JP2011089872A - Method of estimating corrosion rate, and corrosion rate estimating device - Google Patents

Method of estimating corrosion rate, and corrosion rate estimating device Download PDF

Info

Publication number
JP2011089872A
JP2011089872A JP2009243226A JP2009243226A JP2011089872A JP 2011089872 A JP2011089872 A JP 2011089872A JP 2009243226 A JP2009243226 A JP 2009243226A JP 2009243226 A JP2009243226 A JP 2009243226A JP 2011089872 A JP2011089872 A JP 2011089872A
Authority
JP
Japan
Prior art keywords
corrosion rate
test material
metal
metal plates
rate estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009243226A
Other languages
Japanese (ja)
Inventor
Hiroyuki Saito
博之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009243226A priority Critical patent/JP2011089872A/en
Publication of JP2011089872A publication Critical patent/JP2011089872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of estimating corrosion rate and a corrosion rate estimating device for estimating the corrosion rate in a gap of a metal. <P>SOLUTION: The corrosion rate estimating device includes a test material 11, where two metal plates of which an insulation film on one surface has been removed are disposed at a prescribed interval so that one surface of one metal plate mutually faces that of the other metal plate; an electrochemical impedance measuring means 12 of acquiring the impedance of the test material from the response of an electric signal applied between the metal plates of the test material 11; and a calculation means 13 of calculating the polarization resistance of the metal plates, from the impedance of the test material 11 acquired by the electrochemical impedance measuring means 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属の腐食速度を推定する方法及びその装置に関する。   The present invention relates to a method and apparatus for estimating the corrosion rate of a metal.

金属材料の腐食速度を推計する方法として、金属をひとつの電極として水溶液中に曝露し、銀/塩化銀電極などの参照電極との間を一定の電位差に保って、他の任意の電極(対極)との間に電流の応答を測定する方法が存在する(例えば、非特許文献1を参照。)。この方法は電気化学インピーダンス測定と呼ばれる。図1にみられるように、金属と水溶液の界面は水分子が凝集・配向・吸着して電気二重層を形成しており、金属表面から金属原子が正イオンとなるときには抵抗(分極抵抗)をうけ、正イオンが沖合に移動する際には、さらに抵抗(溶液抵抗)をうける。このような伝導機構をモデル化すると図2のような等価回路が得られることが知られている(例えば、非特許文献2を参照。)。   As a method for estimating the corrosion rate of a metal material, the metal is exposed to an aqueous solution as one electrode and kept at a constant potential difference with a reference electrode such as a silver / silver chloride electrode. ) (See Non-Patent Document 1, for example). This method is called electrochemical impedance measurement. As shown in FIG. 1, water molecules aggregate, align and adsorb at the interface between the metal and aqueous solution to form an electric double layer. When metal atoms become positive ions from the metal surface, the resistance (polarization resistance) is reduced. When positive ions move offshore, they are further subjected to resistance (solution resistance). It is known that when such a conduction mechanism is modeled, an equivalent circuit as shown in FIG. 2 is obtained (see, for example, Non-Patent Document 2).

図2の等価回路において分極抵抗は腐食により金属がイオンとして失われる際の抵抗であるから、その逆数が腐食速度に比例することになる。金属のイオンの価数が既知の場合、当初に与える電圧を決めておけば、分極抵抗と電圧の値から金属がイオンになって流れる電流の値を計算することができる。この電流は、腐食により金属がイオンとして失われる際に流れる電流であり、腐食速度を示している。   In the equivalent circuit of FIG. 2, the polarization resistance is a resistance when a metal is lost as an ion due to corrosion, and its inverse is proportional to the corrosion rate. If the valence of a metal ion is known, if the voltage to be initially applied is determined, the value of the current that flows when the metal becomes an ion can be calculated from the value of the polarization resistance and the voltage. This current is a current that flows when metal is lost as ions due to corrosion, and indicates the corrosion rate.

それゆえ、金属材料の腐食速度を推計するためには、金属をひとつの電極として水溶液(例えば、水酸化ナトリウム水溶液)中に曝露し、他の任意の電極との間に電圧を印加して電流の応答を測定し、その応答から図2の分極抵抗の値を求めればよい。例えば、印加する電流を交流とし、その周波数を徐々に変化させる。周波数が小さい状態、望ましくは直流電流では、電気工学の交流回路理論から知られるように、電気二重層の容量成分は電流を流すのに寄与しない。これに対して、周波数を十分に大きくすると電気二重層容量が交流電流を流すようになる。そこで、周波数を変化させて交流を印加して電流応答を解析することにより、図2の等価回路から電気二重層容量Cと分極抵抗Rpを特定することができる。従来、このような方法で分極抵抗の値を求め、腐食速度を推計していた。   Therefore, in order to estimate the corrosion rate of a metallic material, the metal is exposed as an electrode in an aqueous solution (for example, an aqueous sodium hydroxide solution), and a voltage is applied between any other electrode and the current is applied. 2 is measured, and the value of the polarization resistance in FIG. 2 may be obtained from the response. For example, the applied current is AC and the frequency is gradually changed. In a low frequency state, preferably a direct current, the capacitance component of the electric double layer does not contribute to the flow of current, as is known from the AC circuit theory of electrical engineering. On the other hand, when the frequency is sufficiently increased, the electric double layer capacitance causes an alternating current to flow. Therefore, the electric double layer capacitance C and the polarization resistance Rp can be specified from the equivalent circuit of FIG. 2 by analyzing the current response by changing the frequency and applying alternating current. Conventionally, the value of polarization resistance was obtained by such a method, and the corrosion rate was estimated.

株式会社東陽テクニカホームページ「電気化学測定概説」“http://www.toyo.co.jp/solartron/qa.html” (2009年8月10日検索)Toyo Technica, Inc. “Electrochemical Measurement Overview” “http://www.toyo.co.jp/solartron/qa.html” (searched on August 10, 2009) 齋藤博之「鉄筋コンクリート柱の耐久性劣化対策」平成20年度ウェザリング技術研究成果発表会テキスト,pp.75−85(2008)Hiroyuki Saito “Durability degradation measures for reinforced concrete columns” 2008 weathering technology research results presentation text, pp. 75-85 (2008)

前述のように、金属が一般の平面にあるときの腐食速度は推計することができた。しかし、近年問題となってきているのは、貼紙や構造物・ボルトの隙間などで、部分的に金属が早期に腐食する現象である。図3は、隙間部分の大きさ(すきま半径等)により、相対湿度が100%の露点に達しなくても金属表面に水膜ができることを説明する図である。部分的に金属が早期に腐食する現象を解析するためには、どのような湿度でどの程度の腐食速度になるのか、ということを明確にする必要がある。   As described above, the corrosion rate when the metal is in a general plane could be estimated. However, what has become a problem in recent years is a phenomenon in which metal partially corrodes prematurely due to gaps between papers, structures and bolts. FIG. 3 is a diagram for explaining that a water film is formed on the metal surface even if the relative humidity does not reach the dew point of 100% due to the size of the gap portion (gap radius or the like). In order to analyze the phenomenon in which metal partially corrodes at an early stage, it is necessary to clarify what corrosion rate is obtained at what humidity.

図4及び図5は、図3のすきま腐食が生じる理由を説明する図である。図4にあるようにすきまの部分での蒸気圧をPとすると、水の表面張力の大きさが無視できない範囲で毛管凝縮の作用があるときには、水がhだけ毛細管を昇ることになる。表面張力のつりあいは図5のとおりである。そこで、このような関係のつりあいを計算すると、
(数式1)
/P=(1−V(l)/RT)(2γ/r)
となる。ここで、Pは大気圧、V(l)は水(液体状態)のモル体積、Rは気体定数、Tは室温(絶対温度ケルビンKで測定)、γは水の表面張力、rは毛細管の半径である。
4 and 5 are diagrams for explaining the reason why the crevice corrosion of FIG. 3 occurs. When the vapor pressure in the region of the gap and P r as in Figure 4, when a range where the magnitude of the surface tension of water can not be neglected is the action of capillary condensation would water rises the capillary only h. The balance of surface tension is as shown in FIG. So, if you calculate the balance of these relationships,
(Formula 1)
P r / P 0 = (1−V (1) / RT) (2γ / r)
It becomes. Here, P 0 is atmospheric pressure, V (l) is the molar volume of water (liquid state), R is a gas constant, T is room temperature (measured in absolute temperature Kelvin K), γ is the surface tension of water, and r is a capillary tube Is the radius.

このうちで、Pとr以外は定数であるので、すきまの径rですきま部分での蒸気圧が決まることになる。数式1を図式化したものが図3である。 Among these, since the constants other than Pr and r are constants, the vapor pressure in the gap portion is determined by the gap diameter r. FIG. 3 is a schematic representation of Equation 1.

図3を参照すると、すきまが1μm程度では相対湿度98%程度の蒸気でも水膜を生じ、それ以下の大きさのすきまになると相対湿度がより小さい状況でも水膜を生じることがわかる。すなわち、このような小さなすきまが存在する場合、その部分が露点以下で水膜を生じて早期の腐食故障を生じていると考えられる。   Referring to FIG. 3, it can be seen that a water film is formed even with steam having a relative humidity of about 98% when the clearance is about 1 μm, and a water film is formed even when the relative humidity is smaller when the clearance is smaller than that. That is, when such a small clearance exists, it is considered that the portion forms a water film below the dew point and causes an early corrosion failure.

しかし、このような小さなすきまでは、結露の様子を調べること、その部分に参照電極を設置して電位差を制御すること、及び対極を挿入して電流をながすことは困難であり、このような隙間部分の腐食状況を確認することが難しいという課題があった。   However, with such a small gap, it is difficult to examine the state of condensation, to install a reference electrode in that part to control the potential difference, and to insert a counter electrode to reduce the current. There was a problem that it was difficult to confirm the corrosion status of the part.

この課題を解決するために、本発明は、金属のすきま部分での腐食速度を推定することができる腐食速度推定方法及び腐食速度推定装置を提供することを目的とする。   In order to solve this problem, an object of the present invention is to provide a corrosion rate estimation method and a corrosion rate estimation apparatus capable of estimating a corrosion rate at a gap portion of a metal.

上記目的を達成するために、本発明に係る腐食速度推定方法及び腐食速度推定装置は、外部に電圧電流を取り出す配線を取り付けた金属板2枚を対とし、間に絶縁物のスペーサを挿入して2枚の金属板の間に所望の隙間を形成した試験材を用いることとした。この試験材を所定の温度・湿度に所定時間曝露した後、交流電圧を印加して、電流応答の周波数特性を測定し、その測定結果から分極抵抗を求めることとした。   In order to achieve the above object, a corrosion rate estimation method and a corrosion rate estimation apparatus according to the present invention are a pair of two metal plates with wiring for taking out voltage current to the outside, and an insulating spacer is inserted between them. The test material in which a desired gap was formed between the two metal plates was used. After this test material was exposed to a predetermined temperature and humidity for a predetermined time, an AC voltage was applied to measure the frequency characteristics of the current response, and the polarization resistance was obtained from the measurement result.

具体的には、本発明に係る腐食速度推定方法は、1の面の絶縁膜を除去した2枚の金属板を所定間隔で前記1の面が向き合うように配置した試験材に対し、前記金属板間に印加し、電気信号の応答から前記試験材のインピーダンスを取得する電気化学インピーダンス測定手順と、前記電気化学インピーダンス測定手順の後、前記試験材のインピーダンスから前記金属板の分極抵抗を算出する算出手順と、を行う。   Specifically, in the corrosion rate estimation method according to the present invention, the metal is applied to a test material in which two metal plates from which an insulating film on one surface is removed are arranged so that the one surface faces at a predetermined interval. After applying the electrochemical impedance measurement procedure to obtain the impedance of the test material from the response of the electrical signal applied between the plates, and the electrochemical impedance measurement procedure, the polarization resistance of the metal plate is calculated from the impedance of the test material And a calculation procedure.

本発明に係る腐食速度推定装置は、1の面の絶縁膜を除去した2枚の金属板を所定間隔で前記1の面が向き合うように配置した試験材と、前記試験材の前記金属板間に印加した電気信号の応答から前記試験材のインピーダンスを取得する電気化学インピーダンス測定手段と、前記電気化学インピーダンス測定手段が取得した前記試験材のインピーダンスから前記金属板の分極抵抗を算出する算出手段と、を備える。   The corrosion rate estimation apparatus according to the present invention includes a test material in which two metal plates from which an insulating film on one surface is removed are arranged so that the one surface faces each other at a predetermined interval, and between the metal plates of the test material. An electrochemical impedance measuring means for obtaining an impedance of the test material from a response of an electrical signal applied to the electronic signal; a calculating means for calculating a polarization resistance of the metal plate from the impedance of the test material obtained by the electrochemical impedance measuring means; .

同一の金属板2枚を使用して所望のすきまを作製し、水溶液中で2枚の金属板間に印加した電圧に対する電流応答であるインピーダンスを測定する。   A desired gap is produced using two identical metal plates, and an impedance which is a current response to a voltage applied between the two metal plates in an aqueous solution is measured.

このとき、各金属板上で生じる腐食は同じとみなせるので、その等価回路は図6のように図2の等価回路を直列につないだものとなる。すなわち、図6の回路は図2の回路の分極抵抗Rp、溶液抵抗Rs、及び電気二重層容量Cがそれぞれ2倍になったものとみなせる。測定したインピーダンスの結果をコールコールプロットし、カーブフィッティングによって図6の分極抵抗を求めることができる。   At this time, since the corrosion generated on each metal plate can be regarded as the same, the equivalent circuit is obtained by connecting the equivalent circuits of FIG. 2 in series as shown in FIG. That is, the circuit of FIG. 6 can be regarded as the polarization resistance Rp, solution resistance Rs, and electric double layer capacitance C of the circuit of FIG. The measured impedance result is Cole-Cole plotted, and the polarization resistance of FIG. 6 can be obtained by curve fitting.

従って、本発明に係る腐食速度推定方法及び腐食速度推定装置は、金属のすきま部分での結露状況や腐食状況を知ることができ、金属のすきま部分での腐食速度を推定することができる。   Therefore, the corrosion rate estimation method and the corrosion rate estimation apparatus according to the present invention can know the dew condensation state and the corrosion state in the gap portion of the metal, and can estimate the corrosion rate in the gap portion of the metal.

また、本腐食速度推定方法及び本腐食速度推定装置は、試験材の金属板間に電圧を印加してインピーダンスを測定することで、分極抵抗を算出できるため、従来の電気化学インピーダンス測定で必要であった参照電極を省略することができる。   In addition, the present corrosion rate estimation method and the present corrosion rate estimation device can calculate the polarization resistance by measuring the impedance by applying a voltage between the metal plates of the test material, which is necessary for the conventional electrochemical impedance measurement. The existing reference electrode can be omitted.

本発明に係る腐食速度推定方法は、前記電気化学インピーダンス測定手順の前に、前記試験材を所定環境に曝露する曝露手順を行うことを特徴とする。   The corrosion rate estimation method according to the present invention is characterized in that an exposure procedure for exposing the test material to a predetermined environment is performed before the electrochemical impedance measurement procedure.

本発明に係る腐食速度推定装置は、前記試験材を所定環境に曝露する曝露手段をさらに備えることを特徴とする。   The corrosion rate estimation apparatus according to the present invention further includes exposure means for exposing the test material to a predetermined environment.

所定環境に試験材を所定期間曝露させることで腐食速度の経時変化を推定することができる。   By exposing the test material to a predetermined environment for a predetermined period, a change in corrosion rate with time can be estimated.

本発明に係る腐食速度推定方法は、前記試験材の2枚の前記金属板の間隔が1μm以下であることを特徴とする。   The corrosion rate estimation method according to the present invention is characterized in that an interval between the two metal plates of the test material is 1 μm or less.

本発明に係る腐食速度推定装置は、前記試験材の2枚の前記金属板の間隔が1μm以下であることを特徴とする。   The corrosion rate estimation apparatus according to the present invention is characterized in that an interval between the two metal plates of the test material is 1 μm or less.

試験材の隙間が1μm以下の場合、露点以下でも隙間に水膜が生じる。従って、より正確な腐食速度を推定することができる。   When the gap between the test materials is 1 μm or less, a water film is formed in the gap even at the dew point or lower. Therefore, a more accurate corrosion rate can be estimated.

本発明は、金属のすきま部分での腐食速度を推定することができる腐食速度推定方法及び腐食速度推定装置を提供することができる。   The present invention can provide a corrosion rate estimation method and a corrosion rate estimation apparatus capable of estimating a corrosion rate at a crevice portion of a metal.

金属と水溶液の界面を説明する図である。It is a figure explaining the interface of a metal and aqueous solution. 金属と水溶液の界面を説明する等価回路図である。It is an equivalent circuit diagram explaining the interface of a metal and aqueous solution. 金属表面に水膜ができるときのすきま半径と相対湿度との関係を説明する図である。It is a figure explaining the relationship between the clearance radius and relative humidity when a water film is formed on the metal surface. すきま腐食が生じる理由を説明する図である。It is a figure explaining the reason for crevice corrosion. すきま腐食が生じる理由を説明する図である。It is a figure explaining the reason for crevice corrosion. 本発明に係る腐食速度推定方法及び腐食速度推定装置で用いる試験材と水溶液の界面を説明する等価回路図である。It is an equivalent circuit diagram explaining the interface of the test material and aqueous solution used with the corrosion rate estimation method and the corrosion rate estimation apparatus according to the present invention. 本発明に係る腐食速度推定方法及び腐食速度推定装置で用いる試験材を説明する概略図である。It is the schematic explaining the test material used with the corrosion rate estimation method and corrosion rate estimation apparatus which concern on this invention. 本発明に係る腐食速度推定装置の電気化学インピーダンス測定手段が試験材のインピーダンスを測定した結果の一例である。It is an example of the result of having measured the impedance of the test material by the electrochemical impedance measuring means of the corrosion rate estimating apparatus according to the present invention. 本発明に係る腐食速度推定装置を説明する概略図である。It is the schematic explaining the corrosion rate estimation apparatus which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

図9は、本実施形態の腐食速度推定装置を説明する概略図である。本腐食速度推定装置は、1の面の絶縁膜を除去した2枚の金属板を所定間隔で前記1の面が向き合うように配置した試験材11と、試験材11の前記金属板間に印加した電気信号の応答から前記試験材のインピーダンスを取得する電気化学インピーダンス測定手段12と、電気化学インピーダンス測定手段12が取得した試験材11のインピーダンスから前記金属板の分極抵抗を算出する算出手段13と、を備える。   FIG. 9 is a schematic diagram illustrating the corrosion rate estimation apparatus of the present embodiment. The corrosion rate estimation apparatus is applied between a test material 11 in which two metal plates from which an insulating film on one surface is removed are arranged so that the first surface faces at a predetermined interval, and the metal plate of the test material 11. An electrochemical impedance measuring means 12 for obtaining the impedance of the test material from the response of the electrical signal, and a calculating means 13 for calculating the polarization resistance of the metal plate from the impedance of the test material 11 obtained by the electrochemical impedance measuring means 12; .

図7は、試験材11を説明する概略図である。試験材11は、1の面の絶縁膜を除去した2枚の金属板21を所定間隔で1の面が向き合うように配置する。すきま部分での腐食速度を検討したい金属の金属板21を2枚用意する。金属板21は同一の大きさとする。2枚の金属板21にリード線23をとりつける。リード線23をとりつけた場所を含む金属板21の5面を絶縁する。すなわち、向かい合う1面を除く5面を絶縁する。絶縁には適宜有機塗料等の絶縁材料を用いればよい。   FIG. 7 is a schematic diagram illustrating the test material 11. In the test material 11, two metal plates 21 from which the insulating film on one surface is removed are arranged so that the one surface faces at a predetermined interval. Two metal plates 21 of metal for which the corrosion rate at the crevice portion is to be examined are prepared. The metal plates 21 have the same size. The lead wire 23 is attached to the two metal plates 21. The five surfaces of the metal plate 21 including the place where the lead wire 23 is attached are insulated. In other words, five surfaces except one facing each other are insulated. An insulating material such as an organic paint may be appropriately used for the insulation.

金属板21を対向させて、所望の間隔dが形成されるようにしておく。所望の間隔dは、金属板21の間に絶縁体のスペーサ22を挟むこと、あるいは金属板21を外部から支持して所定の位置に固定することで形成できる。スペーサ22の一例としてマイクロチューブが挙げられる。さらに望ましくは、輪ゴムなどの弾性体で2枚の金属板21を固定するとより確実である。金属板21の大きさは適宜設計してよいが、一例として25mm×50mm×3mm程度が使いやすい。   The metal plate 21 is opposed so that a desired distance d is formed. The desired distance d can be formed by sandwiching an insulating spacer 22 between the metal plates 21 or by supporting the metal plate 21 from the outside and fixing it at a predetermined position. An example of the spacer 22 is a microtube. More desirably, it is more reliable to fix the two metal plates 21 with an elastic body such as a rubber band. The size of the metal plate 21 may be appropriately designed, but as an example, about 25 mm × 50 mm × 3 mm is easy to use.

所望の間隔dは実際に腐食速度を推定したい場所の環境に合わせて適宜設計をすればよい。図3によればすきまが0.0001[cm]以下になると相対湿度100%未満でも金属間に水膜が形成される。このため、例えば、試験材11の2枚の金属板21の間隔を1μm以下(0.0001[cm])以下とすれば、相対湿度100%未満でも金属板21間に水膜が形成される。さらに、相対湿度95%で腐食速度を推定したい場合は、例えば、試験材11の金属板21間を0.00001[cm]以下とすることで、相対湿度95%で金属板21間に水膜が形成される。   The desired distance d may be appropriately designed in accordance with the environment where the corrosion rate is actually estimated. According to FIG. 3, when the clearance is 0.0001 [cm] or less, a water film is formed between the metals even if the relative humidity is less than 100%. For this reason, for example, if the distance between the two metal plates 21 of the test material 11 is 1 μm or less (0.0001 [cm]) or less, a water film is formed between the metal plates 21 even when the relative humidity is less than 100%. . Furthermore, when it is desired to estimate the corrosion rate at a relative humidity of 95%, for example, by setting the distance between the metal plates 21 of the test material 11 to be 0.00001 [cm] or less, a water film is formed between the metal plates 21 at a relative humidity of 95%. Is formed.

本腐食速度推定装置は、次のような腐食速度推定方法を実施する。本腐食速度推定方法は、試験材11の金属板21間に印加した電気信号の応答から試験材11のインピーダンスを取得する電気化学インピーダンス測定手順と、前記電気化学インピーダンス測定手順の後、試験材11のインピーダンスから金属板21の分極抵抗を算出する算出手順と、を行う。   This corrosion rate estimation apparatus implements the following corrosion rate estimation method. In this corrosion rate estimation method, after the electrochemical impedance measurement procedure for obtaining the impedance of the test material 11 from the response of the electrical signal applied between the metal plates 21 of the test material 11 and the electrochemical impedance measurement procedure, the test material 11 And a calculation procedure for calculating the polarization resistance of the metal plate 21 from the impedance.

ここで、本腐食速度推定装置は、試験材11を所定環境に曝露する曝露手段15をさらに備えることが望ましい。本腐食速度推定方法は、電気化学インピーダンス測定手順の前に、試験材11を所定環境に曝露する曝露手順を行う。   Here, it is desirable that the corrosion rate estimation apparatus further includes an exposure unit 15 that exposes the test material 11 to a predetermined environment. In this corrosion rate estimation method, an exposure procedure for exposing the test material 11 to a predetermined environment is performed before the electrochemical impedance measurement procedure.

曝露手順では試験材11を曝露手段15で所望の温度・湿度に曝露する。曝露手段15は、例えば恒温槽である。また、曝露手段15は必要に応じて塩水を噴霧してもよい。また、曝露手段15内に水溶液19を配置して水蒸気を補充してもよい。水溶液19は、例えば、硫酸や水酸化ナトリウム水溶液である。曝露時間は適宜設計してよいが24時間以上が望ましい。   In the exposure procedure, the test material 11 is exposed to a desired temperature and humidity by the exposure means 15. The exposure means 15 is a thermostat, for example. Moreover, the exposure means 15 may spray salt water as needed. Further, the aqueous solution 19 may be disposed in the exposure means 15 to replenish water vapor. The aqueous solution 19 is, for example, sulfuric acid or a sodium hydroxide aqueous solution. The exposure time may be designed as appropriate, but is preferably 24 hours or longer.

試験材11の各金属板21からのリード線23は電気化学インピーダンス測定手段12に接続されている。曝露手順後、試験材11の各金属板21間には水膜が形成されているので、本腐食速度推定装置は、続けて電気化学インピーダンス測定手順を行うことができる。電気化学インピーダンス測定手順で、電気化学インピーダンス測定手段12は、金属板21間に電圧を印加して電流の応答、すなわち、インピーダンスの応答を測定する。電圧の印加はピーク間が10mV程度とすると測定しやすい。また、電気化学インピーダンス測定手段12は、電圧の交流波形は正弦波とし、振動数を数kHzから数mHzとすると、インピーダンス形状が得られやすい。例えば、電気化学インピーダンス測定手段12は、10kHzから1mHz程度で測定を行う。   Lead wires 23 from the respective metal plates 21 of the test material 11 are connected to the electrochemical impedance measuring means 12. Since a water film is formed between the metal plates 21 of the test material 11 after the exposure procedure, the corrosion rate estimation apparatus can continuously perform the electrochemical impedance measurement procedure. In the electrochemical impedance measurement procedure, the electrochemical impedance measurement means 12 applies a voltage between the metal plates 21 to measure the current response, that is, the impedance response. The voltage is easily measured when the peak-to-peak is about 10 mV. Moreover, the electrochemical impedance measuring means 12 is easy to obtain an impedance shape when the alternating voltage waveform is a sine wave and the frequency is several kHz to several mHz. For example, the electrochemical impedance measuring unit 12 performs measurement at about 10 kHz to 1 mHz.

図8は、電気化学インピーダンス測定手段12が測定した結果の一例である。試験材11の金属板21は、25mm×50mm×3mmの大きさである。所定間隔dは1〜3μmである。金属板21の材質は、Zn、Zn−55%Al、Alの3種類を測定した。曝露手順では、試験材11を25℃98%相対湿度で曝露したものである。   FIG. 8 is an example of a result measured by the electrochemical impedance measuring means 12. The metal plate 21 of the test material 11 has a size of 25 mm × 50 mm × 3 mm. The predetermined interval d is 1 to 3 μm. Three types of materials of the metal plate 21 were measured: Zn, Zn-55% Al, and Al. In the exposure procedure, the test material 11 was exposed at 25 ° C. and 98% relative humidity.

算出手段13は、算出手順でインピーダンス測定結果をコールコールプロットして、カーブフィッティングによって分極抵抗を算出する。算出手段13が算出したそれぞれの分極抵抗は、Zn、Zn−55%Al、Alのそれぞれが近似的に10kΩ、5kΩ、1kΩであった。電気化学インピーダンス測定手段12は試験材11に10mVの電圧をかけていたため、Zn、Zn−55%Al、Alのそれぞれは1μA、2μA、10μA程度の腐食速度と推定できる。   The calculation means 13 performs a Cole-Cole plot of the impedance measurement result in the calculation procedure, and calculates the polarization resistance by curve fitting. The respective polarization resistances calculated by the calculation means 13 were approximately 10 kΩ, 5 kΩ, and 1 kΩ for Zn, Zn-55% Al, and Al, respectively. Since the electrochemical impedance measuring means 12 applied a voltage of 10 mV to the test material 11, each of Zn, Zn-55% Al, and Al can be estimated to have a corrosion rate of about 1 μA, 2 μA, and 10 μA.

11:試験材
12:電気化学インピーダンス測定手段
13:算出手段
15:曝露手段
19:水溶液
21:金属板
22:スペーサ
23:リード線
11: Test material 12: Electrochemical impedance measuring means 13: Calculation means 15: Exposure means 19: Aqueous solution 21: Metal plate 22: Spacer 23: Lead wire

Claims (6)

1の面の絶縁膜を除去した2枚の金属板を所定間隔で前記1の面が向き合うように配置した試験材に対し、前記金属板間に印加し、電気信号の応答から前記試験材のインピーダンスを取得する電気化学インピーダンス測定手順と、
前記電気化学インピーダンス測定手順の後、前記試験材のインピーダンスから前記金属板の分極抵抗を算出する算出手順と、
を行う腐食速度推定方法。
Two metal plates, from which the insulating film on one surface is removed, are applied between the metal plates at a predetermined interval so that the one surface faces each other. Electrochemical impedance measurement procedure to obtain impedance;
After the electrochemical impedance measurement procedure, a calculation procedure for calculating the polarization resistance of the metal plate from the impedance of the test material,
Perform corrosion rate estimation method.
前記電気化学インピーダンス測定手順の前に、前記試験材を所定環境に曝露する曝露手順を行うことを特徴とする請求項1に記載の腐食速度推定方法。   The corrosion rate estimation method according to claim 1, wherein an exposure procedure for exposing the test material to a predetermined environment is performed before the electrochemical impedance measurement procedure. 前記試験材の2枚の前記金属板の間隔が1μm以下であることを特徴とする請求項1又は2に記載の腐食速度推定方法。   The corrosion rate estimation method according to claim 1 or 2, wherein an interval between the two metal plates of the test material is 1 µm or less. 1の面の絶縁膜を除去した2枚の金属板を所定間隔で前記1の面が向き合うように配置した試験材と、
前記試験材の前記金属板間に印加した電気信号の応答から前記試験材のインピーダンスを取得する電気化学インピーダンス測定手段と、
前記電気化学インピーダンス測定手段が取得した前記試験材のインピーダンスから前記金属板の分極抵抗を算出する算出手段と、
を備える腐食速度推定装置。
A test material in which two metal plates from which an insulating film on one surface is removed are arranged so that the one surface faces at a predetermined interval;
An electrochemical impedance measuring means for obtaining an impedance of the test material from a response of an electric signal applied between the metal plates of the test material;
Calculating means for calculating the polarization resistance of the metal plate from the impedance of the test material acquired by the electrochemical impedance measuring means;
Corrosion rate estimation device comprising:
前記試験材を所定環境に曝露する曝露手段をさらに備えることを特徴とする請求項4に記載の腐食速度推定装置。   The corrosion rate estimation apparatus according to claim 4, further comprising exposure means for exposing the test material to a predetermined environment. 前記試験材の2枚の前記金属板の間隔が1μm以下であることを特徴とする請求項4又は5に記載の腐食速度推定装置。   The corrosion rate estimation apparatus according to claim 4 or 5, wherein a distance between the two metal plates of the test material is 1 µm or less.
JP2009243226A 2009-10-22 2009-10-22 Method of estimating corrosion rate, and corrosion rate estimating device Pending JP2011089872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243226A JP2011089872A (en) 2009-10-22 2009-10-22 Method of estimating corrosion rate, and corrosion rate estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243226A JP2011089872A (en) 2009-10-22 2009-10-22 Method of estimating corrosion rate, and corrosion rate estimating device

Publications (1)

Publication Number Publication Date
JP2011089872A true JP2011089872A (en) 2011-05-06

Family

ID=44108255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243226A Pending JP2011089872A (en) 2009-10-22 2009-10-22 Method of estimating corrosion rate, and corrosion rate estimating device

Country Status (1)

Country Link
JP (1) JP2011089872A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198545A (en) * 2016-04-27 2017-11-02 日本電信電話株式会社 Duct corrosion estimation method and duct corrosion estimation device
US10275652B2 (en) 2015-08-07 2019-04-30 Canon Kabushiki Kaisha Information processing method, information processing apparatus, and non-transitory computer-readable storage medium that determine whether a target person is an important person based on importance degrees
CN113218855A (en) * 2021-03-24 2021-08-06 厦门大学 Method for accelerating failure and corrosion of organic coating/metal system
CN117629869A (en) * 2024-01-26 2024-03-01 中国特种设备检测研究院 Method, device and system for detecting equipment damage rate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10275652B2 (en) 2015-08-07 2019-04-30 Canon Kabushiki Kaisha Information processing method, information processing apparatus, and non-transitory computer-readable storage medium that determine whether a target person is an important person based on importance degrees
JP2017198545A (en) * 2016-04-27 2017-11-02 日本電信電話株式会社 Duct corrosion estimation method and duct corrosion estimation device
CN113218855A (en) * 2021-03-24 2021-08-06 厦门大学 Method for accelerating failure and corrosion of organic coating/metal system
CN113218855B (en) * 2021-03-24 2022-05-17 厦门大学 Method for accelerating failure and corrosion of organic coating/metal system
CN117629869A (en) * 2024-01-26 2024-03-01 中国特种设备检测研究院 Method, device and system for detecting equipment damage rate
CN117629869B (en) * 2024-01-26 2024-03-22 中国特种设备检测研究院 Method, device and system for detecting equipment damage rate

Similar Documents

Publication Publication Date Title
US8111078B1 (en) Oxidizing power sensor for corrosion monitoring
US7388386B2 (en) Method and apparatus for corrosion detection
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
JP3058417B1 (en) Electric resistance sensor for measuring corrosion rate, method of manufacturing the same, and method of measuring corrosion rate using the same
JP5701961B2 (en) Electrical conductivity measurement method and electrical conductivity measurement system using the same
US6919729B2 (en) Corrosivity measuring device with temperature compensation
TW200921082A (en) Apparatus, system, and associated method for monitoring surface corrosion
CN108362637B (en) Corrosion electrochemical testing device and corrosion electrochemical testing method
JP2023515125A (en) Method and measurement set-up for determining internal corrosion rate of steel structures
EP2894466B1 (en) Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same
JP2011089872A (en) Method of estimating corrosion rate, and corrosion rate estimating device
JP2014185968A (en) Corrosion sensor, and corrosion rate measurement method and device using the same
JP2011219173A5 (en)
WO2014112511A1 (en) Test piece for monitoring pitting corrosion, apparatus for monitoring pitting corrosion and method for monitoring pitting corrosion
JP2010266342A (en) Metal corrosion diagnostic method
KR102143685B1 (en) Apparatus for measuring electrical conductivity of soil
JP2020046336A (en) Corrosion sensor and corrosion evaluation system
Nielsen et al. Differential ER-technology for measuring degree of accumulated corrosion as well as instant corrosion rate
JP2015121470A (en) Concrete body chloride concentration measuring system and concrete body chloride concentration measuring method
JP6833626B2 (en) Measuring device and measuring method
JP3678406B2 (en) In-situ measurement method for corrosion rate of steel structures.
JP2020020735A (en) Method and device for monitoring corrosion
JP2019174289A (en) Probe of corrosion environment measurement device and corrosion environment measurement device
JP2019158377A (en) Measurement method of corrosion rate using acm sensor
JP2008249562A (en) Method for numerically analyzing corrosion or corrosion-proof environment and device