JP2011086556A - Manufacturing method of sulfide solid electrolyte, and complex - Google Patents

Manufacturing method of sulfide solid electrolyte, and complex Download PDF

Info

Publication number
JP2011086556A
JP2011086556A JP2009239645A JP2009239645A JP2011086556A JP 2011086556 A JP2011086556 A JP 2011086556A JP 2009239645 A JP2009239645 A JP 2009239645A JP 2009239645 A JP2009239645 A JP 2009239645A JP 2011086556 A JP2011086556 A JP 2011086556A
Authority
JP
Japan
Prior art keywords
solid electrolyte
layer
sulfide solid
compound
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009239645A
Other languages
Japanese (ja)
Other versions
JP5376158B2 (en
Inventor
Yukihiro Ota
進啓 太田
Ryoko Kanda
良子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009239645A priority Critical patent/JP5376158B2/en
Publication of JP2011086556A publication Critical patent/JP2011086556A/en
Application granted granted Critical
Publication of JP5376158B2 publication Critical patent/JP5376158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a sulfide solid electrolyte containing oxygen as a constituent element, and to provide a complex with an electrode layer and a sulfide solid electrolyte layer integrated. <P>SOLUTION: The sulfide solid electrolyte is produced by carrying out a preparation process, a dissolution process, a coating process and a deposition process. In the preparation process, amorphous solid electrolyte powder containing Li, P, S and O is produced. In the dissolution process, the solid electrolyte powder is dissolved in organic solvent. In the coating process, the dissolved liquid is coated on a substrate to be an electrode layer (positive electrode layer 1). And then, in the deposition process, the amorphous solid electrolyte containing Li, P, S and O is made deposited in a stratified shape on the above substrate. Through these processes, a complex with the positive electrode layer 1 and the SE layer 3 integrated used for the nonaqueous electrolyte battery 100 can be produced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質電池の電解質層などに利用される硫化物固体電解質の製造方法、およびこの製造方法により作製される、電極層と固体電解質層とが一体になった複合体に関するものである。   The present invention relates to a method for producing a sulfide solid electrolyte used for an electrolyte layer of a non-aqueous electrolyte battery, and a composite comprising an electrode layer and a solid electrolyte layer, which are produced by this production method. is there.

携帯機器といった比較的小型の電気機器の電源に、正極層と、負極層と、これら電極層の間に配される電解質層とを備える非水電解質電池が利用されている。非水電解質電池のなかでも特に、正・負極層間のLiイオンの移動により充放電を行うLiイオン電池は、小型でありながら高い放電容量を備える。   A nonaqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between these electrode layers is used as a power source for relatively small electric devices such as portable devices. Among nonaqueous electrolyte batteries, in particular, a Li ion battery that charges and discharges by movement of Li ions between the positive and negative electrode layers has a high discharge capacity while being small.

近年、このLiイオン電池として、正・負極間のLiの伝導に有機電解液を用いない全固体型Liイオン電池が提案されている。全固体型Liイオン電池は、電解質層として固体電解質層を使用しており、有機溶媒系の電解液を用いることに伴う不都合、例えば、電解液の漏れによる安全性の問題、高温時に有機電解液がその沸点を超えて揮発することによる耐熱性の問題などを解消することができる。この固体電解質層には、Liイオン伝導性が高く、絶縁性に優れる硫化物系の物質が広く利用されている。   In recent years, as this Li ion battery, an all-solid-state Li ion battery that does not use an organic electrolyte for conducting Li between positive and negative electrodes has been proposed. The all-solid-state Li-ion battery uses a solid electrolyte layer as an electrolyte layer, and disadvantages associated with using an organic solvent-based electrolyte, such as safety problems due to leakage of the electrolyte, organic electrolyte at high temperatures The problem of heat resistance caused by volatilization exceeding the boiling point can be solved. For this solid electrolyte layer, a sulfide-based substance having high Li ion conductivity and excellent insulating properties is widely used.

硫化物からなる固体電解質層を形成する方法として、例えば特許文献1には気相法を用いることが提案されている。しかし、気相法は、生産性の面で良好とは言えず、近年の携帯機器の発達に伴うLiイオン電池の需要の増大に即応できないという問題があった。   As a method of forming a solid electrolyte layer made of sulfide, for example, Patent Document 1 proposes using a gas phase method. However, the gas phase method cannot be said to be favorable in terms of productivity, and has a problem that it cannot immediately respond to the increase in demand for Li ion batteries accompanying the development of portable devices in recent years.

上記の問題を受けて、特許文献2では、溶液法により硫化物固体電解質からなる電解質層を形成する方法が提案されている。この特許文献2の溶液法は、2つ以上の前駆物質を有機溶媒に溶解させ、有機溶媒中で硫化物固体電解質を合成する方法である。   In response to the above problems, Patent Document 2 proposes a method of forming an electrolyte layer made of a sulfide solid electrolyte by a solution method. The solution method of Patent Document 2 is a method in which two or more precursors are dissolved in an organic solvent, and a sulfide solid electrolyte is synthesized in the organic solvent.

特開2000−173588号公報JP 2000-173588 A 国際公開WO2004/093099号パンフレットInternational Publication WO2004 / 093099 Pamphlet

ところで、硫化物固体電解質層の構成元素に酸素が含まれていない場合、当該電解質層は、電気化学的に不安定であるため、正極層との界面では酸化分解し易く、負極層との界面では還元分解し易い。そのため、電池の充放電を繰り返すうちに硫化物固体電解質層が劣化して、当該電解質層に高抵抗層が形成され、電池の放電容量が低下する虞がある。このような電池の放電容量の低下を抑制するために、構成元素として硫化物固体電解質層に酸素を含有させて、当該電解質層を電気化学的に安定化したいというニーズがあるが、特許文献2の溶液法では、構成元素として硫化物固体電解質層に酸素を含有させることができなかった。   By the way, when oxygen is not contained in the constituent element of the sulfide solid electrolyte layer, the electrolyte layer is electrochemically unstable, so that it is easily oxidized and decomposed at the interface with the positive electrode layer, and the interface with the negative electrode layer. Then, it is easy to reduce and decompose. Therefore, the sulfide solid electrolyte layer deteriorates while the battery is repeatedly charged and discharged, a high resistance layer is formed on the electrolyte layer, and the discharge capacity of the battery may be reduced. In order to suppress such a decrease in the discharge capacity of the battery, there is a need to make the sulfide solid electrolyte layer contain oxygen as a constituent element to electrochemically stabilize the electrolyte layer. In this solution method, oxygen could not be contained in the sulfide solid electrolyte layer as a constituent element.

溶液法で硫化物固体電解質層に酸素を含有させることを考えた場合、硫化物固体電解質の前駆物質として、作製する硫化物固体電解質層の構成元素と酸素との化合物を用いることになる。作製する硫化物固体電解質層の構成元素と異なる元素を含む前駆物質を用いれば、硫化物固体電解質層に不純物が含まれて当該電解質層のLiイオン伝導性が低下するからである。例えば、硫化物固体電解質層がLiS−Pから形成されるのであれば、前駆物質として好適と考えられる化合物として、PやLiPOなどが挙げられる。ところが、これらの化合物は有機溶媒に溶解しないため、溶液法による硫化物固体電解質層の合成には使用できない。因みに、気相法であれば、構成元素として酸素を含有させた硫化物固体電解質層を形成できるが、既に述べたように、気相法による硫化物固体電解質層の生産性は芳しくない。 When it is considered that oxygen is contained in the sulfide solid electrolyte layer by the solution method, a compound of a constituent element of the sulfide solid electrolyte layer to be produced and oxygen is used as a precursor of the sulfide solid electrolyte. This is because if a precursor containing an element different from the constituent elements of the sulfide solid electrolyte layer to be produced is used, impurities are contained in the sulfide solid electrolyte layer and the Li ion conductivity of the electrolyte layer is lowered. For example, if the sulfide solid electrolyte layer is formed of Li 2 S—P 2 S 5 , P 2 O 5 , Li 3 PO 4, etc. may be mentioned as compounds that are considered suitable as precursors. However, since these compounds are not dissolved in an organic solvent, they cannot be used for the synthesis of a sulfide solid electrolyte layer by a solution method. Incidentally, in the vapor phase method, a sulfide solid electrolyte layer containing oxygen as a constituent element can be formed, but as described above, the productivity of the sulfide solid electrolyte layer by the vapor phase method is not good.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、構成元素として酸素を含有する硫化物固体電解質を、気相法を用いることなく製造することができる硫化物固体電解質の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is a sulfide solid electrolyte that can produce a sulfide solid electrolyte containing oxygen as a constituent element without using a gas phase method. It is in providing the manufacturing method of.

また、本発明の別の目的は、本発明硫化物固体電解質の製造方法を用いて、非水電解質電池に使用される電極層と硫化物固体電解質層とが一体になった複合体を提供することにある。   Another object of the present invention is to provide a composite in which an electrode layer and a sulfide solid electrolyte layer used in a nonaqueous electrolyte battery are integrated using the method for producing a sulfide solid electrolyte of the present invention. There is.

(1)本発明硫化物固体電解質の製造方法は、Liイオン伝導性を有する硫化物固体電解質の製造方法であって、以下の工程を備えることを特徴とする。
Li、P、S、及びOを含有する非晶質の固体電解質粉末を作製する準備工程。
有機溶媒に前記固体電解質粉末を溶解させる溶解工程。
前記溶解工程で作製した溶解液を基板上に塗工する塗工工程。
前記基板上に塗工した溶解液を乾燥させ、Li、P、S及びOを含有する非晶質の固体電解質を前記基板の上に析出させる析出工程。
(1) The method for producing a sulfide solid electrolyte of the present invention is a method for producing a sulfide solid electrolyte having Li ion conductivity, and includes the following steps.
A preparation step for producing an amorphous solid electrolyte powder containing Li, P, S, and O.
A dissolution step of dissolving the solid electrolyte powder in an organic solvent.
A coating step of coating the solution prepared in the dissolution step on a substrate;
A deposition step of drying the solution applied on the substrate and depositing an amorphous solid electrolyte containing Li, P, S and O on the substrate;

上記本発明硫化物固体電解質の製造方法では、Li、P、S及びOを含有する非晶質の固体電解質粉末を予め作製しておき、その粉末を一旦有機溶媒に溶解させた後、基板上に析出させるため、基板上に形成される硫化物固体電解質にOを構成元素として含ませることができる。そのため、作製した硫化物固体電解質を非水電解質電池の電解質層として利用した場合、電池の充放電に伴う電解質層の劣化を抑制することができ、電池の放電容量を長期に亘って維持することができる。   In the above-described method for producing a sulfide solid electrolyte of the present invention, an amorphous solid electrolyte powder containing Li, P, S and O is prepared in advance, the powder is once dissolved in an organic solvent, Therefore, O can be included as a constituent element in the sulfide solid electrolyte formed on the substrate. Therefore, when the produced sulfide solid electrolyte is used as an electrolyte layer of a non-aqueous electrolyte battery, it is possible to suppress deterioration of the electrolyte layer accompanying charging / discharging of the battery, and to maintain the discharge capacity of the battery over a long period of time. Can do.

(2)本発明硫化物固体電解質の製造方法の一形態として、準備工程における固体電解質粉末は、Li化合物、S化合物、P化合物、およびO化合物をメカニカルミリングすることで作製できる。 (2) As one form of the manufacturing method of the sulfide solid electrolyte of the present invention, the solid electrolyte powder in the preparation step can be produced by mechanical milling Li compound, S compound, P compound, and O compound.

上記各化合物の具体例としては、例えば、LiS(Li化合物)、P(S化合物、P化合物)、PやLiPOなど(O化合物)を挙げることができる。この場合、例示したO化合物は有機溶媒に溶解しないが、メカニカルミリングで得られたLi−P−S−O化合物は有機溶媒に溶解する。なお、Li化合物とS化合物とP化合物とO化合物の4者は別個である必要はなく、例えば、Li化合物でもあるしS化合物でもある化合物Aと、S化合物でもあるしP化合物でもある化合物Bと、Li化合物でもあるしO化合物でもある化合物CとでLi−P−S−O化合物を作製しても良い。例えば、上記LiSは、Li化合物でもあるしS化合物でもある化合物Aの代表例であり、上記Pは、S化合物でもあるしP化合物でもある化合物Bの代表例であり、上記LiPOは、Li化合物でもあるしO化合物でも化合物Cの代表例である。 Specific examples of the above compounds include Li 2 S (Li compound), P 2 S 5 (S compound, P compound), P 2 O 5 and Li 3 PO 4 (O compound). . In this case, the exemplified O compound is not dissolved in the organic solvent, but the Li—P—S—O compound obtained by mechanical milling is dissolved in the organic solvent. The four compounds of the Li compound, the S compound, the P compound, and the O compound do not need to be separated. For example, the compound A that is both the Li compound and the S compound, and the compound B that is both the S compound and the P compound. A Li-P-S-O compound may be prepared with Compound C, which is both a Li compound and an O compound. For example, Li 2 S is a representative example of Compound A that is both a Li compound and an S compound, and P 2 S 5 is a representative example of Compound B that is both an S compound and a P compound. Li 3 PO 4 is a typical example of Compound C, both Li compounds and O compounds.

(3)本発明硫化物固体電解質の製造方法の一形態として、準備工程における固体電解質粉末は、Li化合物、S化合物、P化合物、およびO化合物を溶融急冷法によりLi、S、P及びOを含有する非晶質の固体電解質とし、その固体電解質を粉砕することで作製できる。 (3) As one form of the manufacturing method of the sulfide solid electrolyte of the present invention, the solid electrolyte powder in the preparation step is prepared by adding Li, S, P, and O by melting and quenching Li compound, S compound, P compound, and O compound. It can be produced by making the amorphous solid electrolyte contained and crushing the solid electrolyte.

上記(2)のメカニカルミリングの他に、上記(3)のように溶融急冷法によりLi−S−P−O化合物を作製することもできる。この場合、メカニカルミリングよりも短時間で有機溶媒に溶解するLi−P−S−O化合物を作製できる。   In addition to the mechanical milling of (2) above, a Li—S—P—O compound can also be produced by a melt quench method as described in (3) above. In this case, a Li—P—S—O compound that can be dissolved in an organic solvent in a shorter time than mechanical milling can be produced.

(4)本発明硫化物固体電解質の製造方法の一形態として、準備工程で用意する化合物は、LiS、P、およびPであることが好ましい。 As one form of the method for manufacturing (4) The present invention sulfide solid electrolyte, the compound prepared in preparation step, Li 2 S, P 2 S 5, and is preferably a P 2 O 5.

上記のLiS、P、およびPを使用すれば、作製する硫化物固体電解質に含まれるLi、P、S、Oの比率の調節を容易にできる。これは、LiS、P、およびPの分子量が小さいため、各化合物の使用量を調節することで、各元素の割合を調節し易いからである。 If the above Li 2 S, P 2 S 5 and P 2 O 5 are used, the ratio of Li, P, S and O contained in the sulfide solid electrolyte to be produced can be easily adjusted. This is because the molecular weight of Li 2 S, P 2 S 5 , and P 2 O 5 is small, and thus the ratio of each element can be easily adjusted by adjusting the amount of each compound used.

(5)本発明硫化物固体電解質の製造方法の一形態として、溶解工程で使用する有機溶媒は、アルコール、若しくは二硫化炭素であることが好ましい。 (5) As one form of the manufacturing method of this invention sulfide solid electrolyte, it is preferable that the organic solvent used at a melt | dissolution process is alcohol or carbon disulfide.

上記有機溶媒は、析出工程において揮発させ易く、作製する硫化物固体電解質中に残存し難い。その結果、残存した有機溶剤に起因する当該固体電解質のLiイオン伝導性の低下を防止できる。   The organic solvent is easily volatilized in the precipitation step and hardly remains in the produced sulfide solid electrolyte. As a result, it is possible to prevent a decrease in Li ion conductivity of the solid electrolyte due to the remaining organic solvent.

(6)本発明硫化物固体電解質の製造方法の一形態として、溶解工程で使用する有機溶媒中の水分は、100ppm以下であることが好ましい。 (6) As one form of the manufacturing method of this invention sulfide solid electrolyte, it is preferable that the water | moisture content in the organic solvent used at a melt | dissolution process is 100 ppm or less.

作製する硫化物固体電解質は加水分解するため、溶解工程における有機溶媒中の水分は少ない方が好ましい。もちろん、溶解工程に限らず、準備工程、析出工程においても硫化物と水とが反応しないようにすることが好ましい。例えば、本発明製造方法の全工程をドライな雰囲気のグローブボックス内で行うことが挙げられる。   Since the sulfide solid electrolyte to be produced is hydrolyzed, it is preferable that the amount of water in the organic solvent in the dissolving step is small. Of course, it is preferable not to react sulfide and water not only in the dissolution step but also in the preparation step and the precipitation step. For example, performing the whole process of this invention manufacturing method in the glove box of a dry atmosphere is mentioned.

(7)本発明硫化物固体電解質の製造方法の一形態として、塗工工程で用意する基板は、非水電解質電池の電極層とすることが好ましい。 (7) As one form of the manufacturing method of the sulfide solid electrolyte of the present invention, the substrate prepared in the coating step is preferably an electrode layer of a nonaqueous electrolyte battery.

上記構成のように、塗工する基板を電極層とすれば、基板と硫化物固体電解質との複合体をそのまま非水電解質電池における電極層と固体電解質層にすることができる。なお、基板とする電極層は、正極層であっても良いし、負極層であっても良い。   If the substrate to be coated is an electrode layer as in the above configuration, the composite of the substrate and the sulfide solid electrolyte can be used as it is as the electrode layer and the solid electrolyte layer in the nonaqueous electrolyte battery. Note that the electrode layer used as the substrate may be a positive electrode layer or a negative electrode layer.

(8)本発明複合体は、非水電解質電池に用いられる電極層と硫化物固体電解質層とが一体となった複合体であって、電極層は、空隙部を有する焼結体、もしくは成形体であり、硫化物固体電解質層の一部は、前記空隙部に入り込んでいることを特徴とする。 (8) The composite of the present invention is a composite in which an electrode layer and a sulfide solid electrolyte layer used in a non-aqueous electrolyte battery are integrated, and the electrode layer is a sintered body or a molded body having voids. And a part of the sulfide solid electrolyte layer enters the void.

近年では、電極層として粉末状の活物質を焼結して得られた焼結体を用いることが提案されているが、この焼結体からなる電極層には空隙部が形成されてしまう。空隙部は電極層のLiイオン伝導性を下げる要因になるので、Liイオン伝導性を有する物質で埋めることが好ましい。ここで、本発明製造方法は、基板上に溶解液を塗工する工程を備えるため、基板に空隙部があればその空隙部に溶解液が染み込み、空隙部を埋めるように硫化物固体電解質が形成される。つまり、本発明製造方法で作製された複合体は、空隙部に起因するLiイオンの低下を抑制されているため、電池に用いたときに電池の放電容量を向上させることができる。また、この複合体における固体電解質層は、電極層の空隙部に根を張るように入り込んでいるので、電極層と固体電解質層との間で剥離が生じ難い。   In recent years, it has been proposed to use a sintered body obtained by sintering a powdered active material as an electrode layer. However, voids are formed in the electrode layer made of this sintered body. Since the void portion causes a decrease in Li ion conductivity of the electrode layer, it is preferable to fill it with a substance having Li ion conductivity. Here, since the manufacturing method of the present invention includes a step of applying a solution on the substrate, if there is a void in the substrate, the solution soaks into the void and fills the void with the sulfide solid electrolyte. It is formed. That is, since the composite produced by the production method of the present invention suppresses the reduction of Li ions caused by the voids, the discharge capacity of the battery can be improved when used in a battery. In addition, since the solid electrolyte layer in the composite body has entered into the gap portion of the electrode layer so as to be rooted, separation between the electrode layer and the solid electrolyte layer hardly occurs.

本発明硫化物固体電解質の製造方法によれば、気相法を用いることなく、構成元素としてOを含有する硫化物固体電解質を製造することができる。構成元素としてOを含有する硫化物固体電解質層は電気化学的に安定であるため、この硫化物固体電解質を非水電解質電池の電解質層として利用した場合、充放電に伴う電池の容量低下を抑制できる。   According to the method for producing a sulfide solid electrolyte of the present invention, a sulfide solid electrolyte containing O as a constituent element can be produced without using a gas phase method. Since the sulfide solid electrolyte layer containing O as a constituent element is electrochemically stable, when this sulfide solid electrolyte is used as the electrolyte layer of a non-aqueous electrolyte battery, it suppresses battery capacity reduction due to charge / discharge. it can.

実施形態に係る非水電解質電池の概略構成図である。It is a schematic block diagram of the nonaqueous electrolyte battery which concerns on embodiment.

以下、本発明硫化物固体電解質の製造方法に係る実施形態を説明する。   Hereinafter, embodiments according to the method for producing a sulfide solid electrolyte of the present invention will be described.

[全体構成]
本発明硫化物固体電解質の製造方法は、準備工程、溶解工程、塗工工程、および析出工程を備え、気相法により作製される硫化物固体電解質に匹敵するLiイオン伝導性を有する硫化物固体電解質を作製することができる。以下、本発明作製方法に備わる各工程を詳細に説明する。
[overall structure]
The method for producing a sulfide solid electrolyte of the present invention comprises a preparation step, a dissolution step, a coating step, and a precipitation step, and a sulfide solid having Li ion conductivity comparable to a sulfide solid electrolyte produced by a gas phase method. An electrolyte can be made. Hereafter, each process with which this invention preparation method is provided is demonstrated in detail.

<準備工程>
準備工程は、Li、P、S及びOを含有する非晶質の固体電解質粉末を作製する工程である。作製する固体電解質粉末は、準備工程の次工程である溶解工程において、有機溶媒に溶解するものである必要がある。但し、粉末を作製する原料となるLi化合物、P化合物、S化合物、およびO化合物は有機溶媒に溶解するものである必要はなく、これらの化合物から得られたLi−P−S−O化合物が有機溶媒に溶解すれば良い。Li化合物の具体例としては、LiSやLiPOなど、S化合物やP化合物の具体例としては、Pなど、O化合物の具体例としては、PやLiPOなどを挙げることができる。例示した原料のうち、O化合物は有機溶媒に溶解しない。ここで、上記例示した原料の好ましい組み合わせは、LiS、P、Pであり、これら原料から得られるLi−P−S−O化合物からなる硫化物固体電解質粉末は有機溶媒に溶解する。
<Preparation process>
The preparation step is a step of producing an amorphous solid electrolyte powder containing Li, P, S, and O. The solid electrolyte powder to be produced needs to be dissolved in an organic solvent in the dissolution step that is the next step of the preparation step. However, the Li compound, the P compound, the S compound, and the O compound that are raw materials for producing the powder do not need to be dissolved in an organic solvent, and the Li—P—S—O compound obtained from these compounds is What is necessary is just to melt | dissolve in an organic solvent. Specific examples of the Li compound include Li 2 S and Li 3 PO 4 , specific examples of the S compound and P compound include P 2 S 5, and specific examples of the O compound include P 2 O 5 and Li 3 PO 4 etc. can be mentioned. Of the exemplified raw materials, the O compound does not dissolve in the organic solvent. Here, a preferable combination of the raw materials exemplified above is Li 2 S, P 2 S 5 , and P 2 O 5 , and the sulfide solid electrolyte powder composed of a Li—P—S—O compound obtained from these raw materials is organic. Dissolve in solvent.

上記原料からLi−P−S−O化合物からなる硫化物固体電解質粉末を作製する手段として代表的には、メカニカルミリング法や溶融急冷法などを挙げることができる。   Representative examples of means for producing a sulfide solid electrolyte powder made of a Li—P—S—O compound from the above raw materials include a mechanical milling method and a melt quenching method.

メカニカルミリング法は、室温付近の温度域で、原料に大きな機械的な加工力を加えることにより、各原料の微細化と各原料間の化学反応を促進させ、熱力学的に準安定な非晶質の化合物を得るための方法であり、例えば、ボールミルを用いる方法が代表的である。メカニカルミリング法を実施するための好適な条件は、原料に何を使用するかによって変化するが、概ね300〜400rpmで10〜20hとすると良い。   The mechanical milling method is a thermodynamically metastable amorphous material that promotes miniaturization of each raw material and chemical reaction between the raw materials by applying a large mechanical processing force to the raw material in a temperature range near room temperature. For example, a method using a ball mill is typical. Suitable conditions for carrying out the mechanical milling method vary depending on what is used for the raw material, but it is preferable that the mechanical milling method is approximately 10 to 20 hours at 300 to 400 rpm.

一方、溶融急冷法は、原料を一旦溶解させ急冷することで、原料元素を全て含む非晶質の化合物を得るための方法である。溶融温度の好適範囲は原料に何を使用するかによって変化するが、概ね900〜1000℃とすると良い。また、冷却の速度は10〜10℃/sとすることが好ましい。 On the other hand, the melt quenching method is a method for obtaining an amorphous compound containing all of the raw material elements by dissolving the raw material once and quenching. Although the suitable range of melting temperature changes with what is used for a raw material, it is good to set it as 900-1000 degreeC in general. The cooling rate is preferably 10 4 to 10 6 ° C / s.

<溶解工程>
溶解工程は、準備工程で作製した硫化物固体電解質粉末を有機溶媒に溶解させる工程である。有機溶媒としては、硫化物固体電解質粉末を良く溶かし、次工程の析出工程で揮発させ易いものであることが好ましい。例えば、無水エチルアルコールなどのアルコール類や、二硫化炭素などは、本工程における有機溶媒として好適である。また、有機溶媒は、その水分含有量をできるだけ低く抑えたものであることが好ましい。その理由は、硫化物固体電解質粉末に含まれるLiが水と激しく反応するからである。具体的な有機溶媒中の水分含有量は100ppm以下とすることが好ましい。
<Dissolution process>
The dissolution step is a step of dissolving the sulfide solid electrolyte powder produced in the preparation step in an organic solvent. As the organic solvent, it is preferable that the sulfide solid electrolyte powder is well dissolved and easily volatilized in the subsequent precipitation step. For example, alcohols such as anhydrous ethyl alcohol, carbon disulfide, and the like are suitable as the organic solvent in this step. The organic solvent is preferably one whose water content is kept as low as possible. The reason is that Li contained in the sulfide solid electrolyte powder reacts violently with water. The water content in a specific organic solvent is preferably 100 ppm or less.

<塗工工程と析出工程>
塗工工程は、溶解工程で作製した溶解液(硫化物固体電解質を溶解させた有機溶媒)を基板上に塗工する工程である。塗工の方法は特に限定されず、例えばスキージ法などを利用することができる。また、析出工程は、基板上に塗工した溶解液を乾燥させ、Li、P、S及びOを含有する非晶質の固体電解質を基板の上に析出させる工程である。なお、これら塗工工程と析出工程を1単位として、複数回繰り返して行っても良い。塗工と析出を複数回繰り返すことで、任意の厚さの硫化物固体電解質を形成することができる。
<Coating process and deposition process>
The coating process is a process in which the solution (organic solvent in which the sulfide solid electrolyte is dissolved) prepared in the dissolution process is applied on the substrate. The coating method is not particularly limited, and for example, a squeegee method can be used. The deposition step is a step of drying the solution applied on the substrate to deposit an amorphous solid electrolyte containing Li, P, S and O on the substrate. The coating process and the deposition process may be repeated a plurality of times with one unit. By repeating coating and precipitation a plurality of times, a sulfide solid electrolyte having an arbitrary thickness can be formed.

析出工程で溶解液に含まれる固体電解質を析出させるには、有機溶媒を揮発させる乾燥処理を行えば良い。例えば、基板上に塗工した溶解液に熱処理を施すことが挙げられる。熱処理の好ましい条件は、50〜150℃×5〜60minである。   In order to deposit the solid electrolyte contained in the solution in the precipitation step, a drying process for volatilizing the organic solvent may be performed. For example, heat treatment may be performed on the solution applied onto the substrate. The preferable conditions for the heat treatment are 50 to 150 ° C. × 5 to 60 min.

また、塗工工程で用意する基板は、特に限定されないが、作製する硫化物固体電解質の用途に応じて適宜選択することが好ましい。例えば、硫化物固体電解質を非水電解質電池の電解質層として利用するのであれば、基板として電極層(正極層または負極層)を利用すると良い。この場合、本発明硫化物固体電解質の製造方法により、電極層と硫化物固体電解質層とが一体となった複合体を作製することができる。特に、電極層として活物質粉末を焼結して得られた焼結体を用いた場合、本発明製造方法であれば、焼結体の空隙部に溶解液を染み込ませ、電極層の空隙部に硫化物固体電解質を配置することができる。空隙部を硫化物固体電解質で埋めることができれば、空隙部に起因する電池の内部抵抗の増大を抑えることができる。   Further, the substrate prepared in the coating process is not particularly limited, but it is preferable to select appropriately according to the use of the sulfide solid electrolyte to be produced. For example, if a sulfide solid electrolyte is used as an electrolyte layer of a nonaqueous electrolyte battery, an electrode layer (positive electrode layer or negative electrode layer) may be used as a substrate. In this case, the composite body in which the electrode layer and the sulfide solid electrolyte layer are integrated can be produced by the method for producing a sulfide solid electrolyte of the present invention. In particular, when a sintered body obtained by sintering active material powder as an electrode layer is used, the manufacturing method of the present invention allows the solution to soak into the voids of the sintered body, A sulfide solid electrolyte can be disposed on the substrate. If the gap can be filled with the sulfide solid electrolyte, an increase in the internal resistance of the battery due to the gap can be suppressed.

本発明硫化物固体電解質の製造方法により作製した電解質層を備える非水電解質電池を作製した。また、その比較として、気相法により作製した電解質層を備える非水電解質電池を作製した。そして、実施例の電池と比較例の電池の特性を比較した。   A non-aqueous electrolyte battery comprising an electrolyte layer produced by the method for producing a sulfide solid electrolyte of the present invention was produced. As a comparison, a nonaqueous electrolyte battery including an electrolyte layer produced by a vapor phase method was produced. And the characteristic of the battery of an Example and the battery of a comparative example was compared.

[実施例]
図1に示すように、本実施例で作製した本発明非水電解質電池(Liイオン電池)100は、正極層1上に、緩衝層4、固体電解質層(SE層)3、負極層2の順に積層された構造を備え、正極層1と負極層2との間でLiイオンの遣り取りをすることで電池として機能する。この電池100は、正極層1と緩衝層4とSE層3とが一体となった複合体を作製し、この複合体に負極層2を形成することで得られたものである。以下に、電池100の作製手順を説明する。
[Example]
As shown in FIG. 1, the non-aqueous electrolyte battery (Li ion battery) 100 of the present invention produced in this example has a buffer layer 4, a solid electrolyte layer (SE layer) 3, and a negative electrode layer 2 on a positive electrode layer 1. It has a structure in which layers are sequentially stacked, and functions as a battery by exchanging Li ions between the positive electrode layer 1 and the negative electrode layer 2. The battery 100 is obtained by producing a composite body in which the positive electrode layer 1, the buffer layer 4 and the SE layer 3 are integrated, and forming the negative electrode layer 2 on the composite body. Hereinafter, a manufacturing procedure of the battery 100 will be described.

<正極層の形成>
まず、電極層である正極層1を作製する。正極層1は、集電機能を有する正極集電体11と、その一面側に形成される正極活物質層12とを備える。本実施例では、正極集電体11としてSUSを、正極活物質12に含有される正極活物質としてLiCoOを使用した。このような正極層1は、金型内に配置したSUS板の上にLiCoO粉末を載せ、圧縮・熱処理することで得ても良いし、LiCoOの焼結体を作製した後、その一面側にSUSを蒸着することで得ても良い。なお、本実施例では前者を採用した。
<Formation of positive electrode layer>
First, the positive electrode layer 1 which is an electrode layer is produced. The positive electrode layer 1 includes a positive electrode current collector 11 having a current collecting function and a positive electrode active material layer 12 formed on one surface side thereof. In this example, SUS was used as the positive electrode current collector 11, and LiCoO 2 was used as the positive electrode active material contained in the positive electrode active material 12. Such a positive electrode layer 1 may be obtained by placing LiCoO 2 powder on a SUS plate placed in a mold and compressing and heat-treating it, or after producing a sintered body of LiCoO 2 , You may obtain by vapor-depositing SUS on the side. In the present embodiment, the former is adopted.

<緩衝層の形成>
作製した正極層1の正極活物質層12側の面に、エキシマレーザーアブレーション法によりLiNbOからなる緩衝層4を形成した。この緩衝層4は、正極活物質層12と後述する硫化物系のSE層3との境界近傍における反応を緩衝するためのものである。緩衝層4の材料としては、LiNbOの他に、LiTaOなどのLiイオン伝導性が高く、電子伝導性が低いものを使用することができる。なお、この緩衝層4の厚さは、10nm〜100nm程度あれば十分であり、厚すぎると逆に電池100の性能を低下させる虞がある。
<Formation of buffer layer>
A buffer layer 4 made of LiNbO 3 was formed on the surface of the prepared positive electrode layer 1 on the positive electrode active material layer 12 side by an excimer laser ablation method. The buffer layer 4 is for buffering the reaction in the vicinity of the boundary between the positive electrode active material layer 12 and a sulfide-based SE layer 3 described later. As a material of the buffer layer 4, in addition to LiNbO 3 , a material having high Li ion conductivity and low electron conductivity such as LiTaO 3 can be used. Note that it is sufficient that the buffer layer 4 has a thickness of about 10 nm to 100 nm. If it is too thick, the performance of the battery 100 may be reduced.

<SE層の形成>
次に、本発明硫化物固体電解質の製造方法を用いて、緩衝層4の上にSE層3を形成した。具体的な形成手順は次の通りである。
<Formation of SE layer>
Next, the SE layer 3 was formed on the buffer layer 4 using the method for producing a sulfide solid electrolyte of the present invention. The specific formation procedure is as follows.

まず、LiS粉末とP粉末とP粉末を、質量比で34:44:7の割合で用意した。そして、これらの粉末をボールミル装置に投入し、400rpmで15hのメカニカルミリング処理を施した。これにより、Li−P−S−O化合物の粉末が得られた。 First, Li 2 S powder, P 2 S 5 powder, and P 2 O 5 powder were prepared at a mass ratio of 34: 44: 7. Then, these powders were put into a ball mill apparatus and subjected to mechanical milling for 15 h at 400 rpm. Thereby, a powder of the Li—P—S—O compound was obtained.

次に、上記作製した粉末5gを、25mlの無水エチルアルコール(水分含量は10ppm)中に溶解させた溶解液を作製した。そして、作製した溶解液を、緩衝層4の上に塗工する工程と、塗工した溶解液を75℃×30minで乾燥させ、Li−P−S−O化合物を層状に析出させる工程とを数回繰り返し、正極層1と緩衝層4とSE層3とが一体になった複合体を完成した。   Next, a solution was prepared by dissolving 5 g of the prepared powder in 25 ml of anhydrous ethyl alcohol (water content: 10 ppm). And the process of apply | coating the produced solution on the buffer layer 4, and the process of drying the apply | coated solution at 75 degreeC x 30 min and depositing a Li-PSO compound in a layer form. Repeated several times to complete a composite in which the positive electrode layer 1, the buffer layer 4, and the SE layer 3 were integrated.

≪複合体の物理的特性≫
上記複合体のSE層3の組成をX線回折により解析したところ、非晶質であった。また、SE層をXPSにより解析したところ、O原子が構成元素として含有されていた。このSE層3について複素インピーダンス法により電気特性を測定して、Liイオン伝導性を算出したところ、3×10−4S/cmであった。この数値は、Pulsed Laser Deposition(PLD)法で形成した固体電解質と同程度のLiイオン伝導性である。そのため、本実施例のSE層3は、電池100の電解質層として優れた特性を発揮することが期待される。さらに、複合体の断面を走査型電子顕微鏡で観察したところ、複合体の正極活物質層12の空隙部にSE層3の一部が根を張るように入り込んでいた。ここで、正極活物質層12とSE層3との間には緩衝層4が設けられているが、この緩衝層4は非常に薄い(10nm〜100nm程度)ので、正極活物質層12の表面の空隙が完全に塞がることがない。そのため、正極活物質層12とSE層3との間に緩衝層4があっても、SE層3が正極活物質層12の空隙部に入り込むことができる。
≪Physical properties of composites≫
When the composition of the SE layer 3 of the composite was analyzed by X-ray diffraction, it was amorphous. Further, when the SE layer was analyzed by XPS, O atoms were contained as a constituent element. It was 3 * 10 < -4 > S / cm < 2 > when the electrical property was measured by complex impedance method about this SE layer 3, and Li ion conductivity was computed. This numerical value is about the same Li ion conductivity as that of a solid electrolyte formed by the Pulsed Laser Deposition (PLD) method. Therefore, the SE layer 3 of this example is expected to exhibit excellent characteristics as the electrolyte layer of the battery 100. Furthermore, when the cross section of the composite was observed with a scanning electron microscope, a part of the SE layer 3 entered the void of the positive electrode active material layer 12 of the composite. Here, although the buffer layer 4 is provided between the positive electrode active material layer 12 and the SE layer 3, the buffer layer 4 is very thin (about 10 nm to 100 nm). The air gap is not completely blocked. Therefore, even if the buffer layer 4 is between the positive electrode active material layer 12 and the SE layer 3, the SE layer 3 can enter the void portion of the positive electrode active material layer 12.

<負極層の形成>
正極層1と緩衝層4とSE層3とを一体化した複合体の形成が終了した後、その複合体のSE層3の上にLi金属からなる負極層2を真空蒸着法により形成した。真空蒸着による負極層2の形成は、SE層3の中心部分が露出するようにSE層3の上にマスクを施して行い、負極層2の縁部が正極層1と短絡しないようにした。なお、本実施例の負極層2は、負極集電体を兼ねる。
<Formation of negative electrode layer>
After the formation of the composite in which the positive electrode layer 1, the buffer layer 4 and the SE layer 3 were integrated, the negative electrode layer 2 made of Li metal was formed on the SE layer 3 of the composite by a vacuum deposition method. Formation of the negative electrode layer 2 by vacuum deposition was performed by applying a mask on the SE layer 3 so that the central portion of the SE layer 3 was exposed, so that the edge of the negative electrode layer 2 was not short-circuited with the positive electrode layer 1. The negative electrode layer 2 of this example also serves as a negative electrode current collector.

<電池の完成>
最後に、負極層2の形成が終了した積層体をアルミラミネートパックに封止し、正極集電体11と負極層2(集電体を兼ねる)からタブリードを引き出して電池100を完成した。
<Completion of battery>
Finally, the laminate after the formation of the negative electrode layer 2 was sealed in an aluminum laminate pack, and tab leads were drawn from the positive electrode current collector 11 and the negative electrode layer 2 (also serving as a current collector) to complete the battery 100.

[比較例]
比較例の非水電解質電池として、焼結させたLiCoOの正極層1上にSE層3をPLD法で形成した電池を作製した。PLD法によるSE層3の作製は、LiS、P、Pを実施例と同じ質量比で混合したターゲット(蒸発源)を作製し、当該ターゲットにパルスレーザを照射することで行った。
[Comparative example]
As a non-aqueous electrolyte battery of a comparative example, a battery in which an SE layer 3 was formed by a PLD method on a sintered LiCoO 2 positive electrode layer 1 was produced. The SE layer 3 is manufactured by the PLD method by preparing a target (evaporation source) in which Li 2 S, P 2 S 5 , and P 2 O 5 are mixed at the same mass ratio as in the embodiment, and irradiating the target with a pulse laser. I went there.

[充放電試験とその結果]
上述実施例の電池と比較例の電池について、0.05mAの定電流で4.2Vまで充電し、3Vまで放電する操作を1サイクルとする充放電を100サイクル繰り返し、100サイクル目の放電容量を測定した。そして、測定した100サイクル目の放電容量を1サイクル目の放電容量で除し、100をかけることで容量維持率(%)を求めた。容量維持率が高いほど、充放電を開始する当初の放電容量を維持できる非水電解質電池、即ち、サイクル特性に優れた電池と言える。また、比較例として、SE層をPLD法で形成した以外は実施例の電池と同じ構成を備える非水電解質電池を作製し、その電池についても上記条件の充放電試験を実施した。
[Charge / discharge test and results]
For the battery of the above example and the battery of the comparative example, charging / discharging was repeated 100 cycles with an operation of charging to 4.2 V with a constant current of 0.05 mA and discharging to 3 V, and the discharge capacity at the 100th cycle was It was measured. Then, the measured discharge capacity at the 100th cycle was divided by the discharge capacity at the 1st cycle and multiplied by 100 to obtain the capacity retention rate (%). It can be said that the higher the capacity retention rate is, the non-aqueous electrolyte battery that can maintain the initial discharge capacity at which charging / discharging starts, that is, the battery with excellent cycle characteristics. In addition, as a comparative example, a nonaqueous electrolyte battery having the same configuration as the battery of the example except that the SE layer was formed by the PLD method was manufactured, and the charge / discharge test under the above conditions was also performed on the battery.

上記条件の充放電試験で実施例の非水電解質電池と比較例の非水電解質電池の特性を測定した結果、以下に示すような結果が得られた。
実施例の電池…初期容量3mAh/cm、容量維持率95%
比較例の電池…初期容量0.5mAh/cm、容量維持率80%
As a result of measuring the characteristics of the non-aqueous electrolyte battery of the example and the non-aqueous electrolyte battery of the comparative example in the charge / discharge test under the above conditions, the following results were obtained.
Battery of Example: Initial Capacity 3 mAh / cm 2 , Capacity Maintenance Rate 95%
Battery of comparative example: initial capacity 0.5 mAh / cm 2 , capacity retention rate 80%

上記のように、実施例の電池の初期容量が、比較例の電池よりも大きかったのは、実施例の電池における正極活物質層12の空隙部にLiイオン伝導性の固体電解質が形成されていたからではないかと推察される。また、実施例の電池の容量維持率が、比較例の電池よりも大きかったのは、実施例の電池におけるSE層3の一部が正極活物質層12の空隙部に根を張るように入り込んでいるため、SE層3が正極活物質層12(緩衝層4が介在される)から剥離し難かったからではないかと推察される。   As described above, the initial capacity of the battery of the example was larger than that of the battery of the comparative example because the Li ion conductive solid electrolyte was formed in the void portion of the positive electrode active material layer 12 in the battery of the example. It is guessed that. Further, the capacity retention rate of the battery of the example was larger than that of the battery of the comparative example, because part of the SE layer 3 in the battery of the example penetrated into the gap portion of the positive electrode active material layer 12. Therefore, it is presumed that the SE layer 3 was difficult to peel from the positive electrode active material layer 12 (with the buffer layer 4 interposed).

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の容易を逸脱しない範囲で上述した実施形態を適宜変更することができる。   The embodiment of the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately changed without departing from the ease of the present invention.

本発明硫化物固体電解質の製造方法は、例えば携帯電話やモバイルパソコンなどの携帯機器の電源として利用される非水電解質電池の電解質層の製造に好適に利用可能である。   The method for producing a sulfide solid electrolyte of the present invention can be suitably used for producing an electrolyte layer of a non-aqueous electrolyte battery used as a power source for portable equipment such as a mobile phone and a mobile personal computer.

100 非水電解質電池
1 正極層
11 正極集電体 12 正極活物質層
2 負極層
3 固体電解質層
4 緩衝層
DESCRIPTION OF SYMBOLS 100 Nonaqueous electrolyte battery 1 Positive electrode layer 11 Positive electrode collector 12 Positive electrode active material layer 2 Negative electrode layer 3 Solid electrolyte layer 4 Buffer layer

Claims (8)

Liイオン伝導性を有する硫化物固体電解質の製造方法であって、
Li、P、S、及びOを含有する非晶質の固体電解質粉末を作製する準備工程と、
有機溶媒に前記固体電解質粉末を溶解させる溶解工程と、
前記溶解工程で作製した溶解液を基板上に塗工する塗工工程と、
前記基板上に塗工した溶解液を乾燥させ、Li、P、S、及びOを含有する非晶質の固体電解質を前記基板の上に析出させる析出工程と、
を備えることを特徴とする硫化物固体電解質の製造方法。
A method for producing a sulfide solid electrolyte having Li ion conductivity,
A preparation step for producing an amorphous solid electrolyte powder containing Li, P, S, and O;
A dissolution step of dissolving the solid electrolyte powder in an organic solvent;
A coating step of coating the solution prepared in the dissolution step on a substrate;
A deposition step of drying the solution applied on the substrate and depositing an amorphous solid electrolyte containing Li, P, S, and O on the substrate;
A method for producing a sulfide solid electrolyte, comprising:
前記準備工程において、
Li化合物、P化合物、S化合物、およびO化合物をメカニカルミリングすることで、前記固体電解質粉末を作製することを特徴とする請求項1に記載の硫化物固体電解質の製造方法。
In the preparation step,
The method for producing a sulfide solid electrolyte according to claim 1, wherein the solid electrolyte powder is produced by mechanically milling a Li compound, a P compound, an S compound, and an O compound.
前記準備工程において、
Li化合物、P化合物、S化合物、およびO化合物を溶融急冷法によりLi、P、S、及びOを含有する非晶質の固体電解質とし、その固体電解質を粉砕することで、前記固体電解質粉末を作製することを特徴とする請求項1に記載の硫化物固体電解質の製造方法。
In the preparation step,
An Li solid, P compound, S compound, and O compound are made into an amorphous solid electrolyte containing Li, P, S, and O by a melt quenching method, and the solid electrolyte is pulverized to obtain the solid electrolyte powder. The method for producing a sulfide solid electrolyte according to claim 1, wherein the method is produced.
前記準備工程で用意する化合物は、LiS、P、およびPであることを特徴とする請求項2または3に記載の硫化物固体電解質の製造方法。 4. The method for producing a sulfide solid electrolyte according to claim 2, wherein the compounds prepared in the preparation step are Li 2 S, P 2 S 5 , and P 2 O 5 . 前記有機溶媒は、アルコール、若しくは二硫化炭素であることを特徴とする請求項1〜4のいずれか一項に記載の硫化物固体電解質の製造方法。   The said organic solvent is alcohol or carbon disulfide, The manufacturing method of the sulfide solid electrolyte as described in any one of Claims 1-4 characterized by the above-mentioned. 前記有機溶媒中の水分は、100ppm以下であることを特徴とする請求項1〜5のいずれか一項に記載の硫化物固体電解質の製造方法。   The method for producing a sulfide solid electrolyte according to claim 1, wherein water in the organic solvent is 100 ppm or less. 前記塗工工程において、
前記基板は、非水電解質電池の電極層であることを特徴とする請求項1〜6のいずれか一項に記載の硫化物固体電解質の製造方法。
In the coating process,
The said board | substrate is an electrode layer of a nonaqueous electrolyte battery, The manufacturing method of the sulfide solid electrolyte as described in any one of Claims 1-6 characterized by the above-mentioned.
非水電解質電池に用いられる電極層と硫化物固体電解質層とが一体となった複合体であって、
前記電極層は、空隙部を有する焼結体、もしくは成形体であり、
前記硫化物固体電解質層の一部は、前記空隙部に入り込んでいることを特徴とする複合体。
A composite in which an electrode layer and a sulfide solid electrolyte layer used in a nonaqueous electrolyte battery are integrated,
The electrode layer is a sintered body having a void portion, or a molded body,
Part of the sulfide solid electrolyte layer enters the void portion.
JP2009239645A 2009-10-16 2009-10-16 Method for producing sulfide solid electrolyte and composite Expired - Fee Related JP5376158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239645A JP5376158B2 (en) 2009-10-16 2009-10-16 Method for producing sulfide solid electrolyte and composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239645A JP5376158B2 (en) 2009-10-16 2009-10-16 Method for producing sulfide solid electrolyte and composite

Publications (2)

Publication Number Publication Date
JP2011086556A true JP2011086556A (en) 2011-04-28
JP5376158B2 JP5376158B2 (en) 2013-12-25

Family

ID=44079347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239645A Expired - Fee Related JP5376158B2 (en) 2009-10-16 2009-10-16 Method for producing sulfide solid electrolyte and composite

Country Status (1)

Country Link
JP (1) JP5376158B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179025A (en) * 2012-02-03 2013-09-09 Idemitsu Kosan Co Ltd Alkali ion electrolyte composition
WO2014109191A1 (en) * 2013-01-11 2014-07-17 トヨタ自動車株式会社 Solid electrolyte sulfide material, battery, and process for producing solid electrolyte sulfide material
JP2014167845A (en) * 2013-02-28 2014-09-11 Toyota Motor Corp Process of manufacturing sulfide solid electrolyte material
JP2015002080A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
JP2015002079A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
JPWO2012176266A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Method for producing solid electrolyte fine particles
JP2019192490A (en) * 2018-04-25 2019-10-31 国立大学法人東京工業大学 Sulfide solid electrolyte and all-solid battery
WO2020184340A1 (en) * 2019-03-12 2020-09-17 三菱瓦斯化学株式会社 Method for producing all-solid-state battery
CN114256510A (en) * 2020-09-23 2022-03-29 丰田自动车株式会社 Method for manufacturing all-solid-state battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2004220906A (en) * 2003-01-15 2004-08-05 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode member and its manufacturing method
JP2007273214A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, its manufacturing method and all solid secondary battery
JP2008288098A (en) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd Sulfide-based electroyte powder, and sulfide-based electroyte molded body using the same
JP2009176541A (en) * 2008-01-23 2009-08-06 Idemitsu Kosan Co Ltd Solid electrolyte film, positive electrode film or negative electrode film for all-solid lithium secondary battery, forming method of these films, and all-solid lithium secondary battery
JP2009211950A (en) * 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd Solid electrolyte and its manufacturing method
WO2010038313A1 (en) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 Process for producing whole solid type lithium battery
WO2011030696A1 (en) * 2009-09-09 2011-03-17 公立大学法人大阪府立大学 Sulfide solid electrolyte

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2004220906A (en) * 2003-01-15 2004-08-05 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode member and its manufacturing method
JP2007273214A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, its manufacturing method and all solid secondary battery
JP2008288098A (en) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd Sulfide-based electroyte powder, and sulfide-based electroyte molded body using the same
JP2009176541A (en) * 2008-01-23 2009-08-06 Idemitsu Kosan Co Ltd Solid electrolyte film, positive electrode film or negative electrode film for all-solid lithium secondary battery, forming method of these films, and all-solid lithium secondary battery
JP2009211950A (en) * 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd Solid electrolyte and its manufacturing method
WO2010038313A1 (en) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 Process for producing whole solid type lithium battery
WO2011030696A1 (en) * 2009-09-09 2011-03-17 公立大学法人大阪府立大学 Sulfide solid electrolyte
JP2011057500A (en) * 2009-09-09 2011-03-24 Osaka Prefecture Univ Sulfide solid electrolyte

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012176266A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Method for producing solid electrolyte fine particles
JP2013179025A (en) * 2012-02-03 2013-09-09 Idemitsu Kosan Co Ltd Alkali ion electrolyte composition
CN104885288B (en) * 2013-01-11 2017-06-30 丰田自动车株式会社 The manufacture method of sulfide solid electrolyte material, battery and sulfide solid electrolyte material
WO2014109191A1 (en) * 2013-01-11 2014-07-17 トヨタ自動車株式会社 Solid electrolyte sulfide material, battery, and process for producing solid electrolyte sulfide material
JP2014135216A (en) * 2013-01-11 2014-07-24 Toyota Motor Corp Sulfide solid electrolyte material, battery, and method for manufacturing sulfide solid electrolyte material
US10128532B2 (en) 2013-01-11 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
KR20150092256A (en) * 2013-01-11 2015-08-12 도요타 지도샤(주) Solid electrolyte sulfide material, battery, and process for producing solid electrolyte sulfide material
CN104885288A (en) * 2013-01-11 2015-09-02 丰田自动车株式会社 Solid electrolyte sulfide material, battery, and process for producing solid electrolyte sulfide material
KR101689492B1 (en) 2013-01-11 2016-12-23 도요타 지도샤(주) Solid electrolyte sulfide material, battery, and process for producing solid electrolyte sulfide material
JP2014167845A (en) * 2013-02-28 2014-09-11 Toyota Motor Corp Process of manufacturing sulfide solid electrolyte material
JP2015002080A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
JP2015002079A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
JP2019192490A (en) * 2018-04-25 2019-10-31 国立大学法人東京工業大学 Sulfide solid electrolyte and all-solid battery
CN112020787A (en) * 2018-04-25 2020-12-01 国立大学法人东京工业大学 Sulfide solid electrolyte and all-solid-state battery
JP7332275B2 (en) 2018-04-25 2023-08-23 国立大学法人東京工業大学 Sulfide solid electrolyte and all-solid-state battery
WO2020184340A1 (en) * 2019-03-12 2020-09-17 三菱瓦斯化学株式会社 Method for producing all-solid-state battery
CN114256510A (en) * 2020-09-23 2022-03-29 丰田自动车株式会社 Method for manufacturing all-solid-state battery

Also Published As

Publication number Publication date
JP5376158B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5376158B2 (en) Method for producing sulfide solid electrolyte and composite
Qin et al. Strategies in structure and electrolyte design for high‐performance lithium metal batteries
DeWees et al. Synthesis and properties of NaSICON‐type LATP and LAGP solid electrolytes
Baggetto et al. High energy density all‐solid‐state batteries: a challenging concept towards 3D integration
Kim et al. In Situ Formation of a Cathode–Electrolyte Interface with Enhanced Stability by Titanium Substitution for High Voltage Spinel Lithium‐Ion Batteries
EP2919298B1 (en) Si/C composite anodes for lithium-ion batteries with a sustained high capacity per unit area
JP4392618B2 (en) Method for forming solid electrolyte
EP3239986B1 (en) Ion conductor and method for producing same
KR20120010211A (en) Porous silicon based alloy, method of preparing the same, and negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
CN103814466B (en) The constitutionally stable active material of battery set electrode
JP2009181807A (en) Solid electrolyte, solid electrolyte battery, manufacturing method of lithium ion conductor, manufacturing method of solid electrolyte, and manufacturing method of solid electrolyte battery
JP2004319469A (en) Negative electrode active substance and nonaqueous electrolyte secondary cell
US11205800B2 (en) Polymer and molten ion conductive salt and silicon interface for decreased interfacial resistance
Shi et al. Evaluation of the electrochemical characteristics of silicon/lithium titanate composite as anode material for lithium ion batteries
CN113745651A (en) Coated sulfide solid electrolyte and preparation method and application thereof
JP5813972B2 (en) Lithium-transition metal composite oxide powder, method for producing the same, and positive electrode active material for all solid lithium battery using the powder
JP3716833B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
Qiang et al. Preparation of Three‐Dimensional Copper‐Zinc Alloy Current Collector by Powder Metallurgy for Lithium Metal Battery Anode
JP2015125816A (en) Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
Kang et al. AgNO3-preplanted Li metal powder electrode: Preliminary formation of lithiophilic Ag and a Li3N-rich solid electrolyte interphase
Xi et al. Interface Engineering of All‐Solid‐State Batteries Based on Inorganic Solid Electrolytes
Zhang et al. Laser ablation of pristine Fe foil for constructing a layer-by-layer SiO 2/Fe 2 O 3/Fe integrated anode for high cycling-stability lithium-ion batteries
US11309585B2 (en) Molten ion conductive salt/silicon interface for decreased interfacial resistance
Momma et al. Sn–O–C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte
JP2015053234A (en) Production method of oxide solid electrolyte material, production method of electrode body, oxide solid electrolyte material, and electrode body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees