JP2011083755A - Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device - Google Patents

Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device Download PDF

Info

Publication number
JP2011083755A
JP2011083755A JP2009240808A JP2009240808A JP2011083755A JP 2011083755 A JP2011083755 A JP 2011083755A JP 2009240808 A JP2009240808 A JP 2009240808A JP 2009240808 A JP2009240808 A JP 2009240808A JP 2011083755 A JP2011083755 A JP 2011083755A
Authority
JP
Japan
Prior art keywords
gas
gas storage
pressure
organometallic complex
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009240808A
Other languages
Japanese (ja)
Inventor
Shinichi Wada
真一 和田
Hiroshi Obuse
洋 小布施
Koichi Tanaka
耕一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Kansai University
Original Assignee
Kurita Water Industries Ltd
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Kansai University filed Critical Kurita Water Industries Ltd
Priority to JP2009240808A priority Critical patent/JP2011083755A/en
Publication of JP2011083755A publication Critical patent/JP2011083755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous organometallic complex for gas occlusion including an aromatic heterocyclic compound containing a nitrogen atom capable of being coordinated at least on two sites, and having enough gas occlusion capacity. <P>SOLUTION: The porous organometallic complex for gas occlusion is constituted by a coordinate bond of [1] metal ions [2] dicarboxylic acid compound (ligand) and [3] an aromatic heterocyclic compound containing a nitrogen atom capable of being coordinated at least on two sites with the metal ion. [1] There's no particular limitations as metal ions, and ions such as Mg, Al, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn and the like can be named. Favorably, a Cu ion is preferable. Also, [2] as dicarboxylic acid compound, an aromatic dicarboxylic acid represented by formulas (1) to (6) (formulas (2) to (6) are not shown) is preferable. Furthermore, [3] as an aromatic heterocyclic compound containing a nitrogen atom capable of being coordinated at least on two sites with the metal ion, those represented by formulas (7) to (15) (formulas (8) to (15) are not shown) can be used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、種々のガスを吸蔵し得るガス吸蔵用多孔質有機金属錯体、これを用いたガス貯蔵方法及びガス貯蔵装置、並びにこのガス貯蔵装置に水素を吸蔵させて用いる燃料電池システムに関する。特に本発明は、加圧条件下で容易にガスを吸蔵・保持し、除圧することでガスを放出し得るガス吸蔵用多孔質有機金属錯体、これを用いたガス貯蔵方法及びガス貯蔵装置、並びにこのガス貯蔵装置に水素を吸蔵させて用いる燃料電池システムに関する。   The present invention relates to a gas-storing porous organometallic complex that can store various gases, a gas storage method and gas storage device using the same, and a fuel cell system that uses hydrogen stored in the gas storage device. In particular, the present invention relates to a porous organometallic complex for gas occlusion that can easily occlude / hold gas under pressure and release the gas by depressurization, a gas storage method and gas storage device using the same, and The present invention relates to a fuel cell system in which hydrogen is stored in this gas storage device.

多孔質金属有機錯体は、活性炭やゼオライトに匹敵する新しい多孔体として注目を集めている(非特許文献1参照)。この多孔質有機金属錯体とは、金属と有機架橋配位子とから構成される固体の物質群のことであり、配位高分子又は集積型金属錯体とも呼ばれている。多孔質金属有機錯体は、配位子の大きさや形を変えることにより、結晶構造内の細孔の大きさや形を容易に変えることができる。また、これまでの研究でガス吸着、イオン交換、触媒場又は高分子合成等の多くの機能が検討されている。   Porous metal organic complexes are attracting attention as new porous bodies comparable to activated carbon and zeolite (see Non-Patent Document 1). This porous organometallic complex is a solid substance group composed of a metal and an organic bridging ligand, and is also called a coordination polymer or an integrated metal complex. In the porous metal-organic complex, the size and shape of the pores in the crystal structure can be easily changed by changing the size and shape of the ligand. In addition, many functions such as gas adsorption, ion exchange, catalytic field, or polymer synthesis have been studied in previous studies.

「有機貯蔵材料とナノ技術−水素社会に向けて−」、市川勝 監修、シーエムシー出版、2007年発行"Organic storage materials and nanotechnology-Toward a hydrogen society", supervised by Masaru Ichikawa, CM Publishing, 2007

このような多孔質有機金属錯体として、窒素原子を含む芳香族複素環式化合物を含むものがこれまで多数報告されている。特に2座以上配位可能な窒素原子を含む芳香族複素環式化合物が安定的に多孔質有機金属錯体を形成することができることがわかってきた。   Many examples of such porous organometallic complexes containing an aromatic heterocyclic compound containing a nitrogen atom have been reported so far. In particular, it has been found that an aromatic heterocyclic compound containing a nitrogen atom capable of coordinating two or more can stably form a porous organometallic complex.

ところで、最近、燃料電池の燃料等として用いられ得る、クリーンエネルギーとしての水素ガスが注目されている。この水素ガスを簡単かつ安全に貯蔵して安定的に供給できることが望まれており、水素ガスの貯蔵に芳香族複素環式化合物を含む多孔質有機金属錯体を利用することが研究されているが、十分なガス吸蔵能を有する水素貯蔵に最適な芳香族複素環式化合物の構造については明らかにされていない。   Recently, hydrogen gas as clean energy, which can be used as fuel for fuel cells, has been attracting attention. It is desired that this hydrogen gas can be stored easily and safely and can be stably supplied, and the use of porous organometallic complexes containing aromatic heterocyclic compounds for hydrogen gas storage has been studied. The structure of an aromatic heterocyclic compound optimal for hydrogen storage having a sufficient gas storage capacity has not been clarified.

さらに、多孔質有機金属錯体にガスを貯蔵させる場合、耐圧容器に充填した多孔質有機金属錯体に、貯蔵対象となるガスを加圧下で貯蔵させるが、繰り返して使用することによって、ガス中に含まれるわずかな水分を多孔質有機金属錯体が吸着し、ガス貯蔵率が低下してしまうという課題があった。   Furthermore, when gas is stored in the porous organometallic complex, the gas to be stored is stored under pressure in the porous organometallic complex filled in the pressure vessel, but it is included in the gas by repeated use. There was a problem that the porous metal-organic complex adsorbed a slight amount of water, and the gas storage rate was lowered.

本発明は上記課題に鑑みてなされたものであり、2座以上配位可能な窒素原子を含む芳香族複素環式化合物を含み、十分なガス吸蔵能を有するガス吸蔵用多孔質有機金属錯体を提供することを目的とする。また、本発明はこのようなガス吸蔵用多孔質有機金属錯体を用いたガス貯蔵方法及びガス貯蔵装置を提供することを目的とする。さらに、本発明は、このガス貯蔵装置を用いて水素ガスを供給する燃料電池システムを提供することを目的とする。   The present invention has been made in view of the above problems, and includes an aromatic heterocyclic compound containing a nitrogen atom that can coordinate bidentate or more, and a porous organometallic complex for gas storage having sufficient gas storage capability. The purpose is to provide. Another object of the present invention is to provide a gas storage method and gas storage device using such a porous organometallic complex for gas storage. Furthermore, an object of the present invention is to provide a fuel cell system that supplies hydrogen gas using this gas storage device.

上記課題を解決するために、第一に本発明は、金属イオンと、ジカルボン酸化合物と、前記金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物との配位結合によって構成され、細孔構造を有することを特徴とするガス吸蔵用多孔質有機金属錯体を提供する(請求項1)。   In order to solve the above-mentioned problems, first, the present invention provides a coordinate bond between a metal ion, a dicarboxylic acid compound, and an aromatic heterocyclic compound containing a nitrogen atom to which the metal ion can coordinate in two or more positions. And a porous organometallic complex for gas storage, characterized by having a pore structure (claim 1).

上記発明(請求項1)に係るガス吸蔵用多孔質有機金属錯体は、金属イオンとジカルボン酸化合物とによる複数の層状格子を、該金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物が連結するような三次元格子構造を有する。この三次元格子構造は、所定の圧力をかけることにより、水素分子等のガス体の分子を、該三次元格子を構成する芳香族複素環式化合物やジカルボン酸化合物との分子間力により該格子内に安定的に保持することができ、ガス吸蔵用として好適なものとなっている。さらに、上述した分子間力は弱いものであるので、圧力を減少させることにより、保持したガス分子を放出することができる。   A porous organometallic complex for gas storage according to the above invention (invention 1) includes a plurality of layered lattices of metal ions and dicarboxylic acid compounds, and aromatics containing nitrogen atoms capable of coordinating two or more of the metal ions. It has a three-dimensional lattice structure in which heterocyclic compounds are linked. In this three-dimensional lattice structure, by applying a predetermined pressure, gas molecules such as hydrogen molecules are caused to intercalate with the aromatic heterocyclic compound or dicarboxylic acid compound constituting the three-dimensional lattice. It can be stably held inside, and is suitable for gas storage. Furthermore, since the intermolecular force described above is weak, the retained gas molecules can be released by reducing the pressure.

上記発明(請求項1)においては、該ガス吸蔵用多孔質有機金属錯体のBET法による比表面積測定値が、20m/g以上であるのが好ましい(請求項2)。 In the said invention (invention 1), it is preferable that the specific surface area measured value by BET method of this porous organometallic complex for gas storage is 20 m < 2 > / g or more (invention 2).

上記発明(請求項2)によれば、多孔質有機金属錯体の比表面積は、その三次元格子構造の数にある程度の相関性を有するため、ガス分子の吸蔵量をある程度確保することが可能となる。   According to the above invention (invention 2), since the specific surface area of the porous organometallic complex has a certain degree of correlation with the number of three-dimensional lattice structures, it is possible to secure a certain amount of occlusion of gas molecules. Become.

上記発明(請求項1,2)においては、前記金属イオンが、マグネシウム、アルミニウム、カルシウム、チタン、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される金属イオンであるのが好ましい(請求項3)。   In the above inventions (Inventions 1 and 2), the metal ion is preferably a metal ion selected from the group consisting of magnesium, aluminum, calcium, titanium, manganese, iron, cobalt, nickel, copper, and zinc. (Claim 3).

上記発明(請求項3)によれば、ジカルボン酸化合物及び2座以上配位可能な窒素原子を含む芳香族複素環式化合物と三次元多孔質有機金属錯体を好適に形成することができる。   According to the said invention (invention 3), the aromatic heterocyclic compound containing the dicarboxylic acid compound and the nitrogen atom which can be coordinated 2 or more, and a three-dimensional porous organometallic complex can be formed suitably.

上記発明(請求項1〜3)においては、前記ジカルボン酸化合物が、芳香族ジカルボン酸であるのが好ましい(請求項4)。   In the said invention (Invention 1-3), it is preferable that the said dicarboxylic acid compound is aromatic dicarboxylic acid (Invention 4).

かかる発明(請求項4)によれば、芳香族ジカルボン酸は、金属イオンと層状格子を形成し、さらに2座以上配位可能な窒素原子を含む芳香族複素環式化合物と三次元多孔質有機金属錯体を好適に形成することができ、またガス分子との分子間力を作用させることができる。   According to this invention (Invention 4), the aromatic dicarboxylic acid forms a layered lattice with a metal ion, and further includes an aromatic heterocyclic compound containing a nitrogen atom capable of coordinating two or more positions and a three-dimensional porous organic compound. A metal complex can be suitably formed, and an intermolecular force with gas molecules can be applied.

第二に本発明は、上記発明(請求項1〜4)に係るガス吸蔵用多孔質有機金属錯体の粉末を耐圧容器に充填して、該耐圧容器内に所定の圧力でガスを導入することを特徴とするガス貯蔵方法を提供する(請求項5)。   Secondly, the present invention fills a pressure vessel with the powder of the porous metal-organic complex for gas storage according to the above inventions (Inventions 1 to 4), and introduces the gas into the pressure vessel at a predetermined pressure. A gas storage method is provided (claim 5).

上記発明(請求項5)によれば、上述したようなガス吸蔵用多孔質有機金属錯体は、所定の圧力をかけることで、三次元格子を構成する芳香族複素環式化合物やジカルボン酸化合物との分子間力により水素分子等のガス体の分子を該三次元格子内に安定的に保持することができるので、この多孔質有機金属錯体の粉末を耐圧容器に充填して、該耐圧容器内に所定の圧力でガスを導入することで、簡単、確実かつ安定的にガスを保持することができる。   According to the above invention (invention 5), the porous organometallic complex for gas storage as described above can be applied with an aromatic heterocyclic compound or a dicarboxylic acid compound constituting a three-dimensional lattice by applying a predetermined pressure. Gas molecules such as hydrogen molecules can be stably held in the three-dimensional lattice by the intermolecular force of this, so that the pressure-resistant container is filled with this porous organometallic complex powder, By introducing the gas at a predetermined pressure, the gas can be held easily, reliably and stably.

上記発明(請求項5)においては、前記耐圧容器に導入するガスに含まれる、前記ガス吸蔵用多孔質有機金属錯体に不可逆的に吸着される成分を除去する前処理を施すのが好ましい(請求項6)。   In the said invention (invention 5), it is preferable to perform the pre-processing which removes the component irreversibly adsorb | sucked to the said porous organometallic complex for gas storage contained in the gas introduce | transduced into the said pressure | voltage resistant container (invention) Item 6).

上記発明(請求項6)によれば、ガス吸蔵用多孔質有機金属錯体へのガスの吸蔵や、当該錯体からのガスの放出を繰り返した際に、ガスの吸着を阻害する成分が当該錯体に吸着してしまうのを最小限に抑制し、ガス吸蔵用多孔質有機金属錯体の劣化を防止することができる。   According to the above invention (invention 6), when the gas is occluded into the porous organometallic complex for gas occlusion and the gas is released from the complex, the component that inhibits the adsorption of the gas is contained in the complex. Adsorption can be suppressed to a minimum, and deterioration of the porous organometallic complex for gas storage can be prevented.

上記発明(請求項5,6)においては、前記耐圧容器に導入するガスに含まれる水分を除去する前処理を施すのが好ましい(請求項7)。   In the said invention (invention 5 and 6), it is preferable to perform the pre-processing which removes the water | moisture content contained in the gas introduce | transduced into the said pressure vessel (invention 7).

上記発明(請求項7)によれば、ガス吸蔵用多孔質有機金属錯体へのガスの吸蔵や、当該搾体からのガスの放出を繰り返した際に、当該錯体への水の吸着を最小限に抑制し、ガス吸蔵用多孔質有機金属錯体の劣化を防止することができる。   According to the above invention (Invention 7), when the gas is occluded in the porous organometallic complex for gas occlusion and the gas is released from the pressed body, the adsorption of water to the complex is minimized. And the deterioration of the porous metal-organic complex for gas storage can be prevented.

上記発明(請求項7)においては、前記水分の除去の前処理が、乾燥剤との接触であるのがこのましい(請求項8)。さらに、上記発明(請求項8)においては、前記乾燥剤が、シリカゲル、モレキュラーシーブス、塩化カルシウム、五酸化二リンから選ばれた1種又は2種以上であるのがこのましい(請求項9)。   In the above invention (invention 7), it is preferable that the pretreatment for removing the water is contact with a desiccant (invention 8). Furthermore, in the above invention (invention 8), it is preferable that the desiccant is one or more selected from silica gel, molecular sieves, calcium chloride, and diphosphorus pentoxide (invention 9). ).

上記発明(請求項5〜9)においては、前記ガスが水素を主成分とするものであり、該ガスを前記耐圧容器に加圧条件下で貯蔵するのが好ましい(請求項10)。   In the said invention (invention 5-9), it is preferable that the said gas is what has hydrogen as a main component, and this gas is stored in the said pressure-resistant container on pressurization conditions (invention 10).

上記発明(請求項10)のようなガス貯蔵方法は、特に水素ガスを主成分とするガスの吸蔵に好適であり、水素を吸蔵することで種々の用途への適用が期待できる。   The gas storage method as in the above invention (invention 10) is particularly suitable for occlusion of gas mainly containing hydrogen gas, and application to various uses can be expected by occlusion of hydrogen.

第三に本発明は、上記発明(請求項1〜4)に係るガス吸蔵用多孔質有機金属錯体の粉末を充填した第1の耐圧容器と、前記第1の耐圧容器に連通し、乾燥剤を充填した第2の耐圧容器と、前記第2の耐圧容器に連通した水素を主成分とするガスの供給手段とを備えたことを特徴とするガス貯蔵装置を提供する(請求項11)。   Thirdly, the present invention relates to a first pressure-resistant container filled with a powder of a porous organometallic complex for gas storage according to the above inventions (inventions 1 to 4), and a desiccant that communicates with the first pressure-resistant container. A gas storage device is provided, comprising: a second pressure-resistant container filled with a gas; and a gas supply unit containing hydrogen as a main component, which communicates with the second pressure-resistant container.

上記発明(請求項11)によれば、まず水素を主成分とするガスの供給手段から、第2の耐圧容器に水素を主成分とするガスを供給することにより水分を除去し、さらにこの水分を除去した水素を主成分とするガスをガス吸蔵用多孔質有機金属錯体の粉末を充填した第1の耐圧容器に所定の圧力で供給することにより、水素を主成分とするガスを吸蔵することができるので、この第1の耐圧容器を水素ガス源として利用することができる。   According to the above invention (invention 11), moisture is first removed from the gas supply means containing hydrogen as a main component by supplying a gas mainly containing hydrogen to the second pressure vessel, and this moisture is further removed. Occludes the gas mainly composed of hydrogen by supplying the gas mainly composed of hydrogen, from which hydrogen has been removed, to the first pressure vessel filled with the powder of the porous organometallic complex for gas occlusion at a predetermined pressure. Therefore, the first pressure vessel can be used as a hydrogen gas source.

さらに、第四に本発明は、上記発明(請求項11)に係るガス貯蔵装置における前記第1の耐圧容器より供給される水素を主成分とするガスから電力を得ることを特徴とする燃料電池システムを提供する(請求項12)。   Fourthly, the present invention provides a fuel cell characterized in that electric power is obtained from a gas mainly containing hydrogen supplied from the first pressure vessel in the gas storage device according to the above invention (invention 11). A system is provided (claim 12).

上記発明(請求項12)によれば、水素を主成分とするガスを吸蔵した第1の耐圧容器を水素ガス源として燃料電池システムに供給することで、効率的かつ簡便に燃料電池システムを運転することができる。   According to the above invention (invention 12), the fuel cell system can be operated efficiently and simply by supplying the first pressure vessel containing the gas containing hydrogen as a main component to the fuel cell system as a hydrogen gas source. can do.

本発明のガス吸蔵用多孔質有機金属錯体によれば、金属イオンとジカルボン酸化合物とによる複数の層状格子を、該金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物が連結するような三次元格子構造を有するので、所定の圧力をかけることにより、水素分子等のガス体の分子を該三次元格子を構成する芳香族複素環式化合物やジカルボン酸化合物との分子間力により該格子内に安定的に保持することができ、ガス吸蔵用として好適なものとなっている。さらに、上述した分子間力は弱いものであるので、圧力を減少させることにより、保持したガス分子を放出することができる。   According to the porous organometallic complex for gas storage of the present invention, an aromatic heterocyclic compound containing a plurality of layered lattices of metal ions and dicarboxylic acid compounds and containing nitrogen atoms to which the metal ions can coordinate in two or more positions. Since a three-dimensional lattice structure is connected to each other, by applying a predetermined pressure, a molecule of a gas body such as a hydrogen molecule becomes a molecule with an aromatic heterocyclic compound or a dicarboxylic acid compound constituting the three-dimensional lattice. It can be stably held in the lattice by the interstitial force, and is suitable for gas storage. Furthermore, since the intermolecular force described above is weak, the retained gas molecules can be released by reducing the pressure.

本発明の一実施形態に係るガス貯蔵装置を示す概略図である。It is the schematic which shows the gas storage apparatus which concerns on one Embodiment of this invention. 実施例1のガス吸蔵用多孔質有機金属錯体の粉末X線回折パターンを示すグラフである。2 is a graph showing a powder X-ray diffraction pattern of a porous organometallic complex for gas storage in Example 1. FIG. 実施例1のガス吸蔵用多孔質有機金属錯体の分子構造を示す概略図である。1 is a schematic diagram showing a molecular structure of a porous organometallic complex for gas storage in Example 1. FIG.

以下、本発明のガス吸蔵用多孔質有機金属錯体について詳細に説明する。
本発明のガス吸蔵用多孔質有機金属錯体は、[1]金属イオンと、[2]ジカルボン酸化合物(配位子)と、[3]上記金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物との配位結合によって構成される三次元格子構造体である。
Hereinafter, the porous organometallic complex for gas storage according to the present invention will be described in detail.
The porous organometallic complex for gas storage of the present invention comprises [1] metal ions, [2] dicarboxylic acid compounds (ligands), and [3] nitrogen atoms capable of coordinating two or more of the metal ions. It is a three-dimensional lattice structure comprised by the coordinate bond with the aromatic heterocyclic compound containing.

上記[1]金属イオンとしては、特に制限はないが、Mg,Al,Ca,Ti,Mn,Fe,Co,Ni,Cu,Zn等のイオンが挙げられるが、これらのうちCuイオンが好ましい。   Although there is no restriction | limiting in particular as said [1] metal ion, Although ions, such as Mg, Al, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, are mentioned, Among these, Cu ion is preferable.

また、[2]ジカルボン酸化合物は、配位子として機能するものであり、テレフタル酸等の芳香族ジカルボン酸を用いるのが好ましい。この芳香族ジカルボン酸としては下記式(1)〜(6)で表わされるものを好適に用いることができる。   [2] The dicarboxylic acid compound functions as a ligand, and it is preferable to use an aromatic dicarboxylic acid such as terephthalic acid. As this aromatic dicarboxylic acid, those represented by the following formulas (1) to (6) can be preferably used.

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

さらに、[3]上記金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物としては、下記式(7)〜(15)で表されるものを用いることができる。   Furthermore, [3] As the aromatic heterocyclic compound containing a nitrogen atom capable of coordinating two or more of the above metal ions, those represented by the following formulas (7) to (15) can be used.

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

Figure 2011083755
Figure 2011083755

これらのうちでは、特に3個以上、さらには4個以上の複素環を有する芳香族複素環式化合物が好ましい。   Of these, aromatic heterocyclic compounds having 3 or more, more preferably 4 or more heterocycles are particularly preferred.

上述したような[1]金属イオンと、[2]ジカルボン酸化合物(配位子)と、[3]上記金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物との配位結合によって構成される本発明の多孔質有機金属錯体は、金属イオンとジカルボン酸化合物とによる複数の層状格子を、窒素原子を含む芳香族複素環式化合物が連結するような三次元格子構造を有し、これに起因して細孔構造となっている。具体的には、[1]金属イオンとしてCuイオンを、[2]ジカルボン酸化合物としてテレフタル酸(化学式(1))を、[3]金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物として1,4−ジ(4−ピリジル)ベンゼン(化学式(10))を用いた場合には、図3に概略的に示すような構造が三次元的に連続した三次元格子構造を有する。   [1] a metal ion, [2] a dicarboxylic acid compound (ligand), and [3] an aromatic heterocyclic compound containing a nitrogen atom capable of coordinating two or more of the above metal ions. The porous organometallic complex of the present invention constituted by coordination bonds has a three-dimensional lattice structure in which a plurality of layered lattices of metal ions and dicarboxylic acid compounds are connected to an aromatic heterocyclic compound containing a nitrogen atom. Resulting in a pore structure. Specifically, [1] Cu ion as a metal ion, [2] terephthalic acid (chemical formula (1)) as a dicarboxylic acid compound, and [3] a fragrance containing a nitrogen atom capable of coordinating two or more of the metal ions. When 1,4-di (4-pyridyl) benzene (chemical formula (10)) is used as the group heterocyclic compound, a three-dimensional lattice in which the structure schematically shown in FIG. It has a structure.

そして、この細孔構造は、配位子である窒素原子を含む芳香族複素環式化合物の分子構造に応じて所定の構造をとることができる。例えば、窒素原子を含む2座配位子としてジアザビシクロオクタン(DABCO)、ジカルボン酸配位子としてテレフタル酸(BDC)を用いた場合、Bull. Chem. Soc. Jpn. 2008, Vol.81, No.7, 847.に報告されている多孔質有機金属錯体[Cu(BDC)(DABCO)1/2]nと同様の結晶構造をとる。 And this pore structure can take a predetermined structure according to the molecular structure of the aromatic heterocyclic compound containing the nitrogen atom which is a ligand. For example, when diazabicyclooctane (DABCO) is used as a bidentate ligand containing a nitrogen atom and terephthalic acid (BDC) is used as a dicarboxylic acid ligand, Bull. Chem. Soc. Jpn. 2008, Vol. 81, no. 7, 847. It takes the same crystal structure as the porous organometallic complex [Cu (BDC) (DABCO) 1/2 ] n reported in the above.

本発明のガス吸蔵用多孔質有機金属錯体は、特にその水素貯蔵能の点から、比表面積が20m/g以上であることが好ましく、特に100m以上であることがより好ましい。 The porous organic metal complex for gas storage according to the present invention preferably has a specific surface area of 20 m 2 / g or more, more preferably 100 m 2 or more, particularly from the viewpoint of hydrogen storage capacity.

上述したような本発明のガス吸蔵用多孔質有機金属錯体は、所定の圧力をかけることで、三次元格子中にガス体の分子を貯蔵することができ、常温で十分なガス貯蔵能力を有するものであり、特に水素貯蔵に有用である。例えば、温度298K、水素圧力35MPaの雰囲気下で1.0wt%以上の水素貯蔵能力を有する。   The porous organic metal complex for gas storage of the present invention as described above can store gas molecules in a three-dimensional lattice by applying a predetermined pressure, and has a sufficient gas storage capacity at room temperature. Particularly useful for hydrogen storage. For example, it has a hydrogen storage capacity of 1.0 wt% or more in an atmosphere at a temperature of 298 K and a hydrogen pressure of 35 MPa.

次に、上述したようなガス吸蔵用多孔質有機金属錯体の製造方法について説明する。
本発明のガス吸蔵用多孔質有機金属錯体は、[1]金属イオンと[2]芳香族ジカルボン酸とを反応させ二次元の網目状の配位高分子を合成する第一工程と、この網目状配位高分子同士を、[3]2座以上配位可能な窒素原子を含む芳香族複素環式化合物で橋かけする第二工程とにより製造することができる。
Next, a method for producing the above-described porous organometallic complex for gas storage will be described.
The porous organometallic complex for gas storage according to the present invention comprises [1] a first step of synthesizing a two-dimensional network coordination polymer by reacting a metal ion and [2] an aromatic dicarboxylic acid, and this network. And [3] a second step of bridging an aromatic heterocyclic compound containing a nitrogen atom capable of coordinating bidentate or more.

具体的には、まず、第一の工程では所望とする金属イオンの金属塩を所定の溶媒に溶解させる一方、芳香族ジカルボン酸をピリジンに溶解させる。そして、その後これら二液を混合する。   Specifically, first, in the first step, a metal salt of a desired metal ion is dissolved in a predetermined solvent, while an aromatic dicarboxylic acid is dissolved in pyridine. And these two liquids are mixed after that.

金属イオンの反応液中の濃度は、0.05〜4.0mol/Lの範囲であることが好ましく、特に0.1〜0.2mol/Lであることが好ましい。   The concentration of metal ions in the reaction solution is preferably in the range of 0.05 to 4.0 mol / L, particularly preferably 0.1 to 0.2 mol / L.

上記金属塩を溶解させる溶媒としては水が一般的であるが、金属塩が溶解するものであれば水以外の溶媒も使用することができる。   Water is generally used as a solvent for dissolving the metal salt, but a solvent other than water can be used as long as the metal salt can be dissolved.

また、芳香族ジカルボン酸の反応液中の濃度は、0.05〜4.0mol/Lの範囲であることが好ましく、特に0.1〜0.2mol/Lであることが好ましい。なお、溶媒として用いる液体は芳香族ジカルボン酸が溶解するものであればピリジン以外の溶媒も使用することができる。   The concentration of the aromatic dicarboxylic acid in the reaction solution is preferably in the range of 0.05 to 4.0 mol / L, and particularly preferably 0.1 to 0.2 mol / L. In addition, as the liquid used as the solvent, a solvent other than pyridine can be used as long as the aromatic dicarboxylic acid can be dissolved.

混合する二液の量及びモル濃度は同じとなるようにするのが好ましいが、金属イオンが過剰となるようにしてもよい。   The amount and molar concentration of the two liquids to be mixed are preferably the same, but the metal ions may be excessive.

このようにして二液を混合させた後、室温で1〜48時間程度放置させると青色の結晶(二次元の網目状の配位高分子)が析出してくるのでこれをろ別する。   After mixing the two liquids in this way, when left at room temperature for about 1 to 48 hours, blue crystals (two-dimensional network coordination polymer) are precipitated, which are separated by filtration.

反応時間が1時間未満だと十分に反応が進行しないおそれがある。一方、48時間以上反応させてもさほど収率は向上しない。   If the reaction time is less than 1 hour, the reaction may not proceed sufficiently. On the other hand, the yield is not improved so much even if the reaction is performed for 48 hours or more.

生成物のろ過は、ひだ付きろ紙等を用いた自然ろ過で行い、ろ紙上に残った生成物をろ液で2〜3回洗浄するのが好ましい。その後、ろ紙を広げ、新しいろ紙を軽く押しつけることにより、余分な溶液を取り除いておけばよい。   The product is filtered by natural filtration using fluted filter paper or the like, and the product remaining on the filter paper is preferably washed 2 to 3 times with the filtrate. After that, the filter paper is spread and the new filter paper is lightly pressed to remove excess solution.

続いて、第二の工程では、ここで得られた結晶(二次元の網目状の配位高分子)を2座以上配位可能な芳香族複素環式化合物を溶解させた溶液に加え、環流・攪拌する。   Subsequently, in the second step, the crystal (two-dimensional network coordination polymer) obtained here is added to a solution in which an aromatic heterocyclic compound capable of coordinating two or more positions is dissolved, and・ Stir.

この時、芳香族複素環式化合物を溶解させる溶媒としては、該芳香族複素環式化合物が溶解するものであれば制限はないが、特にN,N−ジメチルホルムアミドまたはN,N−ジエチルホルムアミドのいずれかを単独で、あるいは両者を混合して用いることが溶解度と反応温度の点から好ましい。   At this time, the solvent for dissolving the aromatic heterocyclic compound is not limited as long as the aromatic heterocyclic compound can be dissolved, but in particular, N, N-dimethylformamide or N, N-diethylformamide can be used. It is preferable from the viewpoint of solubility and reaction temperature that either one is used alone or a mixture of both is used.

また、上記反応の反応温度は、80℃〜250℃であることが好ましく、特に100℃〜150℃であることが好ましい。反応温度が80℃未満であると、目的とする多孔質有機金属錯体が生成しにくい傾向がある。一方、反応温度が250℃を超えると反応に使用する2座以上配位可能な窒素原子を含む芳香族複素環式化合物が分解するおそれがある。   Moreover, the reaction temperature of the above reaction is preferably 80 ° C. to 250 ° C., and particularly preferably 100 ° C. to 150 ° C. When the reaction temperature is less than 80 ° C., the target porous organometallic complex tends to be hardly formed. On the other hand, when the reaction temperature exceeds 250 ° C., the aromatic heterocyclic compound containing a nitrogen atom capable of bidentate coordination or more used for the reaction may be decomposed.

上記反応工程において、反応溶液の加熱は空気雰囲気中で行うことができる。反応容器としてはリービッヒ冷却器等の還流冷却器を備えたナス型フラスコ等を用いて反応させることができる。また、200℃以上の温度で反応を行う場合はオートクレーブ等の密閉容器を用いて反応を行うこともできる。   In the reaction step, the reaction solution can be heated in an air atmosphere. As a reaction vessel, the reaction can be carried out using an eggplant type flask equipped with a reflux condenser such as a Liebig condenser. Moreover, when reacting at the temperature of 200 degreeC or more, it can also react using closed containers, such as an autoclave.

このようにして生成した多孔質有機金属錯体は反応液から分取し、メタノール、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等の溶媒で洗浄する。   The porous organometallic complex thus produced is separated from the reaction solution and washed with a solvent such as methanol, N, N-dimethylformamide, N, N-diethylformamide or the like.

このようにして得られた多孔質有機金属錯体は、ほとんどの場合、その細孔の中に反応に用いた溶媒を物理吸着しているが、真空減圧によってこれらを取り除き、乾燥させる。このようにして目的とする多孔質有機金属錯体を取り出すことができる。   In most cases, the porous organometallic complex thus obtained physically adsorbs the solvent used in the reaction in the pores, but these are removed by vacuum decompression and dried. Thus, the target porous organometallic complex can be taken out.

上記乾燥工程は室温で行っても良いが、通常は80℃〜250℃で行うのが好ましく、特に100℃〜150℃で行うのが好ましい。温度が80℃以下であると乾燥が不十分になるおそれがあり、250℃を超えると多孔質有機金属錯体が分解するおそれがある。このようにして目的とするガス吸蔵用多孔質有機金属錯体を得ることができる。   Although the said drying process may be performed at room temperature, normally it is preferable to carry out at 80 to 250 degreeC, and it is especially preferable to carry out at 100 to 150 degreeC. If the temperature is 80 ° C. or lower, drying may be insufficient, and if it exceeds 250 ° C., the porous organometallic complex may be decomposed. In this way, the intended porous organometallic complex for gas storage can be obtained.

次に、本実施の形態に係るガス吸蔵用多孔質有機金属錯体によるガス貯蔵方法及びガス貯蔵装置について、添付図面を参照説明する。   Next, a gas storage method and gas storage apparatus using a porous organometallic complex for gas storage according to the present embodiment will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係るガス貯蔵方法を実施可能なガス貯蔵装置を示す概略図である。図1において、本実施形態において、ガス貯蔵装置1は、第1の耐圧容器2と第2の耐圧容器3とを備え、これら第1の耐圧容器2と第2の耐圧容器3とは、連通管4を介して連通している。そして、第1の耐圧容器2にはガス吸蔵用多孔質有機金属錯体の粉末5が充填されている一方、第2の耐圧容器3には乾燥剤6が充填されている。   FIG. 1 is a schematic view showing a gas storage device capable of performing a gas storage method according to an embodiment of the present invention. 1, in this embodiment, the gas storage device 1 includes a first pressure vessel 2 and a second pressure vessel 3, and the first pressure vessel 2 and the second pressure vessel 3 communicate with each other. The pipe 4 communicates. The first pressure vessel 2 is filled with the powder 5 of the gas storage porous organometallic complex, while the second pressure vessel 3 is filled with the desiccant 6.

そして、第1の耐圧容器2の一端は、バルブ7Aを備えたガス排出管7に接続されている。また、第2の耐圧容器3の他端は、バルブ8Aを備えたガス供給管8に接続されていて、このガス供給管8の基端側には、ガスの供給手段としてのレギュレータ9Aを備えた水素ガスボンベ9に接続されている。なお、図中、10,11はそれぞれ連通管4に付設されたバルブ及び圧力計である。したがって、本実施形態において、水素を主成分とするガスは水素ガスである。   And the end of the 1st pressure | voltage resistant container 2 is connected to the gas exhaust pipe 7 provided with valve | bulb 7A. The other end of the second pressure vessel 3 is connected to a gas supply pipe 8 provided with a valve 8A, and a regulator 9A serving as a gas supply means is provided on the base end side of the gas supply pipe 8. The hydrogen gas cylinder 9 is connected. In the figure, reference numerals 10 and 11 denote a valve and a pressure gauge attached to the communication pipe 4, respectively. Therefore, in this embodiment, the gas containing hydrogen as a main component is hydrogen gas.

上述したような装置において、乾燥剤6としては、シリカゲル、塩化カルシウム、五酸化二リン等を用いることができる。なお、第2の耐圧容器3には、例えばモレキュラーシーブス等を乾燥剤6の代わりにあるいは併用充填することにより、H2O、CO、CO2、O2等を除去するようにしてもよい。 In the apparatus as described above, as the desiccant 6, silica gel, calcium chloride, diphosphorus pentoxide or the like can be used. Note that H 2 O, CO, CO 2 , O 2 and the like may be removed by filling the second pressure vessel 3 with, for example, molecular sieves instead of the desiccant 6 or in combination.

また、第1の耐圧容器2、第2の耐圧容器3、連通管4、ガス排出管7及びガス供給管8は、SUS304またはSUS316等のステンレス鋼からなるのが好ましい。   Further, the first pressure vessel 2, the second pressure vessel 3, the communication pipe 4, the gas discharge pipe 7 and the gas supply pipe 8 are preferably made of stainless steel such as SUS304 or SUS316.

前記構成につきその作用について説明する。
バルブ7Aを閉鎖し、バルブ8A及び10を開成した状態で、水素ガスボンベ9から水素ガスを供給する。この水素ガスは、乾燥剤6が充填された第2の耐圧容器3及び連通管4を介して第1の耐圧容器2に供給される。このため乾燥剤6により水素ガス中の水分は十分に除去されることになる。
The effect | action is demonstrated about the said structure.
Hydrogen gas is supplied from the hydrogen gas cylinder 9 with the valve 7A closed and the valves 8A and 10 opened. The hydrogen gas is supplied to the first pressure vessel 2 through the second pressure vessel 3 and the communication pipe 4 filled with the desiccant 6. For this reason, the moisture in the hydrogen gas is sufficiently removed by the desiccant 6.

このときの水素ガス供給圧力(圧力計11の圧力)は10〜40MPa(圧力計11の圧力)となるようにレギュレータ9Aを設定しておくのが好ましい。水素ガス供給圧力が、10MPa未満では、ガス吸蔵用多孔質有機金属錯体の粉末への水素の吸蔵量が十分でない一方、40MPaを超えてもそれ以上の水素の吸蔵量の増加効果が得られないばかりか、第1の耐圧容器2の耐圧性を高める必要があり実用的でない。   It is preferable to set the regulator 9A so that the hydrogen gas supply pressure (pressure of the pressure gauge 11) at this time is 10 to 40 MPa (pressure of the pressure gauge 11). If the hydrogen gas supply pressure is less than 10 MPa, the amount of hydrogen occluded in the powder of the porous metal-organic complex for gas occlusion is not sufficient, but if the pressure exceeds 40 MPa, no further effect of increasing the amount of occluded hydrogen can be obtained. In addition, it is not practical because the pressure resistance of the first pressure vessel 2 needs to be increased.

このようにして第1の耐圧容器2に所定量の水素を貯蔵したら、バルブ8A及び10を閉鎖して水素ガスボンベ9からの水素ガスの供給を停止する。この状態で、第1の耐圧容器2を閉鎖したら連通管4を取り外して、第1の耐圧容器2のみを燃料電池システムの近傍に持ち運んで、ガス排出管7を、レギュレータを備えた燃料電池システム(図示せず)に接続し、バルブ7Aを開成して除圧することで、一定量の水素を供給して電力を得ることができる。   When a predetermined amount of hydrogen is stored in the first pressure vessel 2 in this manner, the supply of hydrogen gas from the hydrogen gas cylinder 9 is stopped by closing the valves 8A and 10. In this state, when the first pressure vessel 2 is closed, the communication pipe 4 is removed, and only the first pressure vessel 2 is carried in the vicinity of the fuel cell system, and the gas discharge pipe 7 is provided with a regulator. By connecting to (not shown) and opening the valve 7A to release the pressure, a certain amount of hydrogen can be supplied to obtain electric power.

また、本実施形態のガス貯蔵装置は、ガス吸蔵用多孔質有機金属錯体の粉末5を充填した第1の耐圧容器2と、この第1の耐圧容器2に連通した乾燥剤6を充填した第2の耐圧容器3と、前記第2の耐圧容器3に連通した水素ガスボンベ9とを備えるものであり、第1の耐圧容器3に水素ガスを長期保管・貯蔵し、水素ガス源として利用することができる。   Further, the gas storage device of the present embodiment includes a first pressure-resistant container 2 filled with the powder 5 of the porous metal-organic complex for gas storage, and a desiccant 6 filled with the desiccant 6 communicated with the first pressure-resistant container 2. 2 pressure vessel 3 and a hydrogen gas cylinder 9 communicating with the second pressure vessel 3, storing and storing hydrogen gas in the first pressure vessel 3 for a long period of time and using it as a hydrogen gas source Can do.

さらに、第1の耐圧容器2に充填されたガス吸蔵用多孔質有機金属錯体の粉末5に水素ガスを長期保管・貯蔵し、この第1の耐圧容器2から供給される水素ガスを燃料とすることで、長期間安定した燃料電池システムとすることができる。   Furthermore, hydrogen gas is stored and stored for a long time in the powder 5 of the porous metal-organic complex for gas storage filled in the first pressure vessel 2, and the hydrogen gas supplied from the first pressure vessel 2 is used as fuel. Thus, a fuel cell system that is stable for a long time can be obtained.

以上本発明について添付図面を参照して説明してきたが、本発明は上記実施形態に限らず種々の変形実施が可能である。例えば、上記実施形態では、水素ガスの貯蔵用の場合でわるが、その他のガス、例えば、酸素、オゾン、CO等にも適用可能である。 Although the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above embodiment, the case of storing hydrogen gas is used, but the present invention can also be applied to other gases such as oxygen, ozone, and CO 2 .

以下、実施例及び比較例に基づき本発明を詳細に説明するが、本発明は下記の実施例等に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to the following Example etc. at all.

〔実施例1〕
[式(10)で表わされる芳香族複素環式化合物の合成例]
1,4−ジブロモベンゼン2.36gと、4−ピリジンボロン酸4.30gとPd(dppf)Cl0.82gと、NaCO2.12gとをトルエンと水との混合溶液(トルエン/水=1:1(容積比))50mLに加えた。
[Example 1]
[Synthesis Example of Aromatic Heterocyclic Compound Represented by Formula (10)]
1.36 g of 1,4-dibromobenzene, 4.30 g of 4-pyridineboronic acid, 0.82 g of Pd (dppf) 2 Cl 2 and 2.12 g of Na 2 CO 3 were mixed with toluene and water (toluene). / Water = 1: 1 (volume ratio)) was added to 50 mL.

この混合物に窒素ガスを10分間吹き込み脱気した後、窒素雰囲気下で、110℃で加熱して72時間還流した(参考文献:Organometallics, 2008, 27(16), pp.4088-4097)。   Nitrogen gas was blown into the mixture for 10 minutes for deaeration, and then the mixture was heated at 110 ° C. and refluxed for 72 hours under a nitrogen atmosphere (reference: Organometallics, 2008, 27 (16), pp. 4088-4097).

その後、加熱を止め、室温付近まで放冷し、トルエンで抽出した。トルエン溶液をエバポレーターで濃縮し、得られた固体を酢酸エチルで再結晶し、目的物である1,4−ジ(4−ピリジル)ベンゼン1.67gを得た。   Thereafter, heating was stopped, the mixture was allowed to cool to near room temperature, and extracted with toluene. The toluene solution was concentrated with an evaporator, and the obtained solid was recrystallized with ethyl acetate to obtain 1.67 g of 1,4-di (4-pyridyl) benzene as a target product.

[ガス吸蔵用多孔質有機金属錯体の合成例]
ギ酸銅(II)・4水和物2.00gを水50mLに溶解させた。別の容器にテレフタル酸1.47gを入れ、ピリジン50mLを加えて溶解させた。この二つの溶液を混合し、析出してくる青色の結晶4.21gをろ取した。
[Synthesis example of porous organometallic complex for gas storage]
2.00 g of copper (II) formate tetrahydrate was dissolved in 50 mL of water. 1.47 g of terephthalic acid was put in another container, and 50 mL of pyridine was added and dissolved. These two solutions were mixed, and 4.21 g of blue crystals that precipitated were collected by filtration.

1,4−ジ(4−ピリジル)ベンゼン1.1gを秤量し、N,N−ジメチルホルムアミド(DMF)50mLに溶解させた。ここに上記で得られた青色結晶をすべて加え、150℃で48時間還流・攪拌し、ガス吸蔵用多孔質有機金属錯体2.03gを得た。   1.1 g of 1,4-di (4-pyridyl) benzene was weighed and dissolved in 50 mL of N, N-dimethylformamide (DMF). All the blue crystals obtained above were added thereto, and the mixture was refluxed and stirred at 150 ° C. for 48 hours to obtain 2.03 g of a porous organometallic complex for gas storage.

[ガス吸蔵用多孔質有機金属錯体の特性評価]
このようにして得られたガス吸蔵用多孔質有機金属錯体に対し、77KにおけるBET比表面積測定を行った。この測定はMicromeritics社製Tristar3000を用い、多孔質有機金属錯体が入ったセルを液体窒素に浸漬させた状態で行った。その結果、比表面積は495m/gであることがわかった。
[Characteristic evaluation of porous organometallic complexes for gas storage]
The BET specific surface area measurement at 77K was performed on the thus obtained porous organometallic complex for gas storage. This measurement was performed using a Tristar 3000 manufactured by Micromeritics in a state where a cell containing a porous organometallic complex was immersed in liquid nitrogen. As a result, it was found that the specific surface area was 495 m 2 / g.

また、このガス吸蔵用多孔質有機金属錯体の粉末X線回折パターンを確認した。結果を図2に示す。この粉末X線回折パターンにより、実施例のガス吸蔵用多孔質有機金属錯体は、図3に示す構造の連続により三次元の多孔質構造をとることが予想される。   Moreover, the powder X-ray diffraction pattern of this porous organometallic complex for gas storage was confirmed. The results are shown in FIG. From this powder X-ray diffraction pattern, it is expected that the porous organometallic complex for gas storage of the example has a three-dimensional porous structure due to the continuation of the structure shown in FIG.

また、このガス吸蔵用多孔質有機金属錯体に対し、298Kにおける水素貯蔵量を測定した。この測定はJIS−H7201のPCT線測定法に従って行った。その結果、水素圧力10MPaでの水素貯蔵率は0.5wt%であった。   Moreover, the hydrogen storage amount in 298K was measured with respect to this porous organometallic complex for gas storage. This measurement was performed according to the PCT line measurement method of JIS-H7201. As a result, the hydrogen storage rate at a hydrogen pressure of 10 MPa was 0.5 wt%.

さらに、このガス吸蔵用多孔質有機金属錯体を耐圧容器に充填し、さらに水素導入部に乾燥剤を充填した耐圧容器を取り付けた。この状態で20回水素ガスの加圧充填・除圧放出を繰り返し、その後、多孔質有機金属錯体の水素貯蔵量をJIS−H7201のPCT線測定法に従って測定した。その結果、水素貯蔵率は0.5wt%であった。また、使用後の多孔質有機金属錯体に含まれる水分量を平沼産業(株)のカールフィッシャー水分計(AQ−2100)にて測定したところ、0.21wt%であった。   Furthermore, this pressure-resistant container filled with this porous organometallic complex for gas storage was further attached with a pressure-resistant container filled with a desiccant in the hydrogen introduction part. In this state, hydrogen gas pressure filling and depressurization release were repeated 20 times, and then the hydrogen storage amount of the porous organometallic complex was measured according to the PCT line measurement method of JIS-H7201. As a result, the hydrogen storage rate was 0.5 wt%. Moreover, it was 0.21 wt% when the moisture content contained in the porous organometallic complex after use was measured with the Karl Fischer moisture meter (AQ-2100) of Hiranuma Sangyo Co., Ltd.

〔実施例2〕
実施例1で得られたガス吸蔵用多孔質有機金属錯体を耐圧容器に充填し、水素導入部に乾燥剤を充填した耐圧容器を取り付けることなく、20回水素ガスの加圧充填・除圧放出を繰り返した。その後、多孔質有機金属錯体の水素貯蔵量を実施例1と同様に測定した。その結果、水素貯蔵率は0.38wt%であった。また、使用後の多孔質有機金属錯体に含まれる水分量を平沼産業(株)のカールフィッシャー水分計(AQ−2100)にて測定したところ、2.5wt%であった。
[Example 2]
Filling a pressure-resistant container with the porous metal-organic complex for gas storage obtained in Example 1 and attaching a pressure-resistant container filled with a desiccant to the hydrogen introduction part, pressurizing and releasing pressure of hydrogen gas 20 times Was repeated. Thereafter, the hydrogen storage amount of the porous organometallic complex was measured in the same manner as in Example 1. As a result, the hydrogen storage rate was 0.38 wt%. Moreover, when the moisture content contained in the porous organometallic complex after use was measured with the Karl Fischer moisture meter (AQ-2100) of Hiranuma Sangyo Co., Ltd., it was 2.5 wt%.

上記実施例1及び2から、水素ガスを乾燥することで、繰り返し使用した後の水素貯蔵率の低下が抑制されることがわかる。これは、水素ガスの加圧充填・除圧放出を繰り返すことで、ガス吸蔵用多孔質有機金属錯体に水分が吸着し、水素ガス吸蔵能が低下するためであると考えられる。   From Examples 1 and 2 above, it can be seen that drying the hydrogen gas suppresses a decrease in the hydrogen storage rate after repeated use. This is considered to be because water is adsorbed by the porous metal-organic complex for gas storage by repeating the pressurization and depressurization release of hydrogen gas, and the hydrogen gas storage capacity is lowered.

1…ガス貯蔵装置
2…第1の耐圧容器
3…第2の耐圧容器
4…連通管
5…ガス吸蔵用多孔質有機金属錯体の粉末(ガス吸蔵用多孔質有機金属錯体)
6…乾燥剤
9…水素ガスボンベ(ガスの供給手段)
DESCRIPTION OF SYMBOLS 1 ... Gas storage apparatus 2 ... 1st pressure vessel 3 ... 2nd pressure vessel 4 ... Communication pipe 5 ... Powder of porous organometallic complex for gas occlusion (porous organometallic complex for gas occlusion)
6 ... Desiccant 9 ... Hydrogen gas cylinder (gas supply means)

Claims (12)

金属イオンと、ジカルボン酸化合物と、前記金属イオンが2座以上配位可能な窒素原子を含む芳香族複素環式化合物との配位結合によって構成され、細孔構造を有することを特徴とするガス吸蔵用多孔質有機金属錯体。   A gas comprising a metal ion, a dicarboxylic acid compound, and an aromatic heterocyclic compound containing a nitrogen atom capable of coordinating two or more of the metal ions, and having a pore structure Porous organometallic complex for storage. BET法による比表面積測定値が、20m/g以上であることを特徴とする請求項1に記載のガス吸蔵用多孔質有機金属錯体。 The porous organometallic complex for gas storage according to claim 1, wherein a measured value of a specific surface area by a BET method is 20 m 2 / g or more. 前記金属イオンが、マグネシウム、アルミニウム、カルシウム、チタン、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される金属イオンであることを特徴とする請求項1又は2に記載のガス吸蔵用多孔質有機金属錯体。   The gas storage according to claim 1 or 2, wherein the metal ion is a metal ion selected from the group consisting of magnesium, aluminum, calcium, titanium, manganese, iron, cobalt, nickel, copper, and zinc. Porous organometallic complex. 前記ジカルボン酸化合物が、芳香族ジカルボン酸であることを特徴とする請求項1〜3のいずれかに記載のガス吸蔵用多孔質有機金属錯体。   The porous organometallic complex for gas storage according to any one of claims 1 to 3, wherein the dicarboxylic acid compound is an aromatic dicarboxylic acid. 請求項1〜4のいずれかに記載のガス吸蔵用多孔質有機金属錯体の粉末を耐圧容器に充填して、該耐圧容器内に所定の圧力でガスを導入することを特徴とするガス貯蔵方法。   A gas storage method comprising filling a pressure-resistant vessel with the powder of the porous metal-organic complex for gas storage according to any one of claims 1 to 4, and introducing the gas into the pressure-resistant vessel at a predetermined pressure. . 前記耐圧容器に導入するガスに含まれる、前記ガス吸蔵用多孔質有機金属錯体に不可逆的に吸着される成分を除去する前処理を施すことを特徴とする請求項5に記載のガス貯蔵方法。   The gas storage method according to claim 5, wherein a pretreatment for removing a component irreversibly adsorbed by the porous metal-organic complex for gas storage contained in the gas introduced into the pressure vessel is performed. 前記耐圧容器に導入するガスに含まれる水分を除去する前処理を施すことを特徴とする請求項5又は6に記載のガス貯蔵方法。   The gas storage method according to claim 5 or 6, wherein a pretreatment for removing moisture contained in the gas introduced into the pressure vessel is performed. 前記水分の除去の前処理が乾燥剤との接触であることを特徴とする請求項7に記載のガス貯蔵方法。   The gas storage method according to claim 7, wherein the pretreatment for removing moisture is contact with a desiccant. 前記乾燥剤が、シリカゲル、モレキュラーシーブス、塩化カルシウム、五酸化二リンから選ばれた1種又は2種以上であることを特徴とする請求項8に記載のガス貯蔵方法。   The gas storage method according to claim 8, wherein the desiccant is one or more selected from silica gel, molecular sieves, calcium chloride, and diphosphorus pentoxide. 前記ガスが水素を主成分とするものであり、該ガスを前記耐圧容器に加圧条件下で貯蔵することを特徴とする請求項5〜9のいずれかに記載のガス貯蔵方法。   The gas storage method according to claim 5, wherein the gas contains hydrogen as a main component, and the gas is stored in the pressure-resistant container under a pressurized condition. 請求項1〜4のいずれかに記載のガス吸蔵用多孔質有機金属錯体の粉末を充填した第1の耐圧容器と、前記第1の耐圧容器に連通した乾燥剤を充填した第2の耐圧容器と、前記第2の耐圧容器に連通した水素を主成分とするガスの供給手段とを備えたことを特徴とするガス貯蔵装置。   5. A first pressure-resistant container filled with the powder of the porous metal-organic complex for gas storage according to claim 1, and a second pressure-resistant container filled with a desiccant communicated with the first pressure-resistant container. And a gas supply unit comprising hydrogen as a main component and communicated with the second pressure vessel. 請求項11に記載のガス貯蔵装置における前記第1の耐圧容器より供給される水素を主成分とするガスから電力を得ることを特徴とする燃料電池システム。   The fuel cell system according to claim 11, wherein electric power is obtained from a gas mainly comprising hydrogen supplied from the first pressure vessel in the gas storage device according to claim 11.
JP2009240808A 2009-10-19 2009-10-19 Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device Pending JP2011083755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240808A JP2011083755A (en) 2009-10-19 2009-10-19 Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240808A JP2011083755A (en) 2009-10-19 2009-10-19 Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device

Publications (1)

Publication Number Publication Date
JP2011083755A true JP2011083755A (en) 2011-04-28

Family

ID=44077114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240808A Pending JP2011083755A (en) 2009-10-19 2009-10-19 Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device

Country Status (1)

Country Link
JP (1) JP2011083755A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195575A (en) * 2010-02-24 2011-10-06 Kuraray Co Ltd Metal complex and production method thereof
WO2013024761A1 (en) 2011-08-17 2013-02-21 株式会社クラレ Metal complex and adsorbent material, storage material, and separating material comprising same
JP2013040130A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and adsorbing material, occluding material and separating material each comprising the same
JP2013112660A (en) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Porous metal complex, method for producing porous metal complex, and gas occlusion material
JPWO2011105521A1 (en) * 2010-02-24 2013-06-20 株式会社クラレ Metal complex, adsorbent, occlusion material and separation material comprising the same
WO2015147273A1 (en) * 2014-03-27 2015-10-01 東洋紡株式会社 Metal complex, and adsorbent, storage material, and separation material comprising same
JP2022022982A (en) * 2020-07-01 2022-02-07 インディアン オイル コーポレイション リミテッド Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195575A (en) * 2010-02-24 2011-10-06 Kuraray Co Ltd Metal complex and production method thereof
JPWO2011105521A1 (en) * 2010-02-24 2013-06-20 株式会社クラレ Metal complex, adsorbent, occlusion material and separation material comprising the same
JP2013040130A (en) * 2011-08-16 2013-02-28 Kuraray Co Ltd Metal complex, and adsorbing material, occluding material and separating material each comprising the same
WO2013024761A1 (en) 2011-08-17 2013-02-21 株式会社クラレ Metal complex and adsorbent material, storage material, and separating material comprising same
US9662606B2 (en) 2011-08-17 2017-05-30 Kuraray Co., Ltd. Metal complex and adsorbent material, storage material, and separating material comprising same
JP2013112660A (en) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Porous metal complex, method for producing porous metal complex, and gas occlusion material
WO2015147273A1 (en) * 2014-03-27 2015-10-01 東洋紡株式会社 Metal complex, and adsorbent, storage material, and separation material comprising same
JPWO2015147273A1 (en) * 2014-03-27 2017-05-25 東洋紡株式会社 Metal complex, adsorbent, occlusion material and separation material comprising the same
JP2022022982A (en) * 2020-07-01 2022-02-07 インディアン オイル コーポレイション リミテッド Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage
JP7304382B2 (en) 2020-07-01 2023-07-06 インディアン オイル コーポレイション リミテッド Zinc-based metal-organic frameworks (ZITs) with mixed ligands for hydrogen storage

Similar Documents

Publication Publication Date Title
Khan et al. Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs
Sanz et al. Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour
Chen et al. One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program
JP2011083755A (en) Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device
JP5698229B2 (en) Complex mixed ligand open skeleton materials
Jiang et al. Porous metal–organic frameworks as platforms for functional applications
Choi et al. Hydrogen storage in water-stable metal–organic frameworks incorporating 1, 3-and 1, 4-benzenedipyrazolate
He et al. Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units
Lee et al. Microporous metal–organic frameworks with high gas sorption and separation capacity
Tran et al. Dye adsorption in ZIF-8: The importance of external surface area
Botas et al. Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy
Khoshhal et al. Study of the temperature and solvent content effects on the structure of Cu–BTC metal organic framework for hydrogen storage
Hulvey et al. Enhanced H 2 adsorption enthalpy in the low-surface area, partially fluorinated coordination polymer Zn 5 (triazole) 6 (tetrafluoroterephthalate) 2 (H 2 O) 2· 4H 2 O
Gandara-Loe et al. Understanding the opportunities of metal–organic frameworks (MOFs) for CO 2 capture and gas-phase CO 2 conversion processes: a comprehensive overview
Ren et al. Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake
JP2016185969A (en) Emm-19* novel zeolitic imidazolate framework material, methods for making the same, and uses thereof
Tshuma et al. Cyclometalation of lanthanum (iii) based MOF for catalytic hydrogenation of carbon dioxide to formate
JP5965643B2 (en) Process for producing metal organic structure type crystalline porous aluminum aromatic azocarboxylate
Binaeian et al. Improving ammonia uptake performance of zirconium-based metal-organic frameworks through open metal site insertion strategy
MXPA04011225A (en) Shaped bodies containing metal-organic frameworks.
Saha et al. A magnesium-based multifunctional metal–organic framework: Synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study
Kim et al. Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels
Yaghi Hydrogen storage in metal-organic frameworks
Chen et al. Immobilization of polyoxometalate in a cage-based metal–organic framework towards enhanced stability and highly effective dye degradation
Kar et al. An efficient and sustainable catalytic reduction of carbon–carbon multiple bonds, aldehydes, and ketones using a Cu nanoparticle decorated metal organic framework