JP2011081674A - Method for obtaining operating point of system with nonlinear element characteristics approximated into divided polygonal line by electronic computer, program for the same, storage medium storing the program, and simulation device - Google Patents

Method for obtaining operating point of system with nonlinear element characteristics approximated into divided polygonal line by electronic computer, program for the same, storage medium storing the program, and simulation device Download PDF

Info

Publication number
JP2011081674A
JP2011081674A JP2009234549A JP2009234549A JP2011081674A JP 2011081674 A JP2011081674 A JP 2011081674A JP 2009234549 A JP2009234549 A JP 2009234549A JP 2009234549 A JP2009234549 A JP 2009234549A JP 2011081674 A JP2011081674 A JP 2011081674A
Authority
JP
Japan
Prior art keywords
solution
nonlinear
nonlinear element
operating point
approximated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234549A
Other languages
Japanese (ja)
Other versions
JP5294328B2 (en
Inventor
Migaku Noda
琢 野田
Toshiaki Kikuma
俊明 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009234549A priority Critical patent/JP5294328B2/en
Publication of JP2011081674A publication Critical patent/JP2011081674A/en
Application granted granted Critical
Publication of JP5294328B2 publication Critical patent/JP5294328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and the like which can rapidly and surely converge an operating point of a nonlinear system with nonlinear element characteristics approximated into divided polygonal line. <P>SOLUTION: The method includes an operation section specifying process which specifies a nonlinear element operation section to which a solution x<SP>(n)</SP>belongs, a process which calculates a slope and an intercept of a straight line of the nonlinear element and obtains the solution x<SP>(n)</SP>based on a formula into which an equation expressing a nonlinear system through the slope and the intercept is linearized, and a process which decides that the solution x<SP>(n)</SP>is a solution to be obtained when the nonlinear element operation section to which the solution x<SP>(n)</SP>belongs and an operation section to which a solution x<SP>(n-1)</SP>belongs coincide with each other. In the operation section specifying process, a first operation section to which the solution x<SP>(n)</SP>belongs when an X axis is a reference and a second operation section to which the solution x<SP>(n)</SP>belongs when a Y axis is a reference are obtained respectively, and the first or the second operation section closer to the operation section to which the solution x<SP>(n-1)</SP>belongs is specified as the nonlinear element operation section. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法、そのプログラム、当該プログラムを記録した記録媒体及びシミュレーション装置に関する。   The present invention relates to a method for obtaining an operating point of a system in which the characteristic of a nonlinear element is approximated by a piecewise broken line by an electronic computer, a program thereof, a recording medium recording the program, and a simulation apparatus.

非線形要素の特性が区分折れ線近似されたシステムの一例として、電力システム(電力系統)を例に挙げて説明する。なお、本発明は、電力システムに限らず、電気・電子回路を始めとするあらゆるシステムに適用することができるものである。   A power system (power system) will be described as an example of a system in which the characteristics of nonlinear elements are approximated by piecewise broken lines. In addition, this invention is applicable not only to an electric power system but to all systems including an electric / electronic circuit.

近年、電力システムには、動力負荷、照明負荷、情報機器負荷など、負荷の多くがパワーエレクトロニクス(以下、PEと略記する。)回路を用いて接続されている。また、自然エネルギー発電設備や電力貯蔵装置もPE回路により電力システムに接続される場合がほとんどであり、また、PE技術を適用した系統安定化装置の導入も始まっている。   In recent years, many loads such as a power load, a lighting load, and an information equipment load are connected to a power system using a power electronics (hereinafter abbreviated as PE) circuit. In addition, natural energy power generation facilities and power storage devices are almost always connected to a power system by a PE circuit, and introduction of a system stabilizing device using PE technology has begun.

PE回路はスイッチングデバイスを用いて高速に電流を入切することを動作原理とする。従って、PE回路を含む系統の解析には、従来の実効値レベルの解析だけでなく、波形レベルの解析、すなわち、瞬時値解析(他分野では過渡現象解析やトランジエント解析とも呼ばれる。)が必要となる。また、PE回路に関連する解析だけでなく、近年その重要性が認識されてきた電力品質に関する解析にも瞬時値解析が主に用いられる。さらに、従来より瞬時値解析を適用してきた各種過電圧、過電流、異常共振に関する解析についても、設備リプレースに伴う設計見直しを機にこれらの解析を実施する機会が増えている。   The PE circuit has an operation principle of switching on and off current at high speed using a switching device. Therefore, the analysis of the system including the PE circuit requires not only the analysis of the conventional effective value level but also the analysis of the waveform level, that is, the instantaneous value analysis (also called transient phenomenon analysis or transient analysis in other fields). It becomes. In addition to the analysis related to the PE circuit, the instantaneous value analysis is mainly used for the analysis related to the power quality whose importance has been recognized in recent years. In addition, with regard to analysis on various overvoltages, overcurrents, and abnormal resonances to which instantaneous value analysis has conventionally been applied, there are increasing opportunities to carry out these analyzes after a design review accompanying equipment replacement.

瞬時値解析の一例としては、解析対象の電気回路について回路方程式を作成し、この回路方程式をNewton-Raphson法(以下、NR法とも略記する。)を用いて線形化して得られた連立一次方程式を解いて電気回路の動作点を求める方法がある(例えば、特許文献1参照。)。なお、非特許文献1には、非線形要素の特性が区分折れ線近似された電子回路にNR法を適用した旨が記載されている。   As an example of instantaneous value analysis, a circuit equation is created for an electric circuit to be analyzed, and the linear equation obtained by linearizing the circuit equation using the Newton-Raphson method (hereinafter also abbreviated as NR method) is used. There is a method of obtaining the operating point of the electric circuit by solving (see, for example, Patent Document 1). Non-Patent Document 1 describes that the NR method is applied to an electronic circuit whose characteristics of nonlinear elements are approximated by piecewise broken lines.

しかしながら、NR法は、初期値によっては収束しない場合があり、特に、電気回路など、IGBT(Insulted Gate Bipolar Transistor)等の非線形素子を含むような非線形性の強い回路に係る回路方程式に適用する際には、この収束性の問題が顕著となる。一方、全ての非線形素子の特性が単調増加で区分折れ線近似されている場合には必ず収束するKatzenelson法(例えば、非特許文献2参照。)という手法があるが、収束に必要な反復回数が多く、実用的でないことが知られている。   However, the NR method may not converge depending on the initial value. In particular, the NR method may be applied to a circuit equation related to a highly nonlinear circuit such as an electric circuit or the like including a nonlinear element such as an IGBT (Insulted Gate Bipolar Transistor). In this case, the problem of convergence becomes remarkable. On the other hand, there is a method called Katzenelson method (see Non-Patent Document 2, for example) that always converges when the characteristics of all the nonlinear elements are monotonically increasing and are approximated by piecewise broken lines. However, the number of iterations necessary for convergence is large. It is known to be impractical.

なお、このような問題は、非線形性の強い電気・電子回路に係る回路方程式にNR法を適用する場合のみではなく、一般に、非線形要素の特性が区分折れ線近似された非線形システムについても同様に存在する。   Such problems exist not only when the NR method is applied to circuit equations relating to highly nonlinear electrical and electronic circuits, but also generally in nonlinear systems in which the characteristics of nonlinear elements are approximated by piecewise broken lines. To do.

特開2002−197401号公報JP 2002-197401 A

L.O. Chua, “Efficient computer algorithms for piecewise-linear analysis of resistive nonlinear networks,” IEEE Trans., Circuit Theory, vol.CT-18, no.1, pp 73-85, Jan. 1971.L.O. Chua, “Efficient computer algorithms for piecewise-linear analysis of resistive nonlinear networks,” IEEE Trans., Circuit Theory, vol.CT-18, no.1, pp 73-85, Jan. 1971. J.Katzenelson, “An Algorithm for solving nonlinear resistor networks,” Bell Syst. Tech. J., pp. 1605-1620, Oct. 1965.J. Katzenelson, “An Algorithm for solving nonlinear resistor networks,” Bell Syst. Tech. J., pp. 1605-1620, Oct. 1965.

本発明は、上記従来技術に鑑み、非線形要素の特性が区分折れ線近似された非線形システムの動作点を高速且つ確実に収束することができる方法、そのプログラム、当該プログラムを記録した記録媒体及びシミュレーション装置を提供することを目的とする。   In view of the above prior art, the present invention provides a method capable of quickly and reliably converging the operating point of a nonlinear system in which the characteristics of nonlinear elements are approximated by piecewise broken lines, a program thereof, a recording medium recording the program, and a simulation apparatus The purpose is to provide.

本発明は、非線形要素の特性が区分折れ線近似された非線形システムの動作点を反復計算により求めるが、以降の説明では、各反復計算ステップ(求解処理)での解を単に「解」と称し、反復計算(収束判定処理)の結果、最終的に求めようとしている解を「求める解」と称する。   In the present invention, the operating point of the nonlinear system in which the characteristic of the nonlinear element is approximated by piecewise broken line is obtained by iterative calculation. In the following explanation, the solution at each iteration calculation step (solution processing) is simply referred to as “solution”. As a result of iterative calculation (convergence determination processing), a solution that is finally obtained is referred to as a “required solution”.

上記目的を達成するための本発明の第1の態様は、非線形要素の特性が区分折れ線近似された非線形システムの動作点を電子計算機により求める方法であって、非線形要素の特性を複数の動作区間ごとに直線で近似した特性情報及び前記非線形システムを表す方程式の初期解x(0)を入力する初期設定処理と、解x(n)が属する前記非線形要素の動作区間を特定する動作区間特定処理と、前記動作区間における前記非線形要素の直線の傾き及び切片を計算し、当該傾き及び切片から前記非線形システムを表す方程式を線形化した(a)式

Figure 2011081674
のF(n−1)の値及びy(n−1)の値を計算し、当該F(n−1)の値及びy(n−1)の値を用いて(a)式を解いて解x(n)を求める求解処理と、解x(n)が属する前記非線形要素の動作区間と、解x(n−1)が属する動作区間とが一致した場合に解x(n)を求める解とし、一致しない場合は前記動作区間特定処理及び前記求解処理を再実行させる収束判定処理とを備え、前記動作区間特定処理では、解x(n)(ただし、nは1以上)の動作区間を特定する際には、X軸を基準としたときの解x(n)が属する前記非線形要素の第1動作区間と、Y軸を基準としたときの解x(n)が属する前記非線形要素の第2動作区間とをそれぞれ求め、第1動作区間及び第2動作区間のうち解x(n−1)が属する前記非線形要素の動作区間に近い方を前記非線形要素の動作区間として特定することを特徴とする非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法にある。 In order to achieve the above object, a first aspect of the present invention is a method for obtaining an operating point of a nonlinear system in which a characteristic of a nonlinear element is approximated by a piecewise broken line by an electronic computer, wherein the characteristic of the nonlinear element is determined by a plurality of operating sections. Initial setting processing for inputting characteristic information approximated by a straight line and an initial solution x (0) of an equation representing the nonlinear system, and motion interval specifying processing for specifying the motion interval of the nonlinear element to which the solution x (n) belongs And a linear slope and intercept of the nonlinear element in the motion section, and an equation representing the nonlinear system is linearized from the slope and intercept (a)
Figure 2011081674
F (n-1) value and y (n-1) value are calculated, and equation (a) is solved using the F (n-1) value and y (n-1) value. obtaining a solving process to find the solution x (n), the operation section of the nonlinear element the solution x (n) belongs, the solution x (n) when the operation period the solution x (n-1) belongs matches A solution determination process that re-executes the action section specifying process and the solution-finding process if they do not match. In the action section specifying process, the action section of the solution x (n) (where n is 1 or more) , The first motion section of the nonlinear element to which the solution x (n) when the X axis is a reference belongs, and the nonlinear element to which the solution x (n) when the Y axis is a reference the second obtains the operation period, respectively, the nonlinear the solution x (n-1) belongs among the first operation period and the second operation section Certain operating point of the system characteristics of the nonlinear element is divided polygonal line approximation, characterized by identifying the closer to the operation section of the unit as an operation section of the nonlinear element to the method determined by the electronic computer.

かかる第1の態様では、解x(n)が属する動作区間を特定する際に、一方の軸のみならず、X軸Y軸の両方について動作区間を求め、それらのうち、解x(n−1)の動作区間に近い方を動作区間として特定する。すなわち、本発明は、従来のNR法に比べて1回の反復で飛び越せる動作区間数が少ない。このため、本発明は、非線形要素の特性によっては求める解が属する動作区間からかけ離れた動作区間に解が移動してしまうということを回避することができ、収束性を高めることができる。 In the first aspect, when the motion section to which the solution x (n) belongs is specified, motion sections are obtained not only for one axis but also for both the X axis and the Y axis, and among them, the solution x (n− The one closer to the operation section 1) is specified as the operation section. That is, according to the present invention, the number of operation sections that can be skipped in one iteration is smaller than that of the conventional NR method. For this reason, according to the present invention, it can be avoided that the solution moves to an operation section far from the operation section to which the solution to be found belongs depending on the characteristics of the nonlinear element, and the convergence can be improved.

本発明の第2の態様は、第1の態様に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法において、前記初期設定処理実行後、Newton-Raphson法を用いて解を求め、所定の反復回数以内に解が求まらない場合に、前記動作区間特定処理から前記収束判定処理を実行することを特徴とする非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法にある。   According to a second aspect of the present invention, in the method for obtaining an operating point of a system in which the characteristic of the nonlinear element described in the first aspect is approximated by a piecewise broken line by an electronic computer, the Newton-Raphson method is performed after the initial setting process is executed. A system in which characteristics of a nonlinear element are approximated by piecewise broken lines, wherein the convergence determination process is executed from the action section specifying process when a solution is not obtained within a predetermined number of iterations. The operating point is obtained by a computer.

かかる第2の態様では、第1の態様で述べたように両軸についての動作区間を求めることで収束性を高めつつ、計算時間の少ない従来NR法を併用することで全体的に計算時間を短縮することができる。   In the second aspect, as described in the first aspect, the calculation time is reduced overall by using the conventional NR method with a short calculation time while improving the convergence by obtaining the operation sections for both axes. It can be shortened.

本発明の第3の態様は、第2の態様に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法において、前記収束判定処理では、所定の回数以内に収束しない場合に、Katzenelson法に切り替えて解を求めることを特徴とする非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法にある。   According to a third aspect of the present invention, in the method for obtaining an operating point of a system in which the characteristic of the nonlinear element described in the second aspect is approximated by a piecewise broken line by an electronic computer, the convergence determination process performs convergence within a predetermined number of times. If not, there is a method for obtaining the operating point of a system in which the characteristic of the nonlinear element is approximated by a piecewise broken line, which is characterized in that the solution is obtained by switching to the Katzenelson method.

かかる第3の態様では、収束する保証のあるKatzenelson法を併用することで確実に解が得られることを担保すると共に、Katzenelson法のみを用いた場合よりも計算時間を短縮することができる。   In the third aspect, it is possible to ensure that a solution can be reliably obtained by using the Katzenelson method that is guaranteed to converge, and to shorten the calculation time compared to the case of using only the Katzenelson method.

本発明の第4の態様は、第1〜第3の何れか一つの態様に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を電子計算機に実行させるプログラムにある。   According to a fourth aspect of the present invention, there is provided a program for causing an electronic computer to execute a method for obtaining an operating point of a system in which the characteristic of the nonlinear element described in any one of the first to third aspects is approximated by a piecewise broken line. It is in.

本発明の第5の態様は、第4の態様に記載するプログラムを記録した電子計算機で読み取り可能な記録媒体にある。   A fifth aspect of the present invention resides in a recording medium readable by an electronic computer in which the program described in the fourth aspect is recorded.

本発明の第6の態様は、第1〜第3の何れか一つの態様に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を実行するように構成されたコンピュータを有することを特徴とするシミュレーション装置にある。   A sixth aspect of the present invention is configured to execute a method for obtaining an operating point of a system in which the characteristic of the nonlinear element described in any one of the first to third aspects is approximated by a piecewise broken line by an electronic computer. A simulation apparatus having a computer.

かかる第4〜第6の態様では、いずれも、これらを用いて上記非線形システムの動作点を求めるに際し、計算時間を短縮するとともに、収束性を向上することができる。   In any of the fourth to sixth aspects, when these are used to determine the operating point of the nonlinear system, the calculation time can be shortened and the convergence can be improved.

本発明の第7の態様は、第6の態様に記載するシミュレーション装置において、前記非線形システムは、非線形素子を含む仮想的な電気・電子回路であり、前記電気・電子回路の制御を行う前記制御装置からの制御信号がA/Dコンバータを介して前記電気・電子回路のシミュレーションに用いられる入力データとして入力され、前記電気・電子回路の所定部分の電圧又は電流に関する計算値をD/Aコンバータによりその電圧又は電流に変換して前記制御装置に出力し、前記制御装置の動作に合わせて実時間に同期させて前記電気・電子回路の動作を計算するように構成されたことを特徴とするシミュレーション装置にある。   According to a seventh aspect of the present invention, in the simulation apparatus according to the sixth aspect, the nonlinear system is a virtual electric / electronic circuit including a nonlinear element, and the control for controlling the electric / electronic circuit is performed. A control signal from the apparatus is input as input data used for simulation of the electric / electronic circuit via an A / D converter, and a calculated value relating to a voltage or current of a predetermined portion of the electric / electronic circuit is output by the D / A converter. A simulation that is configured to calculate the operation of the electric / electronic circuit in synchronization with real time in accordance with the operation of the control device by converting the voltage or current to the control device and outputting it to the control device. In the device.

かかる第7の態様では、電気・電子回路の動作点を計算するにあたり、少ない計算時間で、かつ、高い収束性で解を得ることができるので、実機である制御装置等の動作をリアルタイムで検証することができる。   In the seventh aspect, when calculating the operating point of the electric / electronic circuit, the solution can be obtained with a short calculation time and high convergence, so that the operation of the actual control device or the like can be verified in real time. can do.

本発明によれば、非線形要素の特性が区分折れ線近似された非線形システムの動作点を高速且つ確実に収束することができる方法、そのプログラム、当該プログラムを記録した記録媒体及びシミュレーション装置が提供される。   According to the present invention, there are provided a method capable of rapidly and reliably converging operating points of a nonlinear system whose characteristics of nonlinear elements are approximated by piecewise broken lines, a program thereof, a recording medium recording the program, and a simulation apparatus. .

電子回路Iの回路図及び非線形抵抗の電圧−電流特性を示す図である。It is a figure which shows the circuit diagram of the electronic circuit I, and the voltage-current characteristic of a nonlinear resistance. 本発明の実施形態1に係るシミュレーション装置の構成を示すブロック図である。It is a block diagram which shows the structure of the simulation apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るシミュレーション装置に係るコンピュータのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the computer which concerns on the simulation apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法のフローを示す図である。It is a figure which shows the flow of the method of calculating | requiring the operating point of the system by which the characteristic of the nonlinear element which concerns on Embodiment 1 of this invention was piecewise broken line approximated with an electronic computer. 電子回路Iの電圧−電流特性を示す図である。FIG. 3 is a diagram illustrating voltage-current characteristics of an electronic circuit I. 従来NR法における動作区間選定方法を示す図である。It is a figure which shows the operation area selection method in the conventional NR method. 従来NR法の収束性を示す図である。It is a figure which shows the convergence of the conventional NR method. 本発明の実施形態1に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法の収束性を示す図である。It is a figure which shows the convergence of the method of calculating | requiring the operating point of the system by which the characteristic of the nonlinear element which concerns on Embodiment 1 of this invention was piecewise broken line approximated with an electronic computer. Katzenelson法の収束性を示す図である。It is a figure which shows the convergence of Katzenelson method. 本発明の実施形態2に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法のフローを示す図である。It is a figure which shows the flow of the method of calculating | requiring the operating point of the system by which the characteristic of the nonlinear element which concerns on Embodiment 2 of this invention was piecewise broken line approximation with an electronic computer. 電子回路II及び電子回路IIIに係る非線形抵抗の電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of the nonlinear resistance which concerns on the electronic circuit II and the electronic circuit III. 電子回路IIにおける反復計算の軌跡を示す図である。It is a figure which shows the locus | trajectory of iterative calculation in the electronic circuit II. 電子回路IIIにおける反復計算の軌跡を示す図である。It is a figure which shows the locus | trajectory of iterative calculation in the electronic circuit III. 太陽光発電設備のパワーコンディショナ回路図である。It is a power conditioner circuit diagram of photovoltaic power generation equipment. ダイオードとIGBTのモデルを示す図である。It is a figure which shows the model of a diode and IGBT. 太陽光発電設備のパワーコンディショナ回路に係る各素子の非線形特性を示す図である。It is a figure which shows the nonlinear characteristic of each element which concerns on the power conditioner circuit of photovoltaic power generation equipment. 本発明の実施形態2に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法により求められたインバータ出力電圧・電流波形である。It is the inverter output voltage and current waveform calculated | required by the method of calculating | requiring the operating point of the system by which the characteristic of the nonlinear element which concerns on Embodiment 2 of this invention was piecewise broken line approximated with an electronic computer. 1周期の反復回数の変化を示す図である。It is a figure which shows the change of the repetition frequency | count of 1 period. IGBTの電圧波形と反復回数の関係を示す図である。It is a figure which shows the relationship between the voltage waveform of IGBT, and the frequency | count of repetition. 本発明と従来NR法とでそれぞれ計算したインバータ出力電圧波形を比較した図である。It is the figure which compared the inverter output voltage waveform each calculated by this invention and the conventional NR method. 本発明の実施形態3に係るシミュレーション装置の構成を示すブロック図である。It is a block diagram which shows the structure of the simulation apparatus which concerns on Embodiment 3 of this invention.

〈実施形態1〉
本発明の実施形態に係る「非線形要素の特性が区分折れ線近似された非線形システムの動作点を電子計算機により求める方法(以下、動作点求解方法とも記載する)」が対象とする非線形システムは、非線形の連立方程式で表すことができる系であり、一般に、次の(1)式で導出できる。
<Embodiment 1>
A nonlinear system targeted by a “method for obtaining an operating point of a nonlinear system in which the characteristics of nonlinear elements are approximated by piecewise broken lines” (hereinafter also referred to as an operating point solution method) according to an embodiment of the present invention is a nonlinear system. The system can be expressed by the following simultaneous equations and can be generally derived by the following equation (1).

Figure 2011081674
Figure 2011081674

xは求めるべきN個の未知変数からなるベクトル、f(・)はN本の非線形方程式を与えるベクトル関数である。(1)式は非線形の連立方程式であるから、これを解くには反復計算が必要となる。(1)式をxについて線形化すれば、反復計算の(2)式が得られる。   x is a vector composed of N unknown variables to be obtained, and f (·) is a vector function giving N nonlinear equations. Since equation (1) is a nonlinear simultaneous equation, iterative calculation is required to solve it. If the equation (1) is linearized with respect to x, the equation (2) of the iterative calculation is obtained.

Figure 2011081674
Figure 2011081674

変数右肩の括弧内の数字は、反復ステップを示し、Fはf(・)をxに対して偏微分して得られるN×N行列である。初期値x(0)からスタートして、逐次、(2)式の連立一次方程式を解いていくことにより更新された解x(n)を得る。ただし、F(n−1),y(n−1)は、1つ前の反復ステップにおける解x(n−1)から算出することができる。解x(n)が収束すれば、その値を求める解とし、反復計算を終了する。 The number in parentheses on the right shoulder of the variable indicates the iteration step, and F is an N × N matrix obtained by partial differentiation of f (•) with respect to x. Starting from the initial value x (0), an updated solution x (n) is obtained by sequentially solving the simultaneous linear equations of equation (2). However, F (n-1) and y (n-1) can be calculated from the solution x (n-1) in the previous iteration step. When the solution x (n) converges, the solution is obtained and the iterative calculation is terminated.

実際には、(1)式を構成することはなく、直接(2)式を構成して反復計算を行うことが普通である。例えば電気・電子回路の場合、(2)式を構成する一つの方法としてスパースタブロー法がある。もちろん、(1)式を(2)式の形式で構成することができれば、スパースタブロー法以外の手法でもよい。   Actually, the formula (1) is not constructed, and it is usual to construct the formula (2) directly and perform the iterative calculation. For example, in the case of an electric / electronic circuit, there is a sputter blow method as one method for constructing the equation (2). Of course, as long as the expression (1) can be configured in the form of the expression (2), a technique other than the sputter blow method may be used.

本発明に係る動作点求解方法は、非線形システムに含まれる非線形要素の特性が区分折れ線近似されていることを前提とし、上記反復計算により非線形システムを表す方程式を解く。なお、非線形要素の特性が区分折れ線近似されているとは、非線形要素の特性が複数の直線から構成されていることをいう。   The operating point solving method according to the present invention is based on the premise that the characteristics of the nonlinear elements included in the nonlinear system are approximated by piecewise broken lines, and solves the equation representing the nonlinear system by the above iterative calculation. Note that the characteristic of the nonlinear element being approximated by a piecewise broken line means that the characteristic of the nonlinear element is composed of a plurality of straight lines.

以降、非線形要素の特性が区分折れ線近似されたシステムの一例として、電子回路を例に挙げ説明する。図1に、非線形抵抗を含む電子回路Iと、非線形要素の一例である非線形抵抗の特性(v−i特性)を示す。   Hereinafter, an electronic circuit will be described as an example of a system in which characteristics of nonlinear elements are approximated by piecewise broken lines. FIG. 1 shows an electronic circuit I including a nonlinear resistance and characteristics (vi characteristics) of a nonlinear resistance which is an example of a nonlinear element.

図1(a)に示すように、非線形システムの一例である電子回路Iは、直流電源、抵抗、及び非線形要素の一例である非線形抵抗から構成されている。また、図1(b)には、非線形抵抗Rのv−i特性が示されている。この非線形抵抗Rのv−i特性は、区分折れ線近似されている。すなわち、v−i特性が複数の直線から構成されている。各直線の電圧軸v方向及び電流軸i方向の範囲を動作区間という。図1(b)の例では、非線形抵抗Rのv−i特性は、動作区間1(v<−1、i<−1)における直線部分と、動作区間2(−1≦v<1、−1≦i<1)における直線部分と、動作区間3(1≦v、1≦i)における直線部分とから構成されている。 As shown in FIG. 1A, an electronic circuit I that is an example of a non-linear system includes a DC power source, a resistor, and a non-linear resistance that is an example of a non-linear element. Further, in FIG. 1 (b), v-i characteristic of the nonlinear resistor R N is shown. V-i characteristic of the nonlinear resistor R N is divided polygonal line approximation. That is, the vi characteristic is composed of a plurality of straight lines. A range of each straight line in the voltage axis v direction and the current axis i direction is referred to as an operation section. Figure 1 In the example of (b), v-i characteristic of the nonlinear resistor R N, the operation section 1 (v <-1, i < -1) and the straight line portion in the operating range 2 (-1 ≦ v <1, -1 ≦ i <1) and a linear portion in the operation section 3 (1 ≦ v, 1 ≦ i).

このような非線形要素の特性が区分折れ線近似された非線形システムの動作点を電子計算機により求める方法及び当該方法を実行するよう構成されたシミュレーション装置について詳細に説明する。   A method for obtaining an operating point of a nonlinear system in which the characteristics of such nonlinear elements are approximated by piecewise broken lines by an electronic computer and a simulation apparatus configured to execute the method will be described in detail.

シミュレーション装置1は、図2に示すように、後述する初期設定処理、動作区間特定処理、求解処理及び収束判定処理を実行する各手段11〜14を備えたコンピュータ20を有する装置である。図3に示すように、コンピュータ20は、CPU21、RAM22、ROM23、ハードディスク24等の記憶手段を備え、キーボードや記憶媒体読み取り装置などの入力装置30と、ディスプレイ、プリンタ等の出力装置40が接続されている。   As shown in FIG. 2, the simulation apparatus 1 is an apparatus having a computer 20 that includes units 11 to 14 that execute an initial setting process, an operation section specifying process, a solution finding process, and a convergence determination process, which will be described later. As shown in FIG. 3, the computer 20 includes storage means such as a CPU 21, a RAM 22, a ROM 23, and a hard disk 24, and an input device 30 such as a keyboard and a storage medium reading device and an output device 40 such as a display and a printer are connected to the computer 20. ing.

図2に示すように、コンピュータ20が実行可能な各手段11〜14は、後述する動作点求解方法における各処理を実行する手段であり、具体的には、初期設定手段11と、動作区間特定手段12と、求解手段13と、収束判定手段14とを有している。これらの各手段11〜14は、動作点求解方法をコンピュータ20に実行させるためのプログラム10として作成したものを読み込んで実行可能としたものである。なお、これらの各手段11〜14は電子回路として実装されていても良い。   As shown in FIG. 2, each means 11 to 14 that can be executed by the computer 20 is a means for executing each process in an operating point solution method to be described later. Specifically, the initial setting means 11 and the operation section specifying Means 12, solution finding means 13, and convergence determination means 14 are provided. Each of these means 11 to 14 reads and creates a program 10 for causing the computer 20 to execute the operating point solution method. Each of these means 11 to 14 may be implemented as an electronic circuit.

ここで、図4を用いて、動作点求解方法の処理を説明する。図示するように、まず、非線形要素の特性を複数の動作区間ごとに直線で近似した特性情報及び非線形システムを表す方程式の初期解x(0)(反復子n=0)を入力する初期設定処理を行う(ステップS1)。非線形要素の数は、1ないし複数であり、非線形要素ごとの特性情報を入力する。また、この初期設定処理では、回路の構成に応じて電源などの他の要素についての特性情報も入力する。 Here, the process of the operating point solution method will be described with reference to FIG. As shown in the figure, first, initial setting processing for inputting characteristic information obtained by approximating a characteristic of a nonlinear element with a straight line for each of a plurality of motion sections and an initial solution x (0) (iterator n = 0) of an equation representing a nonlinear system. (Step S1). The number of nonlinear elements is one or more, and characteristic information for each nonlinear element is input. In this initial setting process, characteristic information about other elements such as a power supply is also input according to the circuit configuration.

この処理は初期設定手段11により実行され、具体的には、ハードディスク24に記録された特性情報及び初期解x(0)、又は、入力装置30を介して特性情報及び初期解x(0)をRAM22に記録する。特性情報は、各動作区間の電圧値v及び電流値iの範囲と、各動作区間の直線を表す傾き及び切片からなり、動作区間が特定されれば、その動作区間の直線の傾きと切片が得られるようにRAM22に記録されている。 This process is executed by the initial setting means 11. Specifically, the characteristic information and the initial solution x (0) recorded in the hard disk 24, or the characteristic information and the initial solution x (0) are input via the input device 30. Recorded in the RAM 22. The characteristic information includes a range of voltage value v and current value i of each operation section, and a slope and an intercept representing a straight line of each operation section. If an operation section is specified, the slope and intercept of the straight line of the operation section are It is recorded in the RAM 22 so as to be obtained.

次に、動作区間特定手段12が、解x(n)(最初の動作区間特定処理の実行時では反復子nは0)が属する各非線形要素の動作区間を特定する動作区間特定処理を行う(ステップS2)。この処理により、非線形要素ごとに、非線形要素の複数の動作区間のうち、次の求解処理で用いる動作区間が特定されることになる。なお、動作区間特定処理についての詳細は後述する。 Next, the motion section specifying means 12 performs a motion section specifying process for specifying the motion section of each nonlinear element to which the solution x (n) (iterator n is 0 when the first motion section specifying process is executed) ( Step S2). With this process, for each non-linear element, an operation section used in the next solution calculation process is specified among the plurality of operation sections of the non-linear element. Details of the operation section specifying process will be described later.

次に、求解手段13が反復子nをインクリメントし、(2)式を解いて解x(n)(最初の求解処理の実行時では反復子nは1)を求める求解処理を行う(ステップS3)。詳言すると、動作区間特定処理において特定された動作区間における各非線形要素の直線の傾き及び切片を計算する。この計算は、初期設定処理で入力された特性情報から計算することができる。そして、各非線形要素の傾き及び切片から(2)式のF(n−1)及びy(n−1)の値を計算する。これにより得られたF(n−1)及びy(n−1)を用いて(2)式を解き、解x(n)を求め、解x(n)をRAM22に記録しておく。 Next, the solving means 13 increments the iterator n, and solves the equation (2) to obtain a solution x (n) (iterator 1 is 1 when the first solving process is executed) (step S3). ). More specifically, the slope and intercept of the straight line of each nonlinear element in the motion section identified in the motion section identification process are calculated. This calculation can be calculated from the characteristic information input in the initial setting process. And the value of F (n-1) and y (n-1) of (2) Formula is calculated from the inclination and intercept of each nonlinear element. The equation (2) is solved using F (n−1) and y (n−1) obtained in this way to obtain a solution x (n) , and the solution x (n) is recorded in the RAM 22.

次に、収束判定手段14が、解x(n)が収束したか否かを判定する収束判定処理を行う(ステップS4)。詳言すると、複数ある非線形要素ごとに、解x(n)が属する非線形要素の動作区間と、解x(n−1)が属する動作区間とが一致するか否かを判定する。全ての非線形要素について、動作区間が一致する場合(ステップS5:Yes)、解x(n)を求める解とし、動作区間が一致しない非線形要素が一つでもあれば、解は収束していないとして(ステップS5:No)、動作区間特定処理(ステップS2)、求解処理(ステップS3)を再実行する。つまり、収束するまで、動作区間特定処理、求解処理、収束判定処理を繰り返し実行する。 Next, the convergence determination means 14 performs a convergence determination process for determining whether or not the solution x (n) has converged (step S4). Specifically, for each of a plurality of nonlinear elements, it is determined whether or not the motion section of the nonlinear element to which the solution x (n) belongs and the motion section to which the solution x (n−1) belongs. For all nonlinear elements, if the motion sections match (step S5: Yes), the solution x (n) is determined as a solution. If there is even one nonlinear element whose motion sections do not match, the solution is not converged. (Step S5: No), the operation section specifying process (Step S2), and the solution finding process (Step S3) are re-executed. That is, until the time of convergence, the operation section specifying process, the solution finding process, and the convergence determining process are repeatedly executed.

以上のようにして、非線形システムを表す方程式の解を得ることができるのであるが、動作区間特定処理において、非線形要素の動作区間の特定方法により収束性や計算量が異なる。本発明に係る動作点求解方法は、この動作区間の特定方法を工夫し、従来のNR法よりも高い収束性を有することとなった。以下、図1に示した電子回路Iを表す方程式を解く場合において、動作区間の特定方法に焦点を当てて説明するとともに、従来NR法よりも収束性が良いことを示す。   As described above, it is possible to obtain a solution of an equation representing a nonlinear system. However, in the operation section specifying process, the convergence and the calculation amount differ depending on the method for specifying the operation section of the nonlinear element. The operating point solution method according to the present invention has a higher convergence than the conventional NR method by devising this operating section specifying method. Hereinafter, in the case of solving the equation representing the electronic circuit I shown in FIG. 1, the description will focus on the method of specifying the operation section, and it will be shown that the convergence is better than the conventional NR method.

[従来NR方法]
図1(a)に示した電子回路Iは、スパースタブロー法、あるいは、別の定式化手法を用いた場合でも次の(3)式、(4)式に帰着できる。
[Conventional NR method]
The electronic circuit I shown in FIG. 1A can be reduced to the following formulas (3) and (4) even when the sputter blow method or another formulation method is used.

Figure 2011081674
Figure 2011081674

Figure 2011081674
Figure 2011081674

ただし、eは電源電圧、Rは直列抵抗の値、v,iは非線形抵抗の電圧、電流である。また、g(・)は非線形抵抗のv−i特性である(図1(b)参照)。これらの(3)式、(4)式を重ねたものを図5に示す。(3)式、(4)式の交点が電子回路Iの解を与えることが分かる。   Here, e is the power supply voltage, R is the value of the series resistance, and v and i are the voltage and current of the nonlinear resistance. In addition, g (•) is the vi characteristic of the nonlinear resistance (see FIG. 1B). FIG. 5 shows a superposition of these equations (3) and (4). It can be seen that the intersection of equations (3) and (4) gives the solution of electronic circuit I.

まず、非線形抵抗の特性情報と初期解x(0)(反復子n=0)を入力し、RAM22に記録しておく(初期設定処理)。次に、解x(n)(最初の動作区間特定処理の実行時では反復子nは0)が属する非線形抵抗の動作区間を特定する(動作区間特定処理)。この動作区間の特定方法を、図6を用いて説明する。図6には、非線形抵抗のv−i特性が示されており、v−i特性は複数の直線からなり、区分折れ線近似されている。このようなv−i特性の電圧軸vに着目し、解x(n)が各動作区間のいずれの範囲にあるかを計算することで、解x(n)が属する動作区間を特定する。つまり、複数ある動作区間のうち解x(n)の電圧値vを含む動作区間を求める。この例では、解x(n)の電圧値vと、RAM22に記録された各動作区間とを比較することで、解x(n)は動作区間Sに属していることが求められる。 First, the characteristic information of the nonlinear resistance and the initial solution x (0) (iterator n = 0) are input and recorded in the RAM 22 (initial setting process). Next, the operation section of the nonlinear resistance to which the solution x (n) (iterator n is 0 when the first operation section specifying process is executed) belongs is specified (operation section specifying process). A method for specifying this operation section will be described with reference to FIG. FIG. 6 shows the vi characteristic of the non-linear resistance. The vi characteristic is composed of a plurality of straight lines and is approximated by a piecewise broken line. Focusing on the voltage axis v of such v-i characteristic, the solution x (n) is to compute whether there in any of the range of each operation period, it identifies the operation period the solution x (n) belongs. That is, an operation interval including the voltage value v of the solution x (n) is obtained from a plurality of operation intervals. In this example, the voltage value v of the solution x (n), by comparing the respective operation sections recorded on the RAM 22, the solution x (n) is determined to belong to the operation section S 1.

ただし、必ずしも電圧軸vに着目する必要はなく、電流軸iに着目しても良い。すなわち、複数ある動作区間のうち、解x(n)の電流値iを含む動作区間を求めても良い。いずれにせよ、従来NR法では、動作区間を特定するに際し、いずれか一方の軸のみを用いる。 However, it is not always necessary to focus on the voltage axis v, and the current axis i may be focused. That is, an operation interval including the current value i of the solution x (n) may be obtained from a plurality of operation intervals. In any case, in the conventional NR method, only one of the axes is used when specifying the operation section.

次に、反復子nをインクリメントし、解x(n)(最初の求解処理の実行時では反復子nは1)を計算する(求解処理)。区分折れ線近似された非線形抵抗のv−i特性のうち、動作区間特定処理において特定した動作区間の直線の傾き及び切片を求める。そして、この傾き及び切片から(2)式のF(n−1)、y(n−1)を算出し、これらのF(n−1)、y(n−1)を用いて(2)式を解き、解x(n)を求める。そして、解x(n)が属する動作区間と、解x(n−1)が属する動作区間とが同一であるならば収束したとして、計算を終了し、同一でないならば、動作区間特定処理から繰り返す。 Next, the iterator n is incremented, and a solution x (n) (iterator n is 1 at the time of execution of the first solution processing) is calculated (solution processing). Of the vi characteristics of the non-linear resistance approximated by piecewise broken line, the slope and intercept of the straight line of the operation section specified in the operation section specifying process are obtained. And F (n-1) , y (n-1) of (2) Formula is calculated from this inclination and intercept, (2) using these F (n-1) , y (n-1 ). Solve the equation to find the solution x (n) . Then, if the motion section to which the solution x (n) belongs and the motion section to which the solution x (n−1) belong are the same, the calculation is terminated. repeat.

上記の動作区間特定処理、求解処理、収束判定処理を図7を用いて視覚的に説明する。図7は、(3)式及び(4)式を表したグラフであり、(4)式は、3つの動作区間(図中、「区間1」、「区間2」、「区間3」と表記してある。)ごとの直線から構成されている。初期解x(0)が予め与えられるので、解x(0)が属する動作区間が定まる。図示するように、動作区間3が特定される。 The above-described motion section specifying process, solution process, and convergence determination process will be described visually with reference to FIG. FIG. 7 is a graph showing the expressions (3) and (4). The expression (4) is expressed as three operation sections (in the figure, “section 1”, “section 2”, and “section 3”). It is composed of straight lines. Since the initial solution x (0) is given in advance, the operation interval to which the solution x (0) belongs is determined. As shown in the figure, the operation section 3 is specified.

次に、非線形抵抗のv−i特性のうち、動作区間3の直線の傾きと切片を求め、F(n−1)、y(n−1)を計算する。これにより、(4)式が、av+b=iのように線形化され、この線形化された式と(3)式とからなる連立方程式を解いて、解x(1)を得る。解x(1)が属する動作区間は、動作区間1であるので、解x(0)の動作区間3と異なるため、収束していないと判定し、次のステップに進む。 Next, among the vi characteristics of the nonlinear resistance, the slope and intercept of the straight line in the operation section 3 are obtained, and F (n−1) and y (n−1) are calculated. As a result, the equation (4) is linearized as av + b = i, and the simultaneous equation composed of the linearized equation and the equation (3) is solved to obtain a solution x (1) . Since the motion section to which the solution x (1) belongs is the motion section 1, since it is different from the motion section 3 of the solution x (0) , it is determined that it has not converged and the process proceeds to the next step.

解x(1)が属する動作区間を求めると、動作区間1が得られる。非線形抵抗のv−i特性のうち、動作区間1の直線の傾きと切片を求め、F(n−1)、y(n−1)を計算し、(4)式を線形化したav+b=iと(3)式とからなる連立方程式を解いて、解x(2)を得る。そして、この解x(2)について収束判定処理を行う。 When the motion section to which the solution x (1) belongs is obtained, the motion section 1 is obtained. Among the vi characteristics of the non-linear resistance, the slope and intercept of the straight line in the operation section 1 are obtained, F (n-1) and y (n-1) are calculated, and av + b = i obtained by linearizing the equation (4) And (3) are solved to obtain a solution x (2) . Then, a convergence determination process is performed for the solution x (2) .

以上に説明したように、解x(n)が求解されていくのであるが、さらに続けて、解x(2)から解x(3)を求めると、解x(2)は初期解x(0)と同じ動作区間3に属するため、解x(3)は、解x(1)と同じになってしまい、結局、永久に収束しない。このように、従来NR法では、解が収束しない場合がある。この非線形抵抗の場合、電流軸により動作区間を選定するようにすれば収束する。しかしながら、非線形抵抗の特性が電圧に対して電流が飽和する特性でなく(図1(b)参照)、電流に対して電圧が飽和する特性の場合、やはり巡回的に解の軌跡を辿るだけで、永久に解に到達できない。 As described above, although the solution x (n) is going to be solving, further followed, if solving x (3) from the solution x (2), the solution x (2) is the initial solution x ( Since it belongs to the same operation section 3 as 0) , the solution x (3) becomes the same as the solution x (1) and does not converge forever. Thus, in the conventional NR method, the solution may not converge. In the case of this non-linear resistance, convergence is achieved by selecting the operation section by the current axis. However, if the characteristic of the non-linear resistance is not the characteristic that the current is saturated with respect to the voltage (see FIG. 1B), and the characteristic that the voltage is saturated with respect to the current, it is only necessary to follow the path of the solution cyclically. Can't reach the solution forever.

[動作点求解方法(両軸NR法)]
上述した従来NR法では、解x(n)が属する動作区間を特定するに際し、X軸(電圧軸v)についてのみ考慮して動作区間を特定していたが、本発明に係る動作点求解方法では、X軸(電圧軸v)及びY軸(電流軸i)のそれぞれについて動作区間を考慮する点が異なっている。このような特徴から本発明に係る動作点求解方法を両軸NR法とも表記する。
[Operating point solution method (biaxial NR method)]
In the above-described conventional NR method, when specifying the operation section to which the solution x (n) belongs, the operation section is specified considering only the X axis (voltage axis v). However, the point which considers an operation area about each of the X-axis (voltage axis v) and the Y-axis (current axis i) is different. Because of these characteristics, the operating point solution method according to the present invention is also referred to as a biaxial NR method.

図8を用いて、両軸NR法における動作点の特定方法について説明する。解x(1)を求めるところまでは、従来NR法と同様である(図7参照)。解x(1)から解x(2)を求めるに際して、解x(1)の動作区間を求めるとき、X軸(電圧軸v)を基準としたときの解x(n)が属する非線形要素の第1動作区間を求めるとともに、Y軸(電流軸i)を基準としたときの解x(n)が属する非線形要素の第2動作区間も求める。 With reference to FIG. 8, a description will be given of a method of specifying an operating point in the biaxial NR method. Up to the point where the solution x (1) is obtained, it is the same as in the conventional NR method (see FIG. 7). In solving x (2) from the solution x (1), when determining the operation period of the solution x (1), the solution x (n) is non-linear elements belonging when a reference X-axis (voltage axis v) The first operation interval is obtained, and the second operation interval of the nonlinear element to which the solution x (n) when the Y axis (current axis i) is used as a reference is also obtained.

つまり、複数ある動作区間のうち、解x(1)の電圧値vを含む動作区間を第1動作区間とし、解x(1)の電流値iを含む動作区間を第2動作区間とする。図8に示した例では、解x(1)が属する第1動作区間は区間1であり、解x(1)が属する第2動作区間は区間2である。一方、解x(0)が属する動作区間は、区間3であるので、この区間3に近い方である第2動作区間を動作区間として特定する。 That is, among a plurality of operation period, the operation section including a voltage value v of the solution x (1) and the first operation period, the operation section including the current value i of the solution x (1) and the second operation period. In the example shown in FIG. 8, the first operation period the solution x (1) belongs is the section 1, second operation period the solution x (1) belongs is interval 2. On the other hand, since the motion section to which the solution x (0) belongs is the section 3, the second motion section that is closer to the section 3 is specified as the motion section.

以降、このように特定した動作区間(区間2)における非線形抵抗の直線の傾きと切片を求め、F(n−1)、y(n−1)を計算する。これにより、(4)式が、av+b=iのように線形化され、この線形化された式と(3)式とからなる連立方程式を解いて、解x(2)を得る。この解x(2)が属する動作区間は、区間2の直線上にあり、解x(1)の動作区間は、先に特定したように区間2であるので、ここで収束したと判定する。 Thereafter, the slope and intercept of the nonlinear resistance straight line in the operation section (section 2) specified in this way are obtained, and F (n−1) and y (n−1) are calculated. As a result, the equation (4) is linearized as av + b = i, and the simultaneous equation composed of the linearized equation and the equation (3) is solved to obtain a solution x (2) . Since the motion section to which the solution x (2) belongs is on the straight line of the section 2, and the motion section of the solution x (1) is the section 2 as specified above, it is determined here that the solution has converged.

以上に説明したように、両軸NR法は、従来NR法では収束しないような非線形抵抗を含む電子回路に対しても収束することができる。両軸NR法は、動作区間の特定に際し、前ステップの動作区間に近い方を選択するため、従来のNR法に比べて1回の反復で飛び越せる動作区間数が少ない。このため、両軸NR法は、非線形要素の特性によっては求める解が属する動作区間からかけ離れた動作区間に解が移動してしまうということを回避することができる。このような両軸NR法の特徴によれば、例えば、図1(b)に示すような急峻に変化する特性を有する非線形要素を含む系に対して巡回的な軌跡に陥らずに求める解を得ることができ、従来NR法よりも収束性が良くなる。   As described above, the biaxial NR method can converge even on an electronic circuit including a nonlinear resistance that does not converge in the conventional NR method. In the biaxial NR method, when the operation interval is specified, the one closer to the operation interval of the previous step is selected, so that the number of operation intervals that can be skipped in one iteration is smaller than that of the conventional NR method. For this reason, the biaxial NR method can avoid that the solution moves to an operation section far from the operation section to which the solution to be found belongs depending on the characteristics of the nonlinear element. According to such a feature of the biaxial NR method, for example, a solution to be obtained without falling into a cyclic trajectory for a system including a nonlinear element having a characteristic that changes sharply as shown in FIG. It can be obtained and the convergence is better than the conventional NR method.

[Katzenelson法]
Katzenelson法は、全ての非線形素子の特性が区分折れ線近似で表現され、かつ、単調増加の場合、いかなる初期値から出発しても必ず求める解に収束するアルゴリズムである(詳細は、非特許文献2参照)。この手法の概略を図9を用いて説明する。
[Katzenelson method]
The Katzenelson method is an algorithm in which the characteristics of all nonlinear elements are expressed by piecewise line approximation, and in the case of monotonic increase, it always converges to a desired solution even if starting from any initial value (for details, see Non-Patent Document 2). reference). The outline of this method will be described with reference to FIG.

従来NR法とKatzenelson法の差異は動作区間を選定する部分に加えて、次の反復ステップにおける解を修正する部分にある。   The difference between the conventional NR method and the Katzenelson method lies in the part for correcting the solution in the next iteration step in addition to the part for selecting the operation section.

従来NR法では、現在の動作区間と新しく選定される動作区間がどれだけ離れていようとも、解が与える非線形抵抗の電圧(若しくは電流)からそのまま新しい動作区間を決定する。一方、Katzenelson法では、解が与える電圧(電流)が属する動作区間の方向に移動はするものの、最初に横切る区間と区間の境界で停止して、その向こう側を新しい動作区間とする。さらに、次の反復ステップにおける解をその境界点に修正する。すなわち、Katzenelson法は、新しい動作区間を選定する際に、一足飛びに区間を移動せずに、必ず区間の境界で停止する手法である。   In the conventional NR method, a new operation section is determined as it is from the voltage (or current) of the nonlinear resistance given by the solution, no matter how far the current operation section and the newly selected operation section are separated. On the other hand, the Katzenelson method moves in the direction of the operation section to which the voltage (current) given by the solution belongs, but stops at the boundary between the section and the section that crosses first, and sets the other side as a new operation section. Furthermore, the solution in the next iteration step is corrected to its boundary point. In other words, the Katzenelson method is a method that always stops at the boundary of a section without moving the section in a single step when selecting a new motion section.

図9に示すように、従来NR法と同様に、最初の反復ステップにおける解を求めると、点Cとなる。しかしながら、点Cを解として採用せず、初期値が属する動作区間と点C方向の隣の動作区間の境界、すなわち、区間3と区間2の境界を更新された解x(1)とする。また、新たな動作区間は解x(1)の向こう側に位置する区間2とする。区間2には求める解が存在するため、次の反復ステップにおいてこの解に到達し、反復計算が終了する。 As shown in FIG. 9, as in the conventional NR method, the solution at the first iteration step is point C. However, the point C is not adopted as a solution, and the boundary between the motion section to which the initial value belongs and the motion section adjacent in the direction of the point C, that is, the boundary between the section 3 and the section 2 is the updated solution x (1) . The new motion section is section 2 located on the other side of the solution x (1) . Since the solution to be obtained exists in the interval 2, this solution is reached in the next iteration step, and the iterative calculation ends.

このように、Katzenelson法は数学的に収束が保証されている。しかし、解の更新に加えて、区間の境界に位置する新たな解を計算すること、反復ステップごとに一つずつしか区間を移動できないことの理由により、従来NR法よりも計算量が増大する。また、両軸NRは、従来NR法よりも計算量が増大するが、Katzenelson法のように一つずつしか区間を移動できないわけではなく、複数の動作区間を飛び越すことができるため、両軸NR法は、Katzenelson法よりも計算量は少ない。表1に、従来NR法、両軸NR法、Katzenelson法の収束性と計算量を示す。   In this way, the Katzenelson method is guaranteed to converge mathematically. However, in addition to the update of the solution, the calculation amount increases compared with the conventional NR method because a new solution located at the boundary of the section is calculated and only one section can be moved at each iteration step. . In addition, although the calculation amount of both axes NR is larger than that of the conventional NR method, it is not only possible to move one section at a time as in the Katzenelson method, and it can jump over a plurality of operation sections. The method is less computationally intensive than the Katzenelson method. Table 1 shows the convergence and calculation amount of the conventional NR method, the biaxial NR method, and the Katzenelson method.

Figure 2011081674
Figure 2011081674

以上に説明した、非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法及びシミュレーション装置によれば、非線形要素の特性が区分折れ線近似された非線形システムの動作点をKatzenelson法よりも高速に、且つ従来NR法とは異なり確実に収束することができる。   According to the method and the simulation apparatus for obtaining the operating point of the system in which the characteristic of the nonlinear element is approximated by piecewise broken line as described above and the simulation apparatus, the operating point of the nonlinear system in which the characteristic of the nonlinear element is approximated by piecewise broken line is calculated using the Katzenelson method. In contrast to the conventional NR method, it is possible to converge more reliably than the conventional NR method.

〈実施形態2〉
非線形要素の特性が区分折れ線近似されたシステムの動作点を求めるに際し、両軸NR法のみならず、従来NR法とKatzenelson法を併用しても良い。この各方法を併用して非線形システムを表す方程式を解く方法について、図10を用いて説明する。
<Embodiment 2>
When obtaining the operating point of the system in which the characteristic of the nonlinear element is approximated by piecewise broken line, not only the biaxial NR method but also the conventional NR method and the Katzenelson method may be used in combination. A method for solving the equations representing the nonlinear system using these methods will be described with reference to FIG.

まず、現在の反復子nを0で初期化する(ステップS10)。次に、初期設定処理を行う(ステップS11)。次に、反復子nをインクリメントする(ステップS12)。そして、反復子nが閾値N以上であるか否かを比較する(ステップS13)。閾値Nは、従来NR法での計算を打ち切り、両軸NR法に切り替えるステップ数を定めた所定値である。 First, the current iterator n is initialized with 0 (step S10). Next, an initial setting process is performed (step S11). Next, the iterator n is incremented (step S12). Then, comparing whether a iterator n is the threshold value N B above (Step S13). Threshold N B may abort the calculation of the conventional NR method, a predetermined value that defines the number of steps for switching both axes NR method.

反復子nが閾値N未満であるならば(ステップS13:No)、従来NR法を用いて、反復計算を1ステップ分(動作点特定処理〜収束判定処理)行う(ステップS14)。従来NR法での計算結果が収束したならば(ステップS15:Yes)、処理を終了し、収束しないならば(ステップS15:No)、ステップS12の処理に戻る。 If the iterator n is less than the threshold value N B (Step S13: No), using conventional NR method performs one step of the iterative calculation (operation point specifying process-convergence determination process) (step S14). If the calculation result by the conventional NR method has converged (step S15: Yes), the process ends. If the result does not converge (step S15: No), the process returns to step S12.

一方、反復子nが閾値N以上であるときは(ステップS13:Yes)、反復子nが閾値N以上であるか否かを比較する(ステップS16)。閾値Nは、両軸NR法での計算を打ち切り、Katzenelson法に切り替えるステップ数を定めた所定値である。 On the other hand, when the iterator n is the threshold value N B above (Step S13: Yes), it compares whether the iterator n is greater than or equal to the threshold value N K (step S16). Threshold N K may abort the calculation in both axes NR method, a predetermined value that defines the number of steps for switching to Katzenelson method.

反復子nが閾値N未満であるならば(ステップS16:No)、両軸NR法を用いて、反復計算を1ステップ分(動作点特定処理〜収束判定処理)行う(ステップS17)。両軸NR法での計算結果が収束したならば(ステップS15:Yes)、処理を終了し、収束しないならば(ステップS15:No)、ステップS12の処理に戻る。 If the iterator n is less than the threshold value N K (step S16: No), using both axes NR method performs one step of the iterative calculation (operation point specifying process-convergence determination process) (step S17). If the calculation result by the biaxial NR method has converged (step S15: Yes), the process ends. If the calculation result does not converge (step S15: No), the process returns to step S12.

一方、反復子nが閾値N以上であるときは(ステップS16:Yes)、Katzenelson法を用いて、反復計算を1ステップ分(動作点特定処理〜収束判定処理)行う(ステップS18)。Katzenelson法での計算結果が収束したならば(ステップS15:Yes)、処理を終了し、収束しないならば(ステップS15:No)、ステップS12の処理に戻る。 On the other hand, when the iterator n is equal to or larger than the threshold N K (step S16: Yes), using Katzenelson method performs one step of the iterative calculation (operation point specifying process-convergence determination process) (step S18). If the calculation result by the Katzenelson method has converged (step S15: Yes), the process ends. If the result does not converge (step S15: No), the process returns to step S12.

以上のように、最初は従来NR法を用いることで、短い計算時間で解を求めようとし、一定の反復回数を超えたら、従来NR法よりも高い収束性を有する両軸NR法で解を求めようとし、さらに、一定の反復回数を超えたら、Katzenelson法を用いることで、確実に解を求めようとする。このように反復回数に基づいて、従来NR法、両軸NR法、Katzenelson法を切り替えて用いることにより、非線形システムを表す方程式について、高速且つ確実に収束するように解を得ることができる。   As described above, by using the conventional NR method at first, an attempt is made to find a solution in a short calculation time. When the number of iterations exceeds a certain number of iterations, the solution is solved by a biaxial NR method having higher convergence than the conventional NR method. In addition, if a certain number of iterations is exceeded, the Katzenelson method is used to reliably find a solution. In this way, by switching between the conventional NR method, the biaxial NR method, and the Katzenelson method based on the number of iterations, it is possible to obtain a solution so that the equation representing the nonlinear system converges quickly and reliably.

〈実施例1〉
以下、本発明に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法及びシミュレーション装置を、種々の回路に適用した実施例を示す。
<Example 1>
Embodiments in which a method and a simulation apparatus for obtaining an operating point of a system in which the characteristics of a nonlinear element according to the present invention are approximated by a piecewise broken line are applied to various circuits will be described below.

本実施例1では、二つの電子回路について説明する。2つの電子回路とも、回路構成は図1(a)に示したものと同じであり、非線形抵抗Rの特性が異なる。図11(a)に示す非線形抵抗Rを含むものを電子回路II、図11(b)に示す非線形抵抗Rを含む物を電子回路IIIと表記する。 In the first embodiment, two electronic circuits will be described. Least two electronic circuits, the circuit configuration is the same as that shown in FIG. 1 (a), the different characteristics of the nonlinear resistor R N. Figure 11 (a) electronic circuit that includes a non-linear resistance R N shown in II, the ones containing a nonlinear resistor R N shown in FIG. 11 (b) referred to as electronic circuits III.

図12(a)は、電子回路IIについて従来NR法を適用したときの解x(n)の推移を示し、図12(b)は、電子回路IIについて実施形態2に係る動作点求解方法を適用したときの解x(n)の推移を示す図である。 FIG. 12A shows the transition of the solution x (n) when the conventional NR method is applied to the electronic circuit II, and FIG. 12B shows the operating point solution method according to the second embodiment for the electronic circuit II. It is a figure which shows transition of the solution x (n) when applied.

図12(a)に示すように、従来NR法では、初期解x(0)(点0)から開始した場合、点1,2,3,4,5,6,・・・を追って反復計算が行われ、解x(0)、x(1)、x(2)、x(3)、・・・と更新されていく。点6の次は、点3に移動するため、6→3→4→5→6という無限ループに陥り、解x(3)とx(2)の値を交互に取るだけで、永久に求める解に収束しない。 As shown in FIG. 12A, in the conventional NR method, when starting from the initial solution x (0) (point 0), iterative calculation is performed following points 1, 2, 3, 4, 5, 6,. Are updated as solutions x (0) , x (1) , x (2) , x (3) ,. After point 6, since it moves to point 3, it falls into an infinite loop of 6 → 3 → 4 → 5 → 6 and is obtained forever by simply taking the values of solutions x (3) and x (2) alternately. Does not converge to the solution.

一方、N−1回目までの反復では、上述の軌跡を辿るが、両軸NR法に切り替わると、1回、若しくは2回の反復で求める解に収束する。N−1回目の反復ステップで解がx(0)、x(1)、x(2)、x(3)のいずれにあるかによって、その後の軌跡は異なるが、これら4種類の軌跡を図12(b)に示す。電子回路IIでは、両軸NR法で求める解に収束したため、Katzenelson法を適用するには至らなかった。 On the other hand, in the iteration up to N B −1, the above-mentioned trajectory is traced. However, when switching to the biaxial NR method, the solution converges to a solution obtained in one or two iterations. Depending on whether the solution is in x (0) , x (1) , x (2) , or x (3) in the N B −1st iteration step, the subsequent trajectories differ, but these four types of trajectories are As shown in FIG. In the electronic circuit II, the Katzenelson method could not be applied because it converged to a solution obtained by the biaxial NR method.

図13(a)は、電子回路IIIについて従来NR法を適用したときの解x(n)の推移を示し、図13(b)は、電子回路IIについて実施形態2に係る動作点求解方法を適用したときの解x(n)の推移を示す図である。 FIG. 13A shows the transition of the solution x (n) when the conventional NR method is applied to the electronic circuit III, and FIG. 13B shows the operating point solving method according to the second embodiment for the electronic circuit II. It is a figure which shows transition of the solution x (n) when applied.

図13(a)に示すように、従来NR法では、初期解x(0)(点0)から開始した場合、点1,2,3,4,5,6,7,・・・を追って反復計算が行われ、解x(0)、x(1)、x(2)、x(3)、x(4)、・・・と更新されていく。点7の次は、初期値付近に戻るため、0→1→2→・・・→6→7→0という無限ループに陥る。 As shown in FIG. 13A, in the conventional NR method, when starting from the initial solution x (0) (point 0), the points 1, 2, 3, 4, 5, 6, 7,. An iterative calculation is performed and the solutions x (0) , x (1) , x (2) , x (3) , x (4) ,. After the point 7, since it returns to the vicinity of the initial value, it falls into an infinite loop of 0 → 1 → 2 →... → 6 → 7 → 0.

一方、図13(b)に示すように、両軸NR法に切り替わると、1回、若しくは2回の反復で求める解に収束する。電子回路IIIにおいても、両軸NR法で求める解に収束したため、Katzenelson法を適用するには至らなかった。   On the other hand, as shown in FIG. 13B, when switched to the biaxial NR method, the solution converges to a solution obtained in one or two iterations. Even in the electronic circuit III, the Katzenelson method could not be applied because it converged to a solution obtained by the biaxial NR method.

〈実施例2〉
本実施例では、実施形態2に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を、単相インバータ回路の解析に対して適用することで、実用的な解析例における当該方法の収束性能を確認する。解析に用いたインバータ回路を図14に、また、ダイオードモデルおよびIGBTモデルの内部を図15に示す。ダイオードは、SiCを用いたSBD(ショットキーバリアダイオード)であり、図15に示すように静的な整流特性を非線形抵抗Rstで、接合容量の変化による動的な特性を非線形キャパシタンスCjで模擬している。RstとCjの非線形特性をそれぞれ図16(a)、(b)に示す。IGBTはSiを用いたものであり、図15(b)に示すKrausのモデルで模擬している。このモデルでは、IGBTが内包するMOSFETに対応する部分の非線形な静特性を制御電圧源Vmosで表現し、酸化膜が有する容量の変化を非線形キャパシタンスCoxで模擬している。また、ベース電荷の変化により発生するベース通過電流の動特性を制御電流源Iqで模擬し、テール電流の動特性を制御電流源Ipcで模擬している。上記Coxの非線形特性を図16(c)に示す。ダイオードを模擬するD1はオン抵抗10-4Ω、オフ抵抗1014Ωの理想スイッチの特性を有する非線形抵抗、D2も同様にオン抵抗10-5Ω、オフ抵抗1013Ωの非線形抵抗とした。なお、Vmos、Iq、Ipcの計算については、文献「岡田有功、菊間俊明、高崎昌洋、竹中清、小谷和也、葛巻淳彦、松本寿彰、「インバータシミュレーションプログラムの開発(その2)−実測比較による解析精度の検証−」、電力中央研究所 研究報告 R07016,2008」に詳しく記載されている。平滑用の電解コンデンサとフィルムコンデンサは、ディスクリートの部品2並列で構成されている。これらコンデンサや回路各部の配線については、実測結果から見積もった寄生インダクタンスや寄生キャパシタンスも考慮している。この回路の過渡現象をXTAP(eXpandable Transient Analysis Programの略。電力中央研究所 研究報告 H06002,H07004,H07005,R06017,R07016を参照。)にて解析した結果は、実測結果と良好に一致する。
<Example 2>
In this example, the method for obtaining the operating point of the system in which the characteristic of the nonlinear element according to the second embodiment is approximated by a piecewise broken line is applied to the analysis of the single-phase inverter circuit by applying a method for practical analysis. Check the convergence performance of the method in the example. FIG. 14 shows the inverter circuit used for the analysis, and FIG. 15 shows the inside of the diode model and the IGBT model. The diode is an SBD (Schottky barrier diode) using SiC, and as shown in FIG. 15, a static rectification characteristic is a non-linear resistance R st and a dynamic characteristic due to a change in junction capacitance is a non-linear capacitance C j . Mock up. R st and the nonlinear characteristics of the C j, respectively FIG. 16 (a), shown in (b). The IGBT uses Si and is simulated by the Kraus model shown in FIG. In this model, the nonlinear static characteristic of the portion corresponding to the MOSFET included in the IGBT is expressed by the control voltage source V mos , and the change in the capacitance of the oxide film is simulated by the nonlinear capacitance C ox . Further, the dynamic characteristic of the base passing current generated by the change of the base charge is simulated by the control current source Iq , and the dynamic characteristic of the tail current is simulated by the control current source Ipc . FIG. 16C shows the nonlinear characteristics of the above Cox . D 1 simulating a diode is a non-linear resistance having ideal switch characteristics with an on-resistance of 10 −4 Ω and an off-resistance of 10 14 Ω, and D 2 is also a non-linear resistance with an on-resistance of 10 −5 Ω and an off-resistance of 10 13 Ω. did. For the calculation of V mos , I q , and I pc , refer to the literatures “Yoshikazu Okada, Toshiaki Kikuma, Masahiro Takasaki, Kiyoshi Takenaka, Kazuya Otani, Toshihiko Kuzumaki, Toshiaki Matsumoto,“ Development of Inverter Simulation Program (Part 2) − “Verification of analysis accuracy by actual measurement comparison-”, Chuo Research Institute R07016, 2008 ”is described in detail. The electrolytic capacitor and the film capacitor for smoothing are constituted by discrete components 2 in parallel. For the wiring of these capacitors and each part of the circuit, the parasitic inductance and parasitic capacitance estimated from the actual measurement results are taken into consideration. The result of analyzing the transient phenomenon of this circuit with XTAP (abbreviation of eXpandable Transient Analysis Program. Refer to Research Report H06002, H07004, H07005, R06017, R07016 of Central Research Institute of Electric Power) agrees well with the actual measurement result.

図15では非線形特性を有する素子を点線で囲っているが、これからも分かるように本回路は多数の非線形要素を含むため、その収束が容易ではない。計算時間刻みをΔt=10ns、反復計算手法を切り替えるパラメータをN=100、N=200に設定して、実施形態2に係る動作点求解方法により1周期分の過渡解析を行った。過渡解析であるから、計算時間ステップごと(Δtごと)に非線形回路の解を求めるという作業を繰り返すことになる。ここで、従来NR法から両軸NR法に切り替える反復回数をN=100と非常に大きな値に設定しているため、両軸NR法に切り替わった場合には従来NR法が無限ループに陥って収束しなかったものと見なしてよい。 In FIG. 15, elements having nonlinear characteristics are surrounded by dotted lines. However, as will be understood, since this circuit includes a large number of nonlinear elements, its convergence is not easy. Transient analysis for one cycle was performed by the operating point solution method according to the second embodiment, with the calculation time increment set to Δt = 10 ns, the parameters for switching the iterative calculation method set to N B = 100, and N K = 200. Since it is a transient analysis, the operation of obtaining a solution of the nonlinear circuit at every calculation time step (every Δt) is repeated. Here, since the number of iterations for switching from the conventional NR method to the biaxial NR method is set to a very large value of N B = 100, the conventional NR method falls into an infinite loop when switching to the biaxial NR method. It may be considered that it did not converge.

図17に、実施形態2に係る動作点求解方法により求められた1周期分のインバータ出力電圧および電流の波形を示す。所期の正弦波が得られ、インバータ回路の動作が正常にシミュレーションされていることが確認できる。この計算における、各計算時間ステップでの反復回数をグラフ化したものを図18に示す。同図より、ほとんどの計算時間ステップにおいて反復回数は6回程度であるが、所々、100回を超えている計算時間ステップが存在することが見て取れる。反復回数が100回を超えている計算時間ステップは、先述のように、従来NR法が収束しないケースであり、100回目以降に反復計算手法が両軸NR法に切り替わることにより、その後数回の反復で直ちに収束している。なお、100回という回数は、同図のグラフにおいて従来NR法から両軸NR法に切り替えたとき反復回数の差異が判別しやすくなるように敢えて大きな値を設定したものであり、実際には、10〜20回の反復回数で足りる。   FIG. 17 shows waveforms of inverter output voltage and current for one cycle obtained by the operating point solution method according to the second embodiment. The desired sine wave is obtained, and it can be confirmed that the operation of the inverter circuit is normally simulated. FIG. 18 shows a graph of the number of iterations at each calculation time step in this calculation. From the figure, it can be seen that in most calculation time steps, the number of iterations is about 6, but in some places there are more than 100 calculation time steps. As described above, the calculation time step in which the number of iterations exceeds 100 is a case where the conventional NR method does not converge. After the 100th iteration, the iterative calculation method is switched to the biaxial NR method. It converges immediately on iteration. Note that the number of times of 100 is set to a large value so that the difference in the number of iterations is easily discriminated when the conventional NR method is switched to the biaxial NR method in the graph of FIG. 10 to 20 iterations are sufficient.

どのような場合に従来NR法が収束しないのかを調べるため、左下アームおよび右下アームのIGBT両端電圧波形と反復回数を時刻を揃えてプロットしたものを図19に示す。同図より、従来NR法が収束しないのはIGBT両端電圧が急変する時刻、すなわち、スイッチングの瞬間であることが分かる。IGBTがスイッチングをしなければ、回路中の電圧・電流は急変せず、各非線形素子の動作区間も大きく動くことは無いが、スイッチングにより電圧・電流が大きく変わると各非線形素子の動作区間も大きく動くこととなり、その収束過程に無限ループが形成されれば従来NR法は収束しなくなる。本回路において、従来NR法が収束しない場合、反復計算手法が両軸NR法に切り替わった直後に少なくとも6回の反復で収束しており、前出の電子回路I〜IIIと同様、Katzenelson法が用いられることはなかった。つまり、電子回路I〜IIIおよび本インバータ回路のいずれにおいても両軸NR法の段階で収束しており、両軸NR法は非常に良い収束特性を有していると言える。また、Katzenelson法は滅多に用いられることはないが、両軸NR法が数学的に収束保証された手法でない以上、保険の意味で後段に用意されていると言える。   In order to investigate when the conventional NR method does not converge, FIG. 19 shows a plot of the voltage waveforms at both ends of the lower left arm and the lower right arm and the number of iterations with the same time. From the figure, it can be seen that the conventional NR method does not converge at the time when the voltage across the IGBT changes suddenly, that is, at the moment of switching. If the IGBT does not switch, the voltage and current in the circuit will not change suddenly, and the operating section of each nonlinear element will not move greatly. However, if the voltage and current change greatly due to switching, the operating section of each nonlinear element will also increase. If the infinite loop is formed in the convergence process, the conventional NR method will not converge. In this circuit, when the conventional NR method does not converge, the iterative calculation method converges at least 6 iterations immediately after switching to the biaxial NR method, and the Katzenelson method is similar to the electronic circuits I to III described above. It was never used. In other words, both the electronic circuits I to III and the inverter circuit converge at the stage of the biaxial NR method, and it can be said that the biaxial NR method has very good convergence characteristics. The Katzenelson method is rarely used, but it can be said that the two-axis NR method is provided in the latter stage in the sense of insurance as long as it is not a mathematically guaranteed method of convergence.

図20に、インバータ出力電圧波形について、実施形態2に係る動作点求解方法による結果と従来NR法による結果の比較を示す。既に図17で示したように、実施形態2に係る動作点求解方法を用いた場合、各時間ステップにおいて反復計算が正常に収束しており、問題無く1周期の計算を終了している。一方、従来NR法を用いた場合、時刻2.3ms付近で反復計算が収束せず(図20の+印)、解析の続行が不可能となっている。   FIG. 20 shows a comparison between the result of the operating point solution method according to the second embodiment and the result of the conventional NR method for the inverter output voltage waveform. As already shown in FIG. 17, when the operating point solution method according to the second embodiment is used, the iterative calculation normally converges at each time step, and the calculation for one cycle is completed without any problem. On the other hand, when the conventional NR method is used, the iterative calculation does not converge at around 2.3 ms (+ mark in FIG. 20), and the analysis cannot be continued.

以上に説明したように、本発明に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法、そのプログラム、当該プログラムを記録した記録媒体及びシミュレーション装置では、非線形要素の特性が区分折れ線近似された非線形システムの動作点を高速且つ確実に収束することができる。   As described above, in the method of obtaining the operating point of the system in which the characteristic of the nonlinear element according to the present invention is approximated by a piecewise broken line, the program, the recording medium recording the program, and the simulation apparatus, the nonlinear element The operating point of a nonlinear system whose characteristics are approximated by piecewise broken lines can be converged quickly and reliably.

〈実施形態3〉
上述した実施形態1及び実施形態2では、電気・電子回路について、本発明に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を、コンピュータ20に実行させたが、このような態様に限られない。本発明の実施形態としては、例えば、コンピュータ20で仮想的に構築した電気・電子回路と、実機とを接続し、実機の動作の検証等を行うためのリアルタイムシミュレータ装置であってもよい。
<Embodiment 3>
In the first embodiment and the second embodiment described above, the computer 20 is caused to execute the method for obtaining the operating point of the system in which the characteristic of the nonlinear element according to the present invention is approximated by piecewise broken lines with respect to the electric / electronic circuit. It is not limited to such an aspect. An embodiment of the present invention may be, for example, a real-time simulator device for connecting an electric / electronic circuit virtually constructed by the computer 20 and a real machine and verifying the operation of the real machine.

図21に、本実施形態に係るシミュレーション装置の一例を示す。なお、実施形態1と同一のものには同一の符号を付し、重複する説明は省略する。   FIG. 21 shows an example of a simulation apparatus according to this embodiment. In addition, the same code | symbol is attached | subjected to the same thing as Embodiment 1, and the overlapping description is abbreviate | omitted.

図示するように、コンピュータ20は、電気・電子回路の各素子についての特性情報や初期解が予め設定されており、電気・電子回路の所定の素子や節点における電圧電流を計算するようになっている。この計算した電圧や電流の値は、D/Aコンバータ51により電流、電圧に変換され、電圧電流アンプ201で増幅されて制御装置200に流れる。一方、制御装置200が出力する制御信号は、A/Dコンバータ50により電気・電子回路における一素子の電圧、電流を表すデータとしてプログラム10に入力される。   As shown in the figure, the computer 20 is preset with characteristic information and initial solutions for each element of the electric / electronic circuit, and calculates the voltage / current at a predetermined element or node of the electric / electronic circuit. Yes. The calculated voltage and current values are converted into current and voltage by the D / A converter 51, amplified by the voltage / current amplifier 201, and flow to the control device 200. On the other hand, the control signal output from the control device 200 is input to the program 10 as data representing the voltage and current of one element in the electric / electronic circuit by the A / D converter 50.

コンピュータ20では、本発明に係る非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を実行するに際し、制御装置200の動作に合わせて実時間に同期させて電気・電子回路の動作を計算する。つまり、電気・電子回路の一部をコンピュータ20で模擬し、当該電気・電子回路に接続される制御装置200の動作を検証することができる。   In the computer 20, when executing the method of obtaining the operating point of the system in which the characteristic of the nonlinear element according to the present invention is approximated by the piecewise broken line by the electronic computer, the electric / electronic is synchronized with the operation of the control device 200 in real time. Calculate the behavior of the circuit. That is, a part of the electric / electronic circuit can be simulated by the computer 20 and the operation of the control device 200 connected to the electric / electronic circuit can be verified.

〈他の実施形態〉
実施形態1〜実施形態3では、いずれも非線形システムとして電気・電子回路を対象としたが、電気・電子回路に限られず、本発明は、非線形要素の特性が区分折れ線近似されたシステム全般に適用できるものである。
<Other embodiments>
In each of the first to third embodiments, an electric / electronic circuit is targeted as a nonlinear system. However, the present invention is not limited to an electric / electronic circuit, and the present invention is applicable to all systems in which characteristics of nonlinear elements are approximated by piecewise broken lines. It can be done.

また、実施形態2では、従来NR法、両軸NR法、Katzenelson法を併用したが、必ずしも、この構成に限らず、従来NR法と両軸NR法とを併用する場合や、両軸NR法とKatzenelson法とを併用する場合など、3つの方法のうち何れか2つを併用してもよい。   In the second embodiment, the conventional NR method, the biaxial NR method, and the Katzenelson method are used together. However, the present invention is not necessarily limited to this configuration, and the conventional NR method and the biaxial NR method are used together. Any two of the three methods may be used in combination, for example, in combination with the Katzenelson method.

本発明は、非線形要素の特性が区分折れ線近似されたシステムの動作点を求めることを必要とする産業分野で利用することができる。   The present invention can be used in industrial fields that require the determination of the operating point of a system in which the characteristics of nonlinear elements are approximated by piecewise broken lines.

1、100 シミュレーション装置
10 プログラム
11 初期設定手段
12 動作区間特定手段
13 求解手段
14 収束判定手段
20 コンピュータ
21 CPU
22 RAM
23 ROM
24 ハードディスク
30 入力装置
40 出力装置
DESCRIPTION OF SYMBOLS 1,100 Simulation apparatus 10 Program 11 Initial setting means 12 Operation | movement area identification means 13 Solution means 14 Convergence determination means 20 Computer 21 CPU
22 RAM
23 ROM
24 hard disk 30 input device 40 output device

Claims (7)

非線形要素の特性が区分折れ線近似された非線形システムの動作点を電子計算機により求める方法であって、
非線形要素の特性を複数の動作区間ごとに直線で近似した特性情報及び前記非線形システムを表す方程式の初期解x(0)を入力する初期設定処理と、
解x(n)が属する前記非線形要素の動作区間を特定する動作区間特定処理と、
前記動作区間における前記非線形要素の直線の傾き及び切片を計算し、当該傾き及び切片から前記非線形システムを表す方程式を線形化した(a)式
Figure 2011081674
のF(n−1)の値及びy(n−1)の値を計算し、当該F(n−1)の値及びy(n−1)の値を用いて(a)式を解いて解x(n)を求める求解処理と、
解x(n)が属する前記非線形要素の動作区間と、解x(n−1)が属する動作区間とが一致した場合に解x(n)を求める解とし、一致しない場合は前記動作区間特定処理及び前記求解処理を再実行させる収束判定処理とを備え、
前記動作区間特定処理では、解x(n)(ただし、nは1以上)の動作区間を特定する際には、X軸を基準としたときの解x(n)が属する前記非線形要素の第1動作区間と、Y軸を基準としたときの解x(n)が属する前記非線形要素の第2動作区間とをそれぞれ求め、第1動作区間及び第2動作区間のうち解x(n−1)が属する前記非線形要素の動作区間に近い方を前記非線形要素の動作区間として特定する
ことを特徴とする非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法。
A method of obtaining an operating point of a nonlinear system in which the characteristics of the nonlinear element are approximated by piecewise broken lines by a computer,
An initial setting process for inputting characteristic information obtained by approximating the characteristic of the nonlinear element with a straight line for each of a plurality of operation sections and an initial solution x (0) of an equation representing the nonlinear system;
An action interval specifying process for specifying an action interval of the nonlinear element to which the solution x (n) belongs;
Equation (a) is obtained by calculating the slope and intercept of the straight line of the nonlinear element in the motion section, and linearizing an equation representing the nonlinear system from the slope and intercept.
Figure 2011081674
F (n-1) value and y (n-1) value are calculated, and equation (a) is solved using the F (n-1) value and y (n-1) value. Solution processing for obtaining a solution x (n) ;
The operation section of the nonlinear element the solution x (n) belongs to the solution to obtain a solution x (n) when the operation period the solution x (n-1) belongs matches, if they do not match the operation section identifying And a convergence determination process for re-execution of the process and the solution finding process,
In the motion section specifying process, when the motion section of the solution x (n) (where n is 1 or more) is specified, the non-linear element of the nonlinear element to which the solution x (n) relative to the X axis belongs is specified. One motion interval and a second motion interval of the nonlinear element to which the solution x (n) when the Y axis is used as a reference are respectively obtained, and the solution x (n−1) of the first motion interval and the second motion interval is obtained. ) a method of determining by said nonlinear element computer the operating point of the characteristics of the nonlinear elements and identifies divided polygonal line approximation systems towards close-operation period as an operation section of the nonlinear element of belonging.
請求項1に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法において、
前記初期設定処理実行後、Newton-Raphson法を用いて解を求め、所定の反復回数以内に解が求まらない場合に、前記動作区間特定処理から前記収束判定処理を実行することを特徴とする非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法。
In the method for obtaining the operating point of the system in which the characteristic of the nonlinear element according to claim 1 is approximated by a piecewise broken line by an electronic computer,
After execution of the initial setting process, a solution is obtained using the Newton-Raphson method, and when the solution is not obtained within a predetermined number of iterations, the convergence determination process is executed from the action section specifying process. To obtain the operating point of a system in which the characteristics of the nonlinear element to be approximated are piecewise broken lines.
請求項2に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法において、
前記収束判定処理では、所定の回数以内に収束しない場合に、Katzenelson法に切り替えて解を求める
ことを特徴とする非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法。
In a method for obtaining an operating point of a system in which the characteristic of the nonlinear element according to claim 2 is approximated by a piecewise broken line by an electronic computer,
In the convergence determination process, when convergence does not occur within a predetermined number of times, a solution is obtained by switching to the Katzenelson method, and the operating point of the system in which the characteristic of the nonlinear element is approximated by a piecewise broken line is obtained by an electronic computer.
請求項1〜請求項3の何れか一項に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を電子計算機に実行させるプログラム。   The program which makes an electronic computer perform the method of calculating | requiring the operating point of the system by which the characteristic of the nonlinear element as described in any one of Claims 1-3 was approximated by the piecewise broken line by the electronic computer. 請求項4に記載するプログラムを記録した電子計算機で読み取り可能な記録媒体。   A recording medium readable by an electronic computer in which the program according to claim 4 is recorded. 請求項1〜請求項3の何れか一項に記載する非線形要素の特性が区分折れ線近似されたシステムの動作点を電子計算機により求める方法を実行するように構成されたコンピュータを有することを特徴とするシミュレーション装置。   It has a computer comprised so that the method of calculating | requiring the operating point of the system by which the characteristic of the nonlinear element as described in any one of Claims 1-3 was approximated by piecewise broken line by an electronic computer may be characterized, Simulation device. 請求項6に記載するシミュレーション装置において、
前記非線形システムは、非線形素子を含む仮想的な電気・電子回路であり、
前記電気・電子回路の制御を行う前記制御装置からの制御信号がA/Dコンバータを介して前記電気・電子回路のシミュレーションに用いられる入力データとして入力され、
前記電気・電子回路の所定部分の電圧又は電流に関する計算値をD/Aコンバータによりその電圧又は電流に変換して前記制御装置に出力し、
前記制御装置の動作に合わせて実時間に同期させて前記電気・電子回路の動作を計算するように構成されたことを特徴とするシミュレーション装置。
The simulation apparatus according to claim 6,
The nonlinear system is a virtual electric / electronic circuit including a nonlinear element,
A control signal from the control device that controls the electric / electronic circuit is input as input data used for simulation of the electric / electronic circuit via an A / D converter,
A calculated value related to the voltage or current of the predetermined part of the electric / electronic circuit is converted to the voltage or current by a D / A converter and output to the control device,
A simulation apparatus configured to calculate the operation of the electric / electronic circuit in synchronization with the operation of the control apparatus in real time.
JP2009234549A 2009-10-08 2009-10-08 Method for obtaining operating point of system whose characteristic of nonlinear element is approximated by piecewise broken line by electronic computer, program thereof, recording medium recording the program, and simulation apparatus Active JP5294328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234549A JP5294328B2 (en) 2009-10-08 2009-10-08 Method for obtaining operating point of system whose characteristic of nonlinear element is approximated by piecewise broken line by electronic computer, program thereof, recording medium recording the program, and simulation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234549A JP5294328B2 (en) 2009-10-08 2009-10-08 Method for obtaining operating point of system whose characteristic of nonlinear element is approximated by piecewise broken line by electronic computer, program thereof, recording medium recording the program, and simulation apparatus

Publications (2)

Publication Number Publication Date
JP2011081674A true JP2011081674A (en) 2011-04-21
JP5294328B2 JP5294328B2 (en) 2013-09-18

Family

ID=44075649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234549A Active JP5294328B2 (en) 2009-10-08 2009-10-08 Method for obtaining operating point of system whose characteristic of nonlinear element is approximated by piecewise broken line by electronic computer, program thereof, recording medium recording the program, and simulation apparatus

Country Status (1)

Country Link
JP (1) JP5294328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009406A (en) * 2014-06-25 2016-01-18 一般財団法人電力中央研究所 Instantaneous value analysis system of electric power system using sparse tableau approach

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197401A (en) * 2000-12-27 2002-07-12 Nec Corp Simulation method and simulator
JP2003122735A (en) * 2001-10-11 2003-04-25 Toshiba Corp Solution calculator of nonlinear multivariable problem, its program and medium in which the same program is stored
JP2003216677A (en) * 2002-01-25 2003-07-31 Fujitsu Ltd Method and device for calculating characteristic value of non-linear element
JP2009026298A (en) * 2007-06-20 2009-02-05 Central Res Inst Of Electric Power Ind Inverter simulation device, inverter simulation program, and inverter design method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197401A (en) * 2000-12-27 2002-07-12 Nec Corp Simulation method and simulator
JP2003122735A (en) * 2001-10-11 2003-04-25 Toshiba Corp Solution calculator of nonlinear multivariable problem, its program and medium in which the same program is stored
JP2003216677A (en) * 2002-01-25 2003-07-31 Fujitsu Ltd Method and device for calculating characteristic value of non-linear element
JP2009026298A (en) * 2007-06-20 2009-02-05 Central Res Inst Of Electric Power Ind Inverter simulation device, inverter simulation program, and inverter design method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009406A (en) * 2014-06-25 2016-01-18 一般財団法人電力中央研究所 Instantaneous value analysis system of electric power system using sparse tableau approach

Also Published As

Publication number Publication date
JP5294328B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
Pejovic et al. A method for fast time-domain simulation of networks with switches
Bazzi et al. IGBT and diode loss estimation under hysteresis switching
Maksimovic et al. Modeling and simulation of power electronic converters
Nilim et al. Robustness in Markov decision problems with uncertain transition matrices
Liu et al. Predictor-based neural network finite-set predictive control for modular multilevel converter
Hollman et al. Step-by-step eigenvalue analysis with EMTP discrete-time solutions
CN107025335B (en) simulation calculation method and simulation system based on state variable discretization
CN106602596A (en) Model parameter adaptive method for inverter model prediction control
Noda et al. A robust and efficient iterative scheme for the EMT simulations of nonlinear circuits
JP5117926B2 (en) Inverter simulation apparatus and inverter simulation program
JP2017181178A (en) Method for measuring current-voltage characteristics
Bai et al. Device‐level modelling and FPGA‐based real‐time simulation of the power electronic system in fuel cell electric vehicle
CN110532630B (en) Switch block, parasitic switch state and electromagnetic transient simulation method and device
JP5294328B2 (en) Method for obtaining operating point of system whose characteristic of nonlinear element is approximated by piecewise broken line by electronic computer, program thereof, recording medium recording the program, and simulation apparatus
Philipps et al. Smart universal parameter fitting method for modeling static SiC power MOSFET behavior
Zhao et al. Stability evaluation of interpolation, extrapolation, and numerical oscillation damping methods applied in EMT simulation of power networks with switching transients
Yao et al. An efficient time step control method in transient simulation for DAE system
Iftikhar et al. Theoretical and experimental investigation of averaged modeling of non-ideal PWM DC-DC converters operating in DCM
Gil et al. SystemC AMS power electronic modeling with ideal instantaneous switches
Ren et al. Bridging gaps in paper design considering impacts of switching speed and power-loop layout
Khanna et al. A linear model for characterizing transient behaviour in wide bandgap semiconductor-based switching circuits
JP6195290B2 (en) Analysis device for system including nonlinear element and recording medium recording analysis program
Zhang et al. A fast IGBT model considering the dynamic performance of both IGBT and antiparallel diode
CN113343453B (en) Modeling method of power electronic cascade converter based on small-step discretization
Plesnik et al. An Efficient Method for Steady-State Analysis of Switching Power Converters with Non-Linear Inductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5294328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250