JP2011081740A - Optical touch panel - Google Patents

Optical touch panel Download PDF

Info

Publication number
JP2011081740A
JP2011081740A JP2009235595A JP2009235595A JP2011081740A JP 2011081740 A JP2011081740 A JP 2011081740A JP 2009235595 A JP2009235595 A JP 2009235595A JP 2009235595 A JP2009235595 A JP 2009235595A JP 2011081740 A JP2011081740 A JP 2011081740A
Authority
JP
Japan
Prior art keywords
light receiving
light
axis
touch panel
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009235595A
Other languages
Japanese (ja)
Inventor
Nobuo Tanitsu
信夫 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Component Ltd
Original Assignee
Fujitsu Component Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Component Ltd filed Critical Fujitsu Component Ltd
Priority to JP2009235595A priority Critical patent/JP2011081740A/en
Publication of JP2011081740A publication Critical patent/JP2011081740A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical touch panel that detects simultaneous inputs in a plurality of different positions in an input region of an optical touch panel without increasing the number of optical detection mechanisms. <P>SOLUTION: An optical touch panel 10 includes: an input region 12 having a rectangular contour in plan view; a light emitting part 14 installed along a part 12a of an outer edge of the input region; a light receiving part 16 installed along the other part 12b of the outer edge of the input region so as to be in parallel with and to face the light emitting part; and an operation processing part 18 which determines an input position of a finger or a pen in the input region on the basis of an output signal of the light receiving part. The light receiving part includes a plurality of light receiving members 20 which individually receive light L emitted from the light emitting part at a predetermined viewing angle α, and respectively output signals S corresponding to intensities of received rays of light, which are arranged in a line in an X-axis direction. On the basis of signals output from the plurality of light receiving members arranged in a line in the X-axis direction, the operation processing part calculates coordinates x and y on the X and Y axes, respectively, of the input position in the input region. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光式タッチパネルに関する。   The present invention relates to an optical touch panel.

タッチパネルは、パーソナルコンピュータ、現金自動預払機(ATM)、自動販売機、複写機、カーナビゲーションシステム、携帯電話、携帯情報端末(PDA)、ゲーム機等の、表示装置を備えた電子機器において、LCD(液晶ディスプレイ)、PDP(プラズマパネル)、CRT(ブラウン管)等の表示装置の画面に重ねて設置されるパネル型入力装置として知られている。オペレータは、表示装置の画面上に配置されるタッチパネルの入力領域の所望位置に指やペンを触接させて、触接位置にある画面内の表示画像の二次元座標を指示入力したり、指やペンの動作に対応する画像表示動作を指示入力したりすることにより、対応の処理を電子機器に実行させることができる。   The touch panel is an electronic device equipped with a display device such as a personal computer, an automatic teller machine (ATM), a vending machine, a copying machine, a car navigation system, a mobile phone, a personal digital assistant (PDA), a game machine, etc. (Liquid Crystal Display), PDP (Plasma Panel), CRT (Brown Tube), etc. are known as panel type input devices that are installed on the screen of a display device. The operator touches a desired position in the input area of the touch panel arranged on the screen of the display device with a finger or a pen to input and input the two-dimensional coordinates of the display image in the screen at the touch position. By inputting an instruction for an image display operation corresponding to the operation of the pen or the pen, it is possible to cause the electronic device to execute a corresponding process.

指やペンによる入力を検出する方式として、赤外線等の放射光を指やペンが遮断したことを検出する遮光検出方式を採用した光式タッチパネルは、抵抗膜方式等を採用した他のタッチパネルに比べて、入力領域の光透過率や耐久性が一般に優れるものである。従来の光式タッチパネルは、矩形入力領域の外縁の対向二辺に沿ってそれぞれ配置される発光部及び受光部を備えている。発光部には、複数の発光素子(例えばLED(発光ダイオード))が所定間隔で一列に並べて配置される。また受光部には、複数の発光素子に個別に対向する位置に、発光素子が放射した光を受けて、受けた光の強さに対応する信号をそれぞれに出力する複数の受光素子(例えばフォトダイオードやフォトトランジスタ)が、所定間隔で一列に並べて配置される。そして、このような発光部と受光部とを有する光検出機構が、矩形入力領域の外縁の二組の対向二辺に(つまり中心角90°異なる位置に)それぞれ設置されている。光式タッチパネルの演算処理部は、直交配置される2個の光検出機構のそれぞれに対し、対向位置にある複数対の発光素子と受光素子とを走査して、個々の受光素子の出力信号に基づき、対向位置にある発光素子からの放射光が指等により遮断されたと判断される受光素子を特定し、それにより入力領域における指等の指示位置の座標(2個の光検出機構を用いた結果として二次元座標)を求める。   An optical touch panel that uses a light-shielding detection method that detects when a finger or pen blocks radiation light, such as infrared rays, as a method for detecting input with a finger or pen, compared to other touch panels that use a resistive film method, etc. Therefore, the light transmittance and durability of the input region are generally excellent. A conventional optical touch panel includes a light emitting unit and a light receiving unit that are arranged along two opposite sides of the outer edge of the rectangular input area. In the light emitting section, a plurality of light emitting elements (for example, LEDs (light emitting diodes)) are arranged in a line at predetermined intervals. The light receiving unit receives light emitted from the light emitting elements at positions individually facing the plurality of light emitting elements, and outputs a plurality of light receiving elements (for example, photo) corresponding to the intensity of the received light, respectively. Diodes and phototransistors) are arranged in a line at predetermined intervals. And the light detection mechanism which has such a light emission part and a light-receiving part is each installed in two sets of opposing two sides of the outer edge of a rectangular input area (namely, the position which differs 90 degrees of central angles). The arithmetic processing unit of the optical touch panel scans a plurality of pairs of light-emitting elements and light-receiving elements at opposite positions for each of the two light detection mechanisms arranged orthogonally, and outputs an output signal of each light-receiving element. Based on this, a light receiving element that is determined to be blocked by the finger or the like from the light emitting element at the opposite position is identified, and thereby the coordinates of the indicated position of the finger or the like in the input area (using two light detection mechanisms) As a result, two-dimensional coordinates) are obtained.

従来の光式タッチパネルの一例として、特許文献1には、座標入力位置の検出の分解能を向上させることができる座標入力/検出装置が記載されている。この座標入力/検出装置は、「各々の発光素子毎にその発光範囲内に属してその発光素子が発する光を検出する複数の受光素子を各々複数の発光素子を受け持つように重複させて割り当てておき、各発光素子を個別に順次発光させることにより、各発光素子側から見ても、各受光素子側から見ても各々の配置間隔以上に細かくなる放射状で方向の異なる複数の検出光路を設定でき、2次元の座標入力/検出領域全域をあらゆる方向の検出光路で網羅できることにより、或る発光素子と光路が遮断された受光素子との位置関係に基づき特定される座標入力された2次元座標位置を分解能高く算出できる。」というものである。   As an example of a conventional optical touch panel, Patent Document 1 describes a coordinate input / detection device that can improve the resolution of detection of a coordinate input position. This coordinate input / detection device “assigns a plurality of light receiving elements that belong to each light emitting element within the light emitting range and detect light emitted by the light emitting elements so as to be responsible for each of the light emitting elements. In addition, by sequentially emitting light from each light emitting element individually, a plurality of detection light paths having different radial directions that are finer than the respective arrangement intervals can be set when viewed from each light emitting element side and each light receiving element side. The two-dimensional coordinate input / detection region can be entirely covered by detection light paths in all directions, so that coordinates specified based on the positional relationship between a light emitting element and a light receiving element whose optical path is blocked are input two-dimensional coordinates. The position can be calculated with high resolution. "

従来の光式タッチパネルの他の例として、特許文献2には、複数の点を同時に入力することができるタッチパネルが記載されている。このタッチパネルは「3方向、又は、それ以上の方向に延びる平行センシングライン、又は、3点、又は、それ以上の点を中心とした放射状のセンシングラインを使用して、各センシングラインの一端に、発信モジュールを置き、他の一端に受信モジュールをおいて、例えば、少なくとも、2つの受信モジュールに対応するセンシングラインの交点を求め、他の受信モジュールに対応するセンシングラインと、上記交点との距離を求めて、該距離が所定の閾値以下の点をタッチ点とするように構成する。」というものである。   As another example of a conventional optical touch panel, Patent Document 2 describes a touch panel that can simultaneously input a plurality of points. This touch panel uses a parallel sensing line extending in three or more directions, or a radial sensing line centered on three or more points, at one end of each sensing line, Place the transmitting module, place the receiving module at the other end, for example, find the intersection of at least the sensing lines corresponding to the two receiving modules, and determine the distance between the sensing line corresponding to the other receiving module and the intersection In other words, a point where the distance is equal to or smaller than a predetermined threshold value is set as a touch point. "

特開2002−091683号公報(要約)JP 2002-091683 A (summary) 特開平8−147091号公報(要約)JP-A-8-147091 (summary)

直交配置される2個の光検出機構(発光部及び受光部)を用いる従来の光式タッチパネル(例えば特許文献1参照)は、入力領域内で複数の異なる位置に同時に入力が行われたときに、一般には、個々の入力位置の座標を特定することができない。つまり、直交二軸座標系において、第1位置(x1,y1)と第2位置(x2,y2)とを同時入力したときに、第1位置(x1,y1)と、入力していない第3位置(x1,y2)又は第4位置(x2,y1)とを識別すること、また第2位置(x2,y2)と、同第3位置(x1,y2)又は第4位置(x2,y1)とを識別することが、通常は困難である。   A conventional optical touch panel (see, for example, Patent Document 1) using two light detection mechanisms (light emitting unit and light receiving unit) arranged orthogonally is used when a plurality of different positions are input simultaneously in an input area. In general, the coordinates of individual input positions cannot be specified. That is, in the orthogonal biaxial coordinate system, when the first position (x1, y1) and the second position (x2, y2) are input simultaneously, the first position (x1, y1) and the third position that is not input. Identifying the position (x1, y2) or the fourth position (x2, y1), the second position (x2, y2), the third position (x1, y2) or the fourth position (x2, y1) Is usually difficult to identify.

これに対し、三方向に交差配置される3個の光検出機構(発光部及び受光部)を用いる従来の光式タッチパネル(例えば特許文献2参照)は、入力領域内で複数の異なる位置に同時に入力が行われたときに、個々の入力位置の座標を特定することができる。しかし、光検出機構の数が増えることによる装置寸法の増加及び製造コストの上昇が懸念される。   On the other hand, a conventional optical touch panel (see, for example, Patent Document 2) using three light detection mechanisms (light emitting unit and light receiving unit) arranged to intersect in three directions simultaneously at a plurality of different positions in the input area. When input is performed, the coordinates of the individual input positions can be specified. However, there are concerns about an increase in device dimensions and an increase in manufacturing cost due to an increase in the number of light detection mechanisms.

本発明は、入力領域内での複数の異なる位置での同時入力を、光検出機構の数を増やすことなく検出できる光式タッチパネルを提供するものである。   The present invention provides an optical touch panel that can detect simultaneous input at a plurality of different positions in an input area without increasing the number of light detection mechanisms.

一態様では、二次元の広がりを有する入力領域と、入力領域の外縁の一部分に沿って設置される発光部と、入力領域の外縁の他部分に沿って発光部に平行かつ対向して設置される受光部と、受光部の出力信号に基づいて入力領域における入力位置を求める演算処理部とを具備する光式タッチパネルにおいて、受光部は、発光部が放射した光を所定の視野角で個々に受ける複数の受光部材であって、受けた光の強さに対応する信号をそれぞれに出力する複数の受光部材を、第1軸の方向へ並置した形態で備えており、演算処理部は、第1軸の方向へ並置した複数の受光部材のそれぞれが出力する信号に基づいて、入力領域における入力位置の、第1軸の座標と、第1軸に直交する第2軸の座標との、双方を算出すること、を特徴とする光式タッチパネルが提供される。   In one aspect, the input region having a two-dimensional extension, the light emitting unit installed along a part of the outer edge of the input region, and the light emitting unit installed parallel to and opposed to the light emitting unit along the other part of the outer edge of the input region. A light receiving unit, and an arithmetic touch panel that obtains an input position in an input area based on an output signal of the light receiving unit, the light receiving unit individually transmits light emitted from the light emitting unit at a predetermined viewing angle. A plurality of light receiving members, each of which outputs a signal corresponding to the intensity of the received light, arranged in parallel in the direction of the first axis; Based on signals output from each of a plurality of light receiving members juxtaposed in the direction of one axis, both the coordinates of the first axis and the coordinates of the second axis orthogonal to the first axis in the input area An optical touch characterized by Panel is provided.

他の態様では、二次元の広がりを有する入力領域と、入力領域の外縁の一部分に沿って設置される発光部と、入力領域の外縁の他部分に沿って発光部に平行かつ対向して設置される受光部と、受光部の出力信号に基づいて入力領域における入力位置を求める演算処理部とを具備する光式タッチパネルにおいて、受光部は、第1軸の方向へ互いに直線状に連接して配置される複数の受光素子であって、発光部が放射した光を個々に受けるとともに、受けた光の強さに対応する信号をそれぞれに出力する複数の受光素子と、複数の受光素子のうち3つ以上の受光素子をそれぞれに含む複数の素子列に1つずつ個別に設けられ、発光部が放射した光を複数の素子列の各々が平行光として受けるようにする複数の光学部品とを具備し、演算処理部は、複数の素子列の各々に含まれる3つ以上の受光素子のうち、対応して設けられた複数の光学部品の各々の光軸に最も近い1つの中央受光素子が出力する信号の、複数の素子列の各々における大きさに基づいて、入力領域における入力位置の第1軸の座標を算出し、複数の素子列の各々に含まれる3つ以上の受光素子のうち、中央受光素子から一方向へM個目(Mは1以上の整数)の一側受光素子が出力する信号の、複数の素子列の各々における大きさと、中央受光素子から反対方向へN個目(Nは1以上の整数)の他側受光素子が出力する信号の、複数の素子列の各々における大きさとに基づいて、入力領域における入力位置の、第1軸に直交する第2軸の座標を算出すること、を特徴とする光式タッチパネルが提供される。   In another aspect, the input region having a two-dimensional extension, the light emitting unit installed along a part of the outer edge of the input region, and the light emitting unit installed parallel to and opposed to the light emitting unit along the other part of the outer edge of the input region In the optical touch panel comprising: a light receiving unit that is connected to the light receiving unit; and an arithmetic processing unit that obtains an input position in the input region based on an output signal of the light receiving unit. A plurality of light receiving elements arranged, each of which receives light emitted from the light emitting unit individually and outputs a signal corresponding to the intensity of the received light, and among the plurality of light receiving elements A plurality of optical components that are individually provided in a plurality of element arrays each including three or more light receiving elements, and that each of the plurality of element arrays receives the light emitted by the light emitting unit as parallel light; The arithmetic processing unit Among the three or more light receiving elements included in each of the plurality of element rows, a plurality of elements of a signal output by one central light receiving element closest to the optical axis of each of the plurality of optical components provided correspondingly Based on the size in each of the columns, the coordinates of the first axis of the input position in the input region are calculated, and among the three or more light receiving elements included in each of the plurality of element rows, the central light receiving element is directed in one direction. The magnitude of the signal output from the M-th (M is an integer of 1 or more) one-side light-receiving element in each of the plurality of element rows and the N-th in the opposite direction from the central light-receiving element (N is an integer of 1 or more) Calculating coordinates of a second axis orthogonal to the first axis of the input position in the input region based on the magnitude of each of the plurality of element rows of the signal output from the other light receiving element. An optical touch panel is provided.

一態様に係る光式タッチパネルによれば、入力領域を挟んで互いに対向する発光部と受光部とを備えた1個の光検出機構の光検出データを用いて、入力領域における入力位置の第1軸座標と第2軸座標との双方を求めることができる。このとき、入力位置と、同じ第1軸座標を有する他の非入力位置とは、隣り合う受光部材の出力信号の大きさの差の変化様態に基づいて、明確に識別される。したがって、入力領域内での異なる位置での同時入力を、光検出機構の数を増やすことなく検出することができる。   According to the optical touch panel according to one aspect, the first input position in the input area is detected using the light detection data of one light detection mechanism including the light emitting part and the light receiving part facing each other across the input area. Both axis coordinates and second axis coordinates can be determined. At this time, the input position and other non-input positions having the same first axis coordinate are clearly identified based on the change state of the difference in the magnitude of the output signal of the adjacent light receiving members. Therefore, simultaneous input at different positions in the input area can be detected without increasing the number of light detection mechanisms.

他の態様に係る光式タッチパネルによれば、入力領域を挟んで互いに対向する発光部と受光部とを備えた1個の光検出機構の光検出データを用いて、入力領域における入力位置の第1軸座標と第2軸座標との双方を求めることができる。このとき、三角測量法の採用により、第2軸座標を比較的高精度で求めることができる。したがって、入力領域内での異なる位置での同時入力を、光検出機構の数を増やすことなく検出することができる。   According to the optical touch panel according to another aspect, the first position of the input position in the input region is detected using the light detection data of one light detection mechanism including the light emitting unit and the light receiving unit facing each other across the input region. Both the 1-axis coordinate and the second-axis coordinate can be obtained. At this time, by adopting the triangulation method, the second axis coordinates can be obtained with relatively high accuracy. Therefore, simultaneous input at different positions in the input area can be detected without increasing the number of light detection mechanisms.

光式タッチパネルの構成を模式図的に示す平面図である。It is a top view which shows the structure of an optical touch panel typically. 図1の光式タッチパネルの座標検出手法を説明する図である。It is a figure explaining the coordinate detection method of the optical touch panel of FIG. 図1の光式タッチパネルの座標検出手法を説明する図である。It is a figure explaining the coordinate detection method of the optical touch panel of FIG. 光式タッチパネルの構成を模式図的に示す図である。It is a figure which shows the structure of an optical touch panel typically. 一実施形態による光式タッチパネルの構成を模式図的に示す平面図で、(a)光検出機構の一例、及び(b)光検出機構の他の例をそれぞれ示す。It is a top view which shows typically the composition of the optical touch panel by one embodiment, and shows (a) an example of a photodetection mechanism, and (b) other examples of a photodetection mechanism, respectively. 他の実施形態による光式タッチパネルの構成を模式図的に示す平面図である。It is a top view which shows typically the structure of the optical touch panel by other embodiment. 図6の光式タッチパネルの座標検出手法を説明する図である。It is a figure explaining the coordinate detection method of the optical touch panel of FIG. 他の光式タッチパネルの構成を模式図的に示す平面図である。It is a top view which shows typically the structure of another optical touch panel. 図8の光式タッチパネルの座標検出手法を説明する図である。It is a figure explaining the coordinate detection method of the optical touch panel of FIG. 図8の光式タッチパネルの座標検出手法を説明する図である。It is a figure explaining the coordinate detection method of the optical touch panel of FIG. 図8の光式タッチパネルの座標検出手法を説明する図である。It is a figure explaining the coordinate detection method of the optical touch panel of FIG.

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Corresponding components are denoted by common reference symbols throughout the drawings.

図1は、本発明の一態様による光式タッチパネル10の構成を模式図的に示す平面図、図2及び図3は、光式タッチパネル10の座標検出手法を説明する図である。光式タッチパネル10は、電子機器(図示せず)が有する表示装置(図示せず)の画面に重ねて設置され、画面内の表示画像に対するオペレータの指やペンによる入力操作を可能にするものである。   FIG. 1 is a plan view schematically showing a configuration of an optical touch panel 10 according to one embodiment of the present invention, and FIGS. 2 and 3 are diagrams illustrating a coordinate detection method of the optical touch panel 10. The optical touch panel 10 is installed on a screen of a display device (not shown) included in an electronic device (not shown), and enables an operator to input an image on the screen with a finger or a pen. is there.

光式タッチパネル10は、二次元の広がり(図では平面視で矩形輪郭)を有する入力領域12と、入力領域12の外縁の一部分(図では矩形輪郭の対向二辺の一方)12aに沿って設置される発光部14と、入力領域12の外縁の他部分(図では矩形輪郭の対向二辺の他方)12bに沿って発光部14に平行かつ対向して設置される受光部16と、受光部16の出力信号に基づいて、入力領域12における指やペンの入力位置(すなわち二次元座標)を求める演算処理部18とを備える。発光部14は、入力領域12の外縁部分12aの略全長に及ぶ範囲で、予め定めた強さの光(例えば赤外線)Lを入力領域12に向けて放射する光放射機能を有する。受光部16は、入力領域12の外縁部分12bの略全長に及ぶ範囲で、発光部14が入力領域12に向けて放射した光Lを予め定めた視野角α(>0)で個々に受ける複数の受光部材20を、直交二軸座標系における第1軸(図でX軸)の方向へ並置した形態で備えている。それら受光部材20の各々は、受けた光の強さに対応する電気信号(例えば電流値)を出力する光電変換機能を有する。   The optical touch panel 10 is installed along an input area 12 having a two-dimensional extension (in the figure, a rectangular outline in plan view) and a part of the outer edge of the input area 12 (one of two opposite sides of the rectangular outline in the figure) 12a. The light emitting unit 14, the other part of the outer edge of the input region 12 (the other of the opposing two sides of the rectangular contour in the drawing) 12 b, the light receiving unit 16 installed parallel to and opposed to the light emitting unit 14, and the light receiving unit And an arithmetic processing unit 18 for obtaining an input position (that is, a two-dimensional coordinate) of a finger or a pen in the input region 12 based on the 16 output signals. The light emitting unit 14 has a light emission function of radiating light (for example, infrared rays) L having a predetermined intensity toward the input region 12 within a range that covers substantially the entire length of the outer edge portion 12 a of the input region 12. The light receiving unit 16 receives a plurality of light L emitted from the light emitting unit 14 toward the input region 12 at a predetermined viewing angle α (> 0) in a range that covers substantially the entire length of the outer edge portion 12b of the input region 12. The light receiving members 20 are arranged side by side in the direction of the first axis (X axis in the figure) in the orthogonal biaxial coordinate system. Each of the light receiving members 20 has a photoelectric conversion function of outputting an electric signal (for example, a current value) corresponding to the intensity of received light.

演算処理部18は、X軸の方向へ並置した複数の受光素子20のそれぞれが出力する信号に基づいて、入力領域12における入力位置Pの、X軸の座標(x)と、X軸に直交する第2軸(図でY軸)の座標(y)との、双方を算出する。以下、図2及び図3を参照して、演算処理部18による入力位置Pの算出手法(座標検出手法)を説明する。   The arithmetic processing unit 18 is orthogonal to the X-axis coordinate (x) of the input position P in the input region 12 and the X-axis based on signals output from the plurality of light receiving elements 20 juxtaposed in the X-axis direction. Both the coordinate (y) of the second axis (Y axis in the figure) to be calculated are calculated. Hereinafter, a calculation method (coordinate detection method) of the input position P by the arithmetic processing unit 18 will be described with reference to FIGS. 2 and 3.

光式タッチパネル10は、使用状態で、発光部14が、全体に渡って一様な所定強さの光Lを入力領域12に向けて継続的に放射し、また受光部16が、全ての受光部材20で発光部14から放射された光Lを受けて、光の強さに対応する一様な電気信号を個々に継続的に出力するように構成される。この使用状態で、オペレータが指等により入力領域12の所望位置に対し入力操作を行うと、発光部14から入力領域12に放射された光が、受光部16に達する前に指等により局所的に遮られて、受光部16の複数の受光部材20のうちいずれかの受光部材20が受ける光の強さが弱まり、当該受光部材20の出力信号が低下する。   When the optical touch panel 10 is in use, the light emitting unit 14 continuously emits light L having a predetermined intensity uniformly over the entire area toward the input region 12, and the light receiving unit 16 receives all light. The member 20 is configured to receive the light L emitted from the light emitting unit 14 and continuously output a uniform electric signal corresponding to the intensity of the light individually. When the operator performs an input operation on a desired position of the input area 12 with a finger or the like in this use state, the light emitted from the light emitting unit 14 to the input area 12 is locally applied by the finger or the like before reaching the light receiving unit 16. The intensity of light received by any one of the plurality of light receiving members 20 of the light receiving unit 16 is weakened, and the output signal of the light receiving member 20 is reduced.

ここで、光式タッチパネル10では、各受光部材20が所定の視野角αを有しているので、入力位置Pに応じて(したがって遮られる光の量に応じて)、入力位置Pに対しY軸方向へ実質的に整列する1つ又は複数(入力位置PのX軸方向への位置、並びに指先やペン先等の遮光物の大きさと1つの受光部材20が受光可能な光の幅方向寸法との関係によって個数が決まる)の受光部材20の出力信号と、その周辺の幾つかの受光部材20の出力信号とが、入力操作を行っていない平常時の出力信号に対して有意な低下を示す。例えば、図2に1つの典型例として示す入力状態では、受光部16よりも発光部14に近い位置P1に入力操作が行われた結果、入力位置P1に対してY軸方向へ実質的に整列する1つの受光部材20aの出力信号Sと、受光部材20aの左右2つずつの受光部材20bのそれぞれの出力信号Sとが、遮られる光の量に応じた大きさだけ、他の受光部材20の出力信号Sよりも低くなっている(グラフG1)。また、図3に他の典型例として示す入力状態では、発光部14よりも受光部16に近い位置P2に入力操作が行われた結果、入力位置P2に対してY軸方向へ実質的に整列する2つの受光部材20cのそれぞれの出力信号Sと、それら受光部材20cの左右1つずつの受光部材20dのそれぞれの出力信号Sとが、遮られる光の量に応じた大きさだけ、他の受光部材20の出力信号Sよりも低くなっている(グラフG1)。   Here, in the optical touch panel 10, each light receiving member 20 has a predetermined viewing angle α, so that the Y with respect to the input position P according to the input position P (and therefore according to the amount of light to be blocked). One or more substantially aligned in the axial direction (the position of the input position P in the X-axis direction, the size of a light blocking object such as a fingertip or a pen tip, and the width dimension of light that can be received by one light receiving member 20 The output signal of the light receiving member 20 and the output signals of some light receiving members 20 in the vicinity of the output signal of the light receiving member 20 are significantly lower than the normal output signal where no input operation is performed. Show. For example, in the input state shown as one typical example in FIG. 2, as a result of the input operation being performed at the position P1 closer to the light emitting unit 14 than the light receiving unit 16, the input position P1 is substantially aligned in the Y-axis direction. The output signal S of one light-receiving member 20a and the output signals S of the two light-receiving members 20b on the left and right sides of the light-receiving member 20a are the other light-receiving members 20 by a magnitude corresponding to the amount of light to be blocked. Is lower than the output signal S (graph G1). Further, in the input state shown in FIG. 3 as another typical example, as a result of the input operation being performed at the position P2 closer to the light receiving unit 16 than the light emitting unit 14, the input position P2 is substantially aligned in the Y-axis direction. The output signals S of the two light receiving members 20c and the output signals S of the left and right light receiving members 20d of the light receiving members 20c are different from each other by a magnitude corresponding to the amount of light to be blocked. It is lower than the output signal S of the light receiving member 20 (graph G1).

演算処理部18は、受光部16の全ての受光部材20における個々の出力信号Sの大きさ(絶対値)を独立変数として、予め定めた関数に従い、入力位置PのX軸の座標(x)を算出することができる。図2の典型例では、受光部材20a自体のX軸上での幾何学的中央点が、入力位置P1のX軸の座標(x1)となる。また図3の典型例では、2つの受光部材20cの間のX軸上での幾何学的中央点が、入力位置P2のX軸の座標(x2)となる。なお、入力位置PのX軸の座標(x)を算出するための関数は、光式タッチパネル10の設計時の実験等により適宜に設定しておくことができる。   The arithmetic processing unit 18 uses the magnitudes (absolute values) of the individual output signals S in all the light receiving members 20 of the light receiving unit 16 as independent variables, and follows the predetermined function according to the X-axis coordinates (x) of the input position P. Can be calculated. In the typical example of FIG. 2, the geometric center point on the X axis of the light receiving member 20a itself is the X axis coordinate (x1) of the input position P1. In the typical example of FIG. 3, the geometric center point on the X axis between the two light receiving members 20c is the X axis coordinate (x2) of the input position P2. Note that the function for calculating the X-axis coordinate (x) of the input position P can be appropriately set by an experiment at the time of designing the optical touch panel 10 or the like.

さらに演算処理部18は、受光部16の全ての受光部材20のうち、いずれか1つの(第1の)受光部材20が出力する信号Sの大きさと、第1の受光部材20に隣り合ういずれか1つの(第2の)受光部材20が出力する信号Sの大きさとの、差D(相対値)を独立変数として、予め定めた関数に従い、入力位置PのY軸の座標(y)を算出することができる。図2の典型例では、第1の受光部材20と図でその右隣の第2の受光部材20とのそれぞれの出力信号Sの大きさの差Dは、出力信号Sが最低値を示す受光部材20aの周辺で、比較的広い範囲に渡りなだらかに変化している(グラフG2)。これはすなわち、受光部16において検出される入力位置P1の指等の陰影がぼやけていることを示し、その結果、入力位置P1が受光部16から比較的遠いと判定できる。他方、図3の典型例では、第1の受光部材20と図でその右隣の第2の受光部材20とのそれぞれの出力信号Sの大きさの差Dは、出力信号Sが最低値を示す受光部材20cの周辺で、比較的狭い範囲に渡り急激に変化している(グラフG2)。これはすなわち、受光部16において検出される入力位置P2の指等の陰影が鮮明であることを示し、その結果、入力位置P2が受光部16に比較的近いと判定できる。このような判定アルゴリズムを関数として予め定めておくことにより、入力位置P1、P2のY軸の座標(y1)、(y2)を算出できる。なお、入力位置PのY軸の座標(y)を算出するための関数は、光式タッチパネル10の設計時の実験等により適宜に設定しておくことができる。   Further, the arithmetic processing unit 18 selects the magnitude of the signal S output from any one (first) light receiving member 20 among all the light receiving members 20 of the light receiving unit 16 and any one adjacent to the first light receiving member 20. Using the difference D (relative value) from the magnitude of the signal S output from one (second) light receiving member 20 as an independent variable, the coordinate (y) of the Y axis of the input position P is determined according to a predetermined function. Can be calculated. In the typical example of FIG. 2, the difference D in the magnitude of the output signal S between the first light receiving member 20 and the second light receiving member 20 adjacent to the right in the figure is the light reception in which the output signal S has the lowest value. In the periphery of the member 20a, it changes gently over a relatively wide range (graph G2). This means that the shadow of the finger or the like at the input position P1 detected by the light receiving unit 16 is blurred. As a result, it can be determined that the input position P1 is relatively far from the light receiving unit 16. On the other hand, in the typical example of FIG. 3, the difference D in the magnitude of the output signal S between the first light receiving member 20 and the second light receiving member 20 adjacent to the right in the figure is the minimum value of the output signal S. In the vicinity of the light receiving member 20c shown, it changes abruptly over a relatively narrow range (graph G2). This means that the shadow of the input position P2 detected by the light receiving unit 16 is clear, and as a result, it can be determined that the input position P2 is relatively close to the light receiving unit 16. By predetermining such a determination algorithm as a function, the coordinates (y1) and (y2) of the Y axis of the input positions P1 and P2 can be calculated. Note that the function for calculating the Y-axis coordinate (y) of the input position P can be appropriately set by an experiment at the time of designing the optical touch panel 10 or the like.

上記したように、光式タッチパネル10では、入力領域12を挟んで互いに対向する発光部14と受光部16とを備えた1個の光検出機構の光検出データS、Dを用いて、入力領域12における入力位置PのX軸座標(x)とY軸座標(y)との双方を求めることができる。例えば図2の典型例では、受光部16の全ての受光部材20の出力信号Sに基づき、所定の関数に従い、入力位置P1の座標(x1,y1)が求められる。このとき、入力位置P1と、同じX軸座標を有する他の非入力位置P1′とは、隣り合う受光部材20の出力信号Sの大きさの差Dの変化様態に基づいて、明確に識別される。同様に、図3の典型例では、受光部16の全ての受光部材20の出力信号Sに基づき、所定の関数に従い、入力位置P2の座標(x2,y2)が求められる。このとき、入力位置P2と、同じX軸座標を有する他の非入力位置P2′とは、隣り合う受光部材20の出力信号Sの大きさの差Dの変化様態に基づいて、明確に識別される。   As described above, the optical touch panel 10 uses the light detection data S and D of one light detection mechanism provided with the light emitting unit 14 and the light receiving unit 16 facing each other with the input region 12 interposed therebetween, and the input region. 12, both the X-axis coordinate (x) and the Y-axis coordinate (y) of the input position P can be obtained. For example, in the typical example of FIG. 2, the coordinates (x1, y1) of the input position P1 are obtained according to a predetermined function based on the output signals S of all the light receiving members 20 of the light receiving unit 16. At this time, the input position P1 and another non-input position P1 ′ having the same X-axis coordinate are clearly identified based on the change state of the difference D in the magnitude of the output signal S of the adjacent light receiving member 20. The Similarly, in the typical example of FIG. 3, the coordinates (x2, y2) of the input position P2 are obtained according to a predetermined function based on the output signals S of all the light receiving members 20 of the light receiving unit 16. At this time, the input position P2 and another non-input position P2 ′ having the same X-axis coordinate are clearly identified based on the change state of the difference D in the magnitude of the output signal S of the adjacent light receiving member 20. The

したがって、光式タッチパネル10では、入力領域12において例えば第1の入力位置P1(x1,y1)と第2の入力位置P2(x2,y2)とを同時に入力操作したときに、実際の入力位置P1(x1,y1)と、入力していない位置P1′(x1,y2)又はP2′(x2,y1)とが明確に識別され、また実際の入力位置P2(x2,y2)と、同位置P1′(x1,y2)又はP2′(x2,y1)とが明確に識別されて、第1の入力位置P1(x1,y1)及び第2の入力位置P2(x2,y2)が確実に検出される。同時入力位置が3箇所以上の場合にも、1個の光検出機構(発光部14及び受光部16)の光検出データを用いるだけで、同様に個々の入力位置の座標を求めることができる。したがって、光式タッチパネル10によれば、入力領域12内での複数の異なる位置での同時入力を、光検出機構(発光部14及び受光部16)の数を増やすことなく検出することが可能になる。   Therefore, in the optical touch panel 10, when the input operation is performed simultaneously on the first input position P1 (x1, y1) and the second input position P2 (x2, y2) in the input area 12, for example, the actual input position P1. (X1, y1) and the position P1 ′ (x1, y2) or P2 ′ (x2, y1) which are not input are clearly identified, and the actual input position P2 (x2, y2) and the same position P1 '(X1, y2) or P2' (x2, y1) is clearly identified, and the first input position P1 (x1, y1) and the second input position P2 (x2, y2) are reliably detected. The Even when there are three or more simultaneous input positions, the coordinates of the individual input positions can be obtained in the same manner using only the light detection data of one light detection mechanism (light emitting unit 14 and light receiving unit 16). Therefore, according to the optical touch panel 10, it is possible to detect simultaneous input at a plurality of different positions in the input region 12 without increasing the number of light detection mechanisms (light emitting units 14 and light receiving units 16). Become.

1個の光検出機構(発光部14及び受光部16)の光検出データS、Dから入力位置Pの座標(x,y)を求める上記構成では、Y軸座標の検出精度がX軸座標の検出精度に比べて低くなる傾向がある。そのため上記構成は、入力領域12における座標検出精度が低くてよい用途や、一軸方向のみに高い座標検出精度が要求される用途に有用と言える。直交二軸座標系の全体に高い座標検出精度が要求される場合には、図4に示すように、発光部14及び受光部16を有する光検出機構を、矩形の入力領域12の外縁の二組の対向二辺に(つまり中心角90°異なる位置に)それぞれ設置する構成とすることが望ましい。   In the above configuration for obtaining the coordinates (x, y) of the input position P from the light detection data S, D of one light detection mechanism (the light emitting unit 14 and the light receiving unit 16), the detection accuracy of the Y axis coordinate is the X axis coordinate. It tends to be lower than the detection accuracy. Therefore, it can be said that the above configuration is useful for applications where the coordinate detection accuracy in the input area 12 may be low, or for applications where high coordinate detection accuracy is required only in one axis direction. When high coordinate detection accuracy is required for the entire orthogonal biaxial coordinate system, the light detection mechanism having the light emitting unit 14 and the light receiving unit 16 is connected to the outer edge of the rectangular input region 12 as shown in FIG. It is desirable to have a configuration in which they are respectively installed on two opposite sides of the set (that is, at positions different from the central angle 90 °).

図4に示す光式タッチパネル100は、図1に示す第1の発光部14及び第1の受光部16を備える第1の光検出機構102と、それら発光部14及び受光部16とそれぞれ同一の構成を有する第2の発光部14−2及び第2の受光部16−2を備える第2の光検出機構104とを具備する。第2の発光部14−2は、入力領域12の外縁の、第1の発光部14が設置される部分12aに直交する一部分(図では矩形輪郭の第2の対向二辺の一方)12cに沿って設置され、第2の受光部16−2は、入力領域12の外縁の、第1の受光部16が設置される部分12bに直交する他部分(図では矩形輪郭の第2の対向二辺の他方)12dに沿って、第2の発光部14−2に平行かつ対向して設置される。その結果、第1の光検出機構102の第1の発光部14及び第1の受光部16と、第2の光検出機構104の第2の発光部14−2及び第2の受光部16−2とは、入力領域12の外縁に沿って互いに90度ずれた位置に設置されている。   The optical touch panel 100 shown in FIG. 4 is the same as the first light detection mechanism 102 including the first light emitting unit 14 and the first light receiving unit 16 shown in FIG. And a second light detection mechanism 104 including a second light emitting unit 14-2 and a second light receiving unit 16-2 having a configuration. The second light emitting unit 14-2 is formed on a portion 12c (one of the second opposing two sides having a rectangular outline in the drawing) of the outer edge of the input region 12 and orthogonal to the portion 12a where the first light emitting unit 14 is installed. The second light receiving unit 16-2 is disposed along the other edge of the outer edge of the input region 12 and is orthogonal to the portion 12b where the first light receiving unit 16 is installed (in FIG. It is installed along the other side 12d in parallel and opposite to the second light emitting unit 14-2. As a result, the first light emitting unit 14 and the first light receiving unit 16 of the first light detection mechanism 102, and the second light emitting unit 14-2 and the second light receiving unit 16- of the second light detection mechanism 104 are obtained. 2 is installed at a position shifted from each other by 90 degrees along the outer edge of the input area 12.

第2の発光部14−2は、入力領域12の外縁部分12cの略全長に及ぶ範囲で、予め定めた強さの光(例えば赤外線)を入力領域12に向けて放射する光放射機能を有する。第2の受光部16−2は、入力領域12の外縁部分12dの略全長に及ぶ範囲で、第2の発光部14−2が入力領域12に向けて放射した光(例えば赤外線)を予め定めた視野角α(>0)で個々に受ける複数の受光部材20−2を、直交二軸座標系における第2軸(図でY軸)の方向へ並置した形態で備えている。それら受光部材20−2の各々は、受けた光の強さに対応する電気信号(例えば電流値)を出力する光電変換機能を有する。   The second light emitting unit 14-2 has a light emission function of emitting light having a predetermined intensity (for example, infrared rays) toward the input region 12 in a range that extends over substantially the entire length of the outer edge portion 12 c of the input region 12. . The second light receiving unit 16-2 predetermines light (for example, infrared rays) radiated toward the input region 12 by the second light emitting unit 14-2 within a range that covers the substantially entire length of the outer edge portion 12d of the input region 12. A plurality of light receiving members 20-2 individually received at a viewing angle α (> 0) are arranged in parallel in the direction of the second axis (Y axis in the figure) in the orthogonal biaxial coordinate system. Each of the light receiving members 20-2 has a photoelectric conversion function of outputting an electric signal (for example, a current value) corresponding to the intensity of received light.

上記構成を有する光式タッチパネル100では、演算処理部18は、前述した座標検出手法により、第1の光検出機構102の光検出データ(S、D)を用いて、入力領域12における入力位置PのX軸座標(x)とY軸座標(y)との双方を、特にX軸座標(x)については高精度に求めることができる。また、演算処理部18は、前述した座標検出手法と同様の手法により、第2の光検出機構104の光検出データ(S、D)を用いて、入力領域12における入力位置PのY軸座標(y)とX軸座標(x)との双方を、特にY軸座標(y)については高精度に求めることができる。したがって、光式タッチパネル100によれば、入力領域12の全体に渡って、X軸及びY軸の双方に高い座標検出精度で入力位置Pが検出される。また、光式タッチパネル100においても、3個以上の光検出機構(発光部14及び受光部16)を装備することなく、入力領域12内での複数の異なる位置での同時入力を検出することができる。   In the optical touch panel 100 having the above configuration, the arithmetic processing unit 18 uses the light detection data (S, D) of the first light detection mechanism 102 by the above-described coordinate detection method to input position P in the input area 12. Both the X-axis coordinate (x) and the Y-axis coordinate (y), particularly the X-axis coordinate (x), can be obtained with high accuracy. In addition, the arithmetic processing unit 18 uses the light detection data (S, D) of the second light detection mechanism 104 in the same manner as the coordinate detection method described above, and uses the Y-axis coordinates of the input position P in the input region 12. Both (y) and the X-axis coordinate (x) can be obtained with high accuracy, particularly for the Y-axis coordinate (y). Therefore, according to the optical touch panel 100, the input position P is detected with high coordinate detection accuracy on both the X axis and the Y axis over the entire input region 12. Further, the optical touch panel 100 can detect simultaneous inputs at a plurality of different positions in the input area 12 without providing three or more light detection mechanisms (light emitting unit 14 and light receiving unit 16). it can.

なお図では、入力領域12の輪郭形状を正方形として示しているが、入力領域12は、X軸方向寸法とY軸方向寸法とが異なる様々な矩形輪郭形状を有することができる。また、第1の光検出機構102における受光部材20の個数及び視野角と、第2の光検出機構104における受光部材20−2の個数及び視野角とは、互いに同一であっても異なっていてもよい。   In the figure, the outline shape of the input area 12 is shown as a square, but the input area 12 can have various rectangular outline shapes with different X-axis direction dimensions and Y-axis direction dimensions. Further, the number and viewing angle of the light receiving members 20 in the first light detection mechanism 102 and the number and viewing angle of the light receiving members 20-2 in the second light detection mechanism 104 are the same or different from each other. Also good.

光式タッチパネル10、100においては、複数の受光部材20が標準状態で互いに感度差を有する場合、正確な座標検出が困難になることが危惧される。また、受光部16の両端及びその近傍に位置する受光部材20は、他の受光部材20に比べて、発光部14からの受光量が少なかったり(光式タッチパネル10の場合)、或いは別の光検出機構の発光部14からの放射光の侵入により受光量が多かったり(光式タッチパネル100の場合)することが予測され、やはり、正確な座標検出が困難になることが危惧される。そこで、演算処理部18は、複数の受光部材20の感度差や配置に起因する出力信号Sの誤差を補正する補正部22を有することができる(図4)。この構成では、演算処理部18は、補正部22による補正後の出力信号Sに基づいて、入力位置PのX軸座標(x)とY軸座標(y)とを算出する。このような構成によれば、入力領域12における座標検出精度を一層向上させることができる。   In the optical touch panels 10 and 100, when the plurality of light receiving members 20 have a sensitivity difference with each other in a standard state, there is a concern that accurate coordinate detection becomes difficult. In addition, the light receiving members 20 located at both ends of the light receiving unit 16 and in the vicinity thereof receive less light from the light emitting unit 14 than other light receiving members 20 (in the case of the optical touch panel 10) or other light. It is predicted that the amount of received light will be large (in the case of the optical touch panel 100) due to the intrusion of radiated light from the light emitting unit 14 of the detection mechanism, and there is a concern that accurate coordinate detection will be difficult. Therefore, the arithmetic processing unit 18 can include a correction unit 22 that corrects an error of the output signal S caused by the sensitivity difference or arrangement of the plurality of light receiving members 20 (FIG. 4). In this configuration, the arithmetic processing unit 18 calculates the X-axis coordinate (x) and the Y-axis coordinate (y) of the input position P based on the output signal S corrected by the correction unit 22. According to such a configuration, the coordinate detection accuracy in the input area 12 can be further improved.

補正部22による補正手法の一例として、使用状態の光式タッチパネル10、100に対し、入力領域12に指やペン等の遮光物体が存在しない状態で複数の受光部材20の出力信号Sを記録し、それら受光部材20の出力信号Sを共通の基準値(例えば1)に変換する補正係数を、個々の受光部材20について予め求めておく。そして、入力位置の検出時には、個々の受光部材20の出力信号Sに予め求めた補正係数を乗ずることで、受光部材20の感度差や配置に起因する出力信号Sの誤差を補正することができる。   As an example of the correction method by the correction unit 22, the output signals S of the plurality of light receiving members 20 are recorded in a state where no light shielding object such as a finger or a pen exists in the input area 12 with respect to the optical touch panels 10 and 100 in use. A correction coefficient for converting the output signal S of the light receiving members 20 into a common reference value (for example, 1) is obtained in advance for each light receiving member 20. When the input position is detected, the output signal S of each light receiving member 20 is multiplied by a correction coefficient obtained in advance, thereby correcting the error of the output signal S due to the sensitivity difference or arrangement of the light receiving members 20. .

光式タッチパネル10、100は、パーソナルコンピュータ、現金自動預払機(ATM)、自動販売機、複写機、カーナビゲーションシステム、携帯電話、携帯情報端末(PDA)、ゲーム機等の、表示装置を備えた電子機器(図示せず)において、LCD(液晶ディスプレイ)、PDP(プラズマパネル)、CRT(ブラウン管)等の表示装置(図示せず)の画面上に、適当な配置で設置できる。オペレータが指やペンにより入力操作する入力領域12は、表示装置の画面に重ねて配置可能な透明なガラス板やプラスチック板等から形成できる。或いは、そのような透明板製の入力領域12を設ける代わりに、表示装置の画面自体を入力領域12としてもよい。オペレータによる入力操作は、通常は指先やペン先を入力領域12の表面に触接させることにより行われるが、例えば発光部14から受光部16に至る光検出ラインを入力領域12の表面から幾分離れた位置に設定することにより、指先やペン先を入力領域12の表面に触接させずに入力操作可能な構成とすることもできる。   The optical touch panels 10 and 100 include display devices such as personal computers, automatic teller machines (ATMs), vending machines, copying machines, car navigation systems, mobile phones, personal digital assistants (PDAs), and game machines. In an electronic device (not shown), it can be installed in an appropriate arrangement on the screen of a display device (not shown) such as an LCD (liquid crystal display), a PDP (plasma panel), or a CRT (CRT). The input area 12 where the operator performs an input operation with a finger or a pen can be formed from a transparent glass plate, plastic plate, or the like that can be placed over the screen of the display device. Alternatively, instead of providing such an input area 12 made of a transparent plate, the screen of the display device itself may be used as the input area 12. The input operation by the operator is usually performed by bringing a fingertip or a pen tip into contact with the surface of the input region 12. For example, a light detection line extending from the light emitting unit 14 to the light receiving unit 16 is somewhat from the surface of the input region 12. By setting the positions apart from each other, an input operation can be performed without bringing a fingertip or a pen tip into contact with the surface of the input area 12.

図5は、光式タッチパネル10の一実施形態を、演算処理部18を省略して模式図的に示す。この実施形態では、発光部14は、入力領域12の外縁部分12aに沿って第1軸(X軸)の方向へ所定ピッチt1で並べて配置される複数の発光素子(例えば発光ダイオード(LED))24と、それら発光素子24に1つずつ個別に設けられ、個々の発光素子24が放射した光Lを予め定めた放射角β(>0)で受光部16に向ける複数の光学部品(例えばレンズ、ミラー等)26とを備えて構成される。複数の発光素子24は、入力領域12の外縁部分12aの略全長に渡って適当に分散された位置で、予め定めた強さの光(例えば赤外線)を入力領域12に向けて放射する。また、受光部16は、入力領域12の外縁部分12bに沿って第1軸(X軸)の方向へ所定ピッチt2で並べて配置される複数の受光素子(例えばフォトダイオードやフォトトランジスタ)28と、それら受光素子28に1つずつ個別に設けられ、発光部14から放射された光Lを各受光素子28が前述した視野角αで受けるようにする複数の光学部品(例えばレンズ、ミラー等)30とを備えて構成される。複数の受光素子28は、入力領域12の外縁部分12bの略全長に渡って適当に分散された位置で、複数の発光素子24から放射角βで放射された光Lを視野角αで個々に受け、受けた光の強さに対応する電気信号(例えば電流値)を個々に出力する。この実施形態では、1つの受光素子28と、当該受光素子28に対応して設けられた1つの光学部品30とが、図1に示す複数の受光部材20の各々を構成する。   FIG. 5 schematically shows an embodiment of the optical touch panel 10 with the arithmetic processing unit 18 omitted. In this embodiment, the light-emitting unit 14 includes a plurality of light-emitting elements (for example, light-emitting diodes (LEDs)) that are arranged at a predetermined pitch t1 along the outer edge portion 12a of the input region 12 in the direction of the first axis (X-axis). 24 and a plurality of optical components (for example, lenses) that direct light L emitted from each light emitting element 24 toward the light receiving unit 16 at a predetermined radiation angle β (> 0). , Mirror, etc.) 26. The plurality of light emitting elements 24 emit light (for example, infrared rays) having a predetermined intensity toward the input region 12 at positions that are appropriately dispersed over substantially the entire length of the outer edge portion 12 a of the input region 12. The light receiving unit 16 includes a plurality of light receiving elements (for example, photodiodes and phototransistors) 28 arranged along the outer edge portion 12b of the input region 12 in the first axis (X axis) direction at a predetermined pitch t2. A plurality of optical components (for example, lenses, mirrors, etc.) 30 provided individually for each of the light receiving elements 28 so that each light receiving element 28 receives the light L emitted from the light emitting unit 14 at the aforementioned viewing angle α. And is configured. The plurality of light receiving elements 28 are individually dispersed at a viewing angle α with the light L emitted from the plurality of light emitting elements 24 at a radiation angle β at positions appropriately dispersed over substantially the entire length of the outer edge portion 12b of the input region 12. An electric signal (for example, a current value) corresponding to the intensity of the received light is output individually. In this embodiment, one light receiving element 28 and one optical component 30 provided corresponding to the light receiving element 28 constitute each of the plurality of light receiving members 20 shown in FIG.

上記実施形態において、演算処理部18(図1)は、受光部16の全ての受光素子28における個々の出力信号S(図2及び図3)の大きさ(絶対値)を独立変数として、予め定めた関数に従い、入力位置Pの第1軸(X軸)の座標(x)を算出することができる。また演算処理部18(図1)は、受光部16の全ての受光素子28のうち、いずれか1つの(第1の)受光素子28が出力する信号Sの大きさと、第1の受光素子28に隣り合う1つの(第2の)受光素子28が出力する信号Sの大きさとの、差D(相対値)(図2及び図3)を独立変数として、予め定めた関数に従い、入力位置Pの第2軸(Y軸)の座標(y)を算出することができる。このような構成によれば、光式タッチパネル10の前述した効果と同等の格別の効果が奏されることに加えて、例えば発光部14や受光部16の補修に際し、発光部14の一部の発光素子24のみを交換したり、受光部16の一部の受光素子28のみを交換したりすることができるので、メンテナンスコストを抑制できる利点が得られる。   In the above embodiment, the arithmetic processing unit 18 (FIG. 1) uses the magnitudes (absolute values) of the individual output signals S (FIGS. 2 and 3) in all the light receiving elements 28 of the light receiving unit 16 as independent variables in advance. According to the determined function, the coordinate (x) of the first axis (X axis) of the input position P can be calculated. The arithmetic processing unit 18 (FIG. 1) also determines the magnitude of the signal S output from any one (first) light receiving element 28 among all the light receiving elements 28 of the light receiving unit 16 and the first light receiving element 28. The input position P is determined in accordance with a predetermined function, with the difference D (relative value) (FIGS. 2 and 3) from the magnitude of the signal S output from one (second) light receiving element 28 adjacent to each other as an independent variable. The coordinate (y) of the second axis (Y-axis) can be calculated. According to such a configuration, in addition to the effects that are equivalent to the effects described above of the optical touch panel 10, for example, when repairing the light emitting unit 14 or the light receiving unit 16, a part of the light emitting unit 14 is provided. Since only the light emitting element 24 can be replaced, or only a part of the light receiving elements 28 of the light receiving unit 16 can be replaced, an advantage that the maintenance cost can be suppressed is obtained.

上記実施形態では、例えば図5(a)に1つの典型例として示すように、複数の発光素子24の各々と複数の受光素子28の各々とが、Y軸の方向へ互いに正対する位置に配置される構成とすることができる。或いは、図5(b)に他の典型例として示すように、複数の発光素子24の各々と複数の受光素子28の各々とが、Y軸の方向へ互いに正対しない位置であって、X軸の方向へ1/2ピッチだけ互いにずれた位置に配置される構成とすることができる。なお図示の典型例では、発光素子24の配置ピッチt1と受光素子28の配置ピッチt2とが互いに同一になっているが、これらピッチt1、t2は互いに異なっていてもよい。また、光学部品26によって定められる各発光素子24の放射角βと、光学部品30によって定められる各受光素子28の視野角αとは、互いに同一であっても異なっていてもよい。   In the above embodiment, for example, as shown as one typical example in FIG. 5A, each of the plurality of light emitting elements 24 and each of the plurality of light receiving elements 28 are arranged at positions facing each other in the Y-axis direction. Can be configured. Alternatively, as shown in FIG. 5B as another typical example, each of the plurality of light emitting elements 24 and each of the plurality of light receiving elements 28 are in positions where they do not face each other in the Y-axis direction. It can be set as the structure arrange | positioned in the position mutually shifted | deviated by 1/2 pitch to the direction of the axis | shaft. In the illustrated example, the arrangement pitch t1 of the light emitting elements 24 and the arrangement pitch t2 of the light receiving elements 28 are the same, but the pitches t1 and t2 may be different from each other. Further, the emission angle β of each light emitting element 24 defined by the optical component 26 and the viewing angle α of each light receiving element 28 defined by the optical component 30 may be the same or different from each other.

光学部品26によって定められる各発光素子24の放射角βは、例えば2つ(図5(b))以上、7つ(図5(a))以下の受光素子28に光Lを照射する角度範囲から選択できる。同様に、光学部品30によって定められる各受光素子28の視野角αは、例えば2つ(図5(b))以上、7つ(図5(a))以下の発光素子24からの光Lを受ける角度範囲から選択できる。放射角βが、2つ未満の受光素子28又は7つを超える受光素子28に光Lを照射する角度であったり、視野角αが、2つ未満の発光素子24又は7つを超える発光素子24からの光Lを受ける角度であったりすると、隣り合う受光素子28の出力信号Sの大きさの差D(図2及び図3)が、入力位置PのY軸座標が変わってもあまり変化せず、Y軸座標の検出精度及び多点同時入力に対する検出確度が、一般的なタッチパネルとしての要求を満たさなくなる傾向がある。   The emission angle β of each light emitting element 24 determined by the optical component 26 is an angle range in which the light L is irradiated to, for example, two (FIG. 5B) or more and seven (FIG. 5A) or less light receiving elements 28. You can choose from. Similarly, the viewing angle α of each light receiving element 28 determined by the optical component 30 is, for example, two or more (FIG. 5B) and seven (FIG. 5A) light L from the light emitting elements 24. You can select from the range of angles to receive. The emission angle β is an angle at which the light L is applied to the light receiving elements 28 of less than two or more than seven, or the light emitting elements 24 of which the viewing angle α is less than two or more than seven. 24, the difference D (FIGS. 2 and 3) in the magnitude of the output signal S of the adjacent light receiving elements 28 changes so much even if the Y-axis coordinate of the input position P changes. The detection accuracy for the Y-axis coordinates and the detection accuracy for multi-point simultaneous input tend not to meet the requirements for a general touch panel.

各発光素子24に設けられる光学部品26については、図5(a)に示すように、発光素子24の構成要素である素子チップを収容する透明パッケージ(例えばLEDランプのパッケージ)自体に予め設けられているレンズ状部分に、光学部品26の機能を持たせるようにしてもよいし、或いは図5(b)に示すように、発光素子24とは別体の光学部品26を用いるようにしてもよい。同様に、各受光素子28に設けられる光学部品30については、図5(a)に示すように、受光素子28の構成要素である素子チップを収容する透明パッケージ(例えばフォトダイオードのパッケージ)自体に予め設けられているレンズ状部分に、光学部品30の機能を持たせるようにしてもよいし、或いは図5(b)に示すように、受光素子28とは別体の光学部品30を用いるようにしてもよい。発光素子24又は受光素子28自体が有するパッケージのレンズ状部分を光学部品26、30として用いる構成では、タッチパネル10の構成部品の点数を削減できる利点が有る。他方、発光素子24又は受光素子28とは別体の光学部品26、30を用いる構成では、光学部品26、30を交換するだけで、発光素子24の放射角βや受光素子28の視野角αを必要に応じて調整できる利点が有る。   As shown in FIG. 5A, the optical component 26 provided in each light emitting element 24 is provided in advance in a transparent package (for example, an LED lamp package) itself that houses an element chip that is a constituent element of the light emitting element 24. The lens-shaped portion may have the function of the optical component 26, or an optical component 26 separate from the light emitting element 24 may be used as shown in FIG. Good. Similarly, with respect to the optical component 30 provided in each light receiving element 28, as shown in FIG. 5A, a transparent package (for example, a photodiode package) itself that accommodates an element chip as a component of the light receiving element 28 is provided. The lens-shaped portion provided in advance may have the function of the optical component 30, or an optical component 30 separate from the light receiving element 28 may be used as shown in FIG. It may be. The configuration in which the lens-shaped portion of the package included in the light emitting element 24 or the light receiving element 28 itself is used as the optical components 26 and 30 has an advantage that the number of components of the touch panel 10 can be reduced. On the other hand, in a configuration using optical components 26 and 30 that are separate from the light emitting element 24 or the light receiving element 28, the emission angle β of the light emitting element 24 or the viewing angle α of the light receiving element 28 can be simply replaced. There is an advantage that can be adjusted as necessary.

上記実施形態において、発光部14として、X軸方向へ所定ピッチで並べて配置される複数の発光素子24を有する構成に代えて、X軸方向へ延びる導光部材を有する構成を採用することができる。また、受光部16として、X軸方向へ所定ピッチで並べて配置される複数の受光素子28を有する構成に代えて、X軸方向へ互いに直線状に連接して配置される複数の受光素子(素子チップ)を有する構成(いわゆるラインセンサ)を採用することができる。図6は、発光部14及び受光部16の双方にこのような代替的構成を採用した、光式タッチパネル10の他の実施形態を、演算処理部18を省略して模式図的に示す。また図7は、図6の実施形態による光式タッチパネル10の座標検出手法を説明する図である。   In the embodiment described above, a configuration having a light guide member extending in the X-axis direction can be adopted as the light-emitting unit 14 instead of the configuration having the plurality of light-emitting elements 24 arranged in a predetermined pitch in the X-axis direction. . In addition, instead of a configuration having a plurality of light receiving elements 28 arranged side by side at a predetermined pitch in the X-axis direction as the light receiving unit 16, a plurality of light receiving elements (elements) arranged linearly connected to each other in the X-axis direction. A configuration having a chip) (so-called line sensor) can be employed. FIG. 6 schematically shows another embodiment of the optical touch panel 10 that employs such an alternative configuration for both the light emitting unit 14 and the light receiving unit 16, omitting the arithmetic processing unit 18. FIG. 7 is a diagram for explaining a coordinate detection method of the optical touch panel 10 according to the embodiment of FIG.

図6及び図7に示すように、この実施形態では、発光部14は、入力領域12の外縁部分12aに沿って第1軸(X軸)の方向へ延設される導光部材32を備えて構成される。導光部材32は、光源34から放射された光を長手方向へ伝播して、入力領域12の外縁部分12aの略全長に及ぶ範囲で、予め定めた強さの光(例えば赤外線)Lを入力領域12に向けて放射する。導光部材32としては、アクリル等の樹脂材料から所望形状に成形された導光板を使用できる。また、受光部16は、入力領域12の外縁部分12bに沿って第1軸(X軸)の方向へ互いに直線状に連接して配置される複数の受光素子(例えばフォトダイオード等の素子チップ)36と、それら受光素子36のうち1つ以上の受光素子36をそれぞれに含む複数の素子列38に1つずつ個別に設けられ、発光部14から放射された光Lを各素子列38が前述した視野角αで受けるようにする複数の光学部品(例えばレンズ、ミラー等)40とを備えて構成される。複数の受光素子36は、基材42の表面に直線状に連接して設置されて、いわゆるラインセンサとして用意される。複数の素子列38に含まれる複数の受光素子36は、入力領域12の外縁部分12bの略全長に渡って適当に分散された位置で、導光部材32から放射された光Lを視野角αで個々に受け、各受光素子36が、受けた光の強さに対応する電気信号(例えば電流値)を個々に出力する。この実施形態では、1つの素子列38と、当該素子列38に対応して設けられた1つの光学部品40とが、図1に示す複数の受光部材20の各々を構成する。   As shown in FIGS. 6 and 7, in this embodiment, the light emitting unit 14 includes a light guide member 32 extending in the direction of the first axis (X axis) along the outer edge portion 12 a of the input region 12. Configured. The light guide member 32 propagates light emitted from the light source 34 in the longitudinal direction, and inputs light (for example, infrared rays) L having a predetermined intensity in a range that extends over substantially the entire length of the outer edge portion 12 a of the input region 12. Radiates toward region 12. As the light guide member 32, a light guide plate formed into a desired shape from a resin material such as acrylic can be used. In addition, the light receiving unit 16 includes a plurality of light receiving elements (for example, element chips such as photodiodes) arranged linearly connected to each other in the direction of the first axis (X axis) along the outer edge portion 12b of the input region 12. 36 and each of the plurality of element arrays 38 each including one or more of the light receiving elements 36, and each element array 38 receives the light L emitted from the light emitting unit 14. And a plurality of optical components (for example, lenses, mirrors, etc.) 40 to be received at the viewing angle α. The plurality of light receiving elements 36 are linearly connected to the surface of the base material 42 and are prepared as so-called line sensors. The plurality of light receiving elements 36 included in the plurality of element arrays 38 transmit the light L radiated from the light guide member 32 at a viewing angle α at a position appropriately distributed over substantially the entire length of the outer edge portion 12b of the input region 12. Each light receiving element 36 individually outputs an electric signal (for example, a current value) corresponding to the intensity of the received light. In this embodiment, one element row 38 and one optical component 40 provided corresponding to the element row 38 constitute each of the plurality of light receiving members 20 shown in FIG.

上記実施形態において、演算処理部18(図1)は、受光部16の全ての受光素子36における個々の出力信号S(図2及び図3)の大きさ(絶対値)を独立変数として、予め定めた関数に従い、入力位置Pの第1軸(X軸)の座標(x)を算出することができる。また演算処理部18(図1)は、受光部16の全ての素子列38のうち、いずれか1つの(第1の)素子列38に含まれるいずれか1つの特定受光素子36aが出力する信号Sの大きさと、第1の素子列38に対応して設けられた光学部品40に隣り合う他の1つの光学部品40に対応する1つの(第2の)素子列38に含まれる、第1の素子列38の特定受光素子36aと同じ相対位置にあるいずれか1つの特定受光素子36aが出力する信号Sの大きさとの、差D(相対値)(図2及び図3)を独立変数として、予め定めた関数に従い、入力位置Pの第2軸(Y軸)の座標(y)を算出することができる。例えば、個々の光学部品40の光軸40aに最も近い(図では左側に隣接する)1つの受光素子36を特定受光素子36aとして、その光検出データを用いて差Dを求めることができる。   In the above embodiment, the arithmetic processing unit 18 (FIG. 1) uses the magnitudes (absolute values) of the individual output signals S (FIGS. 2 and 3) in all the light receiving elements 36 of the light receiving unit 16 as independent variables in advance. According to the determined function, the coordinate (x) of the first axis (X axis) of the input position P can be calculated. The arithmetic processing unit 18 (FIG. 1) outputs a signal output by any one specific light receiving element 36a included in any one (first) element array 38 among all the element arrays 38 of the light receiving unit 16. The first S included in one (second) element row 38 corresponding to another optical component 40 adjacent to the magnitude of S and the optical component 40 provided corresponding to the first element row 38. The difference D (relative value) (FIGS. 2 and 3) from the magnitude of the signal S output from any one specific light receiving element 36a at the same relative position as the specific light receiving element 36a in the element row 38 is an independent variable. The coordinates (y) of the second axis (Y axis) of the input position P can be calculated according to a predetermined function. For example, one light receiving element 36 closest to the optical axis 40a of each optical component 40 (adjacent to the left side in the figure) is set as the specific light receiving element 36a, and the difference D can be obtained using the light detection data.

或いは、演算処理部18(図1)は、受光部16の全ての素子列38のうち、いずれか1つの(第1の)素子列38に含まれるいずれか2つ以上の特定受光素子36aが出力する信号Sの大きさの総和と、第1の素子列38に対応して設けられた光学部品40に隣り合う他の1つの光学部品40に対応する1つの(第2の)素子列38に含まれる、第1の素子列38の特定受光素子36aと同じ相対位置にあるいずれか2つ以上の特定受光素子36aが出力する信号Sの大きさの総和との、差Dを独立変数として、予め定めた関数に従い、入力位置PのY軸の座標(y)を算出することもできる。いずれの座標検出手法を採用する場合にも、上記構成によれば、光式タッチパネル10の前述した効果と同等の格別の効果が奏されることに加えて、ラインセンサが本質的に有する解像度の高さにより、座標検出精度を向上させることができる。   Alternatively, the arithmetic processing unit 18 (FIG. 1) includes any two or more specific light receiving elements 36 a included in any one (first) element row 38 among all the element rows 38 of the light receiving unit 16. The sum of the magnitudes of the signals S to be output and one (second) element row 38 corresponding to another optical component 40 adjacent to the optical component 40 provided corresponding to the first element row 38. The difference D from the total sum of the magnitudes of the signals S output from any two or more specific light receiving elements 36a at the same relative position as the specific light receiving elements 36a of the first element array 38 is included as an independent variable. The Y-axis coordinate (y) of the input position P can also be calculated according to a predetermined function. In any of the coordinate detection methods, according to the above configuration, in addition to the exceptional effect equivalent to the above-described effect of the optical touch panel 10, the resolution of the line sensor is essentially included. Coordinate detection accuracy can be improved by the height.

上記実施形態において、光学部品40によって定められる各素子列38の視野角αは、図5の実施形態に準ずる角度範囲から選択できる。また、演算処理部18が入力位置Pの座標(x,y)の算出に際して光検出データを参照する特定受光素子36aを、素子列38の中のどの受光素子36とするかは、予めオペレータが演算処理部18に設定できる。   In the above embodiment, the viewing angle α of each element array 38 determined by the optical component 40 can be selected from an angle range according to the embodiment of FIG. Further, the operator determines in advance which light receiving element 36 in the element array 38 is the specific light receiving element 36a to which the light detection data is referred when the arithmetic processing unit 18 calculates the coordinates (x, y) of the input position P. It can be set in the arithmetic processing unit 18.

図5及び図6に示す実施形態はいずれも、図4の光式タッチパネル100と同様に、互いに同一構造の光検出機構(発光部14及び受光部16)が、矩形の入力領域12の外縁の二組の対向二辺に(つまり中心角90°異なる位置に)それぞれ設置される構成とすることもできる。この構成により、直交二軸座標系の全体に高い座標検出精度を実現できる。また、図5及び図6に示す実施形態はいずれも、演算処理部18が、複数の受光素子28、36の感度差や配置に起因する出力信号Sの誤差を補正する補正部22(図4)を有する構成とすることもできる。この構成により、入力領域12における座標検出精度を一層向上させることができる。   5 and 6, in the same manner as the optical touch panel 100 in FIG. 4, the light detection mechanisms (the light emitting unit 14 and the light receiving unit 16) having the same structure are arranged on the outer edge of the rectangular input region 12. It can also be set as the structure each installed in two sets of two opposite sides (that is, in the position which differs 90 degrees of central angles). With this configuration, high coordinate detection accuracy can be realized in the entire orthogonal biaxial coordinate system. 5 and FIG. 6, the arithmetic processing unit 18 corrects the error of the output signal S caused by the sensitivity difference or arrangement of the plurality of light receiving elements 28 and 36 (FIG. 4). ). With this configuration, the coordinate detection accuracy in the input area 12 can be further improved.

図8は、本発明の他の態様による光式タッチパネル200の構成を模式図的に示す。また図9〜図11は、図8の光式タッチパネル200の座標検出手法を説明する図である。光式タッチパネル200は、受光部16の光学部品の構成及び演算処理部18による座標検出手法が異なる以外は、図6の実施形態による光式タッチパネル10と同等の構成を有するので、対応の構成要素には共通する参照符号を付してその詳細な説明を省略する。   FIG. 8 schematically shows a configuration of an optical touch panel 200 according to another aspect of the present invention. 9-11 is a figure explaining the coordinate detection method of the optical touch panel 200 of FIG. The optical touch panel 200 has the same configuration as the optical touch panel 10 according to the embodiment of FIG. 6 except that the configuration of the optical components of the light receiving unit 16 and the coordinate detection method by the arithmetic processing unit 18 are different. Are denoted by common reference numerals, and detailed description thereof is omitted.

光式タッチパネル200は、二次元の広がりを有する入力領域12と、入力領域12の外縁の一部分12aに沿って設置される発光部14と、入力領域12の外縁の他部分12bに沿って発光部14に平行かつ対向して設置される受光部16と、受光部16の出力信号S(図2及び図3)に基づいて、入力領域12における指やペンの入力位置(すなわち二次元座標)を求める演算処理部18とを備える。発光部14は、入力領域12の外縁部分12aに沿って第1軸(X軸)の方向へ延設される導光部材32を備えて構成される。導光部材32は、光源34から放射された光を長手方向へ伝播して、入力領域12の外縁部分12aの略全長に及ぶ範囲で、予め定めた強さの光(例えば赤外線)Lを入力領域12に向けて放射する。また、受光部16は、入力領域12の外縁部分12bに沿って第1軸(X軸)の方向へ互いに直線状に連接して配置される複数の受光素子36と、それら受光素子36のうち3つ以上の受光素子36をそれぞれに含む複数の素子列38に1つずつ個別に設けられ、発光部14から放射された光Lを各素子列38が平行光として(つまり視野角α=0で)受けるようにする複数の光学部品(例えばレンズ、ミラー等)202とを備えて構成される。複数の受光素子36は、基材42の表面に直線状に連接して設置されて、いわゆるラインセンサとして用意される。複数の素子列38に含まれる複数の受光素子36は、入力領域12の外縁部分12bの略全長に渡って適当に分散された位置で、導光部材32から放射された光Lを平行光として個々に受け、各受光素子36が、受けた光の強さに対応する電気信号(例えば電流値)を個々に出力する。   The optical touch panel 200 includes an input region 12 having a two-dimensional extension, a light emitting unit 14 installed along a part 12 a of the outer edge of the input region 12, and a light emitting unit along the other part 12 b of the outer edge of the input region 12. 14 and the input position (that is, two-dimensional coordinates) of the finger or pen in the input region 12 based on the light receiving unit 16 installed in parallel with and opposite to 14 and the output signal S (FIGS. 2 and 3) of the light receiving unit 16. And an arithmetic processing unit 18 to be obtained. The light emitting unit 14 includes a light guide member 32 that extends in the direction of the first axis (X axis) along the outer edge portion 12 a of the input region 12. The light guide member 32 propagates light emitted from the light source 34 in the longitudinal direction, and inputs light (for example, infrared rays) L having a predetermined intensity in a range that extends over substantially the entire length of the outer edge portion 12 a of the input region 12. Radiates toward region 12. The light receiving unit 16 includes a plurality of light receiving elements 36 that are linearly connected to each other in the direction of the first axis (X axis) along the outer edge portion 12 b of the input region 12, and of the light receiving elements 36. A plurality of element arrays 38 each including three or more light receiving elements 36 are individually provided, and each element array 38 converts the light L emitted from the light emitting unit 14 into parallel light (that is, a viewing angle α = 0). And a plurality of optical components (for example, lenses, mirrors, etc.) 202 to be received. The plurality of light receiving elements 36 are linearly connected to the surface of the base material 42 and are prepared as so-called line sensors. The plurality of light receiving elements 36 included in the plurality of element rows 38 are formed by using the light L emitted from the light guide member 32 as parallel light at positions that are appropriately dispersed over substantially the entire length of the outer edge portion 12b of the input region 12. Each light receiving element 36 individually receives an electric signal (for example, a current value) corresponding to the intensity of the received light.

光式タッチパネル200において、演算処理部18は、受光部16の全ての素子列38の各々に含まれる3つ以上の受光素子36のうち、対応して設けられた各光学部品202の光軸202aに最も近い(図では左側に隣接する)1つの中央受光素子36b(図9)が出力する信号S(図2及び図3)の、各素子列38における大きさ(絶対値)に基づいて、入力領域12における入力位置Pの第1軸(X軸)の座標を算出する。この実施形態では、各受光素子36は、導光部材32から放射された光Lを平行光として受けるので、入力位置Pに対しY軸方向へ実質的に整列する1つ又は複数(入力位置PのX軸方向への位置、並びに指先やペン先等の遮光物の大きさと1つの素子列38が受光可能な光の幅方向寸法との関係によって個数が決まる)の素子列38の中央受光素子36bの出力信号Sが、遮られる光の量に応じた大きさだけ、他の素子列38の中央受光素子36bの出力信号Sよりも低くなる。したがって演算処理部18は、全ての素子列38における中央受光素子36bの出力信号Sの大きさ(絶対値)を独立変数として、予め定めた関数に従い、入力位置PのX軸の座標(x)を算出することができる。なお、入力位置PのX軸の座標(x)を算出するための関数は、光式タッチパネル10の設計時の実験等により適宜に設定しておくことができる。   In the optical touch panel 200, the arithmetic processing unit 18 includes an optical axis 202 a of each optical component 202 provided correspondingly among the three or more light receiving elements 36 included in each of all the element rows 38 of the light receiving unit 16. Based on the magnitude (absolute value) in each element array 38 of the signal S (FIGS. 2 and 3) output by one central light receiving element 36b (FIG. 9) closest to (adjacent to the left side in the figure) The coordinates of the first axis (X axis) of the input position P in the input area 12 are calculated. In this embodiment, each light receiving element 36 receives the light L radiated from the light guide member 32 as parallel light, and therefore one or more (input positions P) substantially aligned in the Y-axis direction with respect to the input position P. The number of light receiving elements in the X-axis direction and the size of the light-shielding object such as a fingertip or a pen tip and the width dimension of light that can be received by one element array 38). The output signal S of 36b becomes lower than the output signal S of the central light receiving element 36b of the other element array 38 by a magnitude corresponding to the amount of light to be blocked. Therefore, the arithmetic processing unit 18 uses the magnitude (absolute value) of the output signal S of the central light receiving element 36b in all the element arrays 38 as an independent variable, and follows the predetermined function according to the X-axis coordinate (x) of the input position P. Can be calculated. Note that the function for calculating the X-axis coordinate (x) of the input position P can be appropriately set by an experiment at the time of designing the optical touch panel 10 or the like.

また、演算処理部18は、受光部16の全ての素子列38の各々に含まれる3つ以上の受光素子36のうち、中央受光素子36bから一方向へM個目(Mは1以上の整数:図では左側M=2)の一側受光素子36c(図10)が出力する信号Sの、各素子列38における大きさ(絶対値)と、中央受光素子36bから反対方向へN個目(Nは1以上の整数:図では右側N=4)の他側受光素子36d(図11)が出力する信号Sの、各素子列38における大きさ(絶対値)とに基づいて、入力領域12における入力位置Pの、X軸に直交する第2軸(Y軸)の座標を算出する。上記したように、この実施形態では、各受光素子36は、導光部材32から放射された光Lを平行光として受けるので、入力位置Pに対し、Y軸に所定角度で斜交する方向R1、R2へ実質的に整列する1つ又は複数(指先やペン先等の遮光物の大きさと1つの素子列38が受光可能な光の幅方向寸法との関係によって個数が決まる)の素子列38の、一側受光素子36c及び他側受光素子36dの出力信号Sが、中央受光素子36bと同様に、遮られる光の量に応じた大きさだけ、他の素子列38の一側受光素子36c及び他側受光素子36dの出力信号Sよりも低くなる。   The arithmetic processing unit 18 also includes an Mth element (M is an integer of 1 or more) from the central light receiving element 36b in one direction among the three or more light receiving elements 36 included in each of all the element arrays 38 of the light receiving unit 16. : Left side M = 2 in the figure) The magnitude (absolute value) of the signal S output from the one side light receiving element 36c (FIG. 10) in each element row 38 and the Nth ( N is an integer greater than or equal to 1 (right side N = 4 in the figure), based on the magnitude (absolute value) of the signal S output from the other light receiving element 36d (FIG. 11) in each element array 38. The coordinates of the second axis (Y axis) orthogonal to the X axis of the input position P at are calculated. As described above, in this embodiment, each light receiving element 36 receives the light L emitted from the light guide member 32 as parallel light, so that the direction R1 obliquely intersects the input position P at a predetermined angle with respect to the Y axis. , One or a plurality of element rows 38 that are substantially aligned with R2 (the number is determined by the relationship between the size of a light blocking object such as a fingertip or a pen tip and the width direction dimension of light that can be received by one element row 38). Similarly to the central light receiving element 36b, the output signal S of the one side light receiving element 36c and the other side light receiving element 36d has a magnitude corresponding to the amount of light to be blocked, and the one side light receiving element 36c of the other element row 38. And lower than the output signal S of the other-side light receiving element 36d.

そこで演算処理部18は、まず、全ての素子列38における一側受光素子36c及び他側受光素子36dのうち、出力信号Sの大きさ(絶対値)が最も低下した一側受光素子36c及び他側受光素子36dのそれぞれのX軸座標(xq1)、(xq2)を、着目点Q1、Q2として算出する。さらに演算処理部18は、算出した着目点Q1、Q2のそれぞれのX軸座標(xq1)、(xq2)と、方向R1、R2のそれぞれがY軸に対して成す傾斜角度(素子列38内での一側受光素子36c及び他側受光素子36dの相対位置によって決まる)とに基づき、三角測量の手法により、入力位置PのY軸の座標(y)を算出することができる。   Therefore, the arithmetic processing unit 18 firstly selects the one-side light receiving element 36c and the other light-receiving elements 36c and the other light-receiving elements 36d in all the element arrays 38, whose output signal S has the smallest magnitude (absolute value). The respective X-axis coordinates (xq1) and (xq2) of the side light receiving element 36d are calculated as the points of interest Q1 and Q2. Further, the arithmetic processing unit 18 determines the inclination angles (within the element array 38) that the respective X-axis coordinates (xq1) and (xq2) of the calculated points of interest Q1 and Q2 and the directions R1 and R2 form with respect to the Y-axis. The Y-axis coordinate (y) of the input position P can be calculated by a triangulation method based on the relative position of the one side light receiving element 36c and the other side light receiving element 36d.

光式タッチパネル200は、前述した光式タッチパネル10とは異なり、平行光を受光するラインセンサの個々の受光素子36の光検出データを用いるとともに、入力位置PのY軸座標(y)の算出手法として三角測量法を採用しているので、入力領域12を挟んで互いに対向する発光部14と受光部16とを備えた1個の光検出機構の光検出データSを用いて、入力領域12における入力位置PのX軸座標(x)とY軸座標(y)との双方を、比較的高い精度で求めることができる。また、三角測量法の採用により、光式タッチパネル10と同様に、入力領域12内での複数の異なる位置での同時入力を検出することができる。   Unlike the optical touch panel 10 described above, the optical touch panel 200 uses light detection data of each light receiving element 36 of a line sensor that receives parallel light, and calculates the Y-axis coordinate (y) of the input position P. Since the triangulation method is employed, the light detection data S of one light detection mechanism including the light emitting unit 14 and the light receiving unit 16 facing each other across the input region 12 is used. Both the X-axis coordinate (x) and the Y-axis coordinate (y) of the input position P can be obtained with relatively high accuracy. Further, by adopting the triangulation method, it is possible to detect simultaneous inputs at a plurality of different positions in the input area 12 as in the optical touch panel 10.

上記実施形態において、演算処理部18が入力位置Pの座標(x,y)の算出に際して光検出データを参照する中央受光素子36b、一側受光素子36c及び他側受光素子36dを、それぞれ素子列38の中のどの受光素子36とするかは、予めオペレータが演算処理部18に設定できる。また、上記実施形態は、図4の光式タッチパネル100と同様に、互いに同一構造の光検出機構(発光部14及び受光部16)が、矩形の入力領域12の外縁の二組の対向二辺に(つまり中心角90°異なる位置に)それぞれ設置される構成とすることもできる。この構成により、直交二軸座標系の全体に高い座標検出精度を実現できる。また、上記実施形態は、演算処理部18が、複数の受光素子28、36の感度差や配置に起因する出力信号Sの誤差を補正する補正部22(図4)を有する構成とすることもできる。この構成により、入力領域12における座標検出精度を一層向上させることができる。   In the above-described embodiment, the central light receiving element 36b, the one side light receiving element 36c, and the other side light receiving element 36d, to which the arithmetic processing unit 18 refers to the photodetection data when calculating the coordinates (x, y) of the input position P, are arranged in the element array Which light receiving element 36 in 38 can be set in the arithmetic processing unit 18 in advance by the operator. Further, in the above embodiment, similar to the optical touch panel 100 of FIG. 4, the light detection mechanisms (the light emitting unit 14 and the light receiving unit 16) having the same structure are arranged in two sets of opposing two sides on the outer edge of the rectangular input region 12. (That is, at a position different from the central angle of 90 °). With this configuration, high coordinate detection accuracy can be realized in the entire orthogonal biaxial coordinate system. In the above-described embodiment, the arithmetic processing unit 18 may include the correction unit 22 (FIG. 4) that corrects the error of the output signal S caused by the sensitivity difference or arrangement of the plurality of light receiving elements 28 and 36. it can. With this configuration, the coordinate detection accuracy in the input area 12 can be further improved.

10、100、200 光式タッチパネル
12 入力領域
14 発光部
16 受光部
18 演算処理部
20 受光部材
22 補正部
24 発光素子
26、30、40、202 光学部品
28、36 受光素子
32 導光部材
34 光源
36a 特定受光素子
36b 中央受光素子
36c 一側受光素子
36d 他側受光素子
38 素子列
40a 光軸
10, 100, 200 Optical touch panel 12 Input area 14 Light emitting unit 16 Light receiving unit 18 Arithmetic processing unit 20 Light receiving member 22 Correction unit 24 Light emitting element 26, 30, 40, 202 Optical component 28, 36 Light receiving element 32 Light guide member 34 Light source 36a Specific light receiving element 36b Central light receiving element 36c One side light receiving element 36d Other side light receiving element 38 Element array 40a Optical axis

Claims (11)

二次元の広がりを有する入力領域と、該入力領域の外縁の一部分に沿って設置される発光部と、該入力領域の該外縁の他部分に沿って該発光部に平行かつ対向して設置される受光部と、該受光部の出力信号に基づいて該入力領域における入力位置を求める演算処理部とを具備する光式タッチパネルにおいて、
前記受光部は、前記発光部が放射した光を所定の視野角で個々に受ける複数の受光部材であって、受けた光の強さに対応する信号をそれぞれに出力する複数の受光部材を、第1軸の方向へ並置した形態で備えており、
前記演算処理部は、前記第1軸の方向へ並置した前記複数の受光部材のそれぞれが出力する前記信号に基づいて、前記入力領域における入力位置の、前記第1軸の座標と、前記第1軸に直交する第2軸の座標との、双方を算出すること、
を特徴とする光式タッチパネル。
An input region having a two-dimensional extension, a light emitting unit installed along a part of the outer edge of the input region, and a light emitting unit installed parallel to and opposite to the light emitting unit along the other part of the outer edge of the input region An optical touch panel comprising: a light receiving unit that includes: an arithmetic processing unit that obtains an input position in the input region based on an output signal of the light receiving unit;
The light receiving unit is a plurality of light receiving members that individually receive the light emitted from the light emitting unit at a predetermined viewing angle, and each of the light receiving members outputs a signal corresponding to the intensity of the received light, It is provided in a form juxtaposed in the direction of the first axis,
The arithmetic processing unit, based on the signal output from each of the plurality of light receiving members juxtaposed in the direction of the first axis, the coordinates of the first axis of the input position in the input region, and the first Calculating both the coordinates of the second axis perpendicular to the axis;
An optical touch panel characterized by
前記受光部は、前記第1軸の方向へ所定ピッチで並べて配置される複数の受光素子と、該複数の受光素子に1つずつ個別に設けられ、該複数の受光素子の各々が前記視野角で前記光を受けるようにする複数の光学部品とを具備し、前記複数の受光部材の各々は、1つの該受光素子と、該受光素子に対応して設けられた1つの該光学部品とから構成される、請求項1に記載の光式タッチパネル。   The light receiving section is provided separately for each of the plurality of light receiving elements arranged in a predetermined pitch in the direction of the first axis, and one for each of the plurality of light receiving elements, and each of the plurality of light receiving elements has the viewing angle. A plurality of optical components configured to receive the light, and each of the plurality of light receiving members includes one light receiving element and one optical component provided corresponding to the light receiving element. The optical touch panel according to claim 1 configured. 前記演算処理部は、前記複数の受光素子のうち、第1の受光素子が出力する前記信号の大きさと、該第1の受光素子に隣り合う第2の受光素子が出力する前記信号の大きさとの、差に基づいて、前記入力位置の前記第2軸の座標を算出する、請求項2に記載の光式タッチパネル。   The arithmetic processing unit includes: a magnitude of the signal output by the first light receiving element among the plurality of light receiving elements; and a magnitude of the signal output by the second light receiving element adjacent to the first light receiving element. The optical touch panel according to claim 2, wherein coordinates of the second axis of the input position are calculated based on the difference. 前記受光部は、前記第1軸の方向へ互いに直線状に連接して配置される複数の受光素子と、該複数の受光素子のうち1つ以上の受光素子をそれぞれに含む複数の素子列に1つずつ個別に設けられ、該複数の素子列の各々が前記視野角で前記光を受けるようにする複数の光学部品とを具備し、前記複数の受光部材の各々は、1つの該素子列と、該素子列に対応して設けられた1つの該光学部品とから構成される、請求項1に記載の光式タッチパネル。   The light receiving unit includes a plurality of light receiving elements arranged linearly connected to each other in the direction of the first axis, and a plurality of element rows each including one or more light receiving elements among the plurality of light receiving elements. A plurality of optical components that are individually provided one by one, and each of the plurality of element arrays receives the light at the viewing angle, and each of the plurality of light receiving members includes one element array The optical touch panel according to claim 1, wherein the optical touch panel is configured to correspond to the element row. 前記演算処理部は、前記複数の素子列のうち、第1の素子列に含まれるいずれか1つの特定受光素子が出力する前記信号の大きさと、該第1の素子列に対応する1つの前記光学部品に隣り合う他の1つの前記光学部品に対応する第2の素子列に含まれる、該第1の素子列の該特定受光素子と同じ相対位置にあるいずれか1つの特定受光素子が出力する前記信号の大きさとの、差に基づいて、前記入力位置の前記第2軸の座標を算出する、請求項4に記載の光式タッチパネル。   The arithmetic processing unit is configured to output the magnitude of the signal output from any one specific light receiving element included in the first element array and the one corresponding to the first element array among the plurality of element arrays. Any one specific light receiving element in the same relative position as the specific light receiving element of the first element row included in the second element row corresponding to the other one optical component adjacent to the optical component is output. The optical touch panel according to claim 4, wherein coordinates of the second axis of the input position are calculated based on a difference between the magnitude of the signal to be performed. 前記演算処理部は、前記複数の素子列のうち、第1の素子列に含まれるいずれか2つ以上の特定受光素子が出力する前記信号の大きさの総和と、該第1の素子列に対応する1つの前記光学部品に隣り合う他の1つの前記光学部品に対応する第2の素子列に含まれる、該第1の素子列の該特定受光素子と同じ相対位置にあるいずれか2つ以上の特定受光素子が出力する前記信号の大きさの総和との、差に基づいて、前記入力位置の前記第2軸の座標を算出する、請求項4に記載の光式タッチパネル。   The arithmetic processing unit includes a sum of magnitudes of the signals output from any two or more specific light receiving elements included in the first element array, and the first element array. Any two in the same relative position as the specific light receiving element of the first element row included in the second element row corresponding to the other one optical component adjacent to the corresponding one optical component The optical touch panel according to claim 4, wherein coordinates of the second axis of the input position are calculated based on a difference from a sum of magnitudes of the signals output by the specific light receiving elements. 前記発光部は、前記第1軸の方向へ所定ピッチで並べて配置される複数の発光素子と、該複数の発光素子に1つずつ個別に設けられ、個々の該発光素子が放射した光を所定の放射角で前記受光部に向ける複数の光学部品とを具備する、請求項1〜6のいずれか1項に記載の光式タッチパネル。   The light emitting unit is provided separately for each of the plurality of light emitting elements arranged in a predetermined pitch in the direction of the first axis, and for each of the plurality of light emitting elements, and the light emitted by each of the light emitting elements is predetermined. The optical touch panel according to any one of claims 1 to 6, comprising a plurality of optical components directed toward the light receiving unit at a radiation angle of. 前記発光部は、前記第1軸の方向へ延びる導光部材であって、光源から放射された光を伝播して前記入力領域の前記外縁の前記一部分の全体に渡り光を放射する導光部材を具備する、請求項1〜6のいずれか1項に記載の光式タッチパネル。   The light emitting unit is a light guide member extending in the direction of the first axis, and propagates light emitted from a light source to emit light over the entire portion of the outer edge of the input region. The optical touch panel according to claim 1, comprising: 二次元の広がりを有する入力領域と、該入力領域の外縁の一部分に沿って設置される発光部と、該入力領域の該外縁の他部分に沿って該発光部に平行かつ対向して設置される受光部と、該受光部の出力信号に基づいて該入力領域における入力位置を求める演算処理部とを具備する光式タッチパネルにおいて、
前記受光部は、
第1軸の方向へ互いに直線状に連接して配置される複数の受光素子であって、前記発光部が放射した光を個々に受けるとともに、受けた光の強さに対応する信号をそれぞれに出力する複数の受光素子と、
前記複数の受光素子のうち3つ以上の受光素子をそれぞれに含む複数の素子列に1つずつ個別に設けられ、前記発光部が放射した光を該複数の素子列の各々が平行光として受けるようにする複数の光学部品とを具備し、
前記演算処理部は、
前記複数の素子列の各々に含まれる前記3つ以上の受光素子のうち、対応して設けられた前記複数の光学部品の各々の光軸に最も近い1つの中央受光素子が出力する前記信号の、前記複数の素子列の各々における大きさに基づいて、前記入力領域における入力位置の前記第1軸の座標を算出し、
前記複数の素子列の各々に含まれる前記3つ以上の受光素子のうち、前記中央受光素子から一方向へM個目(Mは1以上の整数)の一側受光素子が出力する前記信号の、前記複数の素子列の各々における大きさと、前記中央受光素子から反対方向へN個目(Nは1以上の整数)の他側受光素子が出力する前記信号の、前記複数の素子列の各々における大きさとに基づいて、前記入力領域における入力位置の、前記第1軸に直交する第2軸の座標を算出すること、
を特徴とする光式タッチパネル。
An input region having a two-dimensional extension, a light emitting unit installed along a part of the outer edge of the input region, and a light emitting unit installed parallel to and opposite to the light emitting unit along the other part of the outer edge of the input region An optical touch panel comprising: a light receiving unit that includes: an arithmetic processing unit that obtains an input position in the input region based on an output signal of the light receiving unit;
The light receiving unit is
A plurality of light receiving elements arranged linearly connected to each other in the direction of the first axis, each receiving light emitted by the light emitting unit, and each receiving a signal corresponding to the intensity of the received light A plurality of light receiving elements to output,
Each of the plurality of light receiving elements is individually provided in a plurality of light receiving elements each including three or more light receiving elements, and the light emitted from the light emitting unit receives each of the light emitting elements as parallel light. A plurality of optical components to be
The arithmetic processing unit
Of the three or more light receiving elements included in each of the plurality of element arrays, the signal output by one central light receiving element closest to the optical axis of each of the plurality of optical components provided correspondingly is provided. Calculating the coordinates of the first axis of the input position in the input region based on the size in each of the plurality of element rows,
Of the three or more light receiving elements included in each of the plurality of element rows, the M-side (M is an integer of 1 or more) one-side light receiving element outputs the signal from the central light receiving element in one direction. , Each of the plurality of element rows of the plurality of element rows and the signal output by the Nth (N is an integer of 1 or more) other side light receiving elements in the opposite direction from the central light receiving element. Calculating the coordinates of the second axis orthogonal to the first axis of the input position in the input region based on the size at
An optical touch panel characterized by
前記発光部及び前記受光部を備える第1の光検出機構と、前記発光部及び前記受光部とそれぞれ同一の構成を有する第2の発光部及び第2の受光部を備える第2の光検出機構とを具備し、該第1の光検出機構の前記発光部及び前記受光部と、該第2の光検出機構の該第2の発光部及び該第2の受光部とが、前記入力領域の前記外縁に沿って互いに90度ずれた位置に設置されている、請求項1〜9のいずれか1項に記載の光式タッチパネル。   A first light detection mechanism including the light emitting unit and the light receiving unit, and a second light detection mechanism including a second light emitting unit and a second light receiving unit having the same configuration as the light emitting unit and the light receiving unit, respectively. The light emitting unit and the light receiving unit of the first light detection mechanism, and the second light emitting unit and the second light receiving unit of the second light detection mechanism are included in the input region. The optical touch panel according to claim 1, wherein the optical touch panel is installed at a position shifted by 90 degrees along the outer edge. 前記演算処理部は、前記複数の受光部材が出力する前記信号の誤差を補正する補正部を有し、該補正部による補正後の前記信号に基づいて、前記入力位置の前記第1軸の座標と前記第2軸の座標とを算出する、請求項1〜10のいずれか1項に記載の光式タッチパネル。   The arithmetic processing unit includes a correction unit that corrects an error of the signal output by the plurality of light receiving members, and the coordinates of the first axis of the input position based on the signal corrected by the correction unit. The optical touch panel according to claim 1, wherein the coordinates of the second axis are calculated.
JP2009235595A 2009-10-09 2009-10-09 Optical touch panel Pending JP2011081740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235595A JP2011081740A (en) 2009-10-09 2009-10-09 Optical touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235595A JP2011081740A (en) 2009-10-09 2009-10-09 Optical touch panel

Publications (1)

Publication Number Publication Date
JP2011081740A true JP2011081740A (en) 2011-04-21

Family

ID=44075707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235595A Pending JP2011081740A (en) 2009-10-09 2009-10-09 Optical touch panel

Country Status (1)

Country Link
JP (1) JP2011081740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268535B1 (en) * 2012-06-11 2013-05-28 최대규 Hybrid optical touch screen apparatus
KR101268531B1 (en) * 2012-06-08 2013-05-28 최대규 Optical touch screen apparatus
KR101268533B1 (en) * 2012-06-08 2013-05-28 최대규 Optical touch screen apparatus
JP2013522801A (en) * 2010-03-24 2013-06-13 ネオノード インコーポレイテッド Lens array for light-based touch screen
WO2013147464A1 (en) * 2012-03-26 2013-10-03 주식회사 알엔디플러스 Multi-touch screen device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240315A (en) * 1985-04-17 1986-10-25 Canon Inc Optical coordinate input device
JPH06214707A (en) * 1992-12-10 1994-08-05 Philips Electron Nv Data input device by touch tablet
JPH11232024A (en) * 1998-02-13 1999-08-27 Alpine Electron Inc Optical position detector
JP2001175416A (en) * 1999-12-16 2001-06-29 Pioneer Electronic Corp Method for detecting coordinate position and display device using the same
JP2003515837A (en) * 1999-12-02 2003-05-07 エロ・タッチシステムズ・インコーポレイテッド Apparatus and method for increasing resolution of infrared touch system
JP2006172470A (en) * 2004-12-16 2006-06-29 Agilent Technol Inc System and method for high-resolution optical touch positioning system
WO2009096706A2 (en) * 2008-01-29 2009-08-06 Melfas, Inc. Touch sensor panel having a split-electrode structure and a touch sensor device provided with the same
WO2010015408A1 (en) * 2008-08-07 2010-02-11 Owen Drumm Method and apparatus for detecting a multitouch event in an optical touch-sensitive device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240315A (en) * 1985-04-17 1986-10-25 Canon Inc Optical coordinate input device
JPH06214707A (en) * 1992-12-10 1994-08-05 Philips Electron Nv Data input device by touch tablet
JPH11232024A (en) * 1998-02-13 1999-08-27 Alpine Electron Inc Optical position detector
JP2003515837A (en) * 1999-12-02 2003-05-07 エロ・タッチシステムズ・インコーポレイテッド Apparatus and method for increasing resolution of infrared touch system
JP2001175416A (en) * 1999-12-16 2001-06-29 Pioneer Electronic Corp Method for detecting coordinate position and display device using the same
JP2006172470A (en) * 2004-12-16 2006-06-29 Agilent Technol Inc System and method for high-resolution optical touch positioning system
WO2009096706A2 (en) * 2008-01-29 2009-08-06 Melfas, Inc. Touch sensor panel having a split-electrode structure and a touch sensor device provided with the same
WO2010015408A1 (en) * 2008-08-07 2010-02-11 Owen Drumm Method and apparatus for detecting a multitouch event in an optical touch-sensitive device
JP2011530123A (en) * 2008-08-07 2011-12-15 ドラム,オウエン Method and apparatus for detecting multi-touch events in optical touch sensitive devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522801A (en) * 2010-03-24 2013-06-13 ネオノード インコーポレイテッド Lens array for light-based touch screen
WO2013147464A1 (en) * 2012-03-26 2013-10-03 주식회사 알엔디플러스 Multi-touch screen device
KR101372423B1 (en) * 2012-03-26 2014-03-10 주식회사 알엔디플러스 Multi-touch on touch screen apparatus
CN104246672A (en) * 2012-03-26 2014-12-24 研得株式会社 Multi-touch screen device
US9671882B2 (en) 2012-03-26 2017-06-06 Rndplus Co., Ltd. Multi-touch screen device
CN104246672B (en) * 2012-03-26 2017-08-04 研得株式会社 Multi-point touch screen device
KR101268531B1 (en) * 2012-06-08 2013-05-28 최대규 Optical touch screen apparatus
KR101268533B1 (en) * 2012-06-08 2013-05-28 최대규 Optical touch screen apparatus
KR101268535B1 (en) * 2012-06-11 2013-05-28 최대규 Hybrid optical touch screen apparatus

Similar Documents

Publication Publication Date Title
US8130210B2 (en) Touch input system using light guides
US7809221B2 (en) Shadow detection in optical touch sensor through the linear combination of optical beams and grey-scale determination of detected shadow edges
JP5459689B2 (en) Optical touch screen
US9454266B2 (en) Touchscreen for detecting multiple touches
AU2010236331B2 (en) Optical touch screen systems using reflected light
US9213443B2 (en) Optical touch screen systems using reflected light
JP5552296B2 (en) Optical touch device and shielding object position detection method
JP5308359B2 (en) Optical touch control system and method
US20110157097A1 (en) Coordinate sensor, electronic device, display device, light-receiving unit
KR20140133858A (en) Displays and information input devices
KR20120027174A (en) Multi-touch optical touch panal
US20100085329A1 (en) Optical touch display device, optical touch sensing device and touch sensing method
US8922526B2 (en) Touch detection apparatus and touch point detection method
US10956702B2 (en) Apparatus for recognizing a fingerprint, and display device
KR101657216B1 (en) Touch panel and touch position detection method of touch panel
JP2011081740A (en) Optical touch panel
US20120306820A1 (en) Optical touch device and locating method thereof
KR20100066671A (en) Touch display apparatus
JP5368731B2 (en) Touch panel
KR20120066814A (en) Optical touch pannel
KR101009912B1 (en) An interactive touch screen system with multi-layered photo-transistors
CN102063228A (en) Optical sensing system and touch screen applying same
KR101236200B1 (en) Touch screen using multi reflection
JP2011096834A (en) Optical type reflecting object detector and touch panel
KR20120063423A (en) Optical touch screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008