JP2011088059A - Dust collector - Google Patents

Dust collector Download PDF

Info

Publication number
JP2011088059A
JP2011088059A JP2009243010A JP2009243010A JP2011088059A JP 2011088059 A JP2011088059 A JP 2011088059A JP 2009243010 A JP2009243010 A JP 2009243010A JP 2009243010 A JP2009243010 A JP 2009243010A JP 2011088059 A JP2011088059 A JP 2011088059A
Authority
JP
Japan
Prior art keywords
semiconductive
conductive material
electrode plate
coating film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009243010A
Other languages
Japanese (ja)
Other versions
JP5577669B2 (en
Inventor
Hidenao Hirasawa
秀直 平沢
Akira Kato
亮 加藤
Kunihiko Minoshima
国彦 蓑島
Kengo Nakahara
健吾 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009243010A priority Critical patent/JP5577669B2/en
Publication of JP2011088059A publication Critical patent/JP2011088059A/en
Application granted granted Critical
Publication of JP5577669B2 publication Critical patent/JP5577669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem of conventional methods of manufacturing a coating material by compounding a resin curing agent after a conductive material is dispersed to a base resin, wherein, on forming a semiconductivity coating film of an electrode plate used for a dust collector, the base resin penetrates between particles of a conductive material to ruin the electric conductivity efficiency. <P>SOLUTION: A second process for dispersing the conductive material to a mixed liquid obtained by a first process is provided after the first process for mixing the base resin with the resin curing agent. The contact of the particles of the conductive material is moderately secured by applying the mixed liquid obtained by the second process to the base material of the electrode plate as the coating material, and a conductivity is efficiently drawn out. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気清浄の分野において空気中の粒子状浮遊物質を除去する電気式集塵装置に用いる電極板の製造方法に関する。   The present invention relates to a method for producing an electrode plate for use in an electric dust collector that removes particulate suspended matter in the air in the field of air purification.

空気中に存在する粒子状浮遊物質、すなわち粉塵は喘息などの疾病の原因として知られており従来から除去の対象となる物質であったが、近年の研究において粒子径2.5マイクロメートル以下の粉塵(いわゆるPM2.5)が肺ガンなどの疾病を誘起する可能性があるとの報告があり、捕集技術の更なる向上が求められている。その中で電気集塵技術を用いた集塵装置は粒子径がマイクロメートル以下の小粒径の粉塵を捕集することに優れていて、従来のフィルタ方式に比べて圧力損失が低く、送風装置への負担が小さいという利点がある。   Particulate suspended matter in the air, that is, dust, has been known as a cause of illnesses such as asthma and has been a target for removal in the past, but in recent studies, the particle size is 2.5 micrometers or less. There is a report that dust (so-called PM2.5) may induce diseases such as lung cancer, and further improvement of the collection technology is required. Among them, the dust collector using electric dust collection technology is superior in collecting dust with a small particle size with a particle size of micrometer or less, and the pressure loss is lower than the conventional filter system, and the blower There is an advantage that the burden on is small.

従来、この種の集塵装置として、放電によって粉塵を帯電する荷電部を前段に設け、その後段に、電極板を積層し、交互に異なる電圧を印加して電場を形成して帯電した粉塵を捕集する集塵部を設けたものが知られている。集塵効率の確保に必要な高い電圧下では集塵部の電極板間に火花放電が発生する可能性があり、これを回避するための設計を考慮に入れる必要がある。この火花放電を防ぐ方法として、電極板に半導電性材料を用いる手法がある。   Conventionally, as this type of dust collector, a charged part that charges dust by discharge is provided in the previous stage, and electrode plates are stacked in the subsequent stage, and different electric voltages are applied alternately to form an electric field to charge the charged dust. What provided the dust collection part which collects is known. Under the high voltage required for ensuring dust collection efficiency, spark discharge may occur between the electrode plates of the dust collection section, and it is necessary to consider the design to avoid this. As a method for preventing this spark discharge, there is a method of using a semiconductive material for the electrode plate.

従来この手法の一例として、ベース樹脂と導電性材料と硬化剤を配合した混合物を半導電性材料として用いたものがある(例えば特許文献1参照)。   Conventionally, as an example of this method, there is one using a mixture of a base resin, a conductive material, and a curing agent as a semiconductive material (see, for example, Patent Document 1).

すなわち、電極板の母材となる樹脂基板等の表面に、半導電性混合材料を塗料として薄膜状に塗布し、塗膜が硬化することで半導電性電極を成すという使い方が想定できるものである。   That is, it can be assumed that a semiconductive electrode is formed by applying a semiconductive mixed material in a thin film as a paint on the surface of a resin substrate, etc., which is a base material of an electrode plate, and the coating film is cured. is there.

このような半導電性材料を塗料として、母材に半導電性塗膜を形成した電極板について図6を用いて説明する。図6に示すように、電極板101は母材102と半導電性塗膜103で構成され、半導電性塗膜103はベース樹脂104と導電性材料105から成る。半導電性塗膜103の導電効果は、導電性材料105の粒子と粒子の連続的な接触によって成り立つが、ベース樹脂104の中に導電性材料105の粒子が分散しているため、粒子同士は必ずしも接触しているわけではなく、ベース樹脂104を介在して隣接しているものが多いと考えられる。ベース樹脂104の中における導電性材料105の存在比率と、導電性材料105の粒子同士の密接度合いによって、半導電性塗膜103の導電率は決まるため、集塵装置を構成する電極板101の極板間に高電圧が印加されても、そこに火花放電が生じないような適切な導電性が発現する、すなわち半導電性塗膜103の表面上に適切な電気的表面抵抗率が発現するように塗料と塗膜を設計すればよいということである。   An electrode plate having such a semiconductive material as a paint and a semiconductive coating film formed on a base material will be described with reference to FIG. As shown in FIG. 6, the electrode plate 101 includes a base material 102 and a semiconductive coating film 103, and the semiconductive coating film 103 includes a base resin 104 and a conductive material 105. The conductive effect of the semiconductive coating film 103 is established by the continuous contact between the particles of the conductive material 105 and the particles. However, since the particles of the conductive material 105 are dispersed in the base resin 104, the particles are It is not necessarily in contact, and it is considered that there are many that are adjacent to each other with the base resin 104 interposed therebetween. Since the conductivity of the semiconductive coating film 103 is determined by the abundance ratio of the conductive material 105 in the base resin 104 and the closeness between the particles of the conductive material 105, the conductivity of the electrode plate 101 constituting the dust collector is determined. Even when a high voltage is applied between the electrode plates, appropriate electrical conductivity is generated so that no spark discharge occurs, that is, appropriate electrical surface resistivity is expressed on the surface of the semiconductive coating film 103. Thus, it is only necessary to design the paint and the coating film.

特開平5−88510号公報JP-A-5-88510

塗料を混合する一般的な手順は、塗料の主体であるベース樹脂に導電性材料を混合して分散させ、最後に樹脂硬化剤を配合する。樹脂硬化剤を加えた後、ベース樹脂と樹脂硬化剤が結合して高分子化し、強固な塗膜を形成するというものであるが、このような一般的な手順の場合、樹脂硬化剤を加える前に、導電性材料の粒子がベース樹脂中に分散していくとき、導電性材料の隣接し合う粒子と粒子の間に電気的に絶縁性であるベース樹脂が介入することで、導電性材料の粒子間に電気的抵抗が生じ、出来上がる塗膜の導電率を効率よく高く引出すことができないという課題がある。   The general procedure for mixing the paint is to mix and disperse the conductive material in the base resin, which is the main body of the paint, and finally blend the resin curing agent. After adding the resin curing agent, the base resin and the resin curing agent are combined to form a polymer and form a strong coating film. In the case of such a general procedure, the resin curing agent is added. Before, when the conductive material particles are dispersed in the base resin, the electrically conductive base material intervenes between adjacent particles of the conductive material, so that the conductive material There is a problem in that electrical resistance is generated between the particles, and the conductivity of the resulting coating film cannot be drawn out efficiently and high.

本発明は、このような従来の課題を解決するものであり、導電性材料の粒子同士の接触を確保することで、配合した量の導電性材料から効率よく高い導電率を引出した半導電性塗膜を持つ電極板の製造方法を提供することを目的としている。   The present invention solves such a conventional problem, and by ensuring the contact between the particles of the conductive material, it is a semiconductive material that efficiently extracts high conductivity from the blended amount of the conductive material. It aims at providing the manufacturing method of an electrode plate with a coating film.

本発明の半導電性電極板の製造方法は上記目的を達成するために、ベース樹脂と樹脂硬化剤を混合する第一の工程の後に、第一の工程で得られた混合液に導電性材料を分散する第二の工程を有し、第二の工程で得る混合液を塗料として平板に塗布することを特徴とするものである。   In order to achieve the above object, the method for producing a semiconductive electrode plate according to the present invention has a conductive material added to the mixed liquid obtained in the first step after the first step of mixing the base resin and the resin curing agent. And the mixture obtained in the second step is applied as a paint to a flat plate.

本発明の半導電性電極板の製造方法によって、配合した量の導電性材料から効率よく高い導電率を引出せるという効果が得られる。   According to the method for producing a semiconductive electrode plate of the present invention, an effect that a high conductivity can be efficiently extracted from a blended amount of a conductive material can be obtained.

本発明の実施の形態1のフロー図Flow chart of Embodiment 1 of the present invention 本発明の実施の形態2における混合液の放置時間と塗膜の表面抵抗率の関係を表すグラフThe graph showing the relationship between the leaving time of the liquid mixture in Embodiment 2 of this invention, and the surface resistivity of a coating film 本発明の実施の形態3における塗膜乾燥前の放置時間と塗膜の表面抵抗率の関係を表すグラフThe graph showing the relationship between the standing time before coating film drying and the surface resistivity of the coating film in Embodiment 3 of the present invention 本発明の実施の形態4におけるベース樹脂重量に対する導電性材料の重量比と塗膜の表面抵抗率の関係を表すグラフThe graph showing the relationship between the weight ratio of the electroconductive material with respect to the base resin weight in Embodiment 4 of this invention, and the surface resistivity of a coating film 従来の工程で混合した塗料を用いて作製した塗膜の概念図Conceptual diagram of a coating film prepared using paint mixed in a conventional process 従来の工程のフロー図Conventional process flow diagram

本発明の請求項1に記載の半導電性電極板の製造方法は、ベース樹脂と樹脂硬化剤を混合する第一の工程の後に、第一の工程で得られた混合液に導電性材料を分散する第二の工程を有し、第二の工程で得る混合液を塗料として電極板の母材に塗布することを特徴とするものである。電極板上で導電率が安定するように半導電性塗膜を形成するためには、半導電性塗料の調合時に、粒子状の導電性材料が塗料の中に均一に分散するよう、ベース樹脂は流動性のある液状のものが用いられる。樹脂硬化剤は、塗膜を硬化させることで衝撃や薬品等に対する塗膜の耐久性を持たせるために配合するものであり、ベース樹脂の分子と樹脂硬化剤の分子が強固に結合しながら高分子化することで塗膜が硬化する。   In the method for producing a semiconductive electrode plate according to claim 1 of the present invention, after the first step of mixing the base resin and the resin curing agent, the conductive material is added to the mixed liquid obtained in the first step. It has the 2nd process to disperse | distribute and it applies to the base material of an electrode plate as a coating material the liquid mixture obtained at a 2nd process. In order to form a semiconductive coating film so that the conductivity is stable on the electrode plate, the base resin is used so that the particulate conductive material is uniformly dispersed in the paint when preparing the semiconductive paint. Is a fluid liquid. Resin hardeners are blended to harden the paint film in order to make the paint film durable against impacts and chemicals. The coating is cured by molecularization.

着色用の塗料などにおいては通常、ベース樹脂に粒子状の着色顔料を混合して分散させ、最後に樹脂硬化剤を配合したものを塗料と、その塗料を生地へ塗装して塗膜を硬化させるものであり、本発明で言及する半導電性塗料の中の導電性材料というのは、着色用塗料の中の着色顔料に相当する。塗膜の内部において、導電性材料の粒子の濃度と粒子同士の接近度合いが、塗膜の導電率を決定付けるものであり、集塵装置の電極板間で高電圧印加時に火花放電が発生しないような適切な導電率を持つように導電性材料の配合量が設定されるものである。しかし、ベース樹脂に導電性材料を配合して分散させる第一の工程の後に、第一の工程で得られた混合液に、第二の工程として樹脂硬化剤を混合するという従来の方法は、第一の工程において電気的に絶縁性のベース樹脂が、導電性材料に浸透して粒子間に介入するため、導電性材料が形成する電気的なつながりが弱まり、最終的な塗膜内部の導電率は本来発揮しうる値よりも低くなる。つまり、投入した一定量の導電性材料で、できる限り高い導電性を発揮させようとした場合には、導電性材料はベース樹脂中に高度に分散しない方が好都合である。   For coloring paints, etc., usually a particulate color pigment is mixed and dispersed in a base resin, and finally a paint containing a resin hardener is applied to the paint and the paint is applied to the fabric to cure the coating film. The conductive material in the semiconductive paint referred to in the present invention corresponds to the color pigment in the paint for coloring. Inside the coating film, the concentration of the particles of the conductive material and the degree of proximity between the particles determine the conductivity of the coating film, and no spark discharge occurs when a high voltage is applied between the electrode plates of the dust collector. The blending amount of the conductive material is set so as to have such an appropriate conductivity. However, the conventional method of mixing the resin curing agent as the second step in the mixed solution obtained in the first step after the first step of mixing and dispersing the conductive material in the base resin is as follows: In the first step, the electrically insulating base resin penetrates into the conductive material and intervenes between the particles, so that the electrical connection formed by the conductive material is weakened, and the conductivity inside the final coating film is reduced. The rate is lower than the value that can be achieved. That is, when it is attempted to exhibit as high conductivity as possible with a certain amount of conductive material that has been introduced, it is advantageous that the conductive material is not highly dispersed in the base resin.

本発明の方法は、ベース樹脂と樹脂硬化剤を第一の工程として混合するものであるが、これによりベース樹脂と樹脂硬化剤が結合して高分子化してゆく。その高分子化の最中に、第二の工程として導電性材料を配合することで、ベース樹脂の一部の高分子化したものは、導電性材料の粒子間に介入しにくくなって導電性材料の粒子同士の接触が適度に確保され、塗膜が硬化したときの塗膜の導電率が従来の方法で製造するよりも高くなると考えられる。しかし、ベース樹脂と樹脂硬化剤の結合が進むと、導電性材料の粒子の分散性が悪くなり、塗膜の導電率が十分に得られなくなるため、第一の工程と第二の工程の時間的間隔は短い方がよい。   In the method of the present invention, the base resin and the resin curing agent are mixed as the first step, and thereby the base resin and the resin curing agent are combined and polymerized. In the middle of the polymerization, by adding a conductive material as the second step, the polymerized part of the base resin is less likely to intervene between the particles of the conductive material, making it conductive. It is considered that the contact between the particles of the material is appropriately ensured, and the conductivity of the coating film when the coating film is cured is higher than that produced by the conventional method. However, when the bonding between the base resin and the resin curing agent proceeds, the dispersibility of the particles of the conductive material deteriorates and the conductivity of the coating film cannot be sufficiently obtained. The target interval should be short.

第二の工程を終えて得られる混合液は、電極板の母材に塗布する半導電性塗料となるが、塗布の方法は例えばスクリーン印刷法があり、この方法を用いれば安定した薄膜を形成することが可能である。塗装後の塗膜におけるベース樹脂と樹脂硬化剤との結合を促進するために一定時間加熱し、塗膜を硬化させる。塗装してから乾燥工程に入るまでに、一定時間塗膜を常温に放置すると安定した導電率が得られ、その放置時間を長く設けるほど、最終的な塗膜の導電率が高くなる。   The mixed liquid obtained after finishing the second step becomes a semiconductive paint to be applied to the base material of the electrode plate. For example, there is a screen printing method, and if this method is used, a stable thin film is formed. Is possible. In order to promote the bonding between the base resin and the resin curing agent in the coated film after coating, the coating film is heated for a certain time to be cured. When the coating film is allowed to stand at room temperature for a certain period of time after coating, the stable conductivity can be obtained. The longer the standing time, the higher the conductivity of the final coating film.

本発明の請求項4に記載の集塵装置は、一定間隔を開けて請求項1乃至4いずれかに記載の半導電性電極板を積層し、積層ごとに交互に異なる電圧を印加する集塵部を備えることを特徴とするものである。一定間隔を開けて、適度な導電性すなわち、10の7〜12乗Ω/□オーダーの表面抵抗率を有する半導電性電極板を積層し、積層ごとに交互に異なる電圧を印加することで、電場を形成しながら火花放電が起こらない集塵部を構成するいことができる。上流側の帯電部で帯電させた粉塵を下流側の集塵部に導入することで粉塵を捕集することができる。表面抵抗率とは面方向に一定の電圧を印加した際に流れる電流から求められる電気抵抗値のことである。この表面抵抗率が10の7乗Ω/□以下では火花放電が発生する確率が大幅に上昇し、また、10の13乗Ω/□以上では面に電圧を印加した際にそれだけの表面電位を得るための時間が3分以上と非常に長くかかることがわかっており、表面抵抗率を10の7〜12乗Ω/□オーダーとすることで火花放電をなくし、かつ高い集塵性能を得るための電場を形成することが可能となる。   According to a fourth aspect of the present invention, there is provided a dust collecting apparatus in which the semiconductive electrode plates according to any one of the first to fourth aspects are stacked at regular intervals, and different voltages are applied alternately for each stack. It is characterized by providing a part. By laminating a semiconductive electrode plate having a moderate conductivity, that is, a surface resistivity of 10 7 to the 12th power / Ω order, and applying different voltages alternately for each lamination, It is possible to construct a dust collecting portion that does not cause spark discharge while forming an electric field. By introducing the dust charged by the upstream charging unit into the downstream dust collecting unit, the dust can be collected. The surface resistivity is an electric resistance value obtained from a current flowing when a constant voltage is applied in the surface direction. If the surface resistivity is 10 7 Ω / □ or less, the probability of occurrence of a spark discharge is significantly increased. If the surface resistivity is 10 13 Ω / □ or more, the surface potential is increased when a voltage is applied to the surface. It is known that it takes a very long time to obtain 3 minutes or more. To eliminate the spark discharge and obtain high dust collection performance by setting the surface resistivity to 10 7 to 12th power / square. It is possible to form an electric field.

また、導電性材料が金属酸化物であることを特徴とするものである。一般的に用いられる吸水性ポリマーを含有する導電性材料は空気中の湿度の影響を受けて導電率が変動しやすい。したがって、吸水性ポリマーを用いて半導電性塗膜を形成しても、その電極板表面の導電性は安定しない。一方で、金属酸化物は湿度の影響を受けにくく、酸化亜鉛やチタン酸カリウムといった導電性を有する金属酸化物を半導電性材料として用いることで、安定した半導電性塗膜を有する電極板が得られる。   In addition, the conductive material is a metal oxide. A conductive material containing a commonly used water-absorbing polymer is susceptible to fluctuations in electrical conductivity due to the influence of humidity in the air. Therefore, even if a semiconductive coating film is formed using a water-absorbing polymer, the conductivity of the electrode plate surface is not stable. On the other hand, metal oxides are less susceptible to humidity, and by using conductive metal oxides such as zinc oxide and potassium titanate as semiconductive materials, an electrode plate having a stable semiconductive coating film can be obtained. can get.

また、金属酸化物が酸化スズ、もしくはアンチモンをドープした酸化スズであることを特徴とするものである。酸化スズは印加電圧の大小による抵抗値の変化が小さい。これは酸化スズの導電メカニズムが結晶格子中の酸素欠陥に起因しているためである。また、酸化スズは酸やアルカリに溶解しにくい性質を有する。そのため酸化スズを半導電性材料として用いることで化学的かつ電気的に安定な半導電性塗膜を得ることが可能となる。また、酸化スズにアンチモンをドープすることでN型の半導体構造が得られる。そのためアンチモンをドープしない場合に比べて導電性がよくなり、より少ない量で半導電性を得ることが可能となる。   Further, the metal oxide is tin oxide or tin oxide doped with antimony. Tin oxide has a small change in resistance value due to the applied voltage. This is because the conductive mechanism of tin oxide is due to oxygen defects in the crystal lattice. Further, tin oxide has a property that it is difficult to dissolve in acid or alkali. Therefore, it is possible to obtain a chemically and electrically stable semiconductive coating film by using tin oxide as a semiconductive material. Further, by doping tin oxide with antimony, an N-type semiconductor structure can be obtained. Therefore, the conductivity is improved as compared with the case where no antimony is doped, and the semiconductivity can be obtained with a smaller amount.

また、半導電性材料が酸化スズもしくはアンチモンをドープした酸化スズをそれよりも大きい粒子径を有する担持体粒子に添着したものであることを特徴とするものである。酸化スズによって得られた半導電性塗膜が半導電性を有するためには半導電塗膜の中で酸化スズの粒子どうしが接触してつながる必要があるが、酸化スズの粒子単体でそれを実現するためには高価な酸化スズ粒子が大量に必要となり高いコストを要することとなる。酸化スズどうしが接触していれば同等の半導電性が得られる。そのため、酸化チタンなどの化学的に安定な材料で作った大き目の担持体粒子の表面に、より小さい粒子である酸化スズを添着することによって、少量の酸化スズで半導電性を得ることが可能となる。   Further, the semiconductive material is characterized in that tin oxide doped with tin oxide or antimony is attached to carrier particles having a larger particle diameter. In order for the semiconductive coating film obtained from tin oxide to have semiconductivity, it is necessary for the tin oxide particles to contact each other in the semiconductive coating film. In order to realize this, a large amount of expensive tin oxide particles is required, which requires high costs. If the tin oxides are in contact, equivalent semiconductivity can be obtained. Therefore, semi-conductivity can be obtained with a small amount of tin oxide by attaching tin oxide, which is a smaller particle, to the surface of large support particles made of chemically stable materials such as titanium oxide. It becomes.

また、ベース樹脂として熱可塑性ポリエステル樹脂や塩ビ樹脂、ポリオール樹脂といった樹脂を用いる場合、塗料としての形態を成すために溶媒に対する溶解性が高い、すなわち分子量の比較的小さな状態の樹脂が使用される。低分子の樹脂は油や界面活性剤に溶解しやすく、例えば空気中の油粒子や界面活性剤粒子を捕集した場合、表面に付着した油粒子や界面活性剤粒子が半導電塗膜中の樹脂を溶解し、結果として半導電性塗膜の劣化を引き起こす。ここでポリイソシアネートなどを樹脂硬化剤として用いることでベース樹脂中のOH基が架橋され、樹脂が高分子化する。そのため油や界面活性剤に対してベース樹脂が溶解しない、化学的に安定な半導電塗膜を得ることが可能となる。   Further, when a resin such as a thermoplastic polyester resin, a vinyl chloride resin, or a polyol resin is used as the base resin, a resin having a high solubility in a solvent, that is, a relatively low molecular weight is used in order to form a coating material. Low molecular weight resins are easy to dissolve in oil and surfactant. For example, when oil particles and surfactant particles in the air are collected, the oil particles and surfactant particles adhering to the surface are not contained in the semiconductive coating film. Dissolves the resin, resulting in degradation of the semiconductive coating. Here, by using polyisocyanate or the like as a resin curing agent, the OH group in the base resin is cross-linked, and the resin is polymerized. Therefore, it is possible to obtain a chemically stable semiconductive coating film in which the base resin does not dissolve in oil or surfactant.

(実施の形態1)
ベース樹脂としてアクリルポリオール樹脂、樹脂硬化剤としてポリイソシアネート樹脂、導電性材料としてアンチモンをドープした酸化スズを酸化チタン担体に担持させたものを選び、半導電性塗料を作製した。図1は塗料作製のフロー図である。初めにベース樹脂と樹脂硬化剤を7:3の重量比で混合し、混合液を得る。この混合工程を第一の工程と呼ぶ。次に、第一の工程で得た混合液に、その2倍量の導電性材料を混ぜ合わせ、これを第二の工程とした。ここで得た混合液を半導電性塗料とし、電極板の母材であるPET樹脂の平板にスクリーン印刷法によって塗布した。印刷後、塗膜を30分間常温に放置し、100℃で20分間加熱して、塗膜を硬化させた。常温に放置する時間は、実施の形態3に記述する通り、長いほどよいが、ここでは30分間とした。この塗膜をサンプルAとする。
(Embodiment 1)
A semiconductive paint was prepared by selecting an acrylic polyol resin as a base resin, a polyisocyanate resin as a resin curing agent, and a tin oxide carrier doped with antimony as a conductive material, and a titanium oxide carrier. FIG. 1 is a flowchart for preparing a paint. First, the base resin and the resin curing agent are mixed at a weight ratio of 7: 3 to obtain a mixed solution. This mixing step is called the first step. Next, the mixed liquid obtained in the first step was mixed with twice the amount of the conductive material, and this was used as the second step. The liquid mixture obtained here was used as a semiconductive paint, and applied to a flat plate of PET resin which is a base material of the electrode plate by a screen printing method. After printing, the coating film was allowed to stand at room temperature for 30 minutes and heated at 100 ° C. for 20 minutes to cure the coating film. As described in Embodiment 3, the longer the time to stand at room temperature, the better. This coating film is designated as sample A.

比較用サンプルとして、従来の工程で塗料を混合したものも用意した。図6はその工程のフロー図で、以下の通りである。ベース樹脂と導電性材料を混合し、これを第一の工程とし、第一の工程で得た混合液に、樹脂硬化剤を混ぜ合わせ、これを第二の工程とする。各材料はすべてサンプルAのときと同じで、同量配合した。ここで得る塗料を、サンプルAのときと同様にしてPET樹脂板に塗布して、塗膜を硬化させた。これをサンプルBとする。   As a sample for comparison, a sample prepared by mixing paint in the conventional process was also prepared. FIG. 6 is a flow chart of the process and is as follows. The base resin and the conductive material are mixed and this is used as the first step, and the resin curing agent is mixed with the mixed solution obtained in the first step, and this is used as the second step. Each material was the same as in sample A, and the same amount was blended. The paint obtained here was applied to a PET resin plate in the same manner as in Sample A, and the coating film was cured. This is designated as sample B.

サンプルA、Bについて、それぞれの塗膜の導電性を、塗膜表面の表面抵抗率を測定することで評価した。その結果、サンプルAの表面抵抗率は2.4×10の7乗Ω/□、サンプルBは1.3×10の9乗Ω/□となり、本発明の工程によって、従来の工程に対して約50倍の抵抗率の減少、すなわち導電率が約50倍増加した。   About sample A and B, the electroconductivity of each coating film was evaluated by measuring the surface resistivity of the coating-film surface. As a result, the surface resistivity of sample A is 2.4 × 10 7 Ω / □, and sample B is 1.3 × 10 9 Ω / □. The resistivity decreased about 50 times, that is, the conductivity increased about 50 times.

(実施の形態2)
実施の形態1と同様にして、ベース樹脂としてアクリルポリオール樹脂、樹脂硬化剤としてポリイソシアネート樹脂、導電性材料としてアンチモンをドープした酸化スズを酸化チタン担体に担持させたものを用い、ベース樹脂と樹脂硬化剤を7:3の重量比で混合し、これを第一の工程とした。
(Embodiment 2)
In the same manner as in the first embodiment, an acrylic polyol resin as a base resin, a polyisocyanate resin as a resin curing agent, a tin oxide doped with antimony as a conductive material, supported on a titanium oxide carrier, a base resin and a resin The curing agent was mixed at a weight ratio of 7: 3 and this was the first step.

次に、第二の工程として、第一の工程で得た混合液に、ある量の導電性材料を混ぜ合わせるが、ここで、導電性材料を混ぜ合わせる前に、混合液を一定時間放置した。放置することで、ベース樹脂と樹脂硬化剤の結合が進むため、それによって最終的に得られる塗膜の導電率、すなわち表面抵抗率が変化するどうかを確認した。放置する時間は、10分から24時間までの間で数点設けた。設定した放置時間が経過したら、混合液に導電性材料を混ぜ合わせて半導電性塗料とし、PET樹脂の平板にスクリーン印刷法によって塗布した。印刷後、塗膜を30分間常温に放置し、100℃で20分間加熱して、塗膜を硬化させた。   Next, as the second step, a certain amount of the conductive material is mixed with the mixed liquid obtained in the first step. Here, the mixed liquid is allowed to stand for a certain period of time before the conductive material is mixed. . By allowing it to stand, bonding between the base resin and the resin curing agent proceeds, and thus it was confirmed whether or not the conductivity of the finally obtained coating film, that is, the surface resistivity changed. Several points were allowed to stand between 10 minutes and 24 hours. When the set standing time had elapsed, a conductive material was mixed with the mixed solution to obtain a semiconductive coating material, which was applied to a flat plate of PET resin by a screen printing method. After printing, the coating film was allowed to stand at room temperature for 30 minutes and heated at 100 ° C. for 20 minutes to cure the coating film.

図3は、第一の工程と第二の工程の間における混合液の放置時間と、塗膜の表面抵抗率との関係を表したグラフである。このグラフから、第一の工程と第二の工程の間の放置時間が長くなるほど塗膜の表面抵抗率が高くなるということが言える。したがって、より少ない導電性材料でより高い導電率をもつ塗膜を得るためには、第一の工程と第二の工程の間の放置時間は短い方がよい。   FIG. 3 is a graph showing the relationship between the standing time of the mixed liquid between the first step and the second step and the surface resistivity of the coating film. From this graph, it can be said that the longer the standing time between the first step and the second step, the higher the surface resistivity of the coating film. Therefore, in order to obtain a coating film having higher conductivity with less conductive material, it is better that the standing time between the first step and the second step is short.

(実施の形態3)
ベース樹脂としてアクリルポリオール樹脂、樹脂硬化剤としてポリイソシアネート樹脂、導電性材料としてアンチモンをドープした酸化スズを酸化チタン担体に担持させたものを選び、半導電性塗料を作製した。初めにベース樹脂と樹脂硬化剤を7:3の重量比で混合し、これを第一の工程とした。次に、第一の工程で得た混合液に、ある量の導電性材料を混ぜ合わせ、これを第二の工程とした。ここで得た混合液を半導電性塗料とし、電極板の母材であるPET樹脂の平板にスクリーン印刷法によって塗布した。印刷後、塗膜を一定時間常温に放置し、100℃で20分間加熱して、塗膜を硬化させた。印刷後から乾燥前にかけて塗膜を常温に放置する時間を変えた場合に、得られる塗膜の表面抵抗率がどのように変化するかを確認した。
(Embodiment 3)
A semiconductive paint was prepared by selecting an acrylic polyol resin as a base resin, a polyisocyanate resin as a resin curing agent, and a tin oxide carrier doped with antimony as a conductive material, and a titanium oxide carrier. First, the base resin and the resin curing agent were mixed at a weight ratio of 7: 3, and this was used as the first step. Next, a certain amount of conductive material was mixed with the liquid mixture obtained in the first step, and this was used as the second step. The liquid mixture obtained here was used as a semiconductive paint, and applied to a flat plate of PET resin which is a base material of the electrode plate by a screen printing method. After printing, the coating film was allowed to stand at room temperature for a certain time and heated at 100 ° C. for 20 minutes to cure the coating film. It was confirmed how the surface resistivity of the obtained coating film changes when the time for which the coating film is allowed to stand at room temperature is changed from printing to drying.

図4は、塗膜乾燥前の放置時間と塗膜の表面抵抗率の関係をグラフに表したものである。グラフから、放置する時間が長くなるほど塗膜の表面抵抗率は低くなる傾向があるということが言える。   FIG. 4 is a graph showing the relationship between the standing time before drying the coating film and the surface resistivity of the coating film. From the graph, it can be said that the surface resistivity of the coating film tends to be lower as the time for which it is left is longer.

(実施の形態4)
ベース樹脂としてアクリルポリオール樹脂、樹脂硬化剤としてポリイソシアネート樹脂、導電性材料としてアンチモンをドープした酸化スズを酸化チタン担体に担持させたものを選び、半導電性塗料を作製した。初めにベース樹脂と樹脂硬化剤を7:3の重量比で混合し、これを第一の工程とした。次に、第一の工程で得た混合液に、導電性材料を混ぜ合わせ、これを第二の工程とした。導電性材料を混ぜ合わせる重量に関しては、ベース樹脂の配合量に対して、1.50、1.67、2.00、2.33、2.83倍の4水準を用意し、それぞれの配合で半導電性塗料を作製した。それぞれの塗料について、半導電性塗膜を形成し、表面抵抗率を測定した。
(Embodiment 4)
A semiconductive paint was prepared by selecting an acrylic polyol resin as a base resin, a polyisocyanate resin as a resin curing agent, and a tin oxide carrier doped with antimony as a conductive material, and a titanium oxide carrier. First, the base resin and the resin curing agent were mixed at a weight ratio of 7: 3, and this was used as the first step. Next, the conductive material was mixed with the liquid mixture obtained in the first step, and this was used as the second step. Regarding the weight to mix the conductive material, prepare four levels of 1.50, 1.67, 2.00, 2.33, 2.83 times the blending amount of the base resin. A semiconductive paint was prepared. About each coating material, the semiconductive coating film was formed and the surface resistivity was measured.

図5は、半導電性塗料中のベース樹脂重量に対する導電性材料の配合重量の比率に関して、塗膜の表面抵抗率を対数値で表したグラフである。導電性材料の配合比が小さくなるほど塗膜の表面抵抗率は急激に高くなる傾向であるが、集塵装置の集塵部を構成するための半導電性電極板に適した表面抵抗率である10の7〜12乗Ω/□を持つ塗膜を得るには、その比率が1.50〜2.18となる。   FIG. 5 is a graph showing the surface resistivity of the coating film as a logarithmic value with respect to the ratio of the blending weight of the conductive material to the weight of the base resin in the semiconductive paint. The surface resistivity of the coating film tends to increase rapidly as the blending ratio of the conductive material decreases, but the surface resistivity is suitable for a semiconductive electrode plate for constituting the dust collection part of the dust collector. In order to obtain a coating film having 10 7 to 12th power Ω / □, the ratio is 1.50 to 2.18.

本発明にかかる電極板および集塵装置は、油が付着しても高い集塵性能を得ると同時に集塵部の火花放電を回避することが可能なため、高い集塵性能と安全性が求められる集塵装置、例えば工場のオイルミスト集塵機や家庭用空気清浄機、または給気型換気扇などに搭載する集塵デバイスとして有用である。   The electrode plate and the dust collector according to the present invention are required to have high dust collection performance and safety because they can obtain high dust collection performance even when oil adheres and at the same time avoid spark discharge of the dust collection section. It is useful as a dust collecting device mounted on a dust collector to be used, for example, an oil mist dust collector in a factory, a domestic air cleaner, or an air supply type ventilation fan.

101 電極板
102 母材
103 半導電性塗膜
104 ベース樹脂
105 導電性材料
101 Electrode plate 102 Base material 103 Semiconductive coating 104 Base resin 105 Conductive material

Claims (10)

ベース樹脂と樹脂硬化剤を混合する第一の工程の後に、第一の工程で得られた混合液に導電性材料を分散する第二の工程を有し、第二の工程で得る混合液を半導電性塗料として電極板に塗布することを特徴とする半導電性電極板の製造方法。 After the first step of mixing the base resin and the resin curing agent, the second step of dispersing the conductive material in the mixed liquid obtained in the first step has a mixed liquid obtained in the second step. A method for producing a semiconductive electrode plate, wherein the electrode plate is applied as a semiconductive paint. 第一の工程後、最大20分間経過後、第二の工程を行うことを特徴とする請求項1記載の半導電性電極板の製造方法。 The method for producing a semiconductive electrode plate according to claim 1, wherein after the first step, the second step is performed after a maximum of 20 minutes. 電極板に塗布した、半導電性塗料の塗膜を加熱乾燥する前に、前記塗膜を常温で一定時間放置することを特徴とする請求項1記載の半導電性電極板の製造方法。 2. The method for producing a semiconductive electrode plate according to claim 1, wherein the coating film is allowed to stand at room temperature for a certain period of time before the coating film of the semiconductive paint applied to the electrode plate is heated and dried. 集塵部と帯電部を備え、前記集塵部と前記帯電部は、請求項1記載の半導電性電極板の製造方法を用いて製造した半導電性電極板を有し、その半導電性電極板が10の7乗〜10の12乗Ω/□の表面抵抗率を持つことを特徴とする集塵装置。 A dust collecting portion and a charging portion are provided, and the dust collecting portion and the charging portion have a semiconductive electrode plate manufactured using the method for manufacturing a semiconductive electrode plate according to claim 1, and the semiconductive An electrode plate has a surface resistivity of 10 7 to 10 12 Ω / □. 導電性材料が導電性を有する金属酸化物であることを特徴とする請求項4記載の集塵装置。 5. The dust collector according to claim 4, wherein the conductive material is a metal oxide having conductivity. 金属酸化物が酸化スズ、もしくはアンチモンをドープした酸化スズであることを特徴とする請求項5記載の集塵装置。 6. The dust collector according to claim 5, wherein the metal oxide is tin oxide or tin oxide doped with antimony. 導電性材料が酸化スズもしくはアンチモンをドープした酸化スズをそれよりも大きい粒子径を有する担持体粒子に添着したものであることを特徴とする請求項4乃至6記載の集塵装置。 7. The dust collector according to claim 4, wherein the conductive material is tin oxide or tin oxide doped with antimony added to carrier particles having a larger particle diameter. ベース樹脂がポリオールであることを特徴とする請求項4乃至7記載の集塵装置。 8. The dust collector according to claim 4, wherein the base resin is a polyol. 樹脂硬化剤がポリイソシアネートであることを特徴とする請求項4乃至8記載の集塵装置。 9. The dust collector according to claim 4, wherein the resin curing agent is polyisocyanate. 混合塗料中におけるベース樹脂の重量に対する金属酸化物の重量比が1.50〜2.18であることを特徴とする請求項9記載の集塵装置。 The dust collector according to claim 9, wherein the weight ratio of the metal oxide to the weight of the base resin in the mixed paint is 1.50 to 2.18.
JP2009243010A 2009-10-22 2009-10-22 Dust collector Expired - Fee Related JP5577669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243010A JP5577669B2 (en) 2009-10-22 2009-10-22 Dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243010A JP5577669B2 (en) 2009-10-22 2009-10-22 Dust collector

Publications (2)

Publication Number Publication Date
JP2011088059A true JP2011088059A (en) 2011-05-06
JP5577669B2 JP5577669B2 (en) 2014-08-27

Family

ID=44106836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243010A Expired - Fee Related JP5577669B2 (en) 2009-10-22 2009-10-22 Dust collector

Country Status (1)

Country Link
JP (1) JP5577669B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206470A1 (en) 2017-04-27 2018-10-31 Lg Electronics Inc. Electric dust collector
KR20200004458A (en) 2020-01-03 2020-01-13 엘지전자 주식회사 Electric dust collector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515810A (en) * 1991-03-14 1993-01-26 Fuji Electric Co Ltd Electrostatic precipitator for automobile roadway tunnel
JPH0645648U (en) * 1992-10-15 1994-06-21 株式会社ゼクセル Automotive air purifier
JPH078835A (en) * 1993-06-21 1995-01-13 Daikin Ind Ltd Dust collecting electrode plate
JPH11151452A (en) * 1997-11-20 1999-06-08 Midori Anzen Co Ltd Electric dust collector
JPH11193476A (en) * 1997-12-26 1999-07-21 Nkk Corp Production of silicon steel sheet for bonded iron core, excellent in adhesive strength, corrosion resistance, and blocking resistance, and its production
JP2001334123A (en) * 2000-05-25 2001-12-04 Nec Corp Exhaust gas deodorizing treating apparatus
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2002348530A (en) * 2001-05-23 2002-12-04 Nippon Steel Chem Co Ltd Curing agent for thermosetting type coating material, and coating material composition
JP2007265890A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
JP2008183540A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Electric dust collection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515810A (en) * 1991-03-14 1993-01-26 Fuji Electric Co Ltd Electrostatic precipitator for automobile roadway tunnel
JPH0645648U (en) * 1992-10-15 1994-06-21 株式会社ゼクセル Automotive air purifier
JPH078835A (en) * 1993-06-21 1995-01-13 Daikin Ind Ltd Dust collecting electrode plate
JPH11151452A (en) * 1997-11-20 1999-06-08 Midori Anzen Co Ltd Electric dust collector
JPH11193476A (en) * 1997-12-26 1999-07-21 Nkk Corp Production of silicon steel sheet for bonded iron core, excellent in adhesive strength, corrosion resistance, and blocking resistance, and its production
JP2001334123A (en) * 2000-05-25 2001-12-04 Nec Corp Exhaust gas deodorizing treating apparatus
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2002348530A (en) * 2001-05-23 2002-12-04 Nippon Steel Chem Co Ltd Curing agent for thermosetting type coating material, and coating material composition
JP2007265890A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
JP2008183540A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Electric dust collection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206470A1 (en) 2017-04-27 2018-10-31 Lg Electronics Inc. Electric dust collector
KR20180120471A (en) 2017-04-27 2018-11-06 엘지전자 주식회사 Electric dust collector
US10913074B2 (en) 2017-04-27 2021-02-09 Lg Electronics Inc. Electric dust collector
KR20200004458A (en) 2020-01-03 2020-01-13 엘지전자 주식회사 Electric dust collector

Also Published As

Publication number Publication date
JP5577669B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP6371824B2 (en) Dielectric coatings and articles
US10652957B2 (en) Heating element including nano-material filler
EP3278423B1 (en) Resistance covering for a corona shield of an electric machine
KR101524642B1 (en) Heating paste composition for forming thick film and portable low power heater using the same
CN102265362A (en) Composition for forming high-dielectric film for film capacitor
JP2011088059A (en) Dust collector
US8048342B2 (en) Sol-gel composition for fabricating conductive fibers
CN108766686B (en) Low-surface-resistance flexible insulating material and preparation method thereof
JP2010029839A (en) Electrostatic dust collecting device
JP5430939B2 (en) Powder coating material, method for producing painted material, and painted material
CN114566306B (en) Conductive silver paste and preparation method and application thereof
JP2006206706A (en) Heat-treated conductive composition, conductive coating having the same, conductive fiber material, and flat heater
JP6517915B2 (en) Polymer thick film silver conductor with reverse cure profile behavior
JP5193810B2 (en) Dispersion, metal oxide-containing film, and method for producing substrate with metal oxide film
JP2011083674A (en) Electrode plate and dust collector
JP2004207097A (en) Conductive resin composition
JP3423833B2 (en) Method of producing semiconductive polyethersulfone film and method of using the same
CN101708988A (en) Compound conductive powder for anti-static ceramic tile
TW201700570A (en) Composite transparent pressure sensing film
KR101551180B1 (en) Manufacturing method of electrically conductive composition for coating plane heater, and electrically conductive composition for coating plane heater
TWI591111B (en) A transparent pressure sensing film, method of making the same, and electronic device comprising the same
CN111138744A (en) Insulating composite material, preparation method thereof and electrostatic air purifier
JP2010227832A (en) Dust collecting apparatus
JP2010227833A (en) Dust collector
KR20200072934A (en) Humidity sensing film for humidity sensor including carbon doped with nano metal and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

LAPS Cancellation because of no payment of annual fees