JP2011087148A - Choke member, and waveguide - Google Patents

Choke member, and waveguide Download PDF

Info

Publication number
JP2011087148A
JP2011087148A JP2009238928A JP2009238928A JP2011087148A JP 2011087148 A JP2011087148 A JP 2011087148A JP 2009238928 A JP2009238928 A JP 2009238928A JP 2009238928 A JP2009238928 A JP 2009238928A JP 2011087148 A JP2011087148 A JP 2011087148A
Authority
JP
Japan
Prior art keywords
waveguide
antenna
sub
directivity
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238928A
Other languages
Japanese (ja)
Other versions
JP5554535B2 (en
Inventor
Ko Tsuchida
航 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2009238928A priority Critical patent/JP5554535B2/en
Publication of JP2011087148A publication Critical patent/JP2011087148A/en
Application granted granted Critical
Publication of JP5554535B2 publication Critical patent/JP5554535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such the problem that axial symmetry deteriorates by diffraction caused at a projected part at the center of a subreflector even when directivity of a feed waveguide is axially symmetrical in the conventional ADE antenna. <P>SOLUTION: The feed waveguide is provided with a choke, and the position and size of the choke are adjusted to control radiation directivity of the feed waveguide. Specifically, the diffraction at the apex of the subreflector is suppressed to obtain a feed antenna of the ADE antenna having the axial symmetrical directivity by suppressing a radiation level in the apex direction at the center of the subreflector by control of the directivity. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、衛星通信装置やレーダ装置などにおいて、良好な指向特性を必要とする場合に用いられる、複数の反射板を備えたアンテナ装置に関する。 The present invention relates to an antenna device including a plurality of reflectors, which is used when a good directivity characteristic is required in a satellite communication device, a radar device, or the like.

大型のアンテナとして、現在最も広く使われているのが図1に示すようなカセグレンアンテナである。このアンテナは二つの反射鏡を用いて利得の向上を達成している。主反射鏡101の頂点に設置した給電導波管103から副反射鏡105に照射される電波は、該副反射鏡で反射され、前記主反射鏡へ照射される。 As a large antenna, a Cassegrain antenna as shown in FIG. 1 is most widely used at present. This antenna achieves gain improvement by using two reflecting mirrors. The radio wave applied to the sub-reflecting mirror 105 from the feeding waveguide 103 installed at the apex of the main reflecting mirror 101 is reflected by the sub-reflecting mirror and applied to the main reflecting mirror.

そうしてさらに主反射鏡で反射され、外へ電波を放射する。ここでポイントなのが、副反射鏡の反射面が曲面になっている点である。この形状をうまく設計することで、該アンテナから平行に放射される電波の照度分布を一定にし、利得を最大にすることができる。 Then, it is further reflected by the main reflector and radiates out. The point here is that the reflecting surface of the sub-reflecting mirror is a curved surface. By designing this shape well, the illuminance distribution of radio waves radiated in parallel from the antenna can be made constant and the gain can be maximized.

図2は図1をさらに簡略化したものである。図2の副反射鏡105に関して、その形状に起因する問題点を解決するために、図3の301に示すように副反射鏡の形状に関して中心部を主反射鏡に近づけたアンテナをADE(Axially Displaced Ellipse)アンテナという(非特許文献1)。 FIG. 2 is a further simplification of FIG. In order to solve the problems caused by the shape of the sub-reflecting mirror 105 in FIG. 2, an antenna having an ADE (Axially) with the center portion close to the main reflecting mirror in the shape of the sub-reflecting mirror as shown by 301 in FIG. It is called a Displaced Ellipse antenna (Non-Patent Document 1).

副反射鏡105の形状の前記問題点を図4に示す。すなわち、給電導波管から放射された電波が副反射鏡105の中心部によって反射される場合、401に示すように、その成分は給電導波管103に戻ってしまい、反射特性が劣化するのである。 The problem of the shape of the sub-reflecting mirror 105 is shown in FIG. That is, when the radio wave radiated from the feeding waveguide is reflected by the central portion of the sub-reflecting mirror 105, the component returns to the feeding waveguide 103 as indicated by 401, and the reflection characteristics deteriorate. is there.

しかるに副反射鏡を図5の301に示すような形状にすると、該副反射鏡からの反射波に関して、給電導波管103に戻る成分が著しく減少するため反射特性の劣化を抑えることができる。 However, when the sub-reflecting mirror is shaped as shown by 301 in FIG. 5, the component returning to the feed waveguide 103 is remarkably reduced with respect to the reflected wave from the sub-reflecting mirror, so that deterioration of the reflection characteristics can be suppressed.

図4の403に示すような、給電導波管103からの電波のうち、副反射鏡105に反射されず、そのまま空間に放射される放射波をスピルオーバーと言う。該スピルオーバーによって、アンテナの利得低下を来たし、また、サイドローブ劣化の原因ともなる。 Of the radio waves from the power supply waveguide 103 as shown by 403 in FIG. 4, the radiated waves that are not reflected by the sub-reflecting mirror 105 and are radiated as they are into the space are called spillover. Due to the spillover, the gain of the antenna is lowered and the side lobe is deteriorated.

一般にスピルオーバーを減少させるために、給電導波管103と副反射鏡105の距離を短くするのであるが、従来のカセグレンアンテナでは、該距離を短くすることによって給電導波管103に戻ってくる電波(401)が増大する。 Generally, in order to reduce spillover, the distance between the feeding waveguide 103 and the sub-reflecting mirror 105 is shortened. However, in the conventional Cassegrain antenna, the radio wave returning to the feeding waveguide 103 by shortening the distance. (401) increases.

つまり、カセグレンアンテナにおいて、スピルオーバーを減少させるために、給電導波管と副反射鏡の距離短縮をした場合に、今度は副反射鏡からの反射波が給電導波管に戻って特性を劣化させてしまうという問題があり、ADEアンテナはこれを解決するために有効なのである。 In other words, in the Cassegrain antenna, when the distance between the feeding waveguide and the sub-reflecting mirror is shortened in order to reduce spillover, the reflected wave from the sub-reflecting mirror returns to the feeding waveguide and deteriorates the characteristics. The ADE antenna is effective in solving this problem.

Aluizio Prata,Jr., Fernando J.S.Moreira,and Luis R.Amaro "Displaced-Axis-EllipseReflector Antenna for Spacecraft Communications" IEEE Microwave andOptoelectronics Conference, 2003.Aluizio Prata, Jr., Fernando J.S.Moreira, and Luis R. Amaro "Displaced-Axis-EllipseReflector Antenna for Spacecraft Communications" IEEE Microwave and Optoelectronics Conference, 2003.

しかるに、ADEアンテナの副反射鏡は、前述のように回転楕円面であり、副反射鏡の中心部に頂点をもつ。給電導波管の正面方向に頂点があるため、該頂点での回折の影響が無視できない。 However, the sub reflector of the ADE antenna is a spheroidal surface as described above, and has a vertex at the center of the sub reflector. Since there is a vertex in the front direction of the feed waveguide, the influence of diffraction at the vertex cannot be ignored.

一方、カセグレンアンテナにおいて、軸対称(図3のZ軸に対して対称)な指向性を得るために、給電導波管の径を1λ程度に設定することはよく知られている方法である。しかし、このようにしても、ADEアンテナにおいては副反射鏡の反射において、その中心部による回折の影響によって、給電アンテナの軸対称性が崩れるという課題が残る。 On the other hand, in the Cassegrain antenna, it is a well-known method to set the diameter of the feeding waveguide to about 1λ in order to obtain axial directivity (symmetric with respect to the Z axis in FIG. 3). However, even in this case, the ADE antenna still has a problem that the axial symmetry of the feeding antenna is broken due to the influence of diffraction by the central part in the reflection of the sub-reflecting mirror.

つまり、給電導波管の径を1λ程度にし、給電導波管の指向性が軸対称であっても、副反射鏡で反射した時点で、回折の影響により軸対称性が劣化するのである。 In other words, even if the diameter of the feed waveguide is about 1λ and the directivity of the feed waveguide is axially symmetric, the axial symmetry deteriorates due to the influence of diffraction when reflected by the sub-reflecting mirror.

ADEアンテナの副反射鏡によって軸対称性が崩れた一例を、シミュレーション結果を併せて図6および図7に示す。図6が給電導波管の指向性、図7が給電導波管と副反射鏡を併用した場合の指向性である。図7において、これが軸対称ではないと判断する基準として、電界面(E−PLANE)と磁界面(H−PLANE)の形状が似ていないということがある。 An example in which the axial symmetry is broken by the sub reflector of the ADE antenna is shown in FIGS. 6 and 7 together with the simulation results. FIG. 6 shows the directivity of the feed waveguide, and FIG. 7 shows the directivity when the feed waveguide and the sub-reflector are used together. In FIG. 7, as a criterion for determining that this is not axially symmetric, the shape of the electric field surface (E-PLANE) and the magnetic field surface (H-PLANE) are not similar.

また、図7における45度面交差偏波のdBi値が大きいことも指向性の軸対称性の良否を判断する基準となる。 In addition, the large dBi value of the 45-degree cross-polarized wave in FIG. 7 is also a criterion for determining whether or not the directivity axial symmetry is good.

前記のように、副反射鏡中心の凸部による回折を減少させるために、本発明は、次のような手段を実施する。 As described above, the present invention implements the following means in order to reduce the diffraction caused by the convex portion at the center of the sub-reflecting mirror.

ADEアンテナにおいて、主反射鏡と副反射鏡を備えた開口アンテナの導波管の開口部周辺に配置され、導波管の指向性を凹状にするチョーク部材とする。 In the ADE antenna, a choke member is disposed around the opening portion of the waveguide of the aperture antenna including the main reflection mirror and the sub-reflection mirror, and makes the directivity of the waveguide concave.

また、本発明は、ADEアンテナにおいて、主反射鏡と副反射鏡を備えた開口アンテナに導波管の指向性を凹状にするチョーク部材を有し、前記開口アンテナの給電点に配置され、かつ、開口部の周辺に前記チョーク部材が配置された導波管とする。 According to the present invention, in the ADE antenna, the aperture antenna having a main reflector and a sub-reflector has a choke member that makes the directivity of the waveguide concave, and is disposed at a feeding point of the aperture antenna, and The waveguide has the choke member disposed around the opening.

このようなチョーク材および導波管にすることによって、副反射鏡中心の凸部に照射する電波が減少し、該凸部の回折波を抑圧できる。 By using such a choke material and a waveguide, the radio wave applied to the convex portion at the center of the sub-reflecting mirror is reduced, and the diffracted wave at the convex portion can be suppressed.

本発明によれば、チョークの位置や大きさによって給電導波管の指向性を制御することが可能であるため、軸対称な指向性を保ちながら、給電導波管の正面方向の放射レベルを下げることが可能である。 According to the present invention, since the directivity of the feed waveguide can be controlled by the position and size of the choke, the radiation level in the front direction of the feed waveguide can be controlled while maintaining the axial symmetry. It is possible to lower.

そして正面方向の放射レベルを下げることによって、副反射鏡中央にある頂点の回折波の影響を抑えることができる。また、軸対称性が良くなることによって交差偏波レベルが抑圧される。さらに、アンテナの開口効率を劣化させることなくE−PLANEのサイドローブレベルを抑圧できる。 By lowering the radiation level in the front direction, the influence of the diffracted wave at the apex at the center of the sub-reflecting mirror can be suppressed. Further, the cross polarization level is suppressed by improving the axial symmetry. Furthermore, the side lobe level of E-PLANE can be suppressed without deteriorating the aperture efficiency of the antenna.

一般的なカセグレンアンテナGeneral Cassegrain antenna カセグレンアンテナの簡略図Simplified Cassegrain antenna ADEアンテナの簡略図Simplified ADE antenna カセグレンアンテナの反射波の様子State of reflected wave of Cassegrain antenna ADEアンテナの反射波の様子State of reflected wave of ADE antenna 給電導波管の指向性Directivity of feeding waveguide 給電導波管と副反射鏡を併せた指向性Directivity combining a feed waveguide and a sub-reflector アンテナの形態の例1Example 1 of antenna configuration アンテナの形態の例2Example 2 of antenna configuration 正面の指向性が凹んでいる様子Front directivity is recessed 正面の指向性が凹む開口面分布と導波管の形状Aperture distribution with concave front directivity and waveguide shape チョーク付き給電導波管の指向性Directivity of a choke-fed waveguide. チョーク付き給電導波管と副反射鏡を併せた指向性Directivity combining a choke-fed waveguide and a sub-reflector サイドローブレベル抑圧の結果Results of sidelobe level suppression

本発明の好適な実施例について、以下に図を用いて説明する。 A preferred embodiment of the present invention will be described below with reference to the drawings.

本発明は、例えばADEアンテナのような、中央が凸型の副反射鏡を備えたアンテナに関して、給電アンテナの軸対称性を改善するために、給電導波管にチョークを備えたものである。その外観の一例は図8のようなものである。 In the present invention, a choke is provided in a feed waveguide in order to improve the axial symmetry of the feed antenna with respect to an antenna having a sub-reflector whose center is convex, such as an ADE antenna. An example of the appearance is as shown in FIG.

図8に示すように、主反射鏡101の中心部に給電導波管103を設置し、該給電導波管から放射された電波は副反射鏡301によって反射され、主反射鏡で再度反射し、空間に放出される。 As shown in FIG. 8, a feeding waveguide 103 is installed at the center of the main reflecting mirror 101, and radio waves radiated from the feeding waveguide are reflected by the sub-reflecting mirror 301 and reflected again by the main reflecting mirror. , Released into space.

給電導波管は、その周囲にチョーク1001を備え、副反射鏡301の凸部の頂点による電波の回折を抑える。副反射鏡は主反射鏡に設置された複数のストラット1003
が支持する。なお、ストラットの設置方法は図8の形態に限定しない。
The feeding waveguide includes a choke 1001 around it, and suppresses diffraction of radio waves by the apex of the convex portion of the sub-reflecting mirror 301. The sub-reflector is a plurality of struts 1003 installed on the main reflector.
Will support. In addition, the installation method of a strut is not limited to the form of FIG.

また、給電導波管と副反射鏡に着目した場合、ストラット1003を使わない設置方法であるところの図9のような形態も考えられる。これは前記ストラットの代わりに誘電体1101によって副反射鏡を固定したもので、給電導波管103の周囲にチョーク1001を備え、副反射鏡301と前記チョーク及び給電導波管を任意の誘電体1101が固定している。 Further, when attention is paid to the feeding waveguide and the sub-reflecting mirror, a configuration as shown in FIG. 9 which is an installation method not using the strut 1003 is also conceivable. In this structure, a sub-reflector is fixed by a dielectric 1101 instead of the strut. A choke 1001 is provided around the feed waveguide 103, and the sub-reflector 301, the choke and the feed waveguide are connected to an arbitrary dielectric. 1101 is fixed.

このように、主反射鏡と副反射鏡および給電導波管の支持方法や設置方法について、本発明ではこれを限定するものではない。 As described above, the present invention does not limit the method of supporting and installing the main reflecting mirror, the sub-reflecting mirror, and the feeding waveguide.

ADEアンテナにおいて、給電導波管の指向性の軸対称性が劣化する原因は、副反射鏡の中心が凸状になっている形状により、中心部付近での電波の反射が不定になるためである。従って、解決策としては、給電導波管の指向性に関して、正面から見た中心方向が凹状になるようにし、副反射鏡の中心部の凸部に照射する電波を減少させ、不定な反射を除去することが望ましい。 In the ADE antenna, the reason why the axial symmetry of the directivity of the feeding waveguide deteriorates is that the reflection of the radio wave near the center is indefinite due to the convex shape of the center of the sub-reflecting mirror. is there. Therefore, as a solution, regarding the directivity of the feeding waveguide, the central direction seen from the front is made concave, the radio wave irradiated to the convex part of the central part of the sub-reflecting mirror is reduced, and indefinite reflection is caused. It is desirable to remove.

このように、給電導波管の指向性は図10に示すような凹状であることが望まれる。凹状の指向性を持つ場合、開口面分布は図11Aのような形状であることはよく知られており、これを実現する給電導波管の形状は図11Bのようなものである。従って本発明では図11Bにおいてチョーク1001を設置している。 Thus, the directivity of the feed waveguide is desired to be concave as shown in FIG. In the case of having a concave directivity, it is well known that the aperture distribution has a shape as shown in FIG. 11A, and the shape of the feed waveguide that realizes this is as shown in FIG. 11B. Therefore, in the present invention, the choke 1001 is installed in FIG. 11B.

そして、該チョークの位置や深さ、あるいは幅を調整することによって図11Aの開口面分布の形状が変わるため、図10のような指向性を持つ開口面分布になるように、図11Bのチョーク1001を調節すればよいことになる。 Then, by adjusting the position, depth, or width of the choke, the shape of the aperture distribution in FIG. 11A changes, so that the choke in FIG. 11B has a directivity as shown in FIG. 1001 should be adjusted.

図11Bの水平方向の矢印は位相の向きを表しており、チョークの調整によって給電導波管部とチョーク部でE−PLANEの位相が反転していることがわかる。 The horizontal arrow in FIG. 11B represents the phase direction, and it can be seen that the phase of the E-PLANE is inverted between the feeding waveguide portion and the choke portion by adjusting the choke.

図12はチョークを備えた給電導波管の指向性を示したものであり、図13はADEアンテナであるため、中央に凸状の膨らみをもった副反射鏡が設置された場合のチョークを備えた給電導波管と副反射鏡を併せた指向性を示したものである。 FIG. 12 shows the directivity of the feeding waveguide provided with a choke, and FIG. 13 shows the ADE antenna. Therefore, the choke when the sub-reflecting mirror having a convex bulge is installed at the center is shown. This shows the directivity of the combined feed waveguide and sub-reflector.

前記の図7はチョークを備えていない給電導波管と副反射鏡を併せた指向性を示しているが、チョークを備えたことによって、図7に比べて、図13ではE−PLANEとH−PLANEのグラフ上の波形が酷似しており、また、45度面交差偏波も小さくなっており、軸対称性が著しく改善されたことがわかる。 FIG. 7 shows the directivity combining the feeding waveguide without the choke and the sub-reflecting mirror. However, by providing the choke, E-PLANE and H in FIG. The waveform on the -PLANE graph is very similar, and the 45-degree cross-polarized wave is also small, indicating that the axial symmetry is remarkably improved.

特に図7と比べた場合、主反射鏡に放射される方向であるところの90度から180度の範囲で軸対称性が良くなっている。 In particular, when compared with FIG. 7, the axial symmetry is improved in the range from 90 degrees to 180 degrees, which is the direction radiated to the main reflecting mirror.

軸対称性が悪いとE−PLANEとH−PLANEの第1サイドローブレベルに差が生じ、片方の第1サイドローブレベルの上昇につながる。軸対称性が良くなったことによってE−PLANEの第1サイドローブレベルが抑圧されている様子を図14に示す。 If the axial symmetry is poor, a difference occurs between the first side lobe levels of E-PLANE and H-PLANE, leading to an increase in one of the first side lobe levels. FIG. 14 shows a state in which the first side lobe level of E-PLANE is suppressed by improving the axial symmetry.

以上、本発明によれば、例えばADEアンテナのような、副反射鏡による反射波に回折成分が混入する開口アンテナにおいて、その軸対称性を向上させるためにチョークを給電導波管に設置することとし、その効果として副反射鏡の頂点による回折の影響を取り除き、軸対称性の悪化を防ぐことができた。また、E−PLANEの第1サイドローブレベルを抑圧することができた。 As described above, according to the present invention, in an aperture antenna such as an ADE antenna in which a diffraction component is mixed in a reflected wave by a sub-reflecting mirror, a choke is installed in a feeding waveguide in order to improve its axial symmetry. As an effect, the influence of diffraction due to the vertex of the sub-reflecting mirror was removed, and the deterioration of axial symmetry could be prevented. In addition, the first side lobe level of E-PLANE could be suppressed.

ただし、前記のように、本発明ではチョークの位置や幅や長さ、あるいは給電導波管との結合方法等の調整方法に関して、これを限定しない。 However, as described above, in the present invention, the position, width, and length of the choke or the adjustment method such as the coupling method with the feeding waveguide is not limited.

また、本発明では副反射鏡の設置方法については任意とし、これを限定しない。 In the present invention, the method of installing the sub-reflecting mirror is arbitrary and is not limited.

101…主反射鏡、 103…給電導波管、
105…一般的な副反射鏡、
301…ADEアンテナの副反射鏡、
401…給電導波管に戻る放射波、 403…スピルオーバー、
1001…チョーク、 1003…ストラット、
1101…誘電体

101: Main reflector 103: Feeding waveguide,
105 ... General sub-reflector,
301 ... Sub reflector of ADE antenna,
401 ... Radiation wave returning to feeding waveguide, 403 ... Spillover,
1001 ... Chalk, 1003 ... Strut,
1101. Dielectric

Claims (2)

ADEアンテナにおいて、主反射鏡と副反射鏡を備えた開口アンテナの導波管の開口部周辺に配置され、導波管の指向性を凹状にするチョーク部材。 In the ADE antenna, a choke member that is disposed around the opening portion of the waveguide of the aperture antenna including the main reflecting mirror and the sub-reflecting mirror and makes the directivity of the waveguide concave. ADEアンテナにおいて、主反射鏡と副反射鏡を備えた開口アンテナに導波管の指向性を凹状にするチョーク部材を有し、前記開口アンテナの給電点に配置され、かつ、開口部の周辺に前記チョーク部材が配置された導波管。

In an ADE antenna, an aperture antenna having a main reflecting mirror and a sub-reflecting mirror has a choke member that makes the directivity of the waveguide concave, and is disposed at a feeding point of the aperture antenna and around the opening. A waveguide in which the choke member is disposed.

JP2009238928A 2009-10-16 2009-10-16 Choke member and waveguide Active JP5554535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238928A JP5554535B2 (en) 2009-10-16 2009-10-16 Choke member and waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238928A JP5554535B2 (en) 2009-10-16 2009-10-16 Choke member and waveguide

Publications (2)

Publication Number Publication Date
JP2011087148A true JP2011087148A (en) 2011-04-28
JP5554535B2 JP5554535B2 (en) 2014-07-23

Family

ID=44079771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238928A Active JP5554535B2 (en) 2009-10-16 2009-10-16 Choke member and waveguide

Country Status (1)

Country Link
JP (1) JP5554535B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238404A (en) * 1991-01-23 1992-08-26 Nec Corp Scalar feed horn
JPH06204737A (en) * 1992-12-29 1994-07-22 Mitsubishi Electric Corp Dual reflecting mirror antenna system
JP2001284950A (en) * 2000-03-31 2001-10-12 Alps Electric Co Ltd Primary radiator
JP2006217459A (en) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp Horn antenna with ring, cylindrical horn antenna, and antenna system
JP2008516555A (en) * 2004-10-15 2008-05-15 ハリス コーポレイション Simultaneous multiband ring focus reflector antenna-wideband feed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238404A (en) * 1991-01-23 1992-08-26 Nec Corp Scalar feed horn
JPH06204737A (en) * 1992-12-29 1994-07-22 Mitsubishi Electric Corp Dual reflecting mirror antenna system
JP2001284950A (en) * 2000-03-31 2001-10-12 Alps Electric Co Ltd Primary radiator
JP2008516555A (en) * 2004-10-15 2008-05-15 ハリス コーポレイション Simultaneous multiband ring focus reflector antenna-wideband feed
JP2006217459A (en) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp Horn antenna with ring, cylindrical horn antenna, and antenna system

Also Published As

Publication number Publication date
JP5554535B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US20030038753A1 (en) High gain, low slide lobe dual reflector microwave antenna
JP2007081648A (en) Phased-array antenna device
CN109841961B (en) Multi-beam double-mirror antenna based on super surface
JP2012227863A (en) Multi-reflector antenna feeding part
de Villiers et al. Sub-reflector extensions for reduced noise temperature in low-side sub-reflector offset Gregorian systems
Sharma et al. Cross-polarization cancellation in an offset parabolic reflector antenna using a corrugated matched feed
JP6362512B2 (en) Reflect array antenna
JP5554535B2 (en) Choke member and waveguide
JP2008187628A (en) Expansion antenna
US6882323B2 (en) Multi-beam antenna system with shaped reflector for generating flat beams
KR20160126853A (en) Reflective antenna apparatus and method for design thereof
Chen et al. Millimeter wave multi-beam reflector antenna
KR101032190B1 (en) Dielectric loaded horn and dual reflector antenna using the same
Rao et al. Antenna system supporting multiple frequency bands and multiple beams
RU2435262C1 (en) Multi-beam mirror antenna
RU2580461C2 (en) Antenna device
EP2911245B1 (en) Reflector antenna device
JP2011239281A (en) Dual reflector antenna
JP5305994B2 (en) Antenna device
Lehmensiek Analytical evaluation of the efficiency improvement of shaped over classical offset dual-reflector antennas including sub-reflector diffraction
JP2003218630A (en) Antenna system
Tyagi et al. Design of Low Scattering Strut for Ground Station Antennas to meet ITU Recommendation
JP3043768B2 (en) Mirror modified antenna
Buch et al. Improvements in Edge of Coverage Gain for S-Band Sat-Com Applications Using Electromagnetic Band Gap Based Feeds
JP6537387B2 (en) Feedome and Portable Parabola Antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R151 Written notification of patent or utility model registration

Ref document number: 5554535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151