JP2011087266A - Floor face/wall face two-dimensional communication system capable of wireless power-feeding - Google Patents

Floor face/wall face two-dimensional communication system capable of wireless power-feeding Download PDF

Info

Publication number
JP2011087266A
JP2011087266A JP2009254418A JP2009254418A JP2011087266A JP 2011087266 A JP2011087266 A JP 2011087266A JP 2009254418 A JP2009254418 A JP 2009254418A JP 2009254418 A JP2009254418 A JP 2009254418A JP 2011087266 A JP2011087266 A JP 2011087266A
Authority
JP
Japan
Prior art keywords
dielectric substrate
dielectric
transmission
sensor
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009254418A
Other languages
Japanese (ja)
Inventor
Yozo Uchiumi
要三 内海
Hirosuke Suzuki
洋介 鈴木
Toshihisa Kamei
利久 亀井
Sodai Yokota
宗大 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keycom Corp
Original Assignee
Keycom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keycom Corp filed Critical Keycom Corp
Priority to JP2009254418A priority Critical patent/JP2011087266A/en
Publication of JP2011087266A publication Critical patent/JP2011087266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system wherein a dielectric substrate is selected as a two-dimensional (2D) communication transmission medium, wireless power feeding is made compatible with 2D communication, and 2D communication on a floor surface/wall surface or the like is performed with a directional sensor for exciting and detecting a TM surface wave on a surface of the dielectric substrate. <P>SOLUTION: Low-frequency power-feeding electrodes 5, 6, 7, 8, 9 are configured for a ground plate 11 via a dielectric layer. The electrodes are separated with a slit of 0.5 mm. A low frequency voltage is applied to the electrodes 5, 7, 9. Wireless power-feeding pickup electrodes 1, 2, 3, 4 are disposed via a dielectric substrate 10 which is extremely thin (about 300 μm). Power is fed from the low frequency power-feeding electrodes 5, 6, 7, 8, 9 through the extremely thin dielectric substrate 10 to these pickup electrodes by electrostatic coupling. The pickup electrodes can be supplied with power while moving in the direction of slits. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、ワイヤレス給電を可能とする床面や壁面などの2次元平面を伝送媒体に用いた電磁波通信システムにおける、電磁波の励振と検出に係る技術に関する。  The present invention relates to a technique related to excitation and detection of electromagnetic waves in an electromagnetic wave communication system using a two-dimensional plane such as a floor surface or a wall surface capable of wireless power feeding as a transmission medium.

放送波のデジタル化に伴うテレビジョンの多チャンネル化、IT技術に支えられたマルチメディア等、家庭やオフィスには数多くのテレビジョン端末やPCが溢れている。 これ等の情報家電製品を何らかの家庭内ネットワークに接続することが望まれている。 さらに、空調機器や風呂や施錠システム等の、従来は情報家電製品とは無縁の一般的な家電製品を同じネットワークに接続することができれば、ネットワーク対応テレビは言うにおよばず、ネットワーク対応風呂沸かし、ネットワーク対応エアコン、ネットワーク対応ドア等が実現し家庭内等での利便性は飛躍的に向上する。  Many television terminals and PCs are overflowing in homes and offices, such as the multi-channel television accompanying the digitization of broadcast waves and multimedia supported by IT technology. It is desired to connect these information home appliances to some home network. Furthermore, if you can connect general home appliances that are conventionally unrelated to information home appliances, such as air conditioners, baths, and locking systems, to the same network, network-compatible TVs, not to mention network-compatible baths, Network-compatible air conditioners, network-compatible doors, etc. will be realized, and convenience in the home will be dramatically improved.

しかしながら、これ等の数多くの機器間の通信を効率的に行うためには、(1) 従来通りの複数の同軸ケーブルによる接続、(2) 電灯線搬送を利用、(3) 小電力無線伝送を利用、(4) 赤外線伝送を利用、等が考えられるが、(1)はケーブル輻輳の問題があり、(2)と(4)は伝送帯域が10MbpS以下で家庭内ネットワークの要件を全て満足できるものとは言えない、(3)は2.4GHz、5GHz、19GHz、25GHz、60GHz帯で検討が進んでいる。これらの電波を用いた無線LAN技術利用の家庭内ネットワークへの導入が考えられるが、電波漏洩の問題と異なる部屋間の通信の問題が解決されていない。  However, in order to efficiently perform communication between these many devices, (1) conventional connection using a plurality of coaxial cables, (2) use of power line transportation, (3) low power wireless transmission Use, (4) Use infrared transmission, etc., but (1) has a problem of cable congestion, and (2) and (4) can satisfy all the requirements of the home network with a transmission band of 10 Mbps or less. It cannot be said that (3) has been studied in the 2.4 GHz, 5 GHz, 19 GHz, 25 GHz, and 60 GHz bands. Although introduction of wireless LAN technology using these radio waves into a home network is conceivable, the problem of communication between rooms which is different from the problem of radio wave leakage has not been solved.

最近、これらの問題に応えるため、床面を誘電体基板で構成した2次元平面伝送路とした通信システムの提案がなされている。[非特許文献1] しかしながら、誘電体基板端面での電磁波の反射の問題や大きな伝送損失の問題などが課題として残されており、安定な2次元通信技術は確立できていない。  Recently, in order to respond to these problems, there has been proposed a communication system using a two-dimensional planar transmission line in which a floor surface is formed of a dielectric substrate. [Non-Patent Document 1] However, the problem of reflection of electromagnetic waves on the end face of the dielectric substrate and the problem of large transmission loss remain as problems, and a stable two-dimensional communication technique has not been established.

また、将来の家庭やオフィスには支援型インテリジェント歩行ロボットの出現も想定しておく必要がある。このような場合、ロボットへの給電は床面などからシームレスに直接行われることが望まれる。即ち、ワイヤレスな給電が望まれている。このようなワイヤレス給電を可能とする2次元平面を用いた2次元通信システムを開発する必要がある。  In addition, it is necessary to anticipate the emergence of support-type intelligent walking robots in future homes and offices. In such a case, it is desired that the power supply to the robot is seamlessly performed directly from the floor surface or the like. That is, wireless power feeding is desired. It is necessary to develop a two-dimensional communication system using a two-dimensional plane that enables such wireless power feeding.

特願2009−185210「床面/壁面2次元通信システム」;内海要三、(出願 平成21年7月16日)。  Japanese Patent Application No. 2009-185210 “Floor / Wall 2D Communication System”; Yozo Utsumi (Application July 16, 2009).

「表面マイクロ波を使った信号と電力の同時伝送」;板井裕人、張兵、篠田裕之、信学技報USN2007−21、PP.115−118、2007年5月  "Simultaneous signal and power transmission using surface microwaves"; Hiroto Itai, Zhangbei, Hiroyuki Shinoda, Shingaku Giho USN2007-21, PP. 115-118, May 2007

先行技術文献である非特許文献1では、直流給電と2次元通信の両立のた、導体板裏打ち誘電体基板の誘電体表面に、メッシュ状の導体薄板を設置し、その導体薄板に接するように、無指向性の送信/受信センサを配置して2次元通信を行っている。そのため、メッシュ状の導体薄板の導体損に基づく伝送損失の増加と基板端面などでの反射による位相特性の劣化が課題となった。  In Non-Patent Document 1, which is a prior art document, a mesh-like conductive thin plate is installed on the dielectric surface of a conductive plate-backed dielectric substrate that achieves both DC power feeding and two-dimensional communication, and is in contact with the conductive thin plate. A non-directional transmission / reception sensor is arranged to perform two-dimensional communication. Therefore, an increase in transmission loss due to the conductor loss of the mesh-like conductor thin plate and deterioration of phase characteristics due to reflection at the end face of the substrate have become problems.

メッシュ状の導体薄板の導体損を除くことや構造の簡略化を図るため、静電結合を用いた低周波(約1MHz)給電などにより、メッシュ状の導体薄板そのものを取り除き、誘電体層表面に直接送信/受信センサを配置して2次元通信を行う方法が考えられる。しかし、適度な静電結合強度を得るためには、誘電体層の厚さは極薄(約300μm)であることが求められる。しかしながら、導体板裏打ち極薄誘電体基板の誘電体表面にマイクロ波表面波をトラップするのはきわめて困難になる。従って、導体板裏打ち極薄誘電体基板の誘電体表面にマイクロ波表面波を効率よく励振、トラップさせ、反射特性の良い送信/受信指向性センサの開発が、解決しようとする課題となる。  In order to remove the conductor loss of the mesh-like conductor thin plate and simplify the structure, the mesh-like conductor thin plate itself is removed by a low frequency (about 1 MHz) power supply using electrostatic coupling and the like on the surface of the dielectric layer. A method of performing two-dimensional communication by arranging direct transmission / reception sensors is conceivable. However, in order to obtain an appropriate electrostatic coupling strength, the thickness of the dielectric layer is required to be extremely thin (about 300 μm). However, it becomes extremely difficult to trap the microwave surface wave on the dielectric surface of the ultrathin dielectric substrate backed by the conductive plate. Therefore, the development of a transmission / reception directivity sensor having good reflection characteristics by efficiently exciting and trapping microwave surface waves on the dielectric surface of the ultrathin dielectric substrate backed by the conductor plate is an issue to be solved.

課題を解決するための手段1Means 1 for solving the problem

図1に示すようなワイヤレス給電機能付の床面/壁面構造の一例において、TM表面波を用いた2次元通信を可能とする仕組みを開発する。
11の接地板に対して誘電体層を介して、5,6,7,8,9の低周用給電用電極を構成する。各電極間は0.5mmのスリットで隔てられている。5,7,9に低周波電圧が印加される。10の極薄(約300μm)誘電体薄板を介して、1,2,3,4のワイヤレス給電用ピックアップ電極を配置する。これらのピックアップ電極に10の極薄誘電体基板を介して、静電結合で5,6,7,8,9の低周波給電用電極から給電されることになる。ピックアップ電極はスリット方向に移動しつつ、給電を受けることが可能である。
In an example of a floor / wall structure with a wireless power feeding function as shown in FIG. 1, a mechanism that enables two-dimensional communication using a TM surface wave is developed.
11, 5, 6, 7, 8, 9 low-frequency feed electrodes are configured via a dielectric layer with respect to 11 ground plates. Each electrode is separated by a 0.5 mm slit. A low frequency voltage is applied to 5, 7, and 9. 1, 2, 3, and 4 wireless power pickup electrodes are arranged through 10 ultrathin (about 300 μm) dielectric thin plates. Power is supplied to these pickup electrodes from low frequency power supply electrodes 5, 6, 7, 8 and 9 through 10 ultrathin dielectric substrates by electrostatic coupling. The pickup electrode can receive power supply while moving in the slit direction.

例えば、1のピックアップ電極に図3に示す送信用指向性センサを接続し、4のピックアップ電極に受信用指向性センサを接続して、図4に示すような位置関係で送受信を行うことができる。ただし、図1の1、4の2つのピックアップ電極間の伝送では、図に示したように2つのスロット越しの伝送になる。  For example, the transmission directivity sensor shown in FIG. 3 is connected to one pickup electrode, and the reception directivity sensor is connected to four pickup electrodes, so that transmission / reception can be performed in a positional relationship as shown in FIG. . However, transmission between the two pickup electrodes 1 and 4 in FIG. 1 is transmission through two slots as shown in the figure.

本開発の最大の課題は、図1の構造において最上層の導体板裏打ち誘電体基板の厚さが、ワイヤレス給電を可能とさせるための静電容量による結合(C結合)を低周波(約1MHz)で実現させるため、きわめて薄く約300μmとする必要があることである。  The biggest problem of this development is that the thickness of the uppermost conductive plate-backed dielectric substrate in the structure of FIG. 1 reduces the coupling (C coupling) due to the capacitance to enable wireless power feeding (about 1 MHz). ), It is necessary to make the film very thin and about 300 μm.

図2に示すように導体板裏打ち誘電体基板(厚さt)の誘電体表面から指数関数的に減衰するエバネセント波にエネルギーがトラップされて伝搬する。この誘電体表面にトラップされて伝送されるTM表面波(Transverse Magnetic Wave)を、送信センサを用い誘電体表面上に励振し、受信センサで検出する床面や壁面等を用いた2次元通信システムを開発する。ここで、送信/受信センサに指向性を持たせることにより、SパラメータのS21(伝送特性)の増加とS11(反射特性)の減少を図る。  As shown in FIG. 2, energy is trapped and propagated from the dielectric surface of the dielectric substrate (thickness t) to the evanescent wave that decays exponentially from the dielectric surface. A two-dimensional communication system using a floor surface, a wall surface, or the like that detects a TM surface wave (Transverse Magnetic Wave) trapped on the dielectric surface and transmitted on the dielectric surface using a transmission sensor. Develop. Here, by imparting directivity to the transmission / reception sensor, the S parameter S21 (transmission characteristics) is increased and the S11 (reflection characteristics) is decreased.

送信/受信センサは誘電体表面でTM表面波を励振、検出することが可能なので、センサを移動するとき基板表面を滑らす形で通信が可能となり、アクセスポイントを自由に選べ、柔軟なネットワークを構成することができる。 また、各センサが指向性を有するため、電波の伝搬方向をある程度絞れるので、マルチパス対策として用いる基板端面に装荷する誘電損失角の大きな吸収体は必要がない。
また、送信センサで励振された電波は効率よく受信センサに到達し、良好な位相特性を保ったまま伝送損失も軽減できる。
Since the transmitter / receiver sensor can excite and detect TM surface waves on the dielectric surface, communication is possible by sliding the substrate surface when moving the sensor, and the access point can be freely selected to form a flexible network. can do. In addition, since each sensor has directivity, the propagation direction of the radio wave can be narrowed to some extent, so that there is no need for an absorber having a large dielectric loss angle loaded on the end face of the substrate used as a multipath countermeasure.
Further, the radio wave excited by the transmission sensor efficiently reaches the reception sensor, and transmission loss can be reduced while maintaining good phase characteristics.

図3に示したテーパー形状のマイクロストリップラインタイプ指向性センサを、図4に示す導体板裏打ち誘電体基板の表面に、対向して設置する。図4に送信センサと受信センサの位置関係を示す。図3、図4の構成で電磁界シミュレーションを行った。図3においてテーパー型導体板は厚さhの誘電体上に設置されている。上記形状のマイクロストリップライン用中心導体と導体板裏打ち誘電体基板で構成される伝送線路の特性インピーダンスを、それぞれ図に示すように、Z1,Z2とする。  The taper-shaped microstrip line type directivity sensor shown in FIG. 3 is installed oppositely on the surface of the conductive plate-backed dielectric substrate shown in FIG. FIG. 4 shows the positional relationship between the transmission sensor and the reception sensor. An electromagnetic field simulation was performed with the configuration shown in FIGS. In FIG. 3, the tapered conductor plate is placed on a dielectric having a thickness h. As shown in the figure, the characteristic impedances of the transmission line constituted by the microstrip line central conductor and conductor plate-lined dielectric substrate having the above-mentioned shapes are Z1 and Z2, respectively.

図3において比較的指向性が確保でき、大きな伝送特性S21が得られるインピーダンスの組み合わせとして、Z=200Ω,Z1=100Ωを選んだ。ここで、Z1=50Ω、Z2=20Ωなどの組み合わせでは、テーパー線路の横幅が大きくなりすぎて十分な指向性が得られない。ただし、誘電体基板の比誘電率は2にしている。In FIG. 3, Z 1 = 200Ω and Z1 = 100Ω are selected as a combination of impedances that can ensure relatively directivity and obtain a large transmission characteristic S21. Here, in the combination of Z1 = 50Ω, Z2 = 20Ω, etc., the horizontal width of the tapered line becomes too large, and sufficient directivity cannot be obtained. However, the relative dielectric constant of the dielectric substrate is set to 2.

図5A、図5B、図5C、図5Dにテーパー形状のマイクロストリップラインタイプ指向性センサで励振した場合の誘電体基板表面上の電界分布と、基板中央における基板断面の電界分布を示す。断面での表示は、空気層を含め接地導体表面から約2cmの範囲を示している。ただし、導体板裏打ち誘電体基板の比誘電率は2で、センサ上部の誘電体の比誘電率は1である。また、A、B、C、Dは、誘電体基板層厚tがそれぞれ300μm、1mm、5mm、8mmの場合を示している。
層厚が厚い場合は、明らかに指向性の効果を確認できるが、極薄t=300μmの場合は、ほとんど指向性は無くなっている。ただし、送受信センサ間の距離は、低インピーダンス側の端面が対向する距離として20cmとした。
5A, FIG. 5B, FIG. 5C, and FIG. 5D show the electric field distribution on the surface of the dielectric substrate when excited by a tapered microstrip line type directional sensor and the electric field distribution of the substrate cross section at the center of the substrate. The display in cross section shows a range of about 2 cm from the ground conductor surface including the air layer. However, the dielectric constant of the dielectric substrate backed by the conductor plate is 2, and the relative dielectric constant of the dielectric at the top of the sensor is 1. A, B, C, and D show cases where the dielectric substrate layer thickness t is 300 μm, 1 mm, 5 mm, and 8 mm, respectively.
When the layer thickness is thick, the directivity effect can be clearly confirmed, but when the layer thickness is very thin t = 300 μm, the directivity is almost lost. However, the distance between the transmission and reception sensors was set to 20 cm as the distance where the end surfaces on the low impedance side face each other.

図6に伝送特性S21を、図7に位相特性を示す。ただし、対向する送信/受信センサ間の距離は20cmで、誘電体基板の比誘電率は2としている。
S21は層厚5mmの場合に比べて300μmの場合は、S21がそれぞれ最大になる12GHz帯で30dB以上劣化している。このことは、誘電体層厚が極薄になればTM表面波が極端にトラップされ難くなることを示している。位相特性も層厚が小さい場合は反射の影響で劣化し、リニアな位相特性が崩れている。ただし、誘電体層厚が5mmを超えるとS21は劣化し、最適な厚みがあることが分かる。
FIG. 6 shows the transmission characteristic S21, and FIG. 7 shows the phase characteristic. However, the distance between the transmitting / receiving sensors facing each other is 20 cm, and the relative dielectric constant of the dielectric substrate is 2.
When S21 is 300 μm as compared with the case where the layer thickness is 5 mm, the degradation is 30 dB or more in the 12 GHz band where S21 is maximized. This indicates that the TM surface wave is extremely difficult to be trapped if the dielectric layer thickness is extremely thin. When the layer thickness is small, the phase characteristic also deteriorates due to the influence of reflection, and the linear phase characteristic is broken. However, it can be seen that when the dielectric layer thickness exceeds 5 mm, S21 deteriorates and there is an optimum thickness.

図5〜7に示した結果より、低周波給電と両立させるための誘電体基板厚の条件であるt=300μmは、TM表面波の伝送には大きな伝送損失と反射特性の劣化を伴うことが分かった。  From the results shown in FIGS. 5 to 7, t = 300 μm, which is the condition of the thickness of the dielectric substrate for achieving low-frequency power feeding, may be accompanied by a large transmission loss and deterioration of reflection characteristics in TM surface wave transmission. I understood.

そこで、導体板裏打ち極薄誘電体基板に効率よくTM表面波を励振するためのマイクロストリップラインセンサの構造として、図3に示すセンサの形状をZ1=120Ω、Z2=40Ωに選び、さらに上部に高誘電率(比誘電率=9.8)の誘電体を設置した。その誘電体の基板厚hをパラメータとする。  Therefore, as the structure of the microstrip line sensor for efficiently exciting the TM surface wave on the conductive plate backed ultrathin dielectric substrate, the shape of the sensor shown in FIG. 3 is selected as Z1 = 120Ω, Z2 = 40Ω, and further above A dielectric having a high dielectric constant (relative dielectric constant = 9.8) was provided. The substrate thickness h of the dielectric is used as a parameter.

ワイヤレス給電と2次元通信を両立させるためには、図1に示す低周波給電用電極上の極薄誘電体基板表面にTM表面波を励振する必要がある。極薄誘電体基板に効率よくTM表面波を励振するためのマイクロストリップラインセンサの構造は、図3に示すマイクロストリップラインテーパー型送受信センサを導体板裏打ち極薄誘電体基板表面上に設置し、センサ上部に高誘電率(比誘電率=9.8)の誘電体を配置するものとする。センサ上部の誘電体の厚さhをパラメタにした(500μm、1mm、3mm、5mm)場合の極薄誘電体基板表面上と基板断面でのTM表面波電界分布を、それぞれ図8A、図8B、図8C、図8Dに示している。h=3mm、5mmの場合、指向性が確認できる。ただし、導体板裏打ち極薄誘電体基板の比誘電率=2.0、基板厚=300μmとしている。  In order to achieve both wireless power feeding and two-dimensional communication, it is necessary to excite the TM surface wave on the surface of the ultrathin dielectric substrate on the low frequency power feeding electrode shown in FIG. The microstrip line sensor structure for efficiently exciting the TM surface wave on the ultrathin dielectric substrate has the microstripline taper type transmission / reception sensor shown in FIG. 3 installed on the surface of the ultrathin dielectric substrate backed by a conductor plate. It is assumed that a dielectric having a high dielectric constant (relative dielectric constant = 9.8) is arranged on the sensor. The TM surface wave electric field distribution on the ultrathin dielectric substrate surface and the substrate cross section when the thickness h of the dielectric on the sensor is used as a parameter (500 μm, 1 mm, 3 mm, 5 mm) are shown in FIGS. This is shown in FIGS. 8C and 8D. In the case of h = 3 mm and 5 mm, directivity can be confirmed. However, the relative dielectric constant of the ultrathin dielectric substrate backed by the conductive plate is 2.0 and the substrate thickness is 300 μm.

hをパラメータとして、図9に伝送特性、図10に位相特性を示した。その結果誘電体基板厚t=300μm、比誘電率2の場合、センサ上部の高誘電体(比誘電率=9.8)の誘電体厚をh=3mmにすると、図9と図6のt=300μmの場合において、それぞれの最良値を比較すると伝送特性S21が約15dB改善された。また、h=3mmの場合は伝送帯域である9GHz付近では、反射の影響は小さくリニアな位相特性が得られている。  FIG. 9 shows transmission characteristics and FIG. 10 shows phase characteristics with h as a parameter. As a result, in the case where the dielectric substrate thickness t = 300 μm and the relative dielectric constant is 2, if the dielectric thickness of the high dielectric body (relative dielectric constant = 9.8) on the sensor is set to h = 3 mm, t in FIG. 9 and FIG. = 300 μm When comparing the best values, the transmission characteristic S 21 was improved by about 15 dB. When h = 3 mm, the influence of reflection is small and a linear phase characteristic is obtained in the vicinity of 9 GHz which is the transmission band.

低周波ワイヤレス給電と両立させるためには、図1に示す0.5mmのスリットを横断する形での、TM表面波の導体板裏打ち極薄誘電体基板表面上での伝送がもとめられる。図3の送受信センサにおいて、センサ上部の高誘電体(比誘電率=9.8)の厚さを3mmにした場合で、図1に示す0.5mmのスリットを垂直に1回横断する形での伝送の場合の電磁界シミュレーションを行った。図11にスリット横断伝送のTM表面波の電界分布、図12に伝送特性、図13に位相特性を示した。7〜12GHz帯では、スリットの影響は軽微であることが分かった。  In order to achieve compatibility with low-frequency wireless power feeding, transmission of TM surface waves on the surface of a conductor plate-lined ultrathin dielectric substrate in the form of crossing a 0.5 mm slit shown in FIG. 1 is required. In the transmission / reception sensor of FIG. 3, when the thickness of the high dielectric (relative permittivity = 9.8) on the sensor is 3 mm, the 0.5 mm slit shown in FIG. 1 is vertically crossed once. The electromagnetic field simulation in the case of transmission was performed. FIG. 11 shows the electric field distribution of TM surface waves transmitted across the slit, FIG. 12 shows the transmission characteristics, and FIG. 13 shows the phase characteristics. In the 7-12 GHz band, it was found that the influence of the slits was slight.

ワイヤレス給電と2次元通信を両立するための課題を解決するためには、一例として示したワイヤレス給電を可能とする図1のような基板構造において、基板表面に設置する極薄誘電体層(約300μm)にTM表面波をトラップして伝送、通信を行うことになる。
特に極薄誘電体表面にTM表面波をトラップして伝送するための課題を解決する手段として、図3に示すマイクロストリップライン型テーパーの上部に厚さ3mmの高誘電率(比誘電率=9.8)の誘電体を設置することを特徴とする送信/受信センサを用いればよいことを示した。
In order to solve the problem for achieving both wireless power feeding and two-dimensional communication, an ultra-thin dielectric layer (about approximately one) installed on the substrate surface in the substrate structure as shown in FIG. The TM surface wave is trapped at 300 μm) for transmission and communication.
In particular, as a means for solving the problem of trapping and transmitting TM surface waves on the surface of an ultrathin dielectric material, a high dielectric constant (relative dielectric constant = 9) is formed on the top of the microstripline taper shown in FIG. .8) It is shown that a transmission / reception sensor characterized by installing a dielectric may be used.

発明の効果The invention's effect

解決手段に示した方法により、ワイヤレス給電を可能とする極薄誘電体層を表面に設置した床面などを利用した2次元通信システムにおいて、極薄誘電体表面に効率よくTM表面波を励振、トラップさせることが可能な送受信指向性センサの開発により、誘電体基板端面などにおける反射に基づくマルチパスの影響や、反射を除去するために装荷する電波吸収体に起因する伝送損失の増加を、大幅に改善することができる。  In a two-dimensional communication system using a floor surface, etc., on which an ultrathin dielectric layer capable of wireless power feeding is provided, the TM surface wave is efficiently excited on the surface of the ultrathin dielectric, The development of a transmission / reception directional sensor that can be trapped greatly increases the effects of multipath due to reflection on the dielectric substrate end face and the increase in transmission loss due to the wave absorber loaded to eliminate the reflection. Can be improved.

:「ワイヤレス給電機能付床面/壁面構造の一例」  : "Example of floor / wall structure with wireless power supply function" :「導体板裏打ち誘電体表面にトラップされて伝搬するTM表面波」  : "TM surface wave propagating by being trapped on the dielectric surface of the conductor backing the conductor plate" :「テーパー形状マイクロストリップライン指向性センサの構造」  : "Structure of tapered microstrip line directional sensor" :「送信/受信指向性センサと導体板裏打ち誘電体基板の位置関係」  : "Positional relationship between the transmission / reception directivity sensor and the conductor-backed dielectric substrate" :「テーパー形状マイクロストリップラインタイプ指向性センサで励振した場合の導体板裏打ち誘電体基板表面上のTM表面波電界分布、層厚t=300μmの場合」  : "TM surface wave electric field distribution on the dielectric substrate surface lined with a conductive plate when excited by a tapered microstrip line type directional sensor, when layer thickness t = 300 μm" :「テーパー形状マイクロストリップラインタイプ指向性センサで励振した場合の導体板裏打ち誘電体基板表面上のTM表面波電界分布、層厚t=1mmの場合」  : “TM surface wave electric field distribution on the dielectric substrate surface lined with a conductive plate when excited by a tapered microstrip line type directional sensor, when the layer thickness is t = 1 mm” :「テーパー形状マイクロストリップラインタイプ指向性センサで励振した場合の導体板裏打ち誘電体基板表面上のTM表面波電界分布、層厚t=5mmの場合」  : "TM surface wave electric field distribution on the surface of a dielectric substrate backed by a conductive plate when excited with a tapered microstrip line type directional sensor, when the layer thickness is t = 5 mm" :「テーパー形状マイクロストリップラインタイプ指向性センサで励振した場合の導体板裏打ち誘電体基板表面上のTM表面波電界分布、層厚t=8mmの場合」  : "TM surface wave electric field distribution on the surface of a dielectric substrate lined with a taper-shaped microstrip line type directional sensor when the layer thickness is t = 8 mm" :「図3、図4の構造の伝送特性S21」  : “Transmission characteristics S21 of the structure of FIGS. 3 and 4” :「図3、図4の構造の位相特性」  : “Phase characteristics of the structure of FIGS. 3 and 4” :「導体板裏打ち極薄誘電体基板表面上のTM表面波電界分布、センサ上部誘電体層厚h=0.5mmの場合」  : “In the case of TM surface wave electric field distribution on the surface of a very thin dielectric substrate backed by a conductive plate, sensor upper dielectric layer thickness h = 0.5 mm” :「導体板裏打ち極薄誘電体基板表面上のTM表面波電界分布、センサ上部誘電体層厚h=1mmの場合」  : "In the case of TM surface wave electric field distribution on the surface of a conductor plate-lined ultrathin dielectric substrate, sensor upper dielectric layer thickness h = 1 mm" :「導体板裏打ち極薄誘電体基板表面上のTM表面波電界分布、センサ上部誘電体層厚h=3mmの場合」  : "In the case of TM surface wave electric field distribution on the surface of a conductor plate-lined ultrathin dielectric substrate, sensor upper dielectric layer thickness h = 3 mm" :「導体板裏打ち極薄誘電体基板表面上のTM表面波電界分布、センサ上部誘電体層厚h=5mmの場合」  : “In the case of TM surface wave electric field distribution on the surface of a very thin dielectric substrate backed by a conductive plate, sensor upper dielectric layer thickness h = 5 mm” :「導体板裏打ち極薄誘電体基板表面上のTM表面波伝送特性S21」  : "TM surface wave transmission characteristic S21 on the surface of a very thin dielectric substrate backed by a conductive plate" :「導体板裏打ち極薄誘電体基板表面上のTM表面波伝送の位相特性」  : “Phase characteristics of TM surface wave transmission on the surface of an ultrathin dielectric substrate backed by a conductive plate” :「極薄誘電体基板表面上で、図1に示すスリットを横断して伝送する場合の、TM表面波電界分布」  : “TM surface wave electric field distribution when transmitting across the slit shown in FIG. 1 on the surface of an ultrathin dielectric substrate” :「極薄誘電体基板表面上で、図1に示すスリットを横断して伝送する場合の、TM表面波伝送特性S21」  : “TM surface wave transmission characteristic S21 when transmitting across the slit shown in FIG. 1 on the surface of the ultrathin dielectric substrate” :「極薄誘電体基板表面上で、図1に示すスリットを横断して伝送する場合の、TM表面波位相特性」  : "TM surface wave phase characteristics when transmitting across the slit shown in Fig. 1 on the surface of an ultrathin dielectric substrate"

図3、図4に示した構造の送信/受信指向性センサを、図1に示すような低周波ワイヤレス給電が可能な2次元空間の任意の点に配置し、図2に示すTM表面波を、図1に示す極薄誘電体基板上に励振し、床面/壁面2次元通信を行う。  The transmission / reception directivity sensor having the structure shown in FIGS. 3 and 4 is arranged at an arbitrary point in a two-dimensional space capable of low-frequency wireless power supply as shown in FIG. 1, and the TM surface wave shown in FIG. 1 is excited on the ultrathin dielectric substrate shown in FIG. 1 to perform two-dimensional floor / wall communication.

実施形態の効果Effects of the embodiment

ここに示した指向性センサの実施例を用い、床面などを用いた2次元通信で問題になる基板端面での反射の影響を大幅に軽減し、伝送損失を逓減することができる。また、低周波でのワイヤレス給電と両立する2次元通信システムを実現できるので、床面などを移動する支援型インテリジェント歩行ロボットなどに電力を供給しながら通信行うことができる。  By using the embodiment of the directivity sensor shown here, it is possible to greatly reduce the influence of reflection on the end face of the substrate, which is a problem in two-dimensional communication using the floor surface, and to reduce transmission loss. In addition, since a two-dimensional communication system compatible with wireless power feeding at a low frequency can be realized, communication can be performed while supplying power to an assistive intelligent walking robot that moves on the floor or the like.

他の実施形態Other embodiments

TM表面波 : TM波は、Transverse Magnetic Waveのことで、波の進行方向の電界成分を持たない電磁波で、カットオフ周波数をもち、直流を含む低周波は伝搬しない。表面波は誘電体などの表面にトラップされて伝搬する波で、表面から離れるに従って指数関数的に減衰する電磁波である。今回の特許で用いている電磁波である。

Figure 2011087266
る波動を意味する。本提案では、誘電体基板表面から垂直方向に基板から離れるにしたがって指数関数的に減衰する。
S21 : ポート1から2への伝送特性を表わすSパラメーター。
S11 : ポート1での反射特性を表わすSパラメーター。
テーパー形状 : インピーダンスを徐々に変化させ(線幅を変化)電磁波を反射少なくスムーズに伝送させる形状。
指向性センサ : 電磁波をある方向に大きな感度で、励振/検出するセンサ
無指向性センサ : 電磁波を全方位同じ感度で、励振/検出するセンサ
マイクロストリップライン : マイクロ波、ミリ波帯で用いられる伝送線路で、中心導体と接地板で誘電体基板を挟んだ構造になっている。
マルチパス : 電波伝搬において、反射などの影響を受け、希望とする電波以外に複数の経路を介しての電波を受信することにより受信品質を劣化させる。本提案の床面や壁面等の2次元通信システムでも、基板端面などでの反射がマルチパスとなり、受信品質を劣化させる。
ワイヤレス給電 : 家庭やオフィスにおける電力供給に、一般的にはケーブルを用いる。ケーブルの輻輳や移動物体への電力供給が求められるようになっており、床面や壁面からケーブルを介さずに直接給電する方法が必要になってきている。この要求には、床面や壁面に設置された板状の電極導体から極薄誘電体層を介しての静電結合型や、誘導結合型がある。本提案では、約1MHzを用いた静電結合型の低周波ワイヤレス給電と2次元通信の両立を提案している。TM surface wave: TM wave is a Transverse Magnetic Wave, which is an electromagnetic wave having no electric field component in the wave traveling direction, has a cutoff frequency, and does not propagate low frequencies including direct current. A surface wave is a wave propagating by being trapped on a surface such as a dielectric, and is an electromagnetic wave that decays exponentially as the distance from the surface increases. The electromagnetic wave used in this patent.
Figure 2011087266
This means the wave. In this proposal, it attenuates exponentially as it moves away from the substrate in the vertical direction from the surface of the dielectric substrate.
S21: S parameter indicating transmission characteristics from port 1 to port 2.
S11: S parameter indicating reflection characteristics at port 1.
Tapered shape: A shape in which impedance is gradually changed (line width is changed) and electromagnetic waves are smoothly transmitted with little reflection.
Directional sensor: Sensor that excites / detects electromagnetic waves with high sensitivity in a certain direction Non-directional sensor: Sensor that excites / detects electromagnetic waves with the same sensitivity in all directions Microstrip line: Transmission used in the microwave and millimeter wave bands The track has a structure in which a dielectric substrate is sandwiched between a central conductor and a ground plate.
Multipath: In radio wave propagation, the reception quality is deteriorated by receiving radio waves through a plurality of routes in addition to the desired radio wave due to the influence of reflection and the like. Even in the proposed two-dimensional communication system such as a floor surface or a wall surface, reflection on the end face of the substrate becomes multipath, which degrades reception quality.
Wireless power supply: Generally, cables are used for power supply in homes and offices. Cable congestion and power supply to moving objects have been demanded, and a method of directly feeding power from a floor surface or a wall surface without using a cable is required. This requirement includes an electrostatic coupling type and an inductive coupling type through a very thin dielectric layer from a plate-like electrode conductor placed on the floor or wall surface. This proposal proposes the coexistence of two-dimensional communication and electrostatic coupling type low-frequency wireless power feeding using about 1 MHz.

Claims (2)

導体板裏打ち極薄(500μm以下)誘電体基板の表面にマイクロ波TM表面波をトラップさせて伝送することにより、低周波ワイヤレス給電との両立を可能とすることを特徴とする床面/壁面2次元通信システム。Floor / wall surface 2 characterized by being capable of coexistence with low-frequency wireless power feeding by trapping and transmitting microwave TM surface waves on the surface of a dielectric substrate backed ultrathin (500 μm or less) dielectric substrate Dimensional communication system. 前記表面波を極薄誘電体基板表面に励振する送信/受信センサに指向性を持たせるために用いるテーパー形状マイクロストリップラインにおいて、マイクロ波表面波を効率よく励振させるため、中心導体上面に高誘電体を配した構造の指向性センサを用いることを特徴とする請求項1記載の床面/壁面2次元通信システム。In a tapered microstrip line used to provide directivity to the transmission / reception sensor that excites the surface wave on the surface of the ultra-thin dielectric substrate, a high dielectric is formed on the upper surface of the central conductor to efficiently excite the microwave surface wave. 2. The floor / wall two-dimensional communication system according to claim 1, wherein a directional sensor having a structure with a body is used.
JP2009254418A 2009-10-15 2009-10-15 Floor face/wall face two-dimensional communication system capable of wireless power-feeding Pending JP2011087266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254418A JP2011087266A (en) 2009-10-15 2009-10-15 Floor face/wall face two-dimensional communication system capable of wireless power-feeding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254418A JP2011087266A (en) 2009-10-15 2009-10-15 Floor face/wall face two-dimensional communication system capable of wireless power-feeding

Publications (1)

Publication Number Publication Date
JP2011087266A true JP2011087266A (en) 2011-04-28

Family

ID=44079865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254418A Pending JP2011087266A (en) 2009-10-15 2009-10-15 Floor face/wall face two-dimensional communication system capable of wireless power-feeding

Country Status (1)

Country Link
JP (1) JP2011087266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494435A (en) * 2011-09-08 2013-03-13 Roke Manor Research Radio communication over a transmission medium using surface waves
JP2016509468A (en) * 2013-03-07 2016-03-24 シーピージー テクノロジーズ、 エルエルシー Excitation and use of induced surface wave modes on lossy media.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494435A (en) * 2011-09-08 2013-03-13 Roke Manor Research Radio communication over a transmission medium using surface waves
EP2568528A3 (en) * 2011-09-08 2014-04-30 Roke Manor Research Limited Apparatus for the transmission of electromagnetic waves
US9337895B2 (en) 2011-09-08 2016-05-10 Roke Manor Research Limited Electromagnetic surface wave guiding medium having a first surface with coupling nodes repositionable at arbitrary locations
GB2494435B (en) * 2011-09-08 2018-10-03 Roke Manor Res Limited Apparatus for the transmission of electromagnetic waves
JP2016509468A (en) * 2013-03-07 2016-03-24 シーピージー テクノロジーズ、 エルエルシー Excitation and use of induced surface wave modes on lossy media.

Similar Documents

Publication Publication Date Title
US10425793B2 (en) Staggered back-to-back launch topology with diagonal waveguides for field confined near field communication system
US10389410B2 (en) Integrated artificial magnetic launch surface for near field communication system
US10461810B2 (en) Launch topology for field confined near field communication system
US10027376B2 (en) Guided near field communication for short range data communication
US7405699B2 (en) Multiple input multiple output antenna
JP4118449B2 (en) Wireless communication device and slot loop antenna
US20190007486A1 (en) Tapered Coax Launch Structure for a Near Field Communication System
JP7313479B2 (en) Antenna unit and terminal equipment
US10309077B2 (en) Manhole cover type omnidirectional antenna
US20210280979A1 (en) Dual-polarized planar ultra-wideband antenna
JP2007259438A (en) Embedded antenna
CN104241794A (en) Combined waveguide
WO2022002139A1 (en) Electronic device
JP2015508593A (en) Non-contact connector
US9847582B2 (en) Wideband simultaneous transmit and receive (STAR) antenna with miniaturized TEM horn elements
US20130328733A1 (en) Waveguide or slot radiator for wide e-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
JP2011087266A (en) Floor face/wall face two-dimensional communication system capable of wireless power-feeding
JP5620534B2 (en) Phase shifter and antenna system
JP2011024176A (en) Electromagnetic wave transfer unit for dielectric waveguide
CN113451766A (en) Microstrip antenna, wireless signal processing equipment and vehicle
JP2014175893A (en) Leakage coaxial cable
US11024935B2 (en) Apparatuses for power combining and power dividing
JP2011199350A (en) Antenna
JP2011024177A (en) Two-dimensional communication system via floor/wall surface
JP6132971B2 (en) Rotating polarization antenna, transceiver module, elevator control system and substation control system