JP2011085779A - Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film - Google Patents

Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film Download PDF

Info

Publication number
JP2011085779A
JP2011085779A JP2009239057A JP2009239057A JP2011085779A JP 2011085779 A JP2011085779 A JP 2011085779A JP 2009239057 A JP2009239057 A JP 2009239057A JP 2009239057 A JP2009239057 A JP 2009239057A JP 2011085779 A JP2011085779 A JP 2011085779A
Authority
JP
Japan
Prior art keywords
film
uneven
structural
concavo
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009239057A
Other languages
Japanese (ja)
Inventor
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009239057A priority Critical patent/JP2011085779A/en
Publication of JP2011085779A publication Critical patent/JP2011085779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structural coloration uneven film which has no difference between the front and rear faces thereof and can provide a brilliant material mixed in a coating film and achieving stable structural coloration, to provide a brilliant material obtained by cracking the structural coloration uneven film, and to provide a structural coloration coating film containing such a brilliant material. <P>SOLUTION: The brilliant material is obtained by cracking the structural coloration uneven film so that an average longest diameter of cracked pieces is made 1-100 μm. The structural coloration uneven film comprises a material having a refractive index n and has an uneven shape inflected periodically at a pitch P, wherein the product nP of the refractive index n and the pitch P is 380-780 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光の回折現象によって、特定波長の光を発色する構造発光凹凸膜と、構造発色凹凸膜と、当該構造発色凹凸膜から成る構造発色性光輝材、さらにはこのような光輝材を含有した意匠性に優れた塗膜や塗装物に関するものである。   The present invention relates to a structural light-emitting concavo-convex film that develops light of a specific wavelength by a light diffraction phenomenon, a structural color concavo-convex film, a structural color-developing luminescent material comprising the structural chromatic concavo-convex film, and such a luminescent material. The present invention relates to a coating film or a coated product having excellent design properties.

一般に、回折格子は特定の波長の光を設計した角度に反射することができるため、このような回折格子のフィルムを粉砕して塗料などに顔料として混合することによって、従来の顔料や染料などによる発色とは異なる意匠性を備えた塗膜や塗装構造を得るなど、回折光を利用した発光材料を得ることができる(例えば、特許文献1参照)。   In general, a diffraction grating can reflect light of a specific wavelength at a designed angle, so by pulverizing a film of such a diffraction grating and mixing it as a pigment in a paint or the like, a conventional pigment or dye can be used. A light emitting material using diffracted light can be obtained, for example, by obtaining a coating film or a coating structure having a design property different from color development (see, for example, Patent Document 1).

特開昭63−172779号公報Japanese Unexamined Patent Publication No. 63-17279

しかしながら、上記のような回折格子フィルムには表裏があることから、配列の制御が難しく、望まれる回折光を得難いという問題があった。   However, since the diffraction grating film as described above has both sides, there is a problem that it is difficult to control the arrangement and it is difficult to obtain the desired diffracted light.

本発明は、従来技術における上記課題を解決すべくなされたものであって、その目的とするところは、表裏がなく、塗膜等の媒体に適用して安定な構造発光が可能な構造発光凹凸膜を提供することにある。また、このような構造発光凹凸膜を用いた構造発色凹凸膜や光輝材、さらには当該光輝材を含む塗膜、このような塗膜を備えた塗装物を提供することにある。   The present invention has been made in order to solve the above-mentioned problems in the prior art, and the object is to have a structured light-emitting unevenness that can be applied to a medium such as a coating film and can stably emit light with no surface. It is to provide a membrane. It is another object of the present invention to provide a structure-colored uneven film and a bright material using such a structured light-emitting uneven film, a coated film containing the bright material, and a coated article having such a coated film.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、光の回折現象を発現するだけの微小なピッチで屈曲する凹凸膜を得ることによって、上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by obtaining a concavo-convex film that bends at a fine pitch sufficient to express the light diffraction phenomenon. The present invention has been completed.

本発明は上記知見に基づくものであって、本発明の構造発光凹凸膜は、周期的に屈曲した膜状をなし、その材料の屈折率をnとし、屈曲ピッチをPとするとき、これらの積nPに等しい波長λの回折光を発することを特徴とする。
また、本発明の構造発色凹凸膜は、上記構造発光凹凸膜から成り、上記屈折率nとピッチPの積nPが380〜780nmであることを特徴とする。
The present invention is based on the above knowledge, and the structured light-emitting concavo-convex film of the present invention has a periodically bent film shape, and when the refractive index of the material is n and the bending pitch is P, these are as follows. It emits diffracted light having a wavelength λ equal to the product nP.
The structural color uneven film of the present invention is composed of the above-described structural light-emitting uneven film, and the product nP of the refractive index n and the pitch P is 380 to 780 nm.

また、本発明の光輝材は、上記構造発色凹凸膜を解砕したものであって、解砕後における各片の最長部の平均長さが1〜100μmであることを特徴としている。そして、本発明の構造発色塗膜は、上記光輝材を含有することを特徴とすると共に、本発明の塗装物は上記構造発色塗膜を備えたことを特徴としており、例えば、自動車用部品などに適用することができる。   In addition, the glitter material of the present invention is obtained by crushing the structural color uneven film, and the average length of the longest part of each piece after crushing is 1 to 100 μm. The structural color coating film of the present invention is characterized by containing the above-mentioned bright material, and the coated product of the present invention is characterized by comprising the above structural color coating film, such as automobile parts. Can be applied to.

本発明によれば、材料の屈折率に応じた所定のピッチで屈曲する膜を構造発光凹凸膜としたため、表裏の形状差がないものとなる。したがって、当該凹凸膜を塗膜等の媒体に適用することによって、光の回折に基づく構造発光を安定して、確実に発現させることが可能となる。   According to the present invention, since the film that bends at a predetermined pitch according to the refractive index of the material is a structured light-emitting concavo-convex film, there is no difference in shape between the front and back surfaces. Therefore, by applying the concavo-convex film to a medium such as a coating film, it is possible to stably and surely express the structural light emission based on the light diffraction.

本発明の構造発光凹凸膜の断面形状の一例を示す説明図である。It is explanatory drawing which shows an example of the cross-sectional shape of the structure light emission uneven | corrugated film of this invention. 本発明の構造発光凹凸膜の発色原理を示す説明図である。It is explanatory drawing which shows the color development principle of the structure light emission uneven | corrugated film of this invention. (a)及び(b)は本発明の構造発光凹凸膜の拡大外観形状例を示す斜視図である。(A) And (b) is a perspective view which shows the example of an expansion external appearance shape of the structure light emission uneven | corrugated film of this invention. 本発明の構造発光凹凸膜の拡大外観形状の他の例を示す斜視図である。It is a perspective view which shows the other example of the expansion external appearance shape of the structure light emission uneven | corrugated film of this invention. 本発明の構造発光凹凸膜の形状例を示す電子顕微鏡写真である。It is an electron micrograph which shows the example of a shape of the structure light emission uneven | corrugated film of this invention. 本発明の構造発色凹凸膜の断面形状として多層構造の例を示す断面図である。It is sectional drawing which shows the example of a multilayer structure as a cross-sectional shape of the structure coloring uneven | corrugated film of this invention. 本発明の構造発色凹凸膜を粉砕してなる光輝材の外観形状の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the external appearance shape of the luster material formed by grind | pulverizing the structural coloring uneven | corrugated film of this invention.

以下、本発明の構造発光凹凸膜、構造発色凹凸膜や光輝材について、その好適形態や製造方法等と共に、さらに詳細に説明する。なお、本明細書において「%」は、特記しない限り、質量百分率を意味するものとする。   Hereinafter, the structural light-emitting concavo-convex film, the structural color concavo-convex film and the glitter material of the present invention will be described in more detail together with preferred forms and manufacturing methods thereof. In the present specification, “%” means mass percentage unless otherwise specified.

図1は、本発明の構造発光凹凸膜の断面形状の一例を示す縦断面図であって、本発明の構造発光凹凸膜1は、屈折率nの材料から成り、図示するように、ピッチPで周期的に屈曲した膜状をなしている。
このような構造を備えた構造発光凹凸膜においては、図2に示すように、入射光(電磁波)の角度をα、回折光の角度をβ、回折光の波長をλ、回折次数をmとするとき、次式(1)の関係を有する。
nP(sinα+sinβ)=mλ ・・・ (1)
FIG. 1 is a longitudinal sectional view showing an example of the cross-sectional shape of the structured light-emitting concavo-convex film of the present invention. The structural light-emitting concavo-convex film 1 of the present invention is made of a material having a refractive index n and has a pitch P as shown. The film is bent periodically.
In the structured light-emitting concavo-convex film having such a structure, as shown in FIG. 2, the angle of incident light (electromagnetic wave) is α, the angle of diffracted light is β, the wavelength of diffracted light is λ, and the diffraction order is m. When it does, it has the relationship of following Formula (1).
nP (sin α + sin β) = mλ (1)

すなわち、入射光の角度を0°とした場合、角度βに発生する回折波長λは(nPsinβ/m)となってnPに比例し、角度β=90°に1次回折光が発生する場合は、nPが回折波長λに一致することとなる。
このとき、上記ピッチと屈折率の積nPの値は、得られる回折光の波長に一致することから、積nPの値が380nm未満の場合には紫外領域の回折光が得られ、780nmを超えた場合には赤外領域の回折光が得られる。そして、積nPの値が380〜780nmの範囲内の場合には、可視領域の回折光を発する構造発色凹凸膜2が得られることになり、意匠性を向上させることができる。
That is, when the angle of the incident light is 0 °, the diffraction wavelength λ generated at the angle β is (nPsinβ / m) and is proportional to nP, and when the first-order diffracted light is generated at the angle β = 90 °, nP matches the diffraction wavelength λ.
At this time, since the value of the product nP of the pitch and the refractive index coincides with the wavelength of the obtained diffracted light, when the value of the product nP is less than 380 nm, diffracted light in the ultraviolet region is obtained and exceeds 780 nm. In this case, diffracted light in the infrared region can be obtained. When the value of the product nP is in the range of 380 to 780 nm, the structural color uneven film 2 that emits diffracted light in the visible region is obtained, and the design can be improved.

また、本発明の構造発光凹凸膜1の厚さについては、その平均膜厚をdとするとき、ピッチPに対する比d/Pが0.1〜1.5の範囲内であることが望ましい。すなわち、d/P比が0.1に満たないと、膜が形成し難くなったり、膜強度が不十分となって解砕時にチップが小さくなり、十分な反射を得にくくなったりする傾向がある。一方、1.5を超えると、薄膜状ではなくピラー状(柱状)になるため、膜強度が強くなりすぎ、解砕時にエネルギーが余分に必要となったり、光輝材を含有した塗装膜の平滑性を保ち難くなったりする不具合が生ずることがあることによる。
なお、当該凹凸膜の厚さについては、平均値dに対して20%以内の変動幅であれば、構造発色性能にほとんど影響がないことが確認されている。
Regarding the thickness of the structured light-emitting concavo-convex film 1 of the present invention, it is desirable that the ratio d / P with respect to the pitch P is in the range of 0.1 to 1.5, where d is the average film thickness. That is, if the d / P ratio is less than 0.1, it tends to be difficult to form a film, or the film strength becomes insufficient and the chip becomes small at the time of crushing, making it difficult to obtain sufficient reflection. is there. On the other hand, if it exceeds 1.5, it becomes a pillar shape (pillar shape) instead of a thin film shape, so that the film strength becomes too strong and extra energy is required at the time of crushing, or the smoothness of the coating film containing the glittering material This is because there may be a problem that it becomes difficult to maintain the characteristics.
Note that it has been confirmed that the thickness of the concavo-convex film has almost no influence on the structural coloring performance if the fluctuation range is within 20% of the average value d.

本発明の構造発光凹凸膜1の断面形状としては、ピッチPの周期的形状を備えてさえいれば、図1に示したような直線から成る屏風状のもののみならず、矩形(コの字状)や台形、円弧形が連続した形状や、正弦波形状などを採用することができる。   As long as the cross-sectional shape of the structured light-emitting concavo-convex film 1 of the present invention has a periodic shape with a pitch P, it is not limited to a folding screen composed of straight lines as shown in FIG. Shape), a trapezoidal shape, a circular arc shape, a sine wave shape, or the like.

本発明の構造発光凹凸膜は、少なくとも一方向の断面が上記のようなピッチPの屈曲形状を備えた膜状である限り、特に限定はなく、例えば図3(a)に示すように、円錐状をなす中空凸部2がX−Y方向に規則的に配列(正方配列)された形状とすることができる。また、図3(b)に示すように、角錐状(図では四角錐)の凸部とすることも可能である。
このとき、円錐や角錐に替えて、頂部を平坦化した円錐台状や角錐台状のものとしてもよい。また、凸部に換えて凹部とすることや、図4に示すように凸部2と凹部3を交互に配列するようにしてもよい。
なお、本発明においては、正方配列のように方向によってピッチが相違するような場合には、小さい方の値を当該凹凸形状のピッチと定義する。
The structured light-emitting concavo-convex film of the present invention is not particularly limited as long as the cross section in at least one direction has a bent shape with the pitch P as described above. For example, as shown in FIG. The hollow convex portions 2 having a shape can be formed in a regular arrangement (square arrangement) in the XY direction. Moreover, as shown in FIG.3 (b), it is also possible to set it as a convex part of a pyramid shape (a quadrangular pyramid in a figure).
At this time, instead of a cone or a pyramid, a truncated cone shape or a truncated pyramid shape having a flat top portion may be used. Moreover, it may replace with a convex part as a recessed part, and as shown in FIG. 4, you may make it arrange the convex part 2 and the recessed part 3 alternately.
In the present invention, when the pitch is different depending on the direction as in the square arrangement, the smaller value is defined as the pitch of the uneven shape.

また、一方向の断面がピッチPの屈曲形状を有する膜状であれば、上記のような独立した無数の凸部を備えたもの以外に、断面に直角方向に連続する凸部、あるいは凹部を備えた蛇腹状、畝状あるいは波板状のものとすることも可能である。   In addition, if the cross section in one direction is a film having a bent shape with a pitch P, in addition to the above-described innumerable convex portions, a convex portion or a concave portion continuous in a direction perpendicular to the cross section is provided. It may be a bellows shape, a saddle shape, or a corrugated shape.

図5は、正弦波形状がX方向及びY方向に連続する凹凸を備えた本発明の構造発光凹凸膜の一例を示す電子顕微鏡写真である。   FIG. 5 is an electron micrograph showing an example of the structured light-emitting concavo-convex film of the present invention having concavo-convex sine wave shapes continuous in the X and Y directions.

また、本発明の構造発光凹凸膜1の断面形状としては、図1に示したように、凹凸の高さをHとするとき、H/Pで表されるアスペクト比を0.3〜2の範囲内とすることが望ましい。
すなわち、アスペクト比H/Pがこの範囲を外れた場合、つまりH/Pが0.3に満たない場合、2を超えた場合には、いずれも十分な強度を有する回折光が得られなくなる傾向があることによる。
Moreover, as shown in FIG. 1, the cross-sectional shape of the structured light-emitting concavo-convex film 1 of the present invention has an aspect ratio represented by H / P of 0.3 to 2 when the concavo-convex height is H. It is desirable to be within the range.
That is, when the aspect ratio H / P is out of this range, that is, when H / P is less than 0.3, when it exceeds 2, the diffracted light having sufficient intensity tends not to be obtained. Because there is.

ここで、凹凸の高さHとしては、図1に示したような屏風型屈曲断面や、正弦波形状のような波形凹凸断面の場合には、その高低差(波高)をもってHとする。また、錐状(図3、4参照)、錐台状、矩形状の凸部からなる凹凸形状の場合には、当該凸部の高さをもってHとする。
なお、図4に示したように、凹部と凸部が連続することなく中間面を介して並ぶ場合にも、凸部の頂部と凹部の底部の高低差(波高)をもってHとする。
Here, in the case of a folding screen type bending cross section as shown in FIG. 1 or a corrugated uneven section such as a sine wave shape, the height H of the unevenness is set to H with the difference in height (wave height). Further, in the case of a concavo-convex shape composed of a conical shape (see FIGS. 3 and 4), a frustum shape, or a rectangular shape, the height of the convex portion is defined as H.
As shown in FIG. 4, even when the concave portion and the convex portion are arranged through the intermediate surface without being continuous, the difference in height (wave height) between the top portion of the convex portion and the bottom portion of the concave portion is set to H.

本発明の構造発色凹凸膜2は、図6に示すように、屈折率の異なる複数の材料から成る複層構造とすることも可能であり、これによって鮮やかな構造発色に加え、見る角度により色が変わるという機能を付加したものとすることができる。
このとき、当該構造発色凹凸膜2の厚さdとしては、各層の合計とし、屈折率nは、各層の厚さd〜d、屈折率n〜nを考慮した平均値、すなわち
n=(n+n+・・・+n)/d (但し、d=d+d+・・・+d
を採用する。
As shown in FIG. 6, the structural color uneven film 2 of the present invention can have a multilayer structure composed of a plurality of materials having different refractive indexes. Can be added.
In this case, the thickness d of the structural color uneven film 2, and the sum of the respective layers, the refractive index n, the thickness of each layer d 1 to d n, the average value in consideration of the refractive index n 1 ~n n, i.e. n = (n 1 d 1 + n 2 d 2 +... + n m d m ) / d (where d = d 1 + d 2 +... + d m )
Is adopted.

このような構造発光凹凸膜や構造発色凹凸膜は、回折現象を発現する上記のような周期的(ピッチP)な微細凹凸を備えた基板を水や有機溶媒などに可溶な材料により作製し、このような基材の凹凸面に、無機化合物を真空プロセスによって成膜することによって製造することができる。
すなわち、上記基材の凹凸面上に、金属や金属酸化物のような無機物から成る層を成膜することによって凹凸膜を形成した後、基材を水や有機溶媒などを用いて溶解することによって、ピッチPで屈曲した本発明の構造発光凹凸膜や構造発色凹凸膜が得られる。
Such a structural light-emitting concavo-convex film and a structural color concavo-convex film are prepared by using a material soluble in water, an organic solvent, or the like, on a substrate having the above-described periodic (pitch P) fine concavo-convex that expresses a diffraction phenomenon. Such an inorganic compound can be produced by forming a film on the uneven surface of the substrate by a vacuum process.
That is, after forming a concavo-convex film by forming a layer made of an inorganic material such as a metal or metal oxide on the concavo-convex surface of the base material, the base material is dissolved using water, an organic solvent, or the like. Thus, the structured light-emitting concavo-convex film or the structural color concavo-convex film of the present invention bent at the pitch P is obtained.

微細凹凸を表面に備えた基材の材料としては、水や溶媒に可溶な材料で形成されていることが必要であるが、環境負荷を考慮すると水溶性の材料であることが好ましい。
このような水溶性材料としては、特に限定されるものではないが、ポリビニルアルコール、ポリビニルピロリドン、セルロース、ポリアクリル酸などの完全ケン化物や部分ケン化物を用いることが好ましい。水溶性材料以外では、ポリメチルメタクリレート、ポリスチレン、ポリエチレンなどの有機溶剤に可溶な材料を用いることもできる。
The material of the substrate having fine irregularities on the surface needs to be formed of a material that is soluble in water or a solvent, but is preferably a water-soluble material in consideration of environmental load.
Such a water-soluble material is not particularly limited, but it is preferable to use a completely saponified product or a partially saponified product such as polyvinyl alcohol, polyvinyl pyrrolidone, cellulose, and polyacrylic acid. In addition to water-soluble materials, materials soluble in organic solvents such as polymethyl methacrylate, polystyrene, and polyethylene can also be used.

このような微細凹凸面を備えた基材の作製方法についても特に限定されることはない。例えば、回折格子形状が作製できる方法、すなわち電子線描画、2光束干渉露光、機械切削などの方法により、上記のような微細凹凸面を備えた金型を作製し、この金型を用いて、上記のような基材材料に微細凹凸を転写するようになすことができる。   There is no particular limitation on the method for producing a substrate having such a fine uneven surface. For example, a mold having a fine concavo-convex surface as described above is produced by a method capable of producing a diffraction grating shape, that is, electron beam drawing, two-beam interference exposure, mechanical cutting, and the like. The fine irregularities can be transferred to the base material as described above.

一方、上記構造発光凹凸膜や構造発色凹凸膜の形成方法、すなわち無機材料を基材上に成膜するための真空プロセスとしては、例えば、真空蒸着、スパッタリング、プラズマCVDなどの手法を用いることが好ましいが、特に限定されるものではない。   On the other hand, as a method for forming the structured light-emitting concavo-convex film or the structural color concavo-convex film, that is, a vacuum process for forming an inorganic material on a substrate, for example, a technique such as vacuum deposition, sputtering, or plasma CVD may be used. Although it is preferable, it is not particularly limited.

また、構造発光凹凸膜や構造発色凹凸膜を構成する材料としては、上記した真空プロセスに使用できる材料であれば、特に限定されることはなく、例えば、酸化ケイ素、ケイ素、アルミニウム、酸化アルミニウム、ニオブ、酸化ニオブ、チタン、酸化チタン、ジルコニア、亜鉛、酸化亜鉛、金、銀、プラチナなどを挙げることができる。
特に、塗料に混合した場合に、強い反射光を得たい場合は屈折率が高い酸化チタンや酸化ニオブ、ジルコニアなどを用いることが好ましい。
In addition, the material constituting the structural light-emitting concavo-convex film and the structural color concavo-convex film is not particularly limited as long as it is a material that can be used in the vacuum process described above. For example, silicon oxide, silicon, aluminum, aluminum oxide, Examples thereof include niobium, niobium oxide, titanium, titanium oxide, zirconia, zinc, zinc oxide, gold, silver, and platinum.
In particular, it is preferable to use titanium oxide, niobium oxide, zirconia, or the like having a high refractive index when it is desired to obtain strong reflected light when mixed with a paint.

このようにして得られた構造発光凹凸膜や構造発色凹凸膜は、適当なサイズに切断して、板材や種々の物品に貼り付けることによって、特定の回折光を安定して供給する光源として利用することができ、また、構造発色凹凸膜は、意匠性に優れたパネルやステッカー、アクセサリーとして使用することができる。
また、構造発色凹凸膜を細かく解砕し、塗料中に光輝材として混合することによって、構造発色の安定性に優れ、意匠性に優れた塗膜を得ることができる。このとき、発色性が高く、粒感のない塗膜とするためには、解砕後の上記光輝材各片の最長部の長さ(最長径)の平均値を1〜100μmとする必要がある。
The structured light-emitting concavo-convex film and structural color concavo-convex film thus obtained are used as a light source that stably supplies specific diffracted light by cutting them into appropriate sizes and attaching them to plates and various articles. Further, the structural color uneven film can be used as a panel, a sticker or an accessory having excellent design properties.
Moreover, the structural coloring uneven | corrugated uneven | corrugated film is disintegrated finely and it mixes as a brilliant material in a coating material, and can obtain the coating film excellent in the stability of structural coloring and excellent in the designability. At this time, in order to obtain a coating film with high color developability and no grain feeling, it is necessary to set the average value of the length (longest diameter) of the longest portion of each piece of the glittering material after crushing to 1 to 100 μm. is there.

上記光輝材を得るために、得られた構造発色凹凸膜を解砕するには、超音波を用いることが望ましい。
すなわち、上記基材上に成膜された構造発色凹凸膜を基材から分離させるに際して、基材と共に水や溶媒に浸漬された凹凸膜に超音波を照射することによって、基材の溶解が促進されると共に、凹凸膜が屈曲部から破断され、微細凹凸を損うことなく、上記サイズの光輝材を容易に得ることができる。
In order to obtain the above-mentioned glittering material, it is desirable to use ultrasonic waves to crush the resulting structural color uneven film.
That is, when separating the structural color uneven film formed on the substrate from the substrate, the dissolution of the substrate is accelerated by irradiating the uneven film immersed in water or a solvent together with the substrate. At the same time, the concavo-convex film is broken from the bent portion, and the glitter material of the above size can be easily obtained without damaging the fine irregularities.

このとき、凹凸膜に照射する超音波の出力や周波数を高くするほど、破断の頻度を高めることができ、光輝材のサイズ(最長径)を小さくすることができる。
図7は、このようにして得られた本発明の光輝材の形状例を示す電子顕微鏡写真である。
At this time, the higher the output and frequency of the ultrasonic wave applied to the concavo-convex film, the higher the frequency of breakage and the smaller the size (longest diameter) of the glitter material.
FIG. 7 is an electron micrograph showing an example of the shape of the bright material of the present invention thus obtained.

本発明の構造発色凹凸膜を解砕して成る上記光輝材は、塗料ベースに顔料として添加することによって、構造発色塗料とすることができ、これを被塗物に塗布して、固化させることによって、本発明の構造発色塗膜とすることができ、新しい意匠性を発現する塗膜とすることができる。
そして、この場合の光輝材の添加量としては、塗料の全体質量に対して、0.1〜10%が好ましい。すなわち、当該光輝材の添加量が0.1%より少ない場合には、光の回折による明確な発色が確認できないことがあり、10%より大きい場合には、塗料中での分散が困難になる傾向があるので好ましくない。
The glittering material formed by pulverizing the structural color uneven film of the present invention can be made into a structural color paint by adding it as a pigment to the paint base, and this is applied to an object to be solidified. By this, it can be set as the structural coloring coating film of this invention, and it can be set as the coating film which expresses a new design property.
And the addition amount of the glittering material in this case is preferably 0.1 to 10% with respect to the total mass of the paint. That is, when the amount of the glittering material is less than 0.1%, clear color development due to light diffraction may not be confirmed. When the amount is more than 10%, dispersion in the paint becomes difficult. Since there is a tendency, it is not preferable.

このような塗膜を備えた塗装物としては、特に限定されることはないが、例えば携帯電話やモバイルパソコンなどの携帯機器、自動車やバイク、船舶、航空機、電車などの輸送機器、家具、建材、外壁、道路標識など、多岐にわたって新しい意匠性を発現することができる。   The coated material provided with such a coating film is not particularly limited. For example, mobile devices such as mobile phones and mobile personal computers, transportation devices such as automobiles, motorcycles, ships, aircraft, and trains, furniture, and building materials. New design characteristics can be expressed in a wide variety of areas such as exterior walls and road signs.

以下に、実施例に基づいて、本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited only to these examples.

〔基材の作製〕
錐状、錐台形状及び矩形状の凹凸を形成するための基材については、電子線描画とエッチングによって、種々の大きさ、ピッチの微細凹凸を備えたシリコン金型を各種作製し、この形状を水溶性のポリビニルアルコールに転写して、構造発色凹凸膜形成用の基材とした。
一方、正弦破形状断面凹凸膜形成用の基材については、2光束干渉露光を用いて、種々の大きさ、ピッチの正弦破形状凹凸を備えた金型を各種作製し、この形状を水溶性のポリビニルアルコールに同様に転写して凹凸膜形成用の基材とした。
[Preparation of substrate]
Concerning the base material for forming conical, frustum-shaped and rectangular irregularities, various shapes and shapes of silicon molds with fine irregularities of various sizes and pitches are produced by electron beam drawing and etching. Was transferred to water-soluble polyvinyl alcohol to obtain a substrate for forming a structural color uneven film.
On the other hand, with respect to the base material for forming the sinusoidal cross-section uneven film, various molds having sinusoidal shape unevenness of various sizes and pitches are produced using two-beam interference exposure, and this shape is made water-soluble. In the same manner, it was transferred to polyvinyl alcohol to form a substrate for forming an uneven film.

〔構造発色凹凸膜の製造〕
上記にて作成した種々の微細凹凸を備えた基材の表面に、各種の材料、すなわち酸化ニオブ(Nb:屈折率n=2.3)、酸化アルミニウム(Al:屈折率n=1.65)、酸化チタン(TiO:屈折率n=2.5)、アルミニウム(屈折率n=2)、酸化ケイ素(SiO:屈折率n=1.45)をスパッタリングによってそれぞれ成膜し、各種材料から成り、ピッチP、平均膜厚dの各種形状を備えた凹凸膜を形成した。
[Manufacture of structural color uneven film]
Various materials such as niobium oxide (Nb 2 O 5 : refractive index n = 2.3), aluminum oxide (Al 2 O 3 : refractive index) are formed on the surface of the base material having various fine irregularities created as described above. n = 1.65), titanium oxide (TiO 2 : refractive index n = 2.5), aluminum (refractive index n = 2), and silicon oxide (SiO 2 : refractive index n = 1.45) are formed by sputtering. A concavo-convex film made of various materials and having various shapes with a pitch P and an average film thickness d was formed.

〔光輝材の作製〕
次に、凹凸面上に各種材料から成る凹凸膜を形成した状態の基材を水中に浸漬し、種々の条件で超音波を照射することによって、ポリビニルアルコールから成る基材を溶解させて構造発色凹凸膜とすると共に、これを各サイズに解砕した後、水を濾過することにより光輝材を得た。
得られた光輝材の粒子径については、デジタルマイクロスコープ(キーエンス製VHX−900)付属の画像処理装置を用い、光輝材粒子の最長部長さを計測し、サンプリング数1000〜2000個の算術平均値(個数平均値)をもって粒子径とした。なお、サンプリングした個々の粒子径は、正規分布に従うことが判った。その変動係数Cvは、一般には10〜60%であるが、20〜40%であることが好ましい。
[Production of glitter material]
Next, the substrate with the concavo-convex film made of various materials formed on the concavo-convex surface is immersed in water and irradiated with ultrasonic waves under various conditions, so that the substrate made of polyvinyl alcohol is dissolved and the structure is colored. While making it an uneven | corrugated film | membrane, after crushing this to each size, the glittering material was obtained by filtering water.
About the particle diameter of the obtained luster material, using the image processing apparatus attached to the digital microscope (Keyence VHX-900), the longest part length of the luster material particles was measured, and the arithmetic average value of 1000 to 2000 samplings. The particle diameter was defined as (number average value). In addition, it turned out that each sampled particle diameter follows normal distribution. The variation coefficient Cv is generally 10 to 60%, but preferably 20 to 40%.

〔構造発色塗料の調整及び塗膜の形成〕
上記により得られた光輝材をクリヤ塗料中にそれぞれの量で添加し、以下の要領で実施例及び比較例の構造発色塗料を得た。
[Adjustment of structural coloring paint and formation of coating film]
The luster materials obtained as described above were added in respective amounts to the clear paint, and structural coloring paints of Examples and Comparative Examples were obtained in the following manner.

(実施例1)
円錐状突起が六方細密状態に配列された凹凸面を備えたポリビニルアルコール製の基材を準備した。次に、当該の凹凸表面上に、酸化ニオブ(Nb:屈折率n=2.3)をスパッタリングし、底面径300nm、高さH=300nmの円錐状凸部がピッチP=300nmで配列された平均厚さd=150nmの構造発色凹凸膜を形成した。
次に、得られた酸化ニオブから成る凹凸膜を基材と共に水中に浸漬し、超音波照射によって基材を溶解させると共に、凹凸膜を解砕した後、この水を濾過して残渣を光輝材とした。得られた光輝材粒子の平均最長径は10μmであった。そして、この光輝材を市販のクリヤ塗料中に乾燥状態で1%となるように添加して本例の構造発色塗料とした。
Example 1
A substrate made of polyvinyl alcohol having an uneven surface with conical protrusions arranged in a hexagonal close-packed state was prepared. Next, niobium oxide (Nb 2 O 5 : refractive index n = 2.3) is sputtered on the uneven surface, and conical convex portions having a bottom diameter of 300 nm and a height H = 300 nm are formed at a pitch P = 300 nm. The arranged structural color uneven film having an average thickness d = 150 nm was formed.
Next, the concavo-convex film made of niobium oxide obtained is immersed in water together with the base material, and the base material is dissolved by ultrasonic irradiation, and after the concavo-convex film is crushed, the water is filtered to remove the residue as a glittering material. It was. The average longest diameter of the obtained glittering material particles was 10 μm. Then, this glittering material was added to a commercially available clear paint so as to be 1% in a dry state to obtain the structural color paint of this example.

(実施例2)
円錐台状突起が六方細密状態に配列された凹凸面を備えたポリビニルアルコール製基材上に、同様のスパッタリングを行うことによって、底面径300nm、上面径50nm、高さH=300nmの円錐台状凸部がピッチP=300nmで配列された平均厚さd=100nmの構造発色凹凸膜を形成した。
そして、水中で同様に解砕することによって、平均最長径30μmの光輝材とした後、市販のクリヤ塗料中に乾燥状態で0.5%となるように添加して本例の構造発色塗料を得た。
(Example 2)
By performing similar sputtering on a polyvinyl alcohol substrate having an uneven surface in which frustoconical protrusions are arranged in a hexagonal close-packed state, a truncated cone shape having a bottom surface diameter of 300 nm, a top surface diameter of 50 nm, and a height H = 300 nm. A structural color uneven film having an average thickness d = 100 nm in which convex portions are arranged at a pitch P = 300 nm was formed.
Then, after pulverizing in the same manner in water to make a luster material having an average longest diameter of 30 μm, it is added to a commercially available clear paint so that it becomes 0.5% in a dry state, and the structural color paint of this example is obtained. Obtained.

(実施例3)
円錐台状突起が六方細密状態に配列された凹凸面を備えたポリビニルアルコール製基材を準備した。次いで、当該基材の凹凸面上に、酸化アルミニウム(Al:屈折率n=1.65)をスパッタリングすることによって、底面径350nm、上面径50nm、高さH=350nmの円錐台状凸部がピッチP=350nmで配列された平均厚さd=50nmの構造発色凹凸膜を形成した。
そして、水中で同様に解砕することによって、平均最長径20μmの光輝材とし、これを市販のクリヤ塗料中に乾燥状態で0.5%となるように添加して本例の構造発色塗料を得た。
(Example 3)
A base material made of polyvinyl alcohol provided with a concavo-convex surface in which frustoconical protrusions were arranged in a hexagonal close-packed state was prepared. Next, aluminum oxide (Al 2 O 3 : refractive index n = 1.65) is sputtered onto the uneven surface of the base material to form a truncated cone shape having a bottom diameter of 350 nm, a top diameter of 50 nm, and a height H = 350 nm. A structural color uneven film having an average thickness d = 50 nm in which convex portions are arranged at a pitch P = 350 nm was formed.
Then, by similarly crushing in water, a bright material having an average longest diameter of 20 μm is obtained, and this is added to a commercially available clear paint so as to be 0.5% in a dry state. Obtained.

(実施例4)
角柱状突起が所定間隔で正方配列された凹凸面を備えたポリビニルアルコール製基材を用意した。そして、その凹凸面上に、酸化チタン(TiO:屈折率n=2.5)をスパッタリングすることによって、1辺100nm、高さH=200nmの正四角柱状凸部がピッチP=200nmで配列された平均厚さd=280nmの構造発色凹凸膜を形成した。
次に、水中で同様に解砕することによって、平均最長径95μmの光輝材とし、これを市販のクリヤ塗料中に乾燥状態で0.1%となるように添加して本例の構造発色塗料を得た。
Example 4
A polyvinyl alcohol base material provided with a concavo-convex surface in which prismatic projections were squarely arranged at predetermined intervals was prepared. Then, by sputtering titanium oxide (TiO 2 : refractive index n = 2.5) on the concavo-convex surface, regular square columnar convex portions having a side of 100 nm and a height of H = 200 nm are arranged at a pitch P = 200 nm. A structured color uneven film having an average thickness d = 280 nm was formed.
Next, by similarly crushing in water, a bright material having an average longest diameter of 95 μm is obtained, and this is added to a commercially available clear paint so that it becomes 0.1% in a dry state, and the structural color paint of this example Got.

(実施例5)
光輝材の平均厚さdを160nm、平均最長径を70μm、塗料中の添加量(乾燥状態)を0.5%としたこと以外は、上記実施例4と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 5)
By repeating the same operation as in Example 4 except that the average thickness d of the glittering material was 160 nm, the average longest diameter was 70 μm, and the addition amount (dry state) in the paint was 0.5%, this operation was repeated. An example structural coloring paint was obtained.

(実施例6)
三次元正弦波曲面(図5に示すように市販の卵パックに類似し、正弦波断面を有する形状がX方向及びY方向に連続する凹凸を備えた曲面。2次元正弦波の数式により規定される3次元形状であり、二次元正弦波形状と呼ばれる場合もある)を備えたポリビニルアルコール製の基材を準備し、その凹凸面上に、アルミニウム(屈折率n=2)をスパッタリングすることによって、高さ(波高)H=200nm、ピッチP=200nm、平均厚さd=100nmの正弦波形状凹凸膜を形成した。
そして、水中で同様に解砕することによって、平均最長径1μmの光輝材とし、これを市販のクリヤ塗料中に乾燥状態で10%となるように添加して本例の構造発色塗料を得た。
(Example 6)
Three-dimensional sinusoidal curved surface (similar to a commercially available egg pack as shown in FIG. 5, a curved surface having a sine wave cross-section with concavities and convexities that are continuous in the X and Y directions. A base material made of polyvinyl alcohol having a three-dimensional shape (sometimes referred to as a two-dimensional sinusoidal shape), and sputtering aluminum (refractive index n = 2) on the uneven surface A sinusoidal concavo-convex film having a height (wave height) H = 200 nm, a pitch P = 200 nm, and an average thickness d = 100 nm was formed.
Then, by similarly pulverizing in water, a bright material having an average longest diameter of 1 μm was obtained, and this was added to a commercially available clear paint so as to be 10% in a dry state to obtain a structural color paint of this example. .

(実施例7)
三次元正弦波曲面を備えたポリビニルアルコール製の基材を準備した。そして、その凹凸面上に、スパッタリングによって平均厚さd=75nmの酸化ケイ素(SiO:屈折率n=1.45)と平均厚さd=40nmの酸化ニオブ(Nb:屈折率n=2.3)を交互にそれぞれ3層積層し、高さ(波高)H=300nm、ピッチP=300nmの正弦波凹凸形状をなし、平均厚さ(合計)d=345nmの6層構造の構造発色凹凸膜を形成した。
次に、水中で同様に解砕することによって、平均最長径30μmの光輝材とし、これを市販のクリヤ塗料中に乾燥状態で0.5%となるように添加して本例の構造発色塗料を得た。
(Example 7)
A base material made of polyvinyl alcohol having a three-dimensional sinusoidal curved surface was prepared. Then, on the uneven surface, silicon oxide (SiO 2 : refractive index n 1 = 1.45) having an average thickness d 1 = 75 nm and niobium oxide (Nb 2 O 5 having an average thickness d 2 = 40 nm) are formed by sputtering. Three layers each having a refractive index n 2 = 2.3) are alternately laminated to form a sinusoidal uneven shape having a height (wave height) H = 300 nm and a pitch P = 300 nm, and an average thickness (total) d = 345 nm 6 A structural color uneven film having a layer structure was formed.
Next, by similarly crushing in water, a bright material having an average longest diameter of 30 μm is obtained, and this is added to a commercially available clear paint so as to be 0.5% in a dry state. Got.

(実施例8)
酸化ケイ素と酸化ニオブをそれぞれ1層積層し、平均厚さ(合計)d=115nmの2層構造としたこと以外は、上記実施例7と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 8)
By repeating the same operation as in Example 7 except that one layer of silicon oxide and one layer of niobium oxide was laminated to form a two-layer structure with an average thickness (total) d = 115 nm, the structural color coating material of this example Got.

(実施例9)
光輝材の平均厚さdを800nm、平均最長径を30μm、塗料中の添加量(乾燥状態)を10%としたこと以外は、上記実施例3と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
Example 9
By repeating the same operation as in Example 3 except that the average thickness d of the glittering material was 800 nm, the average longest diameter was 30 μm, and the addition amount in the paint (dry state) was 10%, A structural coloring paint was obtained.

(実施例10)
上記実施例3と同様の操作を繰り返すことによって、平均厚さd=30nm、平均最長径1μmの光輝材とし、塗料に混合することなく、そのまま光輝材自体の反射率を後述する方法によって測定した。
(Example 10)
By repeating the same operation as in Example 3, a bright material having an average thickness d = 30 nm and an average longest diameter of 1 μm was obtained, and the reflectivity of the bright material itself was measured by a method described later without being mixed in the paint. .

(実施例11)
光輝材の平均厚さdを280nm、平均最長径を0.8μm、塗料中の添加量(乾燥状態)を10%としたこと以外は、上記実施例3と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 11)
By repeating the same operation as in Example 3 except that the average thickness d of the glittering material was 280 nm, the average longest diameter was 0.8 μm, and the addition amount in the paint (dry state) was 10%, An example structural coloring paint was obtained.

(実施例12)
光輝材粒子の平均最長径を120μmとしたこと以外は、上記実施例11と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 12)
The structural coloring paint of this example was obtained by repeating the same operation as in Example 11 except that the average longest diameter of the glittering material particles was 120 μm.

(実施例13)
実施例6で用いた基材の凹凸面上に、酸化ニオブ(Nb:屈折率n=2.3)をスパッタリングすることによって、高さ(波高)H=200nm、ピッチP=200nm、平均厚さd=280nmの正弦波形状凹凸膜を形成した。
そして、水中で同様に解砕することによって、平均最長径20μmの光輝材とし、これを市販のクリヤ塗料中に乾燥状態で0.05%となるように添加して本例の構造発色塗料を得た。
(Example 13)
By sputtering niobium oxide (Nb 2 O 3 : refractive index n = 2.3) on the uneven surface of the substrate used in Example 6, height (wave height) H = 200 nm, pitch P = 200 nm, A sinusoidal uneven film having an average thickness d = 280 nm was formed.
Then, by similarly crushing in water, a bright material having an average longest diameter of 20 μm is obtained, and this is added to a commercially available clear paint so as to be 0.05% in a dry state, whereby the structural coloring paint of this example is obtained. Obtained.

(実施例14)
光輝材粒子の平均厚さdを100nm、塗料への添加量(乾燥状態)を11%としたこと以外は、上記実施例13と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 14)
By repeating the same operation as in Example 13 except that the average thickness d of the glittering material particles was 100 nm and the amount added to the paint (dry state) was 11%, the structural color paint of this example was obtained. It was.

(実施例15)
正弦波形状凹凸膜の高さ(波高)をH=40nmとし、塗料への添加量(乾燥状態)を10%としたこと以外は、上記実施例14と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 15)
By repeating the same operation as in Example 14 except that the height (wave height) of the sine wave-shaped uneven film was set to H = 40 nm and the amount added to the paint (dried state) was set to 10%, this example was repeated. A structural coloring paint was obtained.

(実施例16)
正弦波形状凹凸膜の高さ(波高)をH=60nmとしたこと以外は、上記実施例15と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 16)
The structural coloring paint of this example was obtained by repeating the same operation as in Example 15 except that the height (wave height) of the sinusoidal uneven film was set to H = 60 nm.

(実施例17)
正弦波形状凹凸膜の高さ(波高)をH=400nmとしたこと以外は、上記実施例15と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 17)
The structural coloring paint of this example was obtained by repeating the same operation as in Example 15 except that the height (wave height) of the sinusoidal uneven film was set to H = 400 nm.

(実施例18)
正弦波形状凹凸膜の高さ(波高)をH=600nmとしたこと以外は、上記実施例15と同様の操作を繰り返すことによって、本例の構造発色塗料を得た。
(Example 18)
The structural coloring paint of this example was obtained by repeating the same operation as in Example 15 except that the height (wave height) of the sinusoidal uneven film was set to H = 600 nm.

(実施例19)
円錐台状突起が六方細密状態に配列された凹凸面を備えたポリビニルアルコール製基材上に、酸化アルミニウムをスパッタリングすることによって、底面径200nm、上面径50nm、高さH=200nmの円錐台状凸部がピッチP=200nmで配列された平均厚さd=280nmの構造発光凹凸膜を形成した。
そして、水中で同様に解砕することによって、平均最長径30μmとした後、市販のクリヤ塗料中に乾燥状態で10%となるように添加して本例の塗料を得た。
(Example 19)
By sputtering aluminum oxide onto a polyvinyl alcohol substrate having an uneven surface in which truncated cone-shaped protrusions are arranged in a hexagonal close-packed state, a truncated cone shape having a bottom surface diameter of 200 nm, a top surface diameter of 50 nm, and a height H = 200 nm. A structured light-emitting concavo-convex film having an average thickness d = 280 nm in which convex portions are arranged at a pitch P = 200 nm was formed.
And after crushing in water similarly, after making it the average longest diameter 30 micrometers, it added so that it might become 10% in a dry state in a commercially available clear coating material, and obtained the coating material of this example.

(実施例20)
円錐台状突起が六方細密状態に配列された凹凸面を備えたポリビニルアルコール製基材上に、金属シリコン(Si、屈折率n=3.5)をスパッタリングすることによって、底面径350nm、上面径50nm、高さH=350nmの円錐台状凸部がピッチP=350nmで配列された平均厚さd=280nmの構造発光凹凸膜を形成した。
そして、水中で同様に解砕することによって、平均最長径30μmとした後、市販のクリヤ塗料中に乾燥状態で10%となるように添加して本例の塗料を得た。
(Example 20)
By sputtering metal silicon (Si, refractive index n = 3.5) on a polyvinyl alcohol substrate having an uneven surface in which frustoconical protrusions are arranged in a hexagonal close-packed state, the bottom diameter is 350 nm and the top diameter is A structured light-emitting concavo-convex film having an average thickness d = 280 nm in which frustoconical convex portions having a height of 50 nm and a height of H = 350 nm are arranged at a pitch P = 350 nm was formed.
And after crushing in water similarly, after making it the average longest diameter 30 micrometers, it added so that it might become 10% in a dry state in a commercially available clear coating material, and obtained the coating material of this example.

上記により得られたそれぞれの塗料を黒色の板に乾燥状態の塗膜厚さが5μmとなるように、スプレー塗装し、下記の方法によって反射率を測定した。
〈反射率測定方法〉
村上色彩技術研究所製の三次元変角分光測定システムGCMS−11を用いて、光の入射角度60°における反射率を測定すると共に、目視によって光源感を確認した。なお、積nPが380nm未満となる実施例19では分光光度計U−4000(日立製作所製)を用いてスペクトル測定を行なった。また780nmを超える実施例20では変角分光光度計(大塚電子製)を用いて入射角度60°における反射率(反射強度/入射強度)を測定した。
その結果を各光輝材等の諸元と併せて表1及び表2に示す。
Each of the paints obtained as described above was spray-coated on a black plate so that the thickness of the dried coating film was 5 μm, and the reflectance was measured by the following method.
<Reflectance measurement method>
The reflectance at a light incident angle of 60 ° was measured using a three-dimensional variable angle spectroscopic measurement system GCMS-11 manufactured by Murakami Color Research Laboratory, and the light source feeling was confirmed visually. In Example 19 where the product nP was less than 380 nm, the spectrum was measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.). In Example 20 exceeding 780 nm, the reflectance (reflection intensity / incident intensity) at an incident angle of 60 ° was measured using a variable angle spectrophotometer (manufactured by Otsuka Electronics).
The results are shown in Tables 1 and 2 together with the specifications of each glittering material.

Figure 2011085779
Figure 2011085779

Figure 2011085779
Figure 2011085779

上記表から明らかなように、材料の屈折率に応じた所定のピッチで屈曲する薄膜を構造発光凹凸膜や構造発色凹凸膜としたため、表裏の形状差がないものとなる。したがって、当該構造発光凹凸膜や構造発色凹凸膜光輝材を所定の大きさに解砕し、塗膜中に混在させることによって、光の回折に基づく構造発光や構造発色が安定かつ確実に発現することが確認された。   As is clear from the above table, the thin film that bends at a predetermined pitch according to the refractive index of the material is a structured light-emitting concavo-convex film or a structural color concavo-convex film, so that there is no difference in shape between the front and back sides. Therefore, by pulverizing the structured light-emitting concavo-convex film and the structural color concavo-convex film glitter material to a predetermined size and mixing them in the coating film, the structural luminescence and structural color development based on the light diffraction can be expressed stably and reliably. It was confirmed.

1 構造発光凹凸膜   1 Structured light emitting uneven film

Claims (10)

ピッチPで周期的に屈曲した膜状をなし、屈折率nの材料から成る凹凸膜であって、上記ピッチPと屈折率nの積nPに等しい波長λの回折光を発することを特徴とする構造発光凹凸膜。   A concavo-convex film made of a material having a refractive index n and having a film shape periodically bent at a pitch P, which emits diffracted light having a wavelength λ equal to the product nP of the pitch P and the refractive index n. Structure light emitting uneven film. 平均膜厚をdとするとき、ピッチPに対する比d/Pが0.1〜1.5であることを特徴とする請求項1に記載の構造発光凹凸膜。   2. The structured light-emitting concavo-convex film according to claim 1, wherein a ratio d / P to the pitch P is 0.1 to 1.5 when the average film thickness is d. 凹凸の高さをHとするとき、アスペクト比H/Pが0.3〜2であることを特徴とする請求項1又は2に記載の構造発光凹凸膜。   3. The structured light-emitting concavo-convex film according to claim 1, wherein when the concavo-convex height is H, the aspect ratio H / P is 0.3-2. 請求項1〜3のいずれか1つの項に記載の構造発光凹凸膜から成り、上記ピッチPと屈折率nの積nPが380〜780nmであることを特徴とする構造発色凹凸膜。   A structural color uneven film comprising the structured light-emitting uneven film according to any one of claims 1 to 3, wherein a product nP of the pitch P and the refractive index n is 380 to 780 nm. 複数の層から構成されていることを特徴とする請求項4に記載の構造発色凹凸膜。   5. The structural color uneven film according to claim 4, comprising a plurality of layers. 請求項4又は5に記載の構造発色凹凸膜を解砕して成り、解砕された各片の平均最長径が1〜100μmであることを特徴とする光輝材。   A brilliant material obtained by crushing the structural color uneven film according to claim 4 or 5, wherein an average longest diameter of each crushed piece is 1 to 100 µm. 請求項6に記載の光輝材を含有していることを特徴とする構造発色塗膜。   A structural color coating film comprising the bright material according to claim 6. 塗膜中の光輝材の含有量が質量比で0.1〜10%であることを特徴とする請求項7に記載の構造発色塗膜。   8. The structural color coating film according to claim 7, wherein the content of the glittering material in the coating film is 0.1 to 10% by mass ratio. 請求項7又は8に記載の構造発色塗膜を備えていることを特徴とする塗装物。   A coated article comprising the structural color coating film according to claim 7 or 8. 自動車の部品であることを特徴とする請求項9に記載の塗装物。   The coated article according to claim 9, wherein the article is an automobile part.
JP2009239057A 2009-10-16 2009-10-16 Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film Pending JP2011085779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239057A JP2011085779A (en) 2009-10-16 2009-10-16 Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239057A JP2011085779A (en) 2009-10-16 2009-10-16 Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film

Publications (1)

Publication Number Publication Date
JP2011085779A true JP2011085779A (en) 2011-04-28

Family

ID=44078766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239057A Pending JP2011085779A (en) 2009-10-16 2009-10-16 Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film

Country Status (1)

Country Link
JP (1) JP2011085779A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649113B2 (en) 2017-09-29 2020-05-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11840755B2 (en) 2019-06-26 2023-12-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987073B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11397283B2 (en) 2017-09-29 2022-07-26 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402544B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10649113B2 (en) 2017-09-29 2020-05-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402546B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402545B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11131791B2 (en) 2017-09-29 2021-09-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US12000977B2 (en) 2017-09-29 2024-06-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10732322B2 (en) 2017-09-29 2020-08-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11385382B2 (en) 2017-09-29 2022-07-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11391867B2 (en) 2017-09-29 2022-07-19 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10928552B2 (en) 2017-09-29 2021-02-23 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10955588B2 (en) 2017-09-29 2021-03-23 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10928553B2 (en) 2017-09-29 2021-02-23 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11840755B2 (en) 2019-06-26 2023-12-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987073B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11987074B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11412817B2 (en) 2020-08-07 2022-08-16 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer

Similar Documents

Publication Publication Date Title
JP2011085779A (en) Structural light emitting uneven film, structural coloration uneven film and structural coloration coating film
US11209583B2 (en) Optical effect structures
Dumanli et al. Recent advances in the biomimicry of structural colours
EP1414913B1 (en) Diffractive pigment flakes and compositions
EP2024447B1 (en) Matrix comprising zero-order diffractive pigments
JP5187495B2 (en) Antireflection film, production method of antireflection film, antireflection film mold, antireflection film obtained using antireflection film mold and antireflection film obtained using replica film
TWI262323B (en) Chromatic diffractive pigments and foils
US20160202394A1 (en) Nanostructures for structural colouring
Wu et al. A facile approach for artificial biomimetic surfaces with both superhydrophobicity and iridescence
AU2002254497A1 (en) Diffractive pigment flakes and compositions
Jalali et al. Stacking of colors in exfoliable plasmonic superlattices
Sakai et al. Monodisperse silica nanoparticle–carbon black composite microspheres as photonic pigments
Dai et al. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice
Jin et al. Self-templated fabrication of robust moth-eye-like nanostructures with broadband and quasi-omnidirectional antireflection properties
Saito et al. High-throughput reproduction of the Morpho butterfly's specific high contrast blue
JP2006347167A (en) Fabrication of two different flake products using single substrate
Venkatesh et al. Generalized fabrication of two-dimensional non-close-packed colloidal crystals
Li et al. Silica single-layer inverse opal films: large-area crack-free fabrication and the regulation of transmittance in the visible region
JP5721503B2 (en) Decorative product and manufacturing method thereof
US9878516B2 (en) Metamaterial thin films
EP2316892B1 (en) Substrate and method of manufacturing polygon flakes
JP2011102216A (en) Color-developing flake material and method for producing the same
JP2018203814A (en) Structural color material, coating, and manufacturing method therefor
JP2010196008A (en) Color-developing structure and method for producing the same
JP5019208B2 (en) Coating film forming composition