1導電体と第2導電体の間に絶縁体を挟持してなる非線形素子と、を備え、前記可変抵抗素子と前記非線形素子が前記第2電極と前記第1導電体を接続することにより直列に接続されたメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、行方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、所定の基準電位を、行方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、前記基準電位を基準としてVSL×2/3[V]を、列方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL[V]を、列方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL/3[V]を、夫々印加し、前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、前記絶縁体の膜厚をd[nm]とし、y=10×VSL/dとすると、前記絶縁体の伝導帯の底のエネルギーと、前記第1導電体と前記第2導電体の少なくとも何れか一方のフェルミ準位とのエネルギー差[eV]が、a+by+c以下で、かつ、a+by+c以上であり、ここで、a=−3.09×10−3(1−x)、b=1.32×10−1(1−x)、c=4.10×10−2、a=−1.84×10−3+6.81×10−4+4.99×10−4x−1.20×10−3、b=2.26×10−1−7.02×10−2+3.20×10−2x+3.89×10−2、c=5.23×10−1−1.48×10−1+6.40×10−2x+2.54×10−2であることを第3の特徴とする。 In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention includes a first electrode, a second electrode, and a variable resistor that is directly connected to the first electrode and the second electrode. A variable resistance element in which a resistance state transitions between two or more different states by applying a voltage between an electrode and the second electrode, and the first resistance state after the transition is held in a nonvolatile manner; A non-linear element having an insulator sandwiched between a conductor and a second conductor, and the variable resistance element and the non-linear element are connected in series by connecting the second electrode and the first conductor. A non-volatile semiconductor memory device having a memory cell array in which a plurality of connected memory cells are arranged in a matrix in the row and column directions, respectively, and a selected memory to be rewritten from among the memory cells in the memory cell array Cell When rewriting information stored in the selected memory cell, a predetermined reference potential is applied to either the first electrode or the second conductor of the memory cell selected in the row direction. V SL × 2/3 [V] is selected in the column direction on the basis of the reference potential for either the first electrode or the second conductor of the memory cell that is not selected in the row direction. V SL [V] is applied to either the first electrode or the second conductor of the memory cell with reference to the reference potential, and the first electrode of the memory cell that is not selected in the column direction or the second conductor. Rewriting applied between the first electrode and the second conductor of the selected memory cell by applying V SL / 3 [V] to the other of the second conductors with the reference potential as a reference. among the absolute value V SL of the voltage, the variable resistor The ratio of the voltage applied to the child as x, and the thickness of the insulator and d [nm], and y = 10 × V SL / d , and the bottom energy of the conduction band of the insulator, the first The energy difference [eV] between one conductor and at least one of the second conductors is not more than a 1 y 2 + b 1 y + c 1 and not less than a 3 y 2 + b 3 y + c 3 Yes, where a 1 = −3.09 × 10 −3 (1-x) 2 , b 1 = 1.32 × 10 −1 (1-x), c 1 = 4.10 × 10 −2 , a 3 = −1.84 × 10 −3 x 3 + 6.81 × 10 −4 x 2 + 4.99 × 10 −4 x−1.20 × 10 −3 , b 3 = 2.26 × 10 −1 x 3 -7.02 × 10 -2 x 2 + 3.20 × 10 -2 x + 3.89 × 10 -2, c 3 = 5.23 × 10 -1 x 3 A third feature is that −1.48 × 10 −1 x 2 + 6.40 × 10 −2 x + 2.54 × 10 −2 .

上記第3の特徴の不揮発性半導体記憶装置に依れば、書き換え電圧VSL、絶縁体の膜厚d、書き換え電圧VSLのうち可変抵抗素子に分圧される割合x、及び、上記のエネルギー差が上述の関係式を満足することにより、30nm×30nm〜100nm×100nmの大きさの微細な可変抵抗素子に、同程度の大きさの非線形素子を通じて0.1MA/cm〜10MA/cmの書き替え電流を流すことができ、かつ、32×32程度以上の、1Kbit以上のメモリセルアレイの1/3バイアス法による書き換えにおいて、半選択メモリセルに流れる電流の総和を、選択メモリセルに流れる電流と同程度以下にすることができる。これにより、半選択メモリセルに流れるリーク電流が抑えられ、低消費電力で、かつ高集積の不揮発性メモリを実現できる。また、上記非線形素子は電流の向きによらず、同様の非線形特性を持たせることができるため、書き込み、消去に互いに逆向きの電流を用いるMRAM、RRAM等に用いることが可能である。 According to the nonvolatile semiconductor memory device of the third feature, the rewrite voltage V SL , the insulator film thickness d, the ratio x of the rewrite voltage V SL divided by the variable resistance element, and the energy by the difference satisfies the relational expression described above, 30 nm × 30 nm to 100 nm × the size of the fine variable resistive element 100nm, 0.1MA / cm 2 ~10MA / cm 2 through a comparable size of the non-linear element In the rewrite of the memory cell array of 1 Kbit or more of about 32 × 32 or more by the 1/3 bias method, the total current flowing in the half-selected memory cell flows to the selected memory cell. It can be less than or equal to the current. As a result, a leak current flowing through the half-selected memory cells is suppressed, and a highly integrated nonvolatile memory with low power consumption can be realized. Further, since the nonlinear element can have the same nonlinear characteristic regardless of the direction of current, it can be used for MRAM, RRAM, etc. that use currents in opposite directions for writing and erasing.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と、第2電極と、前記第1電極と直接及び前記第2電極と絶縁体を介して間接に接続する可変抵抗体を備え、前記第1電極と前記第2電極間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子を有するメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、行方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか一方に、所定の基準電位を、行方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか一方に、前記基準電位を基準としてVSL×2/3[V]を、列方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL[V]を、列方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL/3[V]を、夫々印加し、前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、前記絶縁体の膜厚をd[nm]とし、y=10×VSL/dとすると、前記絶縁体の伝導帯の底のエネルギーと前記第2電極のフェルミ準位とのエネルギー差[eV]、或いは、前記絶縁体の伝導帯の底と前記可変抵抗体の伝導帯の底とのエネルギー差[eV]の少なくとも何れか一方が、a+by+c以下で、かつ、a+by+c以上であり、ここで、a=−3.09×10−3(1−x)、b=1.32×10−1(1−x)、c=4.10×10−2、a=−1.84×10−3+6.81×10−4+4.99×10−4x−1.20×10−3、b=2.26×10−1−7.02×10−2+3.20×10−2x+3.89×10−2、c=5.23×10−1−1.48×10−1+6.40×10−2x+2.54×10−2であることを第4の特徴とする。 In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention includes a first electrode, a second electrode, a variable that is directly connected to the first electrode and indirectly connected to the second electrode via an insulator. A resistor is provided, and by applying a voltage between the first electrode and the second electrode, the resistance state transitions between two or more different states, and one resistance state after the transition is held in a nonvolatile manner A non-volatile semiconductor memory device having a memory cell array in which a plurality of memory cells each having a variable resistance element are arranged in a matrix in the row and column directions, and is a target of rewriting from among the memory cells in the memory cell array. When selecting the selected memory cell and rewriting the information stored in the selected memory cell, either the first electrode or the second electrode of the memory cell selected in the row direction , A predetermined reference potential, either one of the first electrode or the second electrode of said memory cells in unselected in the row direction, the V SL × 2/3 [V ] as the basis of the reference potential, the column V SL [V] is applied to either the first electrode or the second electrode of the memory cell selected in the direction with reference to the reference potential, and the first of the memory cells not selected in the column direction. V SL / 3 [V] is applied to either the electrode or the second electrode with reference to the reference potential, and is applied between the first electrode and the second conductor of the selected memory cell. In the absolute value V SL of the rewrite voltage, x is the ratio of the voltage applied to the variable resistance element, the film thickness of the insulator is d [nm], and y = 10 × V SL / d. The energy at the bottom of the conduction band of the insulator and the flow of the second electrode. The energy difference between the Rumi level [eV], or at least one of the energy difference [eV] between the bottom of the bottom and the conduction band of the variable resistor of the conduction band of the insulator, a 1 y 2 + b 1 y + c 1 or less and a 3 y 2 + b 3 y + c 3 or more, where a 1 = −3.09 × 10 −3 (1-x) 2 , b 1 = 1.32 × 10 − 1 (1-x), c 1 = 4.10 × 10 −2 , a 3 = −1.84 × 10 −3 x 3 + 6.81 × 10 −4 x 2 + 4.99 × 10 −4 x−1 20 × 10 −3 , b 3 = 2.26 × 10 −1 x 3 −7.02 × 10 −2 x 2 + 3.20 × 10 −2 x + 3.89 × 10 −2 , c 3 = 5.23 × 10 -1 x 3 -1.48 × 10 -1 x 2 + 6.40 × 10 -2 x + 2.54 × 10 that is -2 fourth And butterflies.

上記第4の特徴の不揮発性半導体記憶装置は、可変抵抗体と第2電極との間に絶縁体を挿入した素子をメモリセルとして用いるもので、当該素子は、書き換え電圧の印加により抵抗状態が不揮発的に変化し、可変抵抗素子としてのメモリ動作を行うことができると同時に、非線形素子としての機能も発揮するように構成されている。即ち、可変抵抗体と第2電極が夫々、絶縁体を挟持する導電体の役割を有している。上記第3の特徴の不揮発性半導体記憶装置と同様に、書き換え電圧VSL、絶縁体の膜厚d、書き換え電圧VSLのうち可変抵抗素子に分圧される割合x、及び、上記のエネルギー差が上述の関係式を満足することにより、半選択メモリセルに流れるリーク電流が抑えられ、低消費電力で、かつ高集積の不揮発性メモリを実現できる。 The nonvolatile semiconductor memory device according to the fourth feature uses an element in which an insulator is inserted between a variable resistor and a second electrode as a memory cell, and the element has a resistance state when a rewrite voltage is applied. It is configured to change in a nonvolatile manner so that a memory operation as a variable resistance element can be performed, and at the same time, a function as a non-linear element is exhibited. That is, the variable resistor and the second electrode each serve as a conductor that sandwiches the insulator. Similar to the nonvolatile semiconductor memory device of the third feature, the rewrite voltage V SL , the insulator film thickness d, the ratio x of the rewrite voltage V SL divided by the variable resistance element, and the energy difference However, if the above relational expression is satisfied, the leakage current flowing through the half-selected memory cells can be suppressed, and a low power consumption and highly integrated nonvolatile memory can be realized.

本発明に係る不揮発性半導体記憶装置は、更に、上記第1乃至第4の何れかの特徴に加えて、(1−x)VSL/dが1以下であることを第5の特徴とする。 The nonvolatile semiconductor memory device according to the present invention is further characterized in that (1-x) V SL / d is 1 or less in addition to any of the first to fourth characteristics. .

上記第5の特徴の不揮発性半導体記憶装置に依れば、非線形素子に印加される電界が10MV/cm程度以下に抑えられるため、信頼性の高い動作が可能となる。   According to the nonvolatile semiconductor memory device having the fifth feature, the electric field applied to the nonlinear element can be suppressed to about 10 MV / cm or less, so that highly reliable operation is possible.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と、第2電極と、前記第1電極及び前記第2電極と直接接続する可変抵抗体を備え、前記第1電極と前記第2電極の間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子と、第1導電体と第2導電体の間に絶縁体を挟持してなる非線形素子と、が前記第2電極と前記第1導電体を接続することにより直列に接続されたメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値をVSL[V]、前記絶縁体の膜厚をd[nm]とすると、前記絶縁体の伝導帯の底のエネルギーと、前記第1導電体と前記第2導電体の少なくとも何れか一方のフェルミ準位とのエネルギー差[eV]が、(0.5VSL/d+0.1)以上で、かつ、(VSL/d+0.1)以下であることを第6の特徴とする。 In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention includes a first electrode, a second electrode, and a variable resistor that is directly connected to the first electrode and the second electrode. A variable resistance element in which a resistance state transitions between two or more different states by applying a voltage between an electrode and the second electrode, and the first resistance state after the transition is held in a nonvolatile manner; A non-linear element having an insulator sandwiched between a conductor and a second conductor, and a plurality of memory cells connected in series by connecting the second electrode and the first conductor, respectively, A nonvolatile semiconductor memory device having a memory cell array arranged in a matrix in a column direction, wherein a selected memory cell to be rewritten is selected from the memory cells in the memory cell array and stored in the selected memory cell Has been When rewriting of information, V SL [V] the absolute value of the writing voltage applied between said first electrode and the second conductor of the selected memory cell, the thickness of the insulator d [nm ], The energy difference [eV] between the bottom energy of the conduction band of the insulator and the Fermi level of at least one of the first conductor and the second conductor is (0.5 V SL /D+0.1) and (V SL /d+0.1) or less is a sixth feature.

上記第6の特徴の不揮発性半導体記憶装置に依れば、書き換え電圧VSL、絶縁体の膜厚d、及び、上記のエネルギー差が上述の関係式を満足することにより、30nm×30nm〜100nm×100nmの大きさの微細な可変抵抗素子に、同程度の大きさの非線形素子を通じて0.1MA/cm〜10MA/cmの書き替え電流を流すことができ、かつ、32×32程度以上の、1Kbit以上のメモリセルアレイにおいて、半選択メモリセルに流れる電流の総和を、選択メモリセルに流れる電流と同程度以下にすることができる。これにより、半選択メモリセルに流れるリーク電流が抑えられ、低消費電力で、かつ高集積の不揮発性メモリを実現できる。また、上記非線形素子は電流の向きによらず、同様の非線形特性を持たせることができるため、書き込み、消去に互いに逆向きの電流を用いるMRAM、RRAM等に用いることが可能である。 According to the nonvolatile semiconductor memory device of the sixth feature, the rewrite voltage V SL , the film thickness d of the insulator, and the energy difference satisfy the above relational expression, so that 30 nm × 30 nm to 100 nm A rewrite current of 0.1 MA / cm 2 to 10 MA / cm 2 can be passed through a fine variable resistance element having a size of 100 nm through a non-linear element of the same size, and about 32 × 32 or more In the memory cell array of 1 Kbit or more, the sum of the currents flowing through the half-selected memory cells can be made equal to or less than the current flowing through the selected memory cells. As a result, a leak current flowing through the half-selected memory cells is suppressed, and a highly integrated nonvolatile memory with low power consumption can be realized. Further, since the nonlinear element can have the same nonlinear characteristic regardless of the direction of current, it can be used for MRAM, RRAM, etc. that use currents in opposite directions for writing and erasing.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と、第2電極と、前記第1電極と直接及び前記第2電極と絶縁体を介して間接に接続する可変抵抗体を備え、前記第1電極と前記第2電極間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子を有するメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、前記選択メモリセルの前記第1電極と前記第2電極間に印加される書き換え電圧の絶対値をVSL[V]、前記絶縁体の膜厚をd[nm]とすると、前記絶縁体の伝導帯の底のエネルギーと前記第2電極のフェルミ準位とのエネルギー差[eV]、或いは、前記絶縁体の伝導帯の底と前記可変抵抗体の伝導体の底とのエネルギー差[eV]の少なくとも何れか一方が、(0.5VSL/d+0.1)以上で、かつ、(VSL/d+0.1)以下であることを第7の特徴とする。 In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention includes a first electrode, a second electrode, a variable that is directly connected to the first electrode and indirectly connected to the second electrode via an insulator. A resistor is provided, and by applying a voltage between the first electrode and the second electrode, the resistance state transitions between two or more different states, and one resistance state after the transition is held in a nonvolatile manner A non-volatile semiconductor memory device having a memory cell array in which a plurality of memory cells each having a variable resistance element are arranged in a matrix in the row and column directions, and is a target of rewriting from among the memory cells in the memory cell array. When a selected memory cell is selected and information stored in the selected memory cell is rewritten, the rewrite voltage applied between the first electrode and the second electrode of the selected memory cell is completely interrupted. The value V SL [V], wherein the thickness of the insulator and d [nm], the energy difference between the Fermi level of energy and the second electrode at the bottom of the conduction band of the insulator [eV], or , At least one of the energy difference [eV] between the bottom of the conduction band of the insulator and the bottom of the conductor of the variable resistor is (0.5 V SL /d+0.1) or more and (V SL / d + 0.1) or less is a seventh feature.

上記第7の特徴の不揮発性半導体記憶装置は、可変抵抗体と第2電極との間に絶縁体を挿入した素子をメモリセルとして用いるもので、当該素子は、書き換え電圧の印加により抵抗状態が不揮発的に変化し、可変抵抗素子としてのメモリ動作を行うことができると同時に、非線形素子としての機能も発揮するように構成されている。即ち、可変抵抗体と第2電極が夫々、絶縁体を挟持する導電体の役割を有している。第1の特徴の不揮発性半導体記憶装置と同様に、書き換え電圧VSL、絶縁体の膜厚d、及び、上記のエネルギー差が上述の関係式を満足することにより、半選択メモリセルに流れるリーク電流が抑えられ、低消費電力で、かつ高集積の不揮発性メモリを実現できる。 The nonvolatile semiconductor memory device according to the seventh feature uses an element in which an insulator is inserted between a variable resistor and a second electrode as a memory cell, and the element has a resistance state when a rewrite voltage is applied. It is configured to change in a nonvolatile manner so that a memory operation as a variable resistance element can be performed, and at the same time, a function as a non-linear element is exhibited. That is, the variable resistor and the second electrode each serve as a conductor that sandwiches the insulator. Similar to the nonvolatile semiconductor memory device having the first feature, the rewrite voltage V SL , the film thickness d of the insulator, and the leakage of the current flowing in the half-selected memory cell when the energy difference satisfies the above relational expression. A highly integrated nonvolatile memory with low current consumption and low power consumption can be realized.

更に、本発明に係る不揮発性半導体記憶装置は、上記第6又は第7の何れかの特徴に加えて、VSL/dが1以下であることを第8の特徴とする。 Furthermore, the nonvolatile semiconductor memory device according to the present invention has an eighth characteristic that V SL / d is 1 or less in addition to any of the sixth or seventh characteristics.

上記第8の特徴の不揮発性半導体記憶装置に依れば、非線形素子に印加される電界が10MV/cm程度以下に抑えられ、信頼性の高い動作が可能となる。   According to the nonvolatile semiconductor memory device having the eighth feature, the electric field applied to the nonlinear element is suppressed to about 10 MV / cm or less, and a highly reliable operation is possible.

更に、本発明に係る不揮発性半導体記憶装置は、上記第1乃至第8の何れかの特徴に加えて、前記絶縁体の膜厚dが5nm以下であることを第9の特徴とする。   Furthermore, the nonvolatile semiconductor memory device according to the present invention has, in addition to any of the first to eighth features, a ninth feature that the film thickness d of the insulator is 5 nm or less.

上記第9の特徴の不揮発性半導体記憶装置に依れば、非線形素子のオン電圧が5V程度以下の低電圧となるので、メモリセルアレイを低電圧で駆動でき、さらに低消費電力とできる。   According to the nonvolatile semiconductor memory device of the ninth feature, the on-voltage of the nonlinear element becomes a low voltage of about 5 V or less, so that the memory cell array can be driven at a low voltage and the power consumption can be further reduced.

更に、本発明に係る不揮発性半導体記憶装置は、上記第1乃至第9の何れかの特徴に加えて、前記第1導電体と前記第2導電体が同一の材料で構成されることを第10の特徴とする。   Furthermore, in addition to any of the first to ninth features, the nonvolatile semiconductor memory device according to the present invention is characterized in that the first conductor and the second conductor are made of the same material. Ten features.

上記第10の特徴の不揮発性半導体記憶装置に依れば、可変抵抗素子に互いに逆向きの電流を流す場合にも、夫々の電流の向きに対して、非線形素子のオン電圧を同じにでき、駆動を容易にできる。   According to the nonvolatile semiconductor memory device of the tenth feature, even when currents flowing in opposite directions are passed through the variable resistance element, the on-voltage of the nonlinear element can be made the same for each current direction, Driving can be facilitated.

更に、本発明に係る不揮発性半導体記憶装置は、上記第1乃至第10の何れかの特徴に加えて、前記絶縁体のバンドギャップが5eV以上であることを第11の特徴とする。   Furthermore, in addition to any one of the first to tenth features, the nonvolatile semiconductor memory device according to the present invention has an eleventh feature that the band gap of the insulator is 5 eV or more.

上記第11の特徴の不揮発性半導体記憶装置に依れば、非線形素子の耐圧を高くすることができ、信頼性の高い動作が可能となる。   According to the nonvolatile semiconductor memory device having the eleventh feature, the breakdown voltage of the nonlinear element can be increased, and a highly reliable operation is possible.

従って、本発明に依れば、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積の不揮発性半導体記憶装置を実現することができる。   Therefore, according to the present invention, it is possible to realize a low power consumption and highly integrated nonvolatile semiconductor memory device including a memory cell having a non-linear element having sufficient current driving capability and cutoff characteristics.

本発明に係る不揮発性半導体装置(本発明装置)の概略の構成ブロック図。1 is a schematic configuration block diagram of a nonvolatile semiconductor device (device of the present invention) according to the present invention. 本発明装置のメモリセルアレイの回路構成と1/2バイアス法におけるメモリ動作時の印加電圧を示す図。The figure which shows the circuit structure of the memory cell array of this invention apparatus, and the applied voltage at the time of memory operation | movement in a 1/2 bias method. MIM素子の電圧印加時の電子状態を模式的に示す図。The figure which shows typically the electronic state at the time of the voltage application of a MIM element. 本発明装置のメモリセルアレイの構成例。4 shows a configuration example of a memory cell array of the device of the present invention. 本発明装置のメモリセルアレイの他の構成例。6 shows another configuration example of the memory cell array of the device of the present invention. 本発明装置のメモリセルアレイの他の構成例。6 shows another configuration example of the memory cell array of the device of the present invention. 本発明装置のメモリセルアレイの他の構成例。6 shows another configuration example of the memory cell array of the device of the present invention. 本発明装置のメモリセルアレイの他の構成例。6 shows another configuration example of the memory cell array of the device of the present invention. 本発明装置のメモリセルアレイの他の構成例。6 shows another configuration example of the memory cell array of the device of the present invention. 非線形素子の電流密度の計算結果を示す図。The figure which shows the calculation result of the current density of a nonlinear element. 必要な電流密度を得るための非線形素子に印加される電界Eと障壁高さφの関係を示す図。The figure which shows the relationship between the electric field E applied to the nonlinear element for obtaining a required current density, and barrier height (phi). 必要なカットオフ比を得るための非線形素子に印加される電界Eと障壁高さφの関係を示す図。The figure which shows the relationship between the electric field E applied to the nonlinear element for obtaining a required cut-off ratio, and barrier height (phi). 本発明装置で用いる非線形素子が満足すべき非線形素子に印加される電界Eと障壁高さφの関係を示す図。The figure which shows the relationship between the electric field E applied to the nonlinear element which should satisfy the nonlinear element used by this invention apparatus, and barrier height (phi). 従来の1R型のメモリセルアレイの回路構成とメモリ動作時の印加電圧を示す図。The figure which shows the circuit structure of the conventional 1R type memory cell array, and the applied voltage at the time of memory operation. 従来の1R型のメモリセルアレイの回路構成とメモリ動作時の印加電圧を示す図。The figure which shows the circuit structure of the conventional 1R type memory cell array, and the applied voltage at the time of memory operation. 第2実施形態において、本発明装置で用いる非線形素子が満足すべきVSL/dと障壁高さφの関係式を二次曲線でフィッティングした際の係数のx依存性を示す図。The figure which shows x dependence of the coefficient at the time of fitting the relational expression of VSL / d and barrier height (phi) which should be satisfied with the nonlinear element used by the apparatus of this invention with a quadratic curve in 2nd Embodiment. 第2実施形態において、本発明装置で用いる非線形素子が満足すべきVSL/dと障壁高さφの関係式をx=0.1の場合に例示する図。The figure which illustrates the relational expression of VSL / d which should be satisfied with the nonlinear element used with the apparatus of the present invention and the barrier height φ in the second embodiment when x = 0.1. 本発明装置のメモリセルアレイの回路構成と1/3バイアス法におけるメモリ動作時の印加電圧を示す図。The figure which shows the circuit structure of the memory cell array of this invention apparatus, and the applied voltage at the time of memory operation | movement in the 1/3 bias method. 第3実施形態において、本発明装置で用いる非線形素子が満足すべきVSL/dと障壁高さφの関係式を二次曲線でフィッティングした際の係数のx依存性を示す図。The figure which shows x dependence of the coefficient at the time of fitting the relational expression of VSL / d and barrier height (phi) which should be satisfied with the nonlinear element used by the apparatus of this invention with a quadratic curve in 3rd Embodiment. 第3実施形態において、本発明装置で用いる非線形素子が満足すべきVSL/dと障壁高さφの関係をx=0.1の場合に例示する図。In 3rd Embodiment, the figure which illustrates the relationship between VSL / d which should be satisfied with the nonlinear element used by this invention apparatus, and barrier height (phi) in the case of x = 0.1.

以下において、本発明の一実施形態に係る不揮発性半導体記憶装置(以下、適宜「本発明装置100」と称す)につき、図面を参照して説明する。尚、以降に示す図面では、適宜、要部が強調して示されており、図面上の寸法比と実際の寸法比とは必ずしも一致するものではない。   Hereinafter, a nonvolatile semiconductor memory device according to an embodiment of the present invention (hereinafter, appropriately referred to as “present invention device 100”) will be described with reference to the drawings. Note that, in the drawings shown below, the main parts are appropriately emphasized, and the dimensional ratio on the drawings does not necessarily match the actual dimensional ratio.

本発明装置100の概略の構成ブロック図を図1に示す。図1に示すように、本発明装置100は、可変抵抗素子及び非線形素子を備えたメモリセルを行方向及び列方向に夫々複数マトリクス状に配列してなるメモリセルアレイ101の周辺に、ビット線デコーダ102、ワード線デコーダ103、読み出し回路104、電圧スイッチ回路105、電圧発生回路106、及び、制御回路107を備えて構成される。   A schematic configuration block diagram of the device 100 of the present invention is shown in FIG. As shown in FIG. 1, a device 100 according to the present invention includes a bit line decoder around a memory cell array 101 in which a plurality of memory cells each having a variable resistance element and a nonlinear element are arranged in a matrix in the row direction and the column direction. 102, a word line decoder 103, a read circuit 104, a voltage switch circuit 105, a voltage generation circuit 106, and a control circuit 107.

メモリセルアレイ101は、図2の回路図に示されるように、列方向に延伸し、メモリセルを行方向に選択するm本のビット線(列選択線)B1〜Bmと、行方向に延伸し、メモリセルを列方向に選択するn本のワード線(行選択線)W1〜Wnの各交点上に配置されたm×n個のメモリセルからなるクロスポイント構造のメモリセルアレイである。より具体的には、メモリセルアレイ101は、例えば、同一列のメモリセルの可変抵抗素子の第1電極同士を接続して列方向に延伸させ各ビット線B1〜Bmとし、同一行のメモリセルの非線形素子の第2導電体同士を接続して行方向に延伸させ各ワード線W1〜Wnとする。また、メモリセルアレイ101は、複数のサブアレイの集合で構成し、アドレスの一部をサブアレイの選択に用いる構成としてもよい。当該m本のビット線及び当該n本のワード線の交点上には、可変抵抗素子R(R11〜Rmn)と非線形素子S(S11〜Smn)を直列に接続したメモリセルC(C11〜Cmn)が、m×nのマトリクス状に配置されることで、メモリセルアレイ101が構成されている。 As shown in the circuit diagram of FIG. 2, the memory cell array 101 extends in the column direction and m bit lines (column selection lines) B1 to Bm for selecting memory cells in the row direction, and extends in the row direction. This is a memory cell array having a cross-point structure composed of m × n memory cells arranged at intersections of n word lines (row selection lines) W1 to Wn for selecting memory cells in the column direction. More specifically, in the memory cell array 101, for example, the first electrodes of the variable resistance elements of the memory cells in the same column are connected and extended in the column direction to form the bit lines B1 to Bm. The second conductors of the non-linear elements are connected to each other and extended in the row direction to form word lines W1 to Wn. The memory cell array 101 may be configured by a set of a plurality of subarrays, and a part of the address may be used for selecting the subarray. On the intersection of the m bit lines and the n word lines, a memory cell C (a variable resistance element R (R 11 to R mn ) and a non-linear element S (S 11 to S mn ) are connected in series. C 11 to C mn ) are arranged in an m × n matrix, so that the memory cell array 101 is configured.

可変抵抗素子R(R11〜Rmn)は、第1電極と第2電極の間に可変抵抗体を挟持してなる二端子型の素子であり、当該第1電極と第2電極を両端子として両端子間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の抵抗状態が不揮発的に保持されることで、当該二以上の抵抗状態を情報の記憶に用いることができる。 The variable resistance element R (R 11 to R mn ) is a two-terminal element in which a variable resistor is sandwiched between a first electrode and a second electrode, and the first electrode and the second electrode are connected to both terminals. By applying a voltage between the two terminals, the resistance state transitions between two or more different states, and the resistance state after the transition is held in a nonvolatile manner, so that the two or more resistance states are stored as information. Can be used.

また、非線形素子S(S11〜Smn)は、第1導電体と第2導電体の間に絶縁体を挟持してなる二端子型のMIM素子であり、可変抵抗素子Rの第2電極と非線形素子Sの第1導電体を接続することにより、可変抵抗素子Rと非線形素子Sとを直列に接続することでメモリセルが構成される。 The nonlinear element S (S 11 to S mn ) is a two-terminal MIM element in which an insulator is sandwiched between a first conductor and a second conductor, and the second electrode of the variable resistance element R. By connecting the first conductor of the non-linear element S to the variable resistance element R and the non-linear element S in series, a memory cell is configured.

非線形素子に電圧VSLが印加された場合の非線形素子の電子状態を模式的に図3に示す。電圧VSLが印加されることにより、第1導電体から、絶縁体中の三角ポテンシャル型のトンネル障壁を超えて、第2導電体へ電子がトンネルし、電流が流れる。ここで、非線形素子は、障壁高さ(導電体のフェルミ準位Eと絶縁体の伝導帯の底とのエネルギー差)φ、印加電圧VSL、絶縁体の膜厚dとの関係が、下記の数1及び数2を満足するように構成されている。 FIG. 3 schematically shows the electronic state of the nonlinear element when the voltage V SL is applied to the nonlinear element. By applying the voltage VSL , electrons tunnel from the first conductor to the second conductor over the triangular potential type tunnel barrier in the insulator, and current flows. Here, the non-linear element, (energy difference between the bottom of the conduction band of the conductor Fermi level E F and the insulator) barrier height phi, the applied voltage V SL, the relationship between the thickness d of the insulator, It is comprised so that the following number 1 and number 2 may be satisfied.

[数1]
φ≧0.5VSL/d+0.1
[数2]
φ≦VSL/d+0.1
[Equation 1]
φ ≧ 0.5V SL /d+0.1
[Equation 2]
φ ≦ V SL /d+0.1

これにより、理由については後述するが、0.1MA/cm〜10MA/cmの書き替え電流を流すことが可能であり、かつ、アレイサイズが32×32程度以上の、つまり、メモリ容量が1Kbit以上のメモリセルアレイにおいて、半選択メモリセルに流れるリーク電流が選択メモリセルに流れる電流と同程度以下に抑えられ、低消費電力で、かつ高集積の本発明装置100が実現される。 As a result, although the reason will be described later, a rewrite current of 0.1 MA / cm 2 to 10 MA / cm 2 can be passed, and the array size is about 32 × 32 or more, that is, the memory capacity is small. In a memory cell array of 1 Kbit or more, the leakage current flowing through the half-selected memory cell is suppressed to the same level or less as the current flowing through the selected memory cell, and the inventive device 100 with low power consumption and high integration is realized.

ビット線デコーダ102とワード線デコーダ103は、メモリセルアレイ101内のメモリセルを行単位、列単位、または、メモリセル単位で選択するメモリセル選択回路として機能し、アドレス線109から制御回路107に入力されたアドレス信号に対応するメモリセルを、読み出し対象或いは書き換え対象のメモリセルとして選択する。即ち、ワード線デコーダ103は、アドレス線109に入力されたアドレス信号に対応するメモリセルアレイ101のワード線を選択し、ビット線デコーダ102は、アドレス線109に入力されたアドレス信号に対応するメモリセルアレイ101のビット線を選択する。   The bit line decoder 102 and the word line decoder 103 function as a memory cell selection circuit that selects memory cells in the memory cell array 101 in units of rows, columns, or memory cells, and are input from the address lines 109 to the control circuit 107. The memory cell corresponding to the address signal thus selected is selected as a memory cell to be read or rewritten. That is, the word line decoder 103 selects the word line of the memory cell array 101 corresponding to the address signal input to the address line 109, and the bit line decoder 102 selects the memory cell array corresponding to the address signal input to the address line 109. 101 bit lines are selected.

読み出し回路104は、選択メモリセルに接続するワード線と各ビット線間に流れる読み出し電流のうち、ビット線デコーダ102で選択された選択ビット線を流れる読み出し電流を電圧変換して、読み出し対象のメモリセルの記憶データの状態を判定し、その結果を制御回路107に転送し、データ線110へ出力する。   The read circuit 104 converts the read current flowing through the selected bit line selected by the bit line decoder 102 out of the read current flowing between the word line connected to the selected memory cell and each bit line, and reads the memory to be read. The state of data stored in the cell is determined, and the result is transferred to the control circuit 107 and output to the data line 110.

電圧スイッチ回路105は、電圧発生回路106によって生成される、メモリセルアレイ101の読み出し、書き込み、消去の各メモリ動作時にワード線及びビット線に印加するための電圧の夫々を、各メモリ動作に応じて切り替え、メモリセルアレイ101に供給する電圧供給回路として機能する。   The voltage switch circuit 105 generates a voltage generated by the voltage generation circuit 106 to be applied to the word line and the bit line during each memory operation of reading, writing, and erasing of the memory cell array 101 according to each memory operation. It functions as a voltage supply circuit for switching and supplying to the memory cell array 101.

制御回路107は、メモリセルアレイ101の書き換え動作(書き込み動作と消去動作)と読み出し動作における各制御を行う。また、制御回路107は、アドレス線109から入力されたアドレス信号、データ線110から入力されたデータ入力(書き込み時)、制御信号線108から入力された制御入力信号に基づいて、ワード線デコーダ103、ビット線デコーダ102、電圧スイッチ回路105、メモリセルアレイ101の読み出し、書き込み、及び、消去動作を制御する。図1に示す例では、制御回路107は、図示しないが一般的なアドレスバッファ回路、データ入出力バッファ回路、制御入力バッファ回路としての機能を具備している。   The control circuit 107 performs each control in the rewrite operation (write operation and erase operation) and read operation of the memory cell array 101. In addition, the control circuit 107 is based on the address signal input from the address line 109, the data input input from the data line 110 (during writing), and the control input signal input from the control signal line 108. The read, write, and erase operations of the bit line decoder 102, voltage switch circuit 105, and memory cell array 101 are controlled. In the example shown in FIG. 1, the control circuit 107 has functions as a general address buffer circuit, data input / output buffer circuit, and control input buffer circuit (not shown).

尚、ビット線デコーダ102、ワード線デコーダ103、読み出し回路104、電圧スイッチ回路105、電圧発生回路106、及び、制御回路107の各回路の具体的な構成については、種々の公知の構成が利用可能であり、本発明の本旨ではないので説明を省略する。   Various known configurations can be used as specific configurations of the bit line decoder 102, the word line decoder 103, the read circuit 104, the voltage switch circuit 105, the voltage generation circuit 106, and the control circuit 107. Since it is not the gist of the present invention, the description is omitted.

本発明装置のメモリセルアレイの構成例を図4に示す。図4に示されるメモリセルアレイ101aは、ワード線20とビット線21の各交点上に、第1電極10、可変抵抗体11、第2電極12からなる可変抵抗素子と、第1導電体13、絶縁体14、第2導電体15からなる非線形素子が順に積層された構成となっている。可変抵抗素子には、抵抗変化型メモリ(RRAM)のほか、スピン注入MRAM、相変化型メモリ(PCRAM)、固体電解質メモリ等の二端子型不揮発メモリを用いることができる。   A configuration example of the memory cell array of the device of the present invention is shown in FIG. The memory cell array 101a shown in FIG. 4 includes a variable resistance element including a first electrode 10, a variable resistor 11, a second electrode 12, and a first conductor 13, on each intersection of the word line 20 and the bit line 21. The nonlinear element which consists of the insulator 14 and the 2nd conductor 15 becomes a structure laminated | stacked in order. As the variable resistance element, in addition to a resistance change memory (RRAM), a two-terminal nonvolatile memory such as a spin injection MRAM, a phase change memory (PCRAM), a solid electrolyte memory, or the like can be used.

本発明装置のメモリセルアレイの他の構成例を図5に示す。図5に示されるメモリセルアレイ101bは、図4の構成において非線形素子の第1導電体13と可変抵抗素子の第2電極12を共通とし、構造を簡略化した構成である。   Another configuration example of the memory cell array of the device of the present invention is shown in FIG. The memory cell array 101b shown in FIG. 5 has a configuration in which the first conductor 13 as a nonlinear element and the second electrode 12 as a variable resistance element are shared in the configuration of FIG.

本発明装置のメモリセルアレイの他の構成例を図6に示す。図6に示されるメモリセルアレイ101cは、図5の構成を更に簡略化したものであり、非線形素子の第2導電体15とワード線20を共通とした構成である。   Another configuration example of the memory cell array of the device of the present invention is shown in FIG. A memory cell array 101c shown in FIG. 6 is obtained by further simplifying the configuration of FIG. 5 and has a configuration in which the second conductor 15 of the nonlinear element and the word line 20 are shared.

本発明装置のメモリセルアレイの他の構成例を図7に示す。図7に示されるメモリセルアレイ101dは、図6の構成を更に簡略化したものであり、可変抵抗素子の第1電極10とビット線21を共通とした構成である。   FIG. 7 shows another configuration example of the memory cell array of the device of the present invention. A memory cell array 101d shown in FIG. 7 is obtained by further simplifying the configuration of FIG. 6, and has a configuration in which the first electrode 10 of the variable resistance element and the bit line 21 are shared.

上記図4〜図7に示されるメモリセルアレイにおいては、絶縁体14の伝導体の底のエネルギーと第2導電体15(ワード線20)のフェルミ準位とのエネルギー差から算出される障壁高さφ、或いは、絶縁体14の伝導帯の底のエネルギーと第1導電体13(可変抵抗体の第2電極12)のフェルミ準位とのエネルギー差から算出される障壁高さφの少なくとも何れか一方が、上述の数1及び数2を満足するように絶縁体材料、可変抵抗体材料、第1導電体材料(第2電極の材料)、及び、第2導電体材料(ワード線の材料)が選択されることで、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積のメモリセルアレイが構成されている。   In the memory cell array shown in FIGS. 4 to 7, the barrier height calculated from the energy difference between the bottom energy of the conductor of the insulator 14 and the Fermi level of the second conductor 15 (word line 20). φ or at least one of the barrier height φ calculated from the energy difference between the energy of the bottom of the conduction band of the insulator 14 and the Fermi level of the first conductor 13 (second electrode 12 of the variable resistor) One of the insulator material, the variable resistor material, the first conductor material (second electrode material), and the second conductor material (word line material) so that one of the above-described equations 1 and 2 is satisfied. Is selected, a memory cell array with low power consumption and high integration, which is composed of memory cells having nonlinear elements having sufficient current drive capability and cutoff characteristics, is configured.

本発明装置のメモリセルアレイの他の構成例を図8に示す。図8に示されるメモリセルアレイ101eは、図7の構成を更に簡略化したものであり、可変抵抗素子の第2電極12を省略し、可変抵抗素子の可変抵抗体11と非線形素子の第1導電体13を共通とした構成である。別の見方をすると、本構成例は、可変抵抗体と第2電極(ワード線20)の間に絶縁体14を挿入した素子を、夫々、ワード線20とビット線21の交点上に配置した構成であり、当該素子は書き換え電圧の印加により抵抗状態が不揮発的に変化し、可変抵抗素子としてのメモリ動作を行うことができると同時に、非線形素子としての機能も発揮するように構成されている。絶縁体14の伝導帯の底のエネルギーとワード線20のフェルミ準位とのエネルギー差から算出される障壁高さφ、或いは、絶縁体14の伝導帯の底と可変抵抗体11の伝導帯の底とのエネルギー差から算出される障壁高さφの少なくとも何れか一方が、上述の数1及び数2を満足するように絶縁体材料、可変抵抗体材料、及びワード線の材料が選択されることで、当該素子は十分な電流駆動能力と遮断特性を有し、低消費電力で高集積のメモリセルアレイが構成されている。   FIG. 8 shows another configuration example of the memory cell array of the device of the present invention. A memory cell array 101e shown in FIG. 8 is obtained by further simplifying the configuration of FIG. 7, omitting the second electrode 12 of the variable resistance element, and the variable resistance body 11 of the variable resistance element and the first conductivity of the nonlinear element. It is the structure which made the body 13 common. From another point of view, in this configuration example, an element in which the insulator 14 is inserted between the variable resistor and the second electrode (word line 20) is arranged on the intersection of the word line 20 and the bit line 21, respectively. The device has a configuration in which the resistance state is changed in a non-volatile manner by applying a rewrite voltage so that a memory operation as a variable resistance element can be performed, and at the same time, a function as a non-linear element is exhibited. . The barrier height φ calculated from the energy difference between the energy of the bottom of the conduction band of the insulator 14 and the Fermi level of the word line 20, or the bottom of the conduction band of the insulator 14 and the conduction band of the variable resistor 11. An insulator material, a variable resistor material, and a word line material are selected so that at least one of the barrier heights φ calculated from the energy difference from the bottom satisfies the above-described Equations 1 and 2. Thus, the element has a sufficient current driving capability and a cutoff characteristic, and a highly integrated memory cell array with low power consumption is configured.

更に、本発明装置のメモリセルアレイの他の構成例を図9に示す。図9に示されるメモリセルアレイ101fは、非線形素子の第2導電体を兼ねる面状のワード線30に直交するように、円柱状の絶縁体31を積層させ、更にその内側に、非線形素子の第1導電体を兼ねる可変抵抗体32が、更にその内側に可変抵抗素子の第1電極を兼ねるビット線33を配置した構造であり、3次元的に高集積化が可能である。メモリセルアレイ101fは、垂直方向に絶縁膜と面上のワード線30を交互に積層し、フォトリソグラフィとエッチングによって、面上のワード線に対して垂直に穴を形成し、穴の内壁に、CVD法等により、絶縁体31、可変抵抗体32、ビット線33を順に成膜することによって形成できる。   Furthermore, another configuration example of the memory cell array of the device of the present invention is shown in FIG. In the memory cell array 101f shown in FIG. 9, a cylindrical insulator 31 is stacked so as to be orthogonal to the planar word line 30 that also serves as the second conductor of the nonlinear element, and further, the first layer of the nonlinear element is disposed inside thereof. The variable resistor 32 that also serves as one conductor has a structure in which the bit line 33 that also serves as the first electrode of the variable resistance element is disposed inside the variable resistor 32 and can be highly integrated three-dimensionally. In the memory cell array 101f, insulating films and word lines 30 on the surface are alternately stacked in the vertical direction, holes are formed perpendicular to the word lines on the surface by photolithography and etching, and CVD is performed on the inner walls of the holes. The insulator 31, the variable resistor 32, and the bit line 33 can be formed in this order by a method or the like.

上記図9に示されるメモリセルアレイも、図8に示されるメモリセルアレイと同様、メモリセルは書き換え電圧の印加により抵抗状態が不揮発的に変化し、可変抵抗素子としてのメモリ動作を行うことができると同時に、非線形素子としての機能も発揮するように構成されている。絶縁体の伝導帯の底のエネルギーと面上のワード線のフェルミ準位とのエネルギー差から算出される障壁高さφ、或いは、絶縁体の伝導帯の底と可変抵抗体の伝導帯の底とのエネルギー差から算出される障壁高さφの少なくとも何れか一方が、上述の数1及び数2を満足するように絶縁体材料、可変抵抗体材料、及びワード線の材料を選択することにより、十分な電流駆動能力と遮断特性を有するメモリセルが構成され、低消費電力で高集積のメモリセルアレイが構成されている。   Similarly to the memory cell array shown in FIG. 8, the memory cell shown in FIG. 9 changes its resistance state in a non-volatile manner by applying a rewrite voltage and can perform a memory operation as a variable resistance element. At the same time, it is configured to exhibit a function as a nonlinear element. The barrier height φ calculated from the energy difference between the bottom energy of the insulator conduction band and the Fermi level of the word line on the surface, or the bottom of the conduction band of the insulator and the bottom of the variable resistor conduction band By selecting an insulator material, a variable resistor material, and a word line material so that at least one of the barrier heights φ calculated from the energy difference with the above satisfies the above formulas 1 and 2. A memory cell having sufficient current driving capability and cutoff characteristics is configured, and a highly integrated memory cell array with low power consumption is configured.

次に、本発明装置100のメモリセルアレイ内の非線形素子に必要な電流駆動能力について説明する。   Next, the current drive capability required for the nonlinear element in the memory cell array of the device 100 of the present invention will be described.

MIM素子において、導電体間に電圧VSLを印加し、導電体間に挟まれた絶縁体の膜厚をd、当該絶縁体によるトンネル障壁を三角ポテンシャル(図3の電子状態の図を参照)として、電流密度を計算した例を図10に示す。大きな電流密度は、絶縁体の膜厚dを薄くするか、障壁高さφを小さくすることで得られる。 In the MIM element, the voltage V SL is applied between the conductors, the thickness of the insulator sandwiched between the conductors is d, and the tunnel barrier by the insulator is a triangular potential (see the electronic state diagram in FIG. 3). FIG. 10 shows an example in which the current density is calculated. A large current density can be obtained by reducing the thickness d of the insulator or reducing the barrier height φ.

必要な電流密度Jを得るための印加電界Eと障壁高さφの関係を計算したものを図11に示す。高印加電界、低障壁高さほど高電流密度を実現できることが分かる。   FIG. 11 shows the calculated relationship between the applied electric field E and the barrier height φ to obtain the required current density J. It can be seen that higher current density can be achieved with higher applied electric field and lower barrier height.

次に、上記メモリセルアレイを省電流駆動するための条件について説明する。   Next, conditions for driving the memory cell array in a current saving manner will be described.

書き換え時において、当該メモリセルアレイを1/2バイアス法で駆動する場合、半選択メモリセルの非線形素子には選択メモリセルの非線形素子に印加される電圧のおよそ半分程度の電圧が印加される。即ち、選択メモリセルに電圧VSLを印加すると、(m+n−2)個の半選択メモリセルには1/2VSLが印加され、リーク電流が生じる。ここで、書き込み時に選択メモリセルの非線形素子に流れる電流をISL、個々の半選択メモリセルの非線形素子に流れる電流をIHSとする。各半選択メモリセルに流れるリーク電流量は、メモリセルの可変抵抗素子の抵抗状態に依存するが、可変抵抗素子の抵抗状態が低抵抗状態の半選択メモリセルに流れる電流をIHS (L)とすると、全リーク電流は、最悪の場合(m+n−2)IHS (L)となる。 At the time of rewriting, when the memory cell array is driven by the ½ bias method, a voltage that is approximately half the voltage applied to the nonlinear element of the selected memory cell is applied to the nonlinear element of the half-selected memory cell. That is, when the voltage V SL is applied to the selected memory cell, 1/2 V SL is applied to the (m + n−2) half-selected memory cells, and a leak current is generated. Here, it is assumed that the current flowing through the nonlinear element of the selected memory cell during writing is I SL , and the current flowing through the nonlinear element of each half-selected memory cell is I HS . The amount of leakage current flowing through each half-selected memory cell depends on the resistance state of the variable resistance element of the memory cell, but the current flowing through the half-selected memory cell whose resistance state is the low resistance state is I HS (L) Then, the total leakage current is (m + n−2) I HS (L) in the worst case.

当該全リーク電流は可能な限り小さくすることが望ましく、少なくとも選択素子に流れる電流ISL程度以下とすべきである。即ち、以下の数3に示す関係式が満足される必要がある。 The total leakage current is desirably as small as possible, and should be at least about the current ISL flowing through the selection element. That is, it is necessary to satisfy the following relational expression (3).

[数3]
(m+n−2)IHS (L)<ISL
[Equation 3]
( M + n-2) I HS (L) <I SL

リーク電流が多いと、無駄に電流を消費するだけでなく、リーク電流のため駆動回路の電流駆動能力を高める必要が生じ、駆動回路が大きくなってしまう。例えば、図2では、非線形素子S22と可変抵抗素子R22からなるメモリセルC22を書き換え対象のメモリセルとして選択した場合を例として示しているが、ワード線W2から各ビット線に供給される全電流は、最大でISL+IHS (L)(m−1)となり、この電流を十分供給できるだけの能力がワード線側の駆動回路に必要となる。ビット線B2から各ワード線に供給される電流についても同様である。全リーク電流を小さくするには、IHSを小さくするか、mおよびnを小さくすればよいが、m、nを小さくすると、所望の記憶容量を実現するためにメモリセルアレイを多数の小さなサブアレイで構成することとなり、周辺回路部の面積が大きくなり、ビットコストの増大を招いてしまう。したがって、IHSを十分小さくする必要がある。 When the leakage current is large, not only is the current consumed unnecessarily, but it is necessary to increase the current driving capability of the driving circuit due to the leakage current, and the driving circuit becomes large. For example, FIG. 2 shows an example in which the memory cell C 22 including the non-linear element S 22 and the variable resistance element R 22 is selected as the memory cell to be rewritten, but is supplied from the word line W2 to each bit line. The maximum total current is I SL + I HS (L) (m−1), and a capacity sufficient to supply this current is required for the drive circuit on the word line side. The same applies to the current supplied from the bit line B2 to each word line. In order to reduce the total leakage current, I HS can be reduced or m and n can be reduced. However, if m and n are reduced, the memory cell array can be configured with a large number of small subarrays in order to realize a desired storage capacity. As a result, the area of the peripheral circuit portion is increased, and the bit cost is increased. Therefore, it is necessary to make IHS sufficiently small.

上記数3から、ISL/IHSを大きくすることが省電力駆動に必須であることが分かる。書き込み動作時においてメモリセルアレイを1/2バイアス法で駆動する場合、半選択メモリセルの非線形素子には選択メモリセルの非線形素子に印加される電圧のおよそ半分程度の電圧が印加される。即ち、可変抵抗素子の抵抗状態に依らず、書き込み動作時に選択メモリセルに印加される電圧VSL、及び、半選択メモリセルに印加される電圧VSL/2の殆どが非線形素子に印加されるとすると、非線形素子に流れる電流の電流密度Jは電界Eの関数で表されるので、数3より、下記の数4が導かれる。ここで、J(E)/J(0.5E)をカットオフ比と呼ぶことにする。 From the above formula 3, it can be seen that increasing I SL / I HS is essential for power saving driving. When the memory cell array is driven by the ½ bias method during the write operation, a voltage that is approximately half of the voltage applied to the nonlinear element of the selected memory cell is applied to the nonlinear element of the half-selected memory cell. That is, regardless of the resistance state of the variable resistance element, the voltage V SL applied to the selected memory cell during a write operation, and, most of the voltage V SL / 2 that is applied to half-selected memory cell is applied to the non-linear element Then, since the current density J of the current flowing through the nonlinear element is expressed by a function of the electric field E, the following formula 4 is derived from the formula 3. Here, J (E) / J (0.5E) is referred to as a cutoff ratio.

[数4]
J(E)/J(0.5E)>m+n−2
[Equation 4]
J (E) / J (0.5E)> m + n-2

MIM素子において、導電体間に挟まれた絶縁体の膜厚をd、絶縁体によるトンネル障壁を三角ポテンシャル(図3の電子状態の図を参照)として、トンネル電流密度を計算し、必要なカットオフ比を得るための印加電界E(=VSL/d)と障壁高さφとの関係を計算したものを図12に示す。低印加電界、高障壁高さほど高カットオフ比を実現できる。 In the MIM element, the tunnel current density is calculated with the thickness of the insulator sandwiched between the conductors d and the tunnel barrier by the insulator as a triangular potential (see the electronic state diagram in FIG. 3), and the necessary cut FIG. 12 shows the calculated relationship between the applied electric field E (= V SL / d) and the barrier height φ to obtain the off ratio. Higher cutoff ratio can be realized with lower applied electric field and higher barrier height.

従って、高電流密度の非線形素子を実現するには非線形素子に印加される電界を高く、障壁高さを低くする必要があり、高カットオフ比の非線形素子を実現するには非線形素子に印加される電界を低く、障壁高さを高くする必要がある。即ち、高電流密度と高カットオフ比はトレードオフの関係にある。   Therefore, it is necessary to increase the electric field applied to the nonlinear element and reduce the barrier height in order to realize a nonlinear element with a high current density. To realize a nonlinear element with a high cut-off ratio, it is applied to the nonlinear element. It is necessary to reduce the electric field and increase the barrier height. That is, a high current density and a high cut-off ratio are in a trade-off relationship.

実用的な可変抵抗素子への書き込み電流として10μA以上が必要であり、更に、低消費電力の点から100μA以下がより望ましい。非線形素子の面積を30nm角〜100nm角とすると、およそ0.1MA/cm以上の電流密度が必要であり、およそ10MA/cm以下の電流密度がより望ましい。一方、サブアレイサイズが1Kbitのメモリセルアレイを実現するには、メモリセルを32×32のマトリクス状に配置する必要があり、上記数4により、100程度のカットオフ比を持つ非線形素子が必要となる。 As a writing current to a practical variable resistance element, 10 μA or more is necessary, and more preferably 100 μA or less from the viewpoint of low power consumption. When the area of the non-linear element and 30nm angle ~100nm angle, approximately 0.1 MA / cm 2 or more current density is required, approximately 10 MA / cm 2 or less of the current density is more desirable. On the other hand, in order to realize a memory cell array with a sub-array size of 1 Kbit, it is necessary to arrange memory cells in a 32 × 32 matrix, and a nonlinear element having a cut-off ratio of about 100 is required according to Equation 4 above. .

しかしながら、図13の斜線部分で示される、図11の電流密度0.1MA/cmで示される曲線を上限とし、図12のカットオフ比100で示される曲線を下限とする領域では、上記0.1MA/cm以上の電流密度で、かつ、上記100以上のカットオフ比を持つ非線形素子を実現可能となる。この領域は、およそ、2つの直線φ=0.05E+0.1、φ=0.1E+0.1で挟まれた領域となる。障壁高さφの単位はeV、印加電界Eの単位はMV/cmである。書き込み時に選択メモリセルに印加される電圧をVSL[V]すると、大部分は非線形素子に印加される。絶縁体の厚さをd[nm]とすると、単位換算後の印加電界E(=VSL/d)は10VSL/d[MV/cm]となるので、上記の領域は、直線φ=0.5VSL/d+0.1と直線φ=VSL/d+0.1に挟まれた領域となる。これは、上記数1及び数2の両関係式を満足する領域である。 However, in the region where the upper limit is the curve indicated by the current density of 0.1 MA / cm 2 in FIG. 11 and the lower limit is the curve indicated by the cut-off ratio 100 in FIG. A nonlinear element having a current density of 1 MA / cm 2 or more and a cutoff ratio of 100 or more can be realized. This region is a region sandwiched between two straight lines φ = 0.05E + 0.1 and φ = 0.1E + 0.1. The unit of the barrier height φ is eV, and the unit of the applied electric field E is MV / cm. When the voltage applied to the selected memory cell at the time of writing is V SL [V], most of the voltage is applied to the nonlinear element. When the thickness of the insulator is d [nm], the applied electric field E (= V SL / d) after unit conversion is 10 V SL / d [MV / cm], and thus the above region has a straight line φ = 0 .5 V SL /d+0.1 and a straight line φ = V SL /d+0.1. This is a region satisfying both the relational expressions (1) and (2).

従って、障壁高さφと印加電界Eとの関係が上記領域内に収まるように、書き換え電圧VSL、非線形素子に用いる絶縁体の膜厚d、障壁高さφを選択することにより、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積のメモリセルアレイを設計することが可能になる。 Therefore, by selecting the rewrite voltage V SL , the film thickness d of the insulator used for the nonlinear element, and the barrier height φ so that the relationship between the barrier height φ and the applied electric field E is within the above region, sufficient It becomes possible to design a memory cell array with low power consumption and high integration, which is composed of memory cells having non-linear elements having current drive capability and cutoff characteristics.

1つの設計例を以下に示す。例えば、VSLを4[V]、dを5[nm]と設定すると、図13から、障壁高さφは、0.5〜0.9eVの範囲内で、可変抵抗素子の抵抗状態を変化させるのに必要な電流密度に応じて設定することができる。例えば、1MA/cmの電流密度であれば、0.7eV程度のφとすればよい。非線形素子の絶縁体の膜厚dについては、非線形素子のオン電圧を使用しやすい低電圧とするために5nm程度以下とするのがより好ましい。 One design example is shown below. For example, changing the V SL 4 [V], by setting the d and 5 [nm], from 13, the barrier height phi, within the 0.5~0.9EV, the resistance state of the variable resistance element It can be set in accordance with the current density required to make it. For example, if the current density is 1 MA / cm 2 , the diameter may be about 0.7 eV. The film thickness d of the insulator of the nonlinear element is more preferably about 5 nm or less in order to make the ON voltage of the nonlinear element a low voltage that is easy to use.

次に、非線形素子に用いる導電体材料及び絶縁体材料を選択する。具体的な絶縁体材料としては、酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化ランタン、酸化イットリウムなどを用いることができる。絶縁体のバンドギャップ(伝導帯の底のエネルギーと価電子帯の頂上のエネルギーとのエネルギー差)と耐電界にはおよそ相関があり、バンドギャップが大きいほうが耐電界が大きくなる。図13で示されるような数MV/cm程度の高電界で使用するには、5eV程度以上のバンドギャップをもつ材料から選択することがより好ましい。   Next, a conductor material and an insulator material used for the nonlinear element are selected. As a specific insulator material, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, hafnium oxide, zirconium oxide, tantalum oxide, titanium oxide, lanthanum oxide, yttrium oxide, or the like can be used. The band gap of the insulator (the energy difference between the energy at the bottom of the conduction band and the energy at the top of the valence band) and the electric field resistance are approximately correlated, and the electric field resistance increases as the band gap increases. For use in a high electric field of about several MV / cm as shown in FIG. 13, it is more preferable to select a material having a band gap of about 5 eV or more.

また、信頼性確保のため、非線形素子に印加される電界が10MV/cm以下になるように設計することが好ましく、VSL/dを1以下とすることが好ましい。 In order to ensure reliability, the electric field applied to the nonlinear element is preferably designed to be 10 MV / cm or less, and V SL / d is preferably 1 or less.

一方、導電体材料としては、当該導電体のフェルミ準位と絶縁体の伝導帯の底とのエネルギー差が、上述の設定された障壁高さφの範囲内となるような導電体材料を選択する。   On the other hand, as the conductor material, a conductor material is selected so that the energy difference between the Fermi level of the conductor and the bottom of the conduction band of the insulator falls within the above-described range of the barrier height φ. To do.

上記の絶縁体材料においては、伝導帯の底のエネルギーは、真空準位から−1〜−4eVの範囲で様々であるが、多くは2.5eV程度以下である。図13から、障壁高さφを0.5eV〜0.9eV程度の範囲内で選択すると、導電体材料の仕事関数は3.4eV程度以下と比較的小さいものが必要となる。金属単体の仕事関数は、例えば、H.B. Michaelson, "The work function of the elements and its periodicity", Journal of Applied Physics, Vol. 48, pp. 4729, 1977年などにまとめられているので、そこから適切な金属を選べばよい。単体金属以外の材料で仕事関数が小さいものは、トリウムタングステン(2.6eV)、バリウムタングステン(1.6eV)、或いは、酸化バリウム(1eV)、酸化ストロンチウム(1.3eV)などのアルカリ土類の酸化物、ホウ化ランタン(2.5eV)、ホウ化セリウム(2.5eV)などの希土類元素のホウ化物、酸化トリウム(2.7eV)等が挙げられる。尚、括弧内に仕事関数値を示した。   In the above insulator material, the energy at the bottom of the conduction band varies in the range from -1 to -4 eV from the vacuum level, but most is about 2.5 eV or less. From FIG. 13, when the barrier height φ is selected within a range of about 0.5 eV to 0.9 eV, the work function of the conductive material is required to be relatively small, about 3.4 eV or less. The work functions of simple metals are summarized in, for example, HB Michaelson, "The work function of the elements and its periodicity", Journal of Applied Physics, Vol. 48, pp. 4729, 1977, etc. Choose the right metal. Materials other than a single metal having a low work function include alkaline earths such as thorium tungsten (2.6 eV), barium tungsten (1.6 eV), barium oxide (1 eV), and strontium oxide (1.3 eV). Oxides, borides of rare earth elements such as lanthanum boride (2.5 eV), cerium boride (2.5 eV), thorium oxide (2.7 eV), and the like can be given. The work function value is shown in parentheses.

尚、上記絶縁体材料の中でも、酸化タンタルのように、伝導帯の底のエネルギーと真空準位との差が大きい(4eV程度)ものについては、導電体材料として、一般に使用しやすい、仕事関数が4〜5eVの金属や化合物を用いることができる。   Of the above insulator materials, those having a large difference between the energy at the bottom of the conduction band and the vacuum level (about 4 eV), such as tantalum oxide, are generally easy to use as a conductor material. 4-5 eV of metals and compounds can be used.

絶縁体を挟む第1導電体と第2導電体のうち、少なくとも一方について上記の条件が満たされれば、条件を満たす一方の導電体から他方の導電体へ電子がトンネルし、上述の必要な電流密度及びカットオフ比を満足する電流が流れる。また、書き換え、読み出し時に双方向の電流を流す場合、夫々の電流の向きによって必要な電流密度が異なる場合は、第1導電体と第2導電体に使用する材料を異ならせ、電圧非印加時の第1導電体と第2導電体のフェルミ準位を異なるものとしてもよい。導電体に半導体を用いる場合には、半導体の伝導帯の底のエネルギーを便宜上フェルミ準位と読み替え、上記指針に従って非線形素子を構成すればよい。ここでは、絶縁体材料として酸化タンタル(真空準位からの伝導体の底のエネルギー−4eV)を、第1導電体と第2導電体の材料として夫々タングステン(仕事関数4.5eV)、コバルト(仕事関数5eV)を選択すると、タングステンに正バイアスをかけた場合のオン電流をコバルト電極に正バイアスをかけた場合のそれよりも小さくできる。   If the above condition is satisfied for at least one of the first conductor and the second conductor sandwiching the insulator, electrons tunnel from one conductor satisfying the condition to the other conductor, and the necessary current described above A current that satisfies the density and the cutoff ratio flows. In addition, when a bidirectional current is passed during rewriting and reading, if the required current density differs depending on the direction of each current, the materials used for the first conductor and the second conductor are different, and no voltage is applied. The Fermi levels of the first conductor and the second conductor may be different. In the case of using a semiconductor for the conductor, the energy at the bottom of the conduction band of the semiconductor may be read as the Fermi level for convenience, and the nonlinear element may be configured according to the above guidelines. Here, tantalum oxide (the energy at the bottom of the conductor from the vacuum level −4 eV) is used as the insulator material, and tungsten (work function 4.5 eV) and cobalt (the work function is 4.5 eV) as the materials of the first conductor and the second conductor, respectively. When the work function 5 eV) is selected, the on-current when tungsten is positively biased can be made smaller than that when the cobalt electrode is positively biased.

上述のように、書き換え電圧VSL、及び非線形素子の絶縁体の膜厚dを設定し、必要な障壁高さφの範囲を求め、当該求められた障壁高さφの範囲を満足するような絶縁体材料及び導電体材料を選択することにより、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積のメモリセルアレイを設計することができる。 As described above, the rewrite voltage V SL and the film thickness d of the insulator of the nonlinear element are set, the required range of the barrier height φ is obtained, and the required range of the barrier height φ is satisfied. By selecting an insulator material and a conductor material, it is possible to design a memory cell array with low power consumption and high integration, which includes memory cells having nonlinear elements having sufficient current drive capability and cutoff characteristics.

〈第2実施形態〉
上述の第1実施形態では、1/2バイアス法で書き換え電圧を印加する際、選択メモリセルに印加される電圧VSLの大部分が非線形素子に印加されるとして、数1及び数2により規定される、望ましい非線形素子の障壁高さφと印加電界Eとの関係(図13の斜線部分の領域)を導いたが、より好ましくは、VSLの一部が可変抵抗素子にも印加されるとして、非線形素子の障壁高さφと印加電界Eとの関係をより精確に求めることが望ましい。
Second Embodiment
In the first embodiment described above, when the rewrite voltage is applied by the ½ bias method, the majority of the voltage V SL applied to the selected memory cell is applied to the nonlinear element, and is defined by Equations 1 and 2. The relationship between the desired barrier height φ of the non-linear element and the applied electric field E (the shaded area in FIG. 13) is derived. More preferably, a part of V SL is also applied to the variable resistance element. Therefore, it is desirable to more accurately obtain the relationship between the barrier height φ of the nonlinear element and the applied electric field E.

ここで、書き換え電圧VSLのうち可変抵抗素子に印加される電圧をVとし、x=V/VSLとする。選択メモリセルの非線形素子にはVSL−V=(1−x)VSLが印加され、これにより非線形素子に印加される電界は、y=VSL/dとおくと、(1−x)yとなる。 Here, a voltage applied to the variable resistance element of the writing voltage V SL and V R, and x = V R / V SL. V SL −V R = (1−x) V SL is applied to the non-linear element of the selected memory cell, and the electric field applied to the non-linear element thereby becomes y = V SL / d. ) Y.

このため、非線形素子の障壁高さφと印加電界Eとの関係は、電流密度との関係では、図11においてEを(1−x)yに置き換えたものに等しくなる。即ち、電流密度が0.1MA/cmである場合の非線形素子の障壁高さφと印加電界Eを表す式をφ(E)とすると、φ(E)は、第1実施形態(x=0)ではVSL/d(=E)の関数であったところ、より精確にはφ((1−x)y)となる。 For this reason, the relationship between the barrier height φ of the nonlinear element and the applied electric field E is equal to that obtained by replacing E with (1-x) y in FIG. That is, assuming that the formula representing the barrier height φ of the nonlinear element and the applied electric field E when the current density is 0.1 MA / cm 2 is φ A (E), φ A (E) is the first embodiment ( When x = 0), it is a function of V SL / d (= E), and more accurately becomes φ A ((1−x) y).

従って、x=0におけるφ(E)を二次関数として、φ(E)=a+bE+cで近似すると、書き換え電圧の一部が可変抵抗素子にも印加される場合のφ(y,x)は、下記の数5で表される。 Therefore, when φ A (E) at x = 0 is a quadratic function and approximated by φ A (E) = a 0 E 2 + b 0 E + c 0 , a part of the rewrite voltage is also applied to the variable resistance element. Φ A (y, x) is expressed by the following formula 5.

[数5]
φ(y,x)=a(x)y+b(x)y+c(x),
(x)=a(1−x)
(x)=b(1−x),
(x)=c
[Equation 5]
φ A (y, x) = a 1 (x) y 2 + b 1 (x) y + c 1 (x),
a 1 (x) = a 0 (1-x) 2 ,
b 1 (x) = b 0 (1-x),
c 1 (x) = c 0

図11の電流密度が0.1MA/cmである場合の非線形素子の障壁高さφと印加電界Eを表す式を二次曲線でフィッティングし、最小自乗法によりパラメータ(a,b,c)を求めると、a=−3.09×10−3,b=1.32×10−1,c=4.10×10−2を得た。ここで、障壁高さφの単位は[eV]、印加電界Eの単位は[MV/cm]である。電圧VSLの単位を[V]、絶縁体の厚さdの単位を[nm]として、y(=VSL/d)[V/nm]を単位換算すると,y=10VSL/d[MV/cm]となる。 The equation representing the barrier height φ of the nonlinear element and the applied electric field E when the current density in FIG. 11 is 0.1 MA / cm 2 is fitted with a quadratic curve, and the parameters (a 0 , b 0 , When c 0 ) was obtained, a 0 = −3.09 × 10 −3 , b 0 = 1.32 × 10 −1 , and c 0 = 4.10 × 10 −2 were obtained. Here, the unit of barrier height phi A is [eV], the unit of the applied electric field E is [MV / cm]. When the unit of the voltage V SL is [V], the unit of the thickness d of the insulator is [nm], and y (= V SL / d) [V / nm] is converted into a unit, y = 10 V SL / d [MV] / Cm].

次に、書き換え電圧の一部が可変抵抗素子にも印加される場合の、カットオフ比が100以上を満足する非線形素子の障壁高さφとVSL/dとの関係について説明する。選択メモリセルの非線形素子にはVSL−Vが印加され、半選択メモリセルにはVSL/2の大部分が印加されるため、y=VSL/dとおくと、カットオフ比は、J((1−x)y)/J(y/2)となる。 Next, the relationship between the barrier height φ and V SL / d of a nonlinear element that satisfies a cutoff ratio of 100 or more when a part of the rewrite voltage is also applied to the variable resistance element will be described. The non-linear element of the selected memory cell is applied V SL -V R, because most of the half-selected memory cell V SL / 2 is applied, placing a y = V SL / d, cut-off ratio , J ((1-x) y) / J (y / 2).

複数の異なるxに対して、カットオフ比を計算し、カットオフ比が100となる非線形素子の障壁高さφ[eV]とy[MV/cm]を表す式をφ(y、x)として、φをyについて二次曲線(φ=a(x)y+b(x)y+c)として最小自乗法でフィッティングした場合の各フィッティングパラメータ(a,b,c)がxに対してどのように変化するかを計算したものを図16に示す。6つの異なるxに対して求めたフィッティングパラメータが図中のマーカー(四角)に対応し、それらを三次関数でフィッティングした結果を実線で示す。何れも、三次関数で精度良くフィッティングすることができた。当該三次関数としてフッティングされたパラメータ(a,b,c)の夫々の関数形を数6に示す。尚、x>0.23の範囲では、カットオフ比が100以上で、かつ電流密度が0.1MA/cm以上を満足する障壁高さφとyの解は存在しないため、フィッティングの精度を上げるため0≦x≦0.23の範囲でフィッティングを行なっている。 The cut-off ratio is calculated for a plurality of different x, and the equation representing the barrier heights φ [eV] and y [MV / cm] of the nonlinear element with a cut-off ratio of 100 is expressed as φ B (y, x) as each fitting parameter when the phi B was fitted by the least square method as a secondary curve (φ B = a 2 (x ) y 2 + b 2 (x) y + c 2) for y (a 2, b 2, c 2 FIG. 16 shows the calculation of how () changes with respect to x. The fitting parameters obtained for six different x correspond to the markers (squares) in the figure, and the result of fitting them with a cubic function is shown by a solid line. In either case, the fitting could be performed with a cubic function with high accuracy. Each function form of the parameters (a 2 , b 2 , c 2 ) footed as the cubic function is shown in Equation 6. In the range of x> 0.23, there is no solution of the barrier height φ and y that satisfies the cutoff ratio of 100 or more and the current density of 0.1 MA / cm 2 or more. In order to increase, fitting is performed in the range of 0 ≦ x ≦ 0.23.

[数6]
φ(y,x)=a(x)y+b(x)y+c(x),
(x)=−8.83×10−3+1.70×10−5+5.94×10−4x−2.31×10−3
(x)=4.94×10−1+3.53×10−2+5.87×10−2x+7.54×10−2
(x)=7.62×10−1+5.03×10−2+9.24×10−2x+4.97×10−2
[Equation 6]
φ B (y, x) = a 2 (x) y 2 + b 2 (x) y + c 2 (x),
a 2 (x) = − 8.83 × 10 −3 x 3 + 1.70 × 10 −5 x 2 + 5.94 × 10 −4 x−2.31 × 10 −3 ,
b 2 (x) = 4.94 × 10 −1 x 3 + 3.53 × 10 −2 x 2 + 5.87 × 10 −2 x + 7.54 × 10 −2 ,
c 2 (x) = 7.62 × 10 −1 x 3 + 5.03 × 10 −2 x 2 + 9.24 × 10 −2 x + 4.97 × 10 −2

数5及び数6より、xが決まれば、各パラメータ(a,b,c,a,b,c)が定まり、電流密度が0.1MA/cm以上で、かつカットオフ比が100以上となるために障壁高さφ[eV]とy[MV/cm]が満足すべき関係が求まる。例えば、x=0.1の場合に、0.1MA/cm以上の電流密度で、かつ、当該カットオフ比が100以上となるために、非線形素子の障壁高さφとyが満足すべき関係を図17の斜線部に示す。図17の斜線部の領域は、電流密度が0.1MA/cmを満足する曲線φを上限とし、カットオフ比が100を満足する曲線φを下限とする領域である。曲線φを細い実線で示し、それを二次曲線(φ=a+by+c)としてフィッティングした結果を太い点線で示す。また、曲線φを細い実線で示し、それを二次曲線(φ=a+by+c)としてフィッティングした結果を太い点線で示す。両曲線φ、φ共に、二次曲線で十分に再現することができていることが分かる。 If x is determined from Equations 5 and 6, each parameter (a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ) is determined, the current density is 0.1 MA / cm 2 or more, and cut Since the off ratio is 100 or more, a relationship in which the barrier height φ [eV] and y [MV / cm] should be satisfied is obtained. For example, when x = 0.1, the barrier density φ and y of the non-linear element should be satisfied because the current density is 0.1 MA / cm 2 or more and the cutoff ratio is 100 or more. The relationship is indicated by the hatched portion in FIG. Area of the shaded portion in FIG. 17 is a region where the current density is made the upper limit curve phi A which satisfies 0.1 MA / cm 2, the lower limit curve phi B cutoff ratio satisfies 100. Shows the curve phi A by a thin solid line shows the result of fitting it as a secondary curve (φ A = a 1 y 2 + b 1 y + c 1) by the thick dotted line. Also shows curve phi B by a thin solid line shows the result of fitting it as a secondary curve (φ B = a 2 y 2 + b 2 y + c 2) by a bold dotted line. It can be seen that both curves φ A and φ B can be sufficiently reproduced by a quadratic curve.

従って、書き換え電圧VSLのうち可変抵抗素子に分圧される割合xから、満足すべき障壁高さφとVSL/dとの関係を求めることができ、当該障壁高さφとVSL/dとの関係を満足するように、書き換え電圧VSL、非線形素子に用いる絶縁体の膜厚d、障壁高さφを選択することにより、第1実施形態と同様、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積のメモリセルアレイを設計することが可能になる。 Therefore, the ratio x to be divided to the variable resistance element of the writing voltage V SL, it is possible to obtain the relationship between the barrier height satisfactory φ and V SL / d, the barrier height φ and V SL / By selecting the rewrite voltage V SL , the film thickness d of the insulator used for the non-linear element, and the barrier height φ so as to satisfy the relationship with d, sufficient current drive capability and cutoff are achieved as in the first embodiment. It becomes possible to design a highly integrated memory cell array having low power consumption and comprising memory cells having nonlinear elements having characteristics.

〈第3実施形態〉
上述の第1及び第2実施形態では、1/2バイアス法で書き換え電圧を印加する場合について説明したが、これは1/3バイアス法で書き換え電圧を印加する場合についても同様である。
<Third Embodiment>
In the first and second embodiments described above, the case where the rewrite voltage is applied by the ½ bias method has been described. However, the same applies to the case where the rewrite voltage is applied by the 3 bias method.

1/3バイアス法におけるメモリセルの電圧印加条件を図18に示す。1/3バイアス法では、図18に示されるように、行方向に選択されたメモリセルには、選択ビット線(ここでは、B2)を介して所定の基準電位(0V)を、行方向に非選択のメモリセルには、非選択ビット線を介してVSL×2/3を、夫々印加する。一方、列方向に選択されたメモリセルには、選択ワード線(ここでは、W2)を介してVSLを、列方向に非選択のメモリセルには、非選択ワード線を介してVSL/3を、夫々印加する。この結果、選択メモリセル(例えば、R22)の行或いは列の何れか一方のみが同一の半選択メモリセルには、絶対値が選択メモリセルへ印加される書き換え電圧VSLの1/3の電圧が印加される。従って、選択メモリセルに電圧VSLを印加すると、(m+n−2)個の半選択メモリセルには1/3VSLが印加され、リーク電流が生じる。アレイ規模が大きくなると、この半選択電圧によるディスターブ、半選択メモリセルに流れる電流(リーク電流)による消費電流増大といった問題が生じる可能性がある。 FIG. 18 shows voltage application conditions of the memory cell in the 1/3 bias method. In the 1/3 bias method, as shown in FIG. 18, a predetermined reference potential (0 V) is applied to a memory cell selected in the row direction via a selected bit line (here, B2) in the row direction. V SL × 2/3 is applied to unselected memory cells via unselected bit lines, respectively. On the other hand, the memory cell selected in the column direction, the selected word line (here, W2) and V SL via the memory cell of the non-selected in the column direction, V via the unselected word lines SL / 3 is applied. As a result, in the half-selected memory cell in which only one of the rows or columns of the selected memory cell (for example, R 22 ) is the same, the absolute value is 1/3 of the rewrite voltage V SL applied to the selected memory cell. A voltage is applied. Therefore, when a voltage is applied to V SL to the selected memory cell, (m + n-2) is the number of half-selected memory cell is applied 1 / 3V SL, a leakage current occurs. When the array size is increased, problems such as disturbance due to the half-selected voltage and increase in current consumption due to current (leakage current) flowing through the half-selected memory cell may occur.

リーク電流は可能な限り小さくすることが望ましいため、書き込み時に選択メモリセルの非線形素子に流れる電流ISL、個々の半選択メモリセルの非線形素子に流れる電流IHSは、やはり上記数3に示される関係式を満足すべきであり、ISL/IHSを大きくすることが省電力駆動に必須である。選択メモリセルの非線形素子にはVSL−V=(1−x)VSLが印加され、半選択メモリセルにはVSL/3の大部分が印加されるため、y=VSL/dとおくと、数3より、上記数4に代えて、下記の数7が導かれる。 Since it is desirable to make the leakage current as small as possible, the current I SL flowing through the non-linear element of the selected memory cell and the current I HS flowing through the non-linear element of each half-selected memory cell at the time of writing are also expressed by the above equation 3. The relational expression should be satisfied, and increasing I SL / I HS is essential for power saving driving. Since V SL −V R = (1−x) V SL is applied to the non-linear element of the selected memory cell, and most of V SL / 3 is applied to the half-selected memory cell, y = V SL / d Then, instead of the above equation 4, the following equation 7 is derived from the equation 3.

[数7]
J((1−x)y)/J(y/3)>m+n−2
[Equation 7]
J ((1-x) y) / J (y / 3)> m + n-2

ここで、数7の左辺J((1−x)y)/J(y/3)が1/3バイアス法におけるカットオフ比に相当する。第1実施形態と同様、サブアレイサイズが1Kbitのメモリセルアレイを実現するには、メモリセルを32×32のマトリクス状に配置する必要があり、上記数7により、少なくとも100程度のカットオフ比を持つ非線形素子が必要となる。   Here, the left side J ((1-x) y) / J (y / 3) in Equation 7 corresponds to the cut-off ratio in the 1/3 bias method. As in the first embodiment, in order to realize a memory cell array having a sub-array size of 1 Kbit, it is necessary to arrange memory cells in a 32 × 32 matrix. A non-linear element is required.

複数の異なるxに対して、1/3バイアス法におけるカットオフ比を計算し、カットオフ比が100となる非線形素子の障壁高さφ[eV]とy[MV/cm]を表す式をφ(y、x)として、φをyについて二次曲線(φ=a(x)y+b(x)y+c)として最小自乗法でフィッティングした場合の各フィッティングパラメータ(a,b,c)がxに対してどのように変化するかを計算したものを図19に示す。夫々の異なるxに対して求めたフィッティングパラメータが図中のマーカー(四角)に対応し、それらを三次関数でフィッティングした結果を実線で示す。何れも、三次関数で精度良くフィッティングすることができた。当該三次関数としてフッティングされたパラメータ(a,b,c)の夫々の関数形を数8に示す。尚、x>0.48の範囲では、カットオフ比が100以上で、かつ電流密度が0.1MA/cm以上を満足する障壁高さφとyの解は存在しないため、フィッティングの精度を上げるため0≦x≦0.48の範囲でフィッティングを行なっている。 For a plurality of different x, the cut-off ratio in the 1/3 bias method is calculated, and an equation representing the barrier height φ [eV] and y [MV / cm] of the nonlinear element with a cut-off ratio of 100 is represented by φ As C (y, x), each fitting parameter (a 3 ) when φ C is fitted with a quadratic curve (φ C = a 3 (x) y 2 + b 3 (x) y + c 3 ) with respect to y by the least square method , B 3 , c 3 ) calculated how x changes with respect to x is shown in FIG. The fitting parameters obtained for each different x correspond to the markers (squares) in the figure, and the result of fitting them with a cubic function is shown by a solid line. In either case, the fitting could be performed with a cubic function with high accuracy. The respective function forms of the parameters (a 3 , b 3 , c 3 ) footed as the cubic function are shown in Equation 8. In the range of x> 0.48, there is no solution of the barrier height φ and y that satisfies the cutoff ratio of 100 or more and the current density of 0.1 MA / cm 2 or more. In order to increase, fitting is performed in the range of 0 ≦ x ≦ 0.48.

[数8]
φ(y,x)=a(x)y+b(x)y+c(x),
(x)=−1.84×10−3+6.81×10−4+4.99×10−4x−1.20×10−3
(x)=2.26×10−1−7.02×10−2+3.20×10−2x+3.89×10−2
(x)=5.23×10−1−1.48×10−1+6.40×10−2x+2.54×10−2
[Equation 8]
φ C (y, x) = a 3 (x) y 2 + b 3 (x) y + c 3 (x),
a 3 (x) = − 1.84 × 10 −3 x 3 + 6.81 × 10 −4 x 2 + 4.99 × 10 −4 x−1.20 × 10 −3 ,
b 3 (x) = 2.26 × 10 −1 x 3 −7.02 × 10 −2 x 2 + 3.20 × 10 −2 x + 3.89 × 10 −2 ,
c 3 (x) = 5.23 × 10 −1 x 3 −1.48 × 10 −1 x 2 + 6.40 × 10 −2 x + 2.54 × 10 −2

一方、電流密度が0.1MA/cmとなる非線形素子の障壁高さφとVSL/d(=y)との関係式φ(y,x)は、書き換えの際の電圧印加条件が1/2バイアス法か1/3バイアス法かには依らず、上記数5で表される。 On the other hand, the relational expression φ A (y, x) between the barrier height φ of the nonlinear element having a current density of 0.1 MA / cm 2 and V SL / d (= y) is that the voltage application condition at the time of rewriting is Regardless of the ½ bias method or the 3 bias method, it is expressed by the above formula 5.

数5及び数8より、xが決まれば、各パラメータ(a,b,c,a,b,c)が定まり、1/3バイアス法において、電流密度が0.1MA/cm以上で、かつカットオフ比が100以上となるために障壁高さφ[eV]とy[MV/cm]が満足すべき関係が求まる。例えば、x=0.1の場合に、0.1MA/cm以上の電流密度で、かつ、当該カットオフ比が100以上となるために、非線形素子の障壁高さφとyが満足すべき関係を図20の斜線部に示す。図20の斜線部の領域は、電流密度が0.1MA/cmを満足する曲線φを上限とし、カットオフ比が100を満足する曲線φを下限とする領域である。曲線φを細い実線で示し、それを二次曲線(φ=a+by+c)としてフィッティングした結果を太い点線で示す。また、曲線φを細い実線で示し、それを二次曲線(φ=a+by+c)としてフィッティングした結果を太い点線で示す。両曲線φ、φ共に、二次曲線で十分に再現することができていることが分かる。 If x is determined from Equations 5 and 8, each parameter (a 1 , b 1 , c 1 , a 3 , b 3 , c 3 ) is determined. In the 1/3 bias method, the current density is 0.1 MA / Since it is cm 2 or more and the cut-off ratio is 100 or more, the relationship that the barrier height φ [eV] and y [MV / cm] should be satisfied is obtained. For example, when x = 0.1, the barrier density φ and y of the non-linear element should be satisfied because the current density is 0.1 MA / cm 2 or more and the cutoff ratio is 100 or more. The relationship is indicated by the hatched portion in FIG. Area of the shaded portion in FIG. 20 is a region where the current density is made the upper limit curve phi A which satisfies 0.1 MA / cm 2, the lower limit curve phi C cutoff ratio satisfies 100. Shows the curve phi A by a thin solid line shows the result of fitting it as a secondary curve (φ A = a 1 y 2 + b 1 y + c 1) by the thick dotted line. Further, the curve φ C is shown by a thin solid line, and the result of fitting it as a quadratic curve (φ C = a 3 y 2 + b 3 y + c 3 ) is shown by a thick dotted line. It can be seen that both curves φ A and φ C can be sufficiently reproduced by a quadratic curve.

従って、1/3バイアス法による書き換えにおいても、書き換え電圧VSLのうち可変抵抗素子に分圧される割合xから、満足すべき障壁高さφとVSL/dとの関係を求めることができ、当該障壁高さφとVSL/dとの関係を満足するように、書き換え電圧VSL、非線形素子に用いる絶縁体の膜厚d、障壁高さφを選択することにより、第1実施形態と同様、十分な電流駆動能力と遮断特性を有する非線形素子を有するメモリセルからなる、低消費電力で高集積のメモリセルアレイを設計することが可能になる。 Therefore, even in rewriting by the 1/3 bias method, the relationship between the satisfactory barrier height φ and V SL / d can be obtained from the ratio x of the rewriting voltage V SL divided by the variable resistance element. By selecting the rewrite voltage V SL , the film thickness d of the insulator used for the nonlinear element, and the barrier height φ so as to satisfy the relationship between the barrier height φ and V SL / d, the first embodiment Similarly to the above, it is possible to design a highly integrated memory cell array with low power consumption, which is composed of memory cells having nonlinear elements having sufficient current driving capability and cutoff characteristics.

上述の実施形態は本発明の好適な実施形態の一例である。本発明の実施形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形実施が可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention. The embodiment of the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

本発明は、不揮発性半導体記憶装置に利用可能であり、特に電圧印加によって抵抗状態が遷移し、当該遷移後の抵抗状態が不揮発的に保持される可変抵抗素子を備えてなる不揮発性半導体記憶装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a nonvolatile semiconductor memory device, and in particular, includes a variable resistance element in which a resistance state transitions due to voltage application and the resistance state after the transition is held in a nonvolatile manner. Is available.

10: 第1電極
11,32: 可変抵抗体
12: 第2電極
13: 第1導電体
14,31: 絶縁体
15: 第2導電体
20,30: ワード線
21,33: ビット線
100: 本発明に係る不揮発性半導体記憶装置(本発明装置)
101,101a〜101f: メモリセルアレイ
102: ビット線デコーダ
103: ワード線デコーダ
104: 読み出し回路
105: 電圧スイッチ回路
106: 電圧発生回路
107: 制御回路
108: 制御信号線
109: アドレス線
110: データ線
,b,c,a,b,c,a,b,c:フィッティングパラメータ
B1〜Bm: ビット線
11〜Cmn: メモリセル
d: 絶縁体の膜厚
: フェルミ準位
11〜Rmn: 可変抵抗素子
11〜Smn: 非線形素子
SL: 選択メモリセルに印加される電圧
W1〜Wn: ワード線
x: 選択メモリセルに印加される電圧VSLのうち、可変抵抗素子に分圧される割合
y: VSL/d
φ: 障壁高さ

10: first electrode 11, 32: variable resistor 12: second electrode 13: first conductor 14, 31: insulator 15: second conductor 20, 30: word line 21, 33: bit line 100: book Nonvolatile semiconductor memory device according to invention (device of the present invention)
101, 101a to 101f: Memory cell array 102: Bit line decoder 103: Word line decoder 104: Read circuit 105: Voltage switch circuit 106: Voltage generation circuit 107: Control circuit 108: Control signal line 109: Address line 110: Data line a 1 , b 1 , c 1 , a 2 , b 2 , c 2 , a 3 , b 3 , c 3 : fitting parameters B 1 to Bm: bit lines C 11 to C mn : memory cells d: film thickness E of insulator F: Fermi level R 11 to R mn: variable resistive element S 11 to S mn: nonlinear element V SL: voltage applied to the selected memory cell W1 through Wn: word line x: voltage V applied to the selected memory cell of SL, percentage is divided to the variable resistance element y: V SL / d
φ: Barrier height

Claims (11)

第1電極と、第2電極と、前記第1電極及び前記第2電極と直接接続する可変抵抗体を備え、前記第1電極と前記第2電極の間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子と、
第1導電体と第2導電体の間に絶縁体を挟持してなる非線形素子と、を備え、
前記可変抵抗素子と前記非線形素子が前記第2電極と前記第1導電体を接続することにより直列に接続されたメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、
前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、
行方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、所定の基準電位を、
行方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、前記基準電位を基準としてVSL/2[V]を、
列方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL[V]を、
列方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL/2[V]を、夫々印加し、
前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、
前記絶縁体の膜厚をd[nm]とし、
y=10×VSL/dとすると、
前記絶縁体の伝導帯の底のエネルギーと、前記第1導電体と前記第2導電体の少なくとも何れか一方のフェルミ準位とのエネルギー差[eV]が、a+by+c以下で、かつ、a+by+c以上であり、
=−3.09×10−3(1−x)
=1.32×10−1(1−x)、
=4.10×10−2
=−8.83×10−3+1.70×10−5+5.94×10−4x−2.31×10−3
=4.94×10−1+3.53×10−2+5.87×10−2x+7.54×10−2
=7.62×10−1+5.03×10−2+9.24×10−2x+4.97×10−2
であることを特徴とする不揮発性半導体記憶装置。
A first electrode; a second electrode; and a variable resistor directly connected to the first electrode and the second electrode, wherein a resistance state is obtained by applying a voltage between the first electrode and the second electrode. A variable resistance element that transitions between two or more different states, and one resistance state after the transition is held in a nonvolatile manner;
A non-linear element comprising an insulator sandwiched between a first conductor and a second conductor,
A memory cell array in which a plurality of memory cells in which the variable resistance element and the nonlinear element are connected in series by connecting the second electrode and the first conductor are arranged in a matrix in the row and column directions, respectively. A non-volatile semiconductor memory device comprising:
When selecting a selected memory cell to be rewritten from among the memory cells in the memory cell array, and rewriting information stored in the selected memory cell,
A predetermined reference potential is applied to either the first electrode or the second conductor of the memory cell selected in the row direction.
V SL / 2 [V] with respect to the reference potential is applied to either the first electrode or the second conductor of the memory cell that is not selected in the row direction.
V SL [V] with reference to the reference potential is applied to either the first electrode or the second conductor of the memory cell selected in the column direction.
V SL / 2 [V] is applied to either the first electrode or the second conductor of the memory cell that is not selected in the column direction with respect to the reference potential,
Of the absolute value V SL of the rewrite voltage applied between the first electrode and the second conductor of the selected memory cell, the ratio of the voltage applied to the variable resistance element is x,
The insulator film thickness is d [nm],
If y = 10 × V SL / d,
The energy difference [eV] between the energy at the bottom of the conduction band of the insulator and the Fermi level of at least one of the first conductor and the second conductor is a 1 y 2 + b 1 y + c 1 or less. And a 2 y 2 + b 2 y + c 2 or more,
a 1 = −3.09 × 10 −3 (1-x) 2 ,
b 1 = 1.32 × 10 −1 (1-x),
c 1 = 4.10 × 10 −2 ,
a 2 = −8.83 × 10 −3 x 3 + 1.70 × 10 −5 x 2 + 5.94 × 10 −4 x−2.31 × 10 −3 ,
b 2 = 4.94 × 10 −1 x 3 + 3.53 × 10 −2 x 2 + 5.87 × 10 −2 x + 7.54 × 10 −2 ,
c 2 = 7.62 × 10 −1 x 3 + 5.03 × 10 −2 x 2 + 9.24 × 10 −2 x + 4.97 × 10 −2 ,
A non-volatile semiconductor memory device characterized by the above.
第1電極と、第2電極と、前記第1電極と直接及び前記第2電極と絶縁体を介して間接に接続する可変抵抗体を備え、前記第1電極と前記第2電極間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子を有するメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、
前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、
行方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか一方に、所定の基準電位を、
行方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか一方に、前記基準電位を基準としてVSL/2[V]を、
列方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL[V]を、
列方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL/2[V]を、夫々印加し、
前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、
前記絶縁体の膜厚をd[nm]とし、
y=10×VSL/dとすると、
前記絶縁体の伝導帯の底のエネルギーと前記第2電極のフェルミ準位とのエネルギー差[eV]、或いは、前記絶縁体の伝導帯の底と前記可変抵抗体の伝導帯の底とのエネルギー差[eV]の少なくとも何れか一方が、a+by+c以下で、かつ、a+by+c以上であり、
=−3.09×10−3(1−x)
=1.32×10−1(1−x)、
=4.10×10−2
=−8.83×10−3+1.70×10−5+5.94×10−4x−2.31×10−3
=4.94×10−1+3.53×10−2+5.87×10−2x+7.54×10−2
=7.62×10−1+5.03×10−2+9.24×10−2x+4.97×10−2
であることを特徴とする不揮発性半導体記憶装置。
A variable resistor that is directly connected to the first electrode, the second electrode, and the first electrode and indirectly to the second electrode via an insulator, and a voltage is applied between the first electrode and the second electrode; When applied, the resistance state transitions between two or more different states, and a plurality of memory cells having variable resistance elements in which one resistance state after the transition is held in a non-volatile manner, respectively in a row and column direction. A non-volatile semiconductor memory device having a memory cell array arranged in
When selecting a selected memory cell to be rewritten from among the memory cells in the memory cell array, and rewriting information stored in the selected memory cell,
A predetermined reference potential is applied to either the first electrode or the second electrode of the memory cell selected in the row direction.
V SL / 2 [V] with respect to the reference potential is applied to either the first electrode or the second electrode of the memory cell that is not selected in the row direction.
V SL [V] with respect to the reference potential is applied to either the first electrode or the second electrode of the memory cell selected in the column direction.
V SL / 2 [V] is applied to either the first electrode or the second electrode of the memory cell that is not selected in the column direction with reference to the reference potential,
Of the absolute value V SL of the rewrite voltage applied between the first electrode and the second conductor of the selected memory cell, the ratio of the voltage applied to the variable resistance element is x,
The insulator film thickness is d [nm],
If y = 10 × V SL / d,
Energy difference [eV] between the energy of the bottom of the conduction band of the insulator and the Fermi level of the second electrode, or the energy of the bottom of the conduction band of the insulator and the bottom of the conduction band of the variable resistor At least one of the differences [eV] is a 1 y 2 + b 1 y + c 1 or less and a 2 y 2 + b 2 y + c 2 or more,
a 1 = −3.09 × 10 −3 (1-x) 2 ,
b 1 = 1.32 × 10 −1 (1-x),
c 1 = 4.10 × 10 −2 ,
a 2 = −8.83 × 10 −3 x 3 + 1.70 × 10 −5 x 2 + 5.94 × 10 −4 x−2.31 × 10 −3 ,
b 2 = 4.94 × 10 −1 x 3 + 3.53 × 10 −2 x 2 + 5.87 × 10 −2 x + 7.54 × 10 −2 ,
c 2 = 7.62 × 10 −1 x 3 + 5.03 × 10 −2 x 2 + 9.24 × 10 −2 x + 4.97 × 10 −2 ,
A non-volatile semiconductor memory device characterized by the above.
第1電極と、第2電極と、前記第1電極及び前記第2電極と直接接続する可変抵抗体を備え、前記第1電極と前記第2電極の間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子と、
第1導電体と第2導電体の間に絶縁体を挟持してなる非線形素子と、を備え、
前記可変抵抗素子と前記非線形素子が前記第2電極と前記第1導電体を接続することにより直列に接続されたメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、
前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、
行方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、所定の基準電位を、
行方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか一方に、前記基準電位を基準としてVSL×2/3[V]を、
列方向に選択された前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL[V]を、
列方向に非選択の前記メモリセルの前記第1電極または前記第2導電体の何れか他方に、前記基準電位を基準としてVSL/3[V]を、夫々印加し、
前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、
前記絶縁体の膜厚をd[nm]とし、
y=10×VSL/dとすると、
前記絶縁体の伝導帯の底のエネルギーと、前記第1導電体と前記第2導電体の少なくとも何れか一方のフェルミ準位とのエネルギー差[eV]が、a+by+c以下で、かつ、a+by+c以上であり、
=−3.09×10−3(1−x)
=1.32×10−1(1−x)、
=4.10×10−2
=−1.84×10−3+6.81×10−4+4.99×10−4x−1.20×10−3
=2.26×10−1−7.02×10−2+3.20×10−2x+3.89×10−2
=5.23×10−1−1.48×10−1+6.40×10−2x+2.54×10−2
であることを特徴とする不揮発性半導体記憶装置。
A first electrode; a second electrode; and a variable resistor directly connected to the first electrode and the second electrode, wherein a resistance state is obtained by applying a voltage between the first electrode and the second electrode. A variable resistance element that transitions between two or more different states, and one resistance state after the transition is held in a nonvolatile manner;
A non-linear element comprising an insulator sandwiched between a first conductor and a second conductor,
A memory cell array in which a plurality of memory cells in which the variable resistance element and the nonlinear element are connected in series by connecting the second electrode and the first conductor are arranged in a matrix in the row and column directions, respectively. A non-volatile semiconductor memory device comprising:
When selecting a selected memory cell to be rewritten from among the memory cells in the memory cell array, and rewriting information stored in the selected memory cell,
A predetermined reference potential is applied to either the first electrode or the second conductor of the memory cell selected in the row direction.
V SL × 2/3 [V] is applied to either the first electrode or the second conductor of the memory cell that is not selected in the row direction with reference to the reference potential.
V SL [V] with reference to the reference potential is applied to either the first electrode or the second conductor of the memory cell selected in the column direction.
V SL / 3 [V] is applied to either the first electrode or the second conductor of the memory cell that is not selected in the column direction with reference to the reference potential,
Of the absolute value V SL of the rewrite voltage applied between the first electrode and the second conductor of the selected memory cell, the ratio of the voltage applied to the variable resistance element is x,
The insulator film thickness is d [nm],
If y = 10 × V SL / d,
The energy difference [eV] between the energy at the bottom of the conduction band of the insulator and the Fermi level of at least one of the first conductor and the second conductor is a 1 y 2 + b 1 y + c 1 or less. And a 3 y 2 + b 3 y + c 3 or more,
a 1 = −3.09 × 10 −3 (1-x) 2 ,
b 1 = 1.32 × 10 −1 (1-x),
c 1 = 4.10 × 10 −2 ,
a 3 = −1.84 × 10 −3 x 3 + 6.81 × 10 −4 x 2 + 4.99 × 10 −4 x−1.20 × 10 −3 ,
b 3 = 2.26 × 10 −1 x 3 −7.02 × 10 −2 x 2 + 3.20 × 10 −2 x + 3.89 × 10 −2 ,
c 3 = 5.23 × 10 −1 x 3 −1.48 × 10 −1 x 2 + 6.40 × 10 −2 x + 2.54 × 10 −2 ,
A non-volatile semiconductor memory device characterized by the above.
第1電極と、第2電極と、前記第1電極と直接及び前記第2電極と絶縁体を介して間接に接続する可変抵抗体を備え、前記第1電極と前記第2電極間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子を有するメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、
前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、
行方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか一方に、所定の基準電位を、
行方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか一方に、前記基準電位を基準としてVSL×2/3[V]を、
列方向に選択された前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL[V]を、
列方向に非選択の前記メモリセルの前記第1電極または前記第2電極の何れか他方に、前記基準電位を基準としてVSL/3[V]を、夫々印加し、
前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値VSLのうち、前記可変抵抗素子に印加される電圧の割合をxとし、
前記絶縁体の膜厚をd[nm]とし、
y=10×VSL/dとすると、
前記絶縁体の伝導帯の底のエネルギーと前記第2電極のフェルミ準位とのエネルギー差[eV]、或いは、前記絶縁体の伝導帯の底と前記可変抵抗体の伝導帯の底とのエネルギー差[eV]の少なくとも何れか一方が、a+by+c以下で、かつ、a+by+c以上であり、
=−3.09×10−3(1−x)
=1.32×10−1(1−x)、
=4.10×10−2
=−1.84×10−3+6.81×10−4+4.99×10−4x−1.20×10−3
=2.26×10−1−7.02×10−2+3.20×10−2x+3.89×10−2
=5.23×10−1−1.48×10−1+6.40×10−2x+2.54×10−2
であることを特徴とする不揮発性半導体記憶装置。
A variable resistor that is directly connected to the first electrode, the second electrode, and the first electrode and indirectly to the second electrode via an insulator, and a voltage is applied between the first electrode and the second electrode; When applied, the resistance state transitions between two or more different states, and a plurality of memory cells having variable resistance elements in which one resistance state after the transition is held in a non-volatile manner, respectively in a row and column direction. A non-volatile semiconductor memory device having a memory cell array arranged in
When selecting a selected memory cell to be rewritten from among the memory cells in the memory cell array, and rewriting information stored in the selected memory cell,
A predetermined reference potential is applied to either the first electrode or the second electrode of the memory cell selected in the row direction.
V SL × 2/3 [V] is applied to either the first electrode or the second electrode of the memory cell that is not selected in the row direction with reference to the reference potential.
V SL [V] with respect to the reference potential is applied to either the first electrode or the second electrode of the memory cell selected in the column direction.
V SL / 3 [V] is applied to either the first electrode or the second electrode of the memory cell that is not selected in the column direction with reference to the reference potential,
Of the absolute value V SL of the rewrite voltage applied between the first electrode and the second conductor of the selected memory cell, the ratio of the voltage applied to the variable resistance element is x,
The insulator film thickness is d [nm],
If y = 10 × V SL / d,
Energy difference [eV] between the energy of the bottom of the conduction band of the insulator and the Fermi level of the second electrode, or the energy of the bottom of the conduction band of the insulator and the bottom of the conduction band of the variable resistor At least one of the differences [eV] is a 1 y 2 + b 1 y + c 1 or less and a 3 y 2 + b 3 y + c 3 or more,
a 1 = −3.09 × 10 −3 (1-x) 2 ,
b 1 = 1.32 × 10 −1 (1-x),
c 1 = 4.10 × 10 −2 ,
a 3 = −1.84 × 10 −3 x 3 + 6.81 × 10 −4 x 2 + 4.99 × 10 −4 x−1.20 × 10 −3 ,
b 3 = 2.26 × 10 −1 x 3 −7.02 × 10 −2 x 2 + 3.20 × 10 −2 x + 3.89 × 10 −2 ,
c 3 = 5.23 × 10 −1 x 3 −1.48 × 10 −1 x 2 + 6.40 × 10 −2 x + 2.54 × 10 −2 ,
A non-volatile semiconductor memory device characterized by the above.
(1−x)VSL/dが1以下であることを特徴とする請求項1〜4の何れか一項に記載の不揮発性半導体記憶装置。 (1-x) VSL / d is 1 or less, The non-volatile semiconductor memory device as described in any one of Claims 1-4 characterized by the above-mentioned. 第1電極と、第2電極と、前記第1電極及び前記第2電極と直接接続する可変抵抗体を備え、前記第1電極と前記第2電極の間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子と、
第1導電体と第2導電体の間に絶縁体を挟持してなる非線形素子と、が前記第2電極と前記第1導電体を接続することにより直列に接続されたメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、
前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、
前記選択メモリセルの前記第1電極と前記第2導電体間に印加される書き換え電圧の絶対値をVSL[V]、
前記絶縁体の膜厚をd[nm]とすると、
前記絶縁体の伝導帯の底のエネルギーと、前記第1導電体と前記第2導電体の少なくとも何れか一方のフェルミ準位とのエネルギー差[eV]が、(0.5VSL/d+0.1)以上で、かつ、(VSL/d+0.1)以下であることを特徴とする不揮発性半導体記憶装置。
A first electrode; a second electrode; and a variable resistor directly connected to the first electrode and the second electrode, wherein a resistance state is obtained by applying a voltage between the first electrode and the second electrode. A variable resistance element that transitions between two or more different states, and one resistance state after the transition is held in a nonvolatile manner;
A plurality of memory cells, each of which is connected in series by connecting the second electrode and the first conductor, and a non-linear element having an insulator sandwiched between the first conductor and the second conductor. A non-volatile semiconductor memory device having a memory cell array arranged in a matrix in the row and column directions,
When selecting a selected memory cell to be rewritten from among the memory cells in the memory cell array, and rewriting information stored in the selected memory cell,
An absolute value of a rewrite voltage applied between the first electrode and the second conductor of the selected memory cell is expressed as V SL [V],
When the film thickness of the insulator is d [nm],
The energy difference [eV] between the energy at the bottom of the conduction band of the insulator and the Fermi level of at least one of the first conductor and the second conductor is (0.5 V SL /d+0.1 A non-volatile semiconductor memory device characterized in that it is not less than (V SL /d+0.1).
第1電極と、第2電極と、前記第1電極と直接及び前記第2電極と絶縁体を介して間接に接続する可変抵抗体を備え、前記第1電極と前記第2電極間に電圧を印加することにより抵抗状態が二以上の異なる状態間で遷移し、当該遷移後の一の抵抗状態が不揮発的に保持される可変抵抗素子を有するメモリセルを複数、夫々行及び列方向にマトリクス状に配置してなるメモリセルアレイを有する不揮発性半導体記憶装置であって、
前記メモリセルアレイ内の前記メモリセルの中から書き換え対象の選択メモリセルを選択し、前記選択メモリセルに記憶されている情報の書き換えを行う際に、
前記選択メモリセルの前記第1電極と前記第2電極間に印加される書き換え電圧の絶対値をVSL[V]、
前記絶縁体の膜厚をd[nm]とすると、
前記絶縁体の伝導帯の底のエネルギーと前記第2電極のフェルミ準位とのエネルギー差[eV]、或いは、前記絶縁体の伝導帯の底と前記可変抵抗体の伝導帯の底とのエネルギー差[eV]の少なくとも何れか一方が、(0.5VSL/d+0.1)以上で、かつ、(VSL/d+0.1)以下であることを特徴とする不揮発性半導体記憶装置。
A variable resistor that is directly connected to the first electrode, the second electrode, and the first electrode and indirectly to the second electrode via an insulator, and a voltage is applied between the first electrode and the second electrode; When applied, the resistance state transitions between two or more different states, and a plurality of memory cells having variable resistance elements in which one resistance state after the transition is held in a non-volatile manner, respectively in a row and column direction. A non-volatile semiconductor memory device having a memory cell array arranged in
When selecting a selected memory cell to be rewritten from among the memory cells in the memory cell array, and rewriting information stored in the selected memory cell,
The absolute value of the rewrite voltage applied between the first electrode and the second electrode of the selected memory cell is expressed as V SL [V],
When the film thickness of the insulator is d [nm],
Energy difference [eV] between the energy of the bottom of the conduction band of the insulator and the Fermi level of the second electrode, or the energy of the bottom of the conduction band of the insulator and the bottom of the conduction band of the variable resistor A nonvolatile semiconductor memory device, wherein at least one of the differences [eV] is not less than (0.5 V SL /d+0.1) and not more than (V SL /d+0.1).
SL/dが1以下であることを特徴とする請求項6又は7の何れか一項に記載の不揮発性半導体記憶装置。 8. The nonvolatile semiconductor memory device according to claim 6, wherein V SL / d is 1 or less. 前記絶縁体の膜厚dが5nm以下であることを特徴とする請求項1〜8の何れか一項に記載の不揮発性半導体記憶装置。   The nonvolatile semiconductor memory device according to claim 1, wherein a thickness d of the insulator is 5 nm or less. 前記第1導電体と前記第2導電体が同一の材料で構成されることを特徴とする請求項1〜9の何れか一項に記載の不揮発性半導体記憶装置。   The nonvolatile semiconductor memory device according to claim 1, wherein the first conductor and the second conductor are made of the same material. 前記絶縁体のバンドギャップが5eV以上であることを特徴とする請求項1〜10の何れか一項に記載の不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 1, wherein a band gap of the insulator is 5 eV or more.
JP2010092101A 2009-09-25 2010-04-13 Nonvolatile semiconductor memory device Expired - Fee Related JP5406782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092101A JP5406782B2 (en) 2009-09-25 2010-04-13 Nonvolatile semiconductor memory device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009221313 2009-09-25
JP2009221313 2009-09-25
JP2010092101A JP5406782B2 (en) 2009-09-25 2010-04-13 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JP2011090758A true JP2011090758A (en) 2011-05-06
JP5406782B2 JP5406782B2 (en) 2014-02-05

Family

ID=44108869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092101A Expired - Fee Related JP5406782B2 (en) 2009-09-25 2010-04-13 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP5406782B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534720A (en) * 2012-08-31 2015-12-03 マイクロン テクノロジー, インク. 3D memory array architecture
KR20160082488A (en) * 2014-12-31 2016-07-08 크로스바, 인크. Two-terminal memory electrode comprising a non-continuous contact surface
US9595667B2 (en) 2012-08-31 2017-03-14 Micron Technology, Inc. Three dimensional memory array architecture
KR20170092070A (en) * 2016-02-02 2017-08-10 에스케이하이닉스 주식회사 switching device, resistive random access memory, method of fabricating switching device and resistive random access memory
US10461125B2 (en) 2017-08-29 2019-10-29 Micron Technology, Inc. Three dimensional memory arrays
CN110832640A (en) * 2017-06-27 2020-02-21 株式会社半导体能源研究所 Semiconductor device, semiconductor wafer, memory device, and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741764B1 (en) * 2016-02-22 2017-08-22 Samsung Electronics Co., Ltd. Memory device including ovonic threshold switch adjusting threshold voltage thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203098A (en) * 2005-01-24 2006-08-03 Sharp Corp Non-volatile semiconductor storage device
JP2008021750A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Resistance change element, method for manufacturing the same, and resistance change memory using the same element
WO2008117494A1 (en) * 2007-03-22 2008-10-02 Panasonic Corporation Storage element and storage device
WO2009011113A1 (en) * 2007-07-18 2009-01-22 Panasonic Corporation Current limiting element, memory device using current limiting element and method for manufacturing memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203098A (en) * 2005-01-24 2006-08-03 Sharp Corp Non-volatile semiconductor storage device
JP2008021750A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Resistance change element, method for manufacturing the same, and resistance change memory using the same element
WO2008117494A1 (en) * 2007-03-22 2008-10-02 Panasonic Corporation Storage element and storage device
WO2009011113A1 (en) * 2007-07-18 2009-01-22 Panasonic Corporation Current limiting element, memory device using current limiting element and method for manufacturing memory device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595667B2 (en) 2012-08-31 2017-03-14 Micron Technology, Inc. Three dimensional memory array architecture
JP2015534720A (en) * 2012-08-31 2015-12-03 マイクロン テクノロジー, インク. 3D memory array architecture
US9444046B2 (en) 2012-08-31 2016-09-13 Micron Technology, Inc. Three dimensional memory array architecture
KR102541292B1 (en) * 2014-12-31 2023-06-09 크로스바, 인크. Two-terminal memory electrode comprising a non-continuous contact surface
KR20160082488A (en) * 2014-12-31 2016-07-08 크로스바, 인크. Two-terminal memory electrode comprising a non-continuous contact surface
KR20170092070A (en) * 2016-02-02 2017-08-10 에스케이하이닉스 주식회사 switching device, resistive random access memory, method of fabricating switching device and resistive random access memory
KR102474303B1 (en) * 2016-02-02 2022-12-06 에스케이하이닉스 주식회사 switching device, resistive random access memory, method of fabricating switching device and resistive random access memory
CN110832640A (en) * 2017-06-27 2020-02-21 株式会社半导体能源研究所 Semiconductor device, semiconductor wafer, memory device, and electronic apparatus
US11682667B2 (en) 2017-06-27 2023-06-20 Semiconductor Energy Laboratory Co., Ltd. Memory cell including cell transistor including control gate and charge accumulation layer
CN110832640B (en) * 2017-06-27 2023-12-08 株式会社半导体能源研究所 Semiconductor device, semiconductor wafer, memory device, and electronic apparatus
US10461125B2 (en) 2017-08-29 2019-10-29 Micron Technology, Inc. Three dimensional memory arrays
US10937829B2 (en) 2017-08-29 2021-03-02 Micron Technology, Inc. Three dimensional memory arrays
US11765912B2 (en) 2017-08-29 2023-09-19 Micron Technology, Inc. Three dimensional memory arrays

Also Published As

Publication number Publication date
JP5406782B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5028011B2 (en) Nonvolatile memory device including two types of resistors
JP4981304B2 (en) Nonvolatile memory element and nonvolatile memory element array having one resistor and one diode
US8525142B2 (en) Non-volatile variable resistance memory device and method of fabricating the same
US9208873B2 (en) Non-volatile storage system biasing conditions for standby and first read
KR102488896B1 (en) switch element and memory
JP5406782B2 (en) Nonvolatile semiconductor memory device
JP6151650B2 (en) Storage device
JP4981302B2 (en) Nonvolatile memory element, nonvolatile memory element array, and method of operating nonvolatile memory element array
JP5186634B2 (en) Nonvolatile semiconductor memory device
US8586978B2 (en) Non-volatile memory device including diode-storage node and cross-point memory array including the non-volatile memory device
JP6750507B2 (en) Select element, memory cell, and storage device
KR20110081623A (en) Semiconductor devices and method of driving the same
US20080211036A1 (en) Bipolar Resistive Memory Device Having Tunneling Layer
US20130043451A1 (en) Nonvolatile Memory Elements And Memory Devices Including The Same
JP2005317976A (en) Memory device utilizing multilayer structure with stepwise resistance value
CN104520995A (en) 3D memory having vertical switches with surround gates and method thereof
US9978941B2 (en) Self-rectifying resistive random access memory cell structure
CN103890943B (en) Memristor element based on hetero-junctions oxide
JP2004158804A (en) Nonvolatile variable resistor element, storage device and method for scaling the nonvolatile variable resistor element
US8760920B2 (en) Semiconductor memory device integrating flash memory and resistive/magnetic memory
JP2015018994A (en) Nonvolatile semiconductor storage device
KR20090001397A (en) Method for recording resistance switching element, method for manufacturing resistance switching element and resistance switching element having the same
US10878872B2 (en) Random access memory
JP6092696B2 (en) Memory cell using variable resistance element
CN112306399A (en) Memory cell, memory device and methods of use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

LAPS Cancellation because of no payment of annual fees