JP2011081323A - Microlens optical system having super-high depth of field - Google Patents

Microlens optical system having super-high depth of field Download PDF

Info

Publication number
JP2011081323A
JP2011081323A JP2009235675A JP2009235675A JP2011081323A JP 2011081323 A JP2011081323 A JP 2011081323A JP 2009235675 A JP2009235675 A JP 2009235675A JP 2009235675 A JP2009235675 A JP 2009235675A JP 2011081323 A JP2011081323 A JP 2011081323A
Authority
JP
Japan
Prior art keywords
lens
lenses
focal length
optical system
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009235675A
Other languages
Japanese (ja)
Inventor
Hideaki Ishizuki
英昭 石附
Hideo Namiki
秀男 並木
Toru Higashinakagaha
徹 東中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009235675A priority Critical patent/JP2011081323A/en
Publication of JP2011081323A publication Critical patent/JP2011081323A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To observe an image having a super-high depth of a field characteristic through an optical fiber by designing a microlens for an endoscope by using a high-performance compound lens including an aspherical surface having a refractive curved surface. <P>SOLUTION: An optical system is designed to form an image by forming an appropriate gap between the microlens including an aspherical surface having an outside diameter of about ϕ0.3 to 0.5 and the optical fiber without directly fixing the microlens on a surface of the optical fiber by using an adhesive as in a conventional manner. Thus, a favorable wide-angle image whose object distance is from 1 mm to infinity is observed through the optical fiber. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はカテーテル内視鏡などの光ファイバーを用いた観察系において、非球面レンズを含む複合レンズを用い超高被写界深度特性の観察を可能にするマイクロレンズに関するものである。   The present invention relates to a microlens that enables observation of ultra-high depth of field characteristics using a compound lens including an aspheric lens in an observation system using an optical fiber such as a catheter endoscope.

従来の超微外径マイクロレンズは、主として化学気相法を含めた蒸着により作られた内部の屈折率分布を変え、光を集光可能にしたロッドレンズが使われている。あるいは、研削による球面マイクロレンズを用いたレンズが使われているが、十分な被写界深度を持ち解像度の高い広角な光学特性を持った対物レンズ系が不可能なため、医療を含めた観察分野において近接拡大画像のピントが合わず十分な画像観察の効果が期待できなかった。   Conventional ultra-fine outer-diameter microlenses use rod lenses that change the internal refractive index distribution produced by vapor deposition including a chemical vapor deposition method so that light can be collected. Or, lenses using spherical microlenses by grinding are used, but an objective lens system with a wide-angle optical characteristic with sufficient depth of field and high resolution is impossible, so observation including medical treatment is also possible In the field, the close-up magnified image was not in focus, and a sufficient image observation effect could not be expected.

「セルフォックレンズアレイ」日本板硝子のホームページ性能公表。“Selfoc Lens Array” published by Nippon Sheet Glass. 「イメージスキャナ開発室」アイメジャー有限会社のホームページ、NIFTYココログによる。“Image Scanner Development Office” by iMeasure Co., Ltd., NIFTY Cocolog.

ロッドレンズ、球面レンズによる従来の細管の内視鏡においては、広範囲にわたるピント調整機構を持たせることが困難であった。そのため従来と全く異なったの方式の光学系において、近接高倍率撮影から、無限遠までの長作動距離の画像をイメージ光ファイバーに伝達する固定焦点距離レンズを作成することを目的としている。   In conventional narrow tube endoscopes using rod lenses and spherical lenses, it has been difficult to provide a wide range of focus adjustment mechanisms. Therefore, an object of the present invention is to create a fixed focal length lens that transmits an image at a long working distance from close-up and high-magnification photography to infinity in an optical system of a completely different system.

上記のロッドレンズ、球面マイクロレンズによる方法では、一般的にレンズ端を光ファイバーの面に直接接着する方法が用いられていたが、本発明では高倍率化を容易にするため、レンズ端とファイバーの端面に適切な間隔を設け結像する機構を考えた。この画像観察システムは、一つの細管の中にマイクロレンズ系と光ファイバーを同時に組込み、その相対位置(スペース)を調整し結像位置を合わせることを特徴とする。使用する対物レンズは、非球面を含む複合レンズ系であって、上記スペースを適切に考慮したレンズ設計により、高倍率に加え超高被写界深度、広角、高解像度特性なイメージの伝達を可能にする。   In the method using the rod lens and the spherical microlens described above, a method in which the lens end is directly bonded to the surface of the optical fiber is generally used. However, in the present invention, in order to easily increase the magnification, the lens end and the fiber are connected to each other. We considered a mechanism that forms an image with an appropriate interval on the end face. This image observation system is characterized in that a microlens system and an optical fiber are simultaneously incorporated in one narrow tube, and their relative positions (spaces) are adjusted to match the imaging positions. The objective lens to be used is a compound lens system that includes an aspherical surface, and it is possible to transfer images with ultra-high depth of field, wide angle, and high resolution characteristics in addition to high magnification by lens design that properly considers the above space. To.

従来の光学系では非常に深度が浅いため、接写レンズを近づけるとピントが合わず、特に医学部門などではクローズアップ拡大撮影が困難であった。本発明による全く新たな着想に基づくレンズ系を使用すると、近接距離が1mmからほぼ無限遠に近い状態まで高解像度、広角観察が可能である。すなわち従来の方法では例えば病巣の患部の拡大しても画像が不鮮明で明確な判定が出来ず、その映像観察の効果が達せられず不本意に終る場合が多いが、本発明によるマイクロレンズの挿入により近接拡大による明確な画像による診断が可能なる。このようなシステムは患部を切除することなしにおこなえるので、体内の細管部に対する内視鏡撮影に非常に有効な手段となる。その他、このレンズの活用により、細管部を高倍率観察することが必要なあらゆる産業部門に、役立てることが出来る。   The conventional optical system has a very shallow depth, so it cannot be focused when the close-up lens is brought close to it, and close-up enlargement photography is difficult especially in the medical department. When a lens system based on a completely new idea according to the present invention is used, high-resolution and wide-angle observation is possible from a proximity distance of 1 mm to a state close to infinity. That is, in the conventional method, for example, even if the affected part of the lesion is enlarged, the image is unclear and cannot be clearly determined, and the effect of observing the image is often not achieved. This makes it possible to make a diagnosis based on a clear image by proximity enlargement. Since such a system can be performed without excising the affected area, it is a very effective means for endoscopic imaging of a thin tube part in the body. In addition, the use of this lens can be useful for all industrial sectors that require high-magnification observation of the capillary tube.

(a)本発明による非球面を含む2枚のレンズによる細管内視鏡の構図(b)ロッドレンズを使用した従来の細管内視鏡の構図(A) Composition of a capillary endoscope with two lenses including an aspherical surface according to the present invention (b) Composition of a conventional capillary endoscope using a rod lens 2枚構成マイクロ対物レンズ結像系のレイアウトLayout of the imaging system with two objective micro objective lenses 3枚構成マイクロ対物レンズ結像系のレイアウトLayout of the triple objective micro objective imaging system 2枚構成のマイクロ対物レンズのMTF伝達特性MTF transfer characteristics of two-piece micro objective lens 2枚構成のマイクロ対物レンズのスポット像Spot image of two-piece micro objective lens 2枚構成のマイクロ対物レンズの波面収差Wavefront aberration of two-piece micro objective lens 2枚構成のマイクロ対物レンズの色収差、歪曲収差、相対照度特性Chromatic aberration, distortion, and relative illuminance characteristics of a two-lens micro objective lens 3枚構成のマイクロ対物レンズのMTF伝達特性MTF transfer characteristics of a three-lens micro objective lens 3枚構成のマイクロ対物レンズのスポット像Spot image of a 3 objective micro objective lens 3枚構成のマイクロ対物レンズの波面収差Wavefront aberration of three objective micro objective lens 3枚構成のマイクロ対物レンズの色収差、歪曲収差、相対照度特性Chromatic aberration, distortion, and relative illuminance characteristics of a three-lens micro objective lens

実施例について図面を参照して説明する。図1(a)は本発明によるカテーテル内視鏡の構図で、左に示す物体からの光束は複数枚のマイクロレンズを用いた対物レンズ系1により、光ファイバー2に集光しイメージが伝達される。これらの要素はレンズ設計に従ったレンズ間の距離、及び、レンズ端面から光ファイバーまでの距離を正確に保つため、特に構造的に工夫された固定チューブ3内部に収納される。その周囲は図では書いてないが、ライトガイド用ファイバーとか水洗用の管などが設けられている場合が多い。さらにその外側は、被服チューブ4によって保護されている機構を持つものである。本発明ではこの様にレンズ後端と像面の間に比較的長いスペースを持たせることにより、非球面レンズの特性を活かし高倍率化、高被写界深度化のためのレンズ設計を可能にするものである。これに比して、図1(b)は従来のカテーテル内視鏡に主として用いられるロッドレンズ5を用いた構図を示すもので、ロッドレンズは外形寸法の微細径化を特色とし、化学気相法を含めた蒸着により作られた物で、内部の屈折率分布を変えることにより図のような周期的な弧を描いて光が伝達する方式がとられる。この場合通常5の端面が結像面になるため、光ファイバー2の全面に接着剤6により貼付ける方法がとられていた。ロッドレンズの特性は、解像度も低く高々8本/mm程度のもので、その際の被写界深度は高々±0.4mm程度かそれ以下と言われている。この方式では、例えば20mmの物体位置に合わせて設計されたカテーテルでは、2〜3mmまでの近接撮影により患部の詳細像を捉えることが出来ず、正確な診断が不可能になっている。また球面レンズを加工した光学系でも、深度は±2mm程度に改良されているものもあるが、広角の入射に対しては収差が補正し入れず周辺の解像度が劣化することが避けられない。これらの方法は屈曲性、操作性をよくするためか光学的な収差を余り考慮せず全長を短くし、レンズを光ファイバーに密着する方法をとっている。   Embodiments will be described with reference to the drawings. FIG. 1A is a composition of a catheter endoscope according to the present invention. Light beams from an object shown on the left are condensed on an optical fiber 2 by an objective lens system 1 using a plurality of microlenses, and an image is transmitted. . These elements are housed inside a fixed tube 3 that is particularly structurally devised in order to accurately maintain the distance between the lenses according to the lens design and the distance from the lens end face to the optical fiber. Although the surroundings are not shown in the figure, there are many cases where a light guide fiber or a washing tube is provided. Further, the outside has a mechanism protected by the clothing tube 4. In the present invention, by providing a relatively long space between the rear end of the lens and the image plane in this way, it is possible to design a lens for increasing the magnification and the depth of field by taking advantage of the characteristics of the aspherical lens. To do. On the other hand, FIG. 1B shows a composition using a rod lens 5 mainly used in a conventional catheter endoscope. The rod lens is characterized by a finer outer dimension, and a chemical vapor phase. It is a product made by vapor deposition including the method. By changing the internal refractive index distribution, light is transmitted by drawing a periodic arc as shown in the figure. In this case, since the end face of 5 is usually the image plane, a method of sticking to the entire surface of the optical fiber 2 with the adhesive 6 has been employed. The characteristic of the rod lens is that it has a low resolution and is about 8 lenses / mm at the maximum, and the depth of field at that time is said to be about ± 0.4 mm or less. In this method, for example, with a catheter designed for an object position of 20 mm, a detailed image of the affected area cannot be captured by close-up imaging of 2 to 3 mm, and accurate diagnosis is impossible. In some optical systems processed with spherical lenses, the depth is improved to about ± 2 mm. However, it is inevitable that the peripheral resolution deteriorates without correcting aberrations for wide-angle incidence. In order to improve flexibility and operability, these methods take a method in which the entire length is shortened without much consideration of optical aberrations, and the lens is closely attached to the optical fiber.

図2は本発明によるレンズ設計のレイアウト図であり、2枚構成のマイクロ対物レンズによるもの、図3が3枚構成によるマイクロ対物レンズよるものである。以下に用いるレンズ系の長さの単位は全てmmを使用する。図2において前面レンズ7はレンズ外径が小さくφ0.38以内となるように設計がなされている。通常の広角カメラに見られるようなメニスカス型凹レンズを用いると極めて前面レンズが形状の大きくなり、細管系のカテーテル外径寸法には適さない。そこで本発明では設計した前面レンズは、R1=−0.39,R2=0.55、 中心厚0.3からなる曲率の小さな両凹面形状のレンズであり、焦点距離f1=−0.33で大きな負のパワーを持つ。又レンズ間距離d1を0.5、バックフォーカス距離dNを1.0と長くした設計であり、従来の設計で見られるようなdNをほぼゼロに近くしたテレセントリック平行光による結像系を用いていない。集光レンズ8は中心厚が0.4、曲率はR3=0.890,R4=-0.781であり、マイクロレンズの量産用金型のバイト切削に適して曲率を持ち、16次の高次項まで考慮した非球面レンズを用い優れた光学的収差をもつものである。レンズ8の焦点距離はf2=0.53である。2枚レンズ系全体の焦点距離は f=0.33、最大視野角は全角で90度であり、解像度に優れ、被写界深度を有する光学が可能である。図ではレンズ間距離 d1=0.51、バックフォーカスは dN=1.0である。特性図は後述の図4、図5、図6,図7に詳細を明記するが、同様な結像性能を持つ,本発明による条件は2枚構成のマイクロレンズに対し、-0.4≦f1≦-0.2, 0.3≦f2≦0.7,0.5≦dN≦1.5の範囲で規定され、レンズ絞りは集光レンズ8の直前に(絞りと8の距離はゼロ)置かれることを特徴とするものである。又、全体の焦点距離は0.3 ≦f≦0.5 の条件を満たす。   FIG. 2 is a layout diagram of the lens design according to the present invention, which is based on a micro objective lens having two lenses, and FIG. 3 is a micro objective lens having three lenses. The unit of length of the lens system used below is all mm. In FIG. 2, the front lens 7 is designed so that the lens outer diameter is small and within φ0.38. When a meniscus concave lens such as that found in a normal wide-angle camera is used, the front lens becomes extremely large in shape and is not suitable for the outer diameter of a thin tube catheter. Therefore, the front lens designed in the present invention is a biconcave lens having a small curvature consisting of R1 = −0.39, R2 = 0.55, and a center thickness of 0.3, and has a large negative power at a focal length f1 = −0.33. In addition, the lens distance d1 is 0.5 and the back focus distance dN is 1.0, which does not use a telecentric parallel light imaging system in which dN is almost zero as seen in the conventional design. The condensing lens 8 has a center thickness of 0.4, curvature is R3 = 0.890, R4 = -0.781, has a curvature suitable for cutting tools for mass production of microlenses, and has an aspherical surface considering up to the 16th order higher order term. It has a superior optical aberration using a lens. The focal length of the lens 8 is f2 = 0.53. The focal length of the entire two-lens system is f = 0.33, the maximum viewing angle is 90 degrees in all angles, and it has excellent resolution and optics with depth of field. In the figure, the distance between lenses is d1 = 0.51, and the back focus is dN = 1.0. The characteristic diagrams are described in detail in FIGS. 4, 5, 6 and 7, which will be described later. However, the condition according to the present invention is similar to that of the two-lens microlens having the same imaging performance, and −0.4 ≦ f1 ≦. It is defined in the range of −0.2, 0.3 ≦ f 2 ≦ 0.7, 0.5 ≦ d N ≦ 1.5, and the lens diaphragm is placed immediately before the condenser lens 8 (the distance between the diaphragm and 8 is zero). The overall focal length satisfies the condition of 0.3 ≦ f ≦ 0.5.

図3はマイクロレンズ3枚レンズによる結像の例であり、上記図2の設計構想に基づくものであるが、中間位置にもう一枚のレンズを加えることにより、MTFを含めた解像特性をより向上することが出来る。図3の例では全視野角が90度でレンズ外径が図2と同様にφ0.38である。なお、外径をφ6 にすると広角での光束の蹴られがなく、全視野角が100度においても高被写界深度、高解像度を維持することが出来る。図3の例では前面レンズ7は R1=-0.371,R2=0.273からなる曲率の小さな両凹面レンズであり、レンズの中心厚は0.4、焦点距離はf1=−0.204で、2枚レンズ系と同じく-0.4≦f1≦-0.2 の条件を満足すること特徴とする。又、中間レンズ9は球面からなる凸レンズでR3=1.03,R4=-0.443、中心厚は0.3である。図3の 集光レンズ8はR5=2.404 R6=-2.263 なる曲率で16次の高次項を含む非球面レンズであり、中心厚は0.4である。中間レンズ9と、集光レンズ8の合成焦点距離をf23とすると、f23=0.578となり2枚レンズ時の集光レンズの焦点距離f2とほぼ相当する値になる。 又レンズ間距離d1は0.3、d2は0.3であり、バックフォーカス距離 dNを1.0にした設計である。さらに図の3枚レンズ系全体の焦点距離はf=0.34である。このレンズの 特性図は後述の図8,図9、図10,図11に詳細を明記してあるが、同様な結像性能を持つ本発明による条件は、0.3≦f23 ≦0.9,0.5≦dN≦1.5の範囲で規定される。レンズ絞りはレンズ8の直前に(絞りと8との距離はゼロ)置かれることを特徴とするものであり又,全体の焦点距離は 0.3 ≦f≦0.5を満足する。   FIG. 3 shows an example of image formation by a three-lens microlens, which is based on the design concept shown in FIG. 2, but by adding another lens at an intermediate position, resolution characteristics including MTF can be obtained. It can be improved further. In the example of FIG. 3, the total viewing angle is 90 degrees and the lens outer diameter is φ0.38 as in FIG. If the outer diameter is φ6, the light beam is not kicked at a wide angle, and a high depth of field and high resolution can be maintained even when the total viewing angle is 100 degrees. In the example of FIG. 3, the front lens 7 is a biconcave lens having a small curvature of R1 = −0.371 and R2 = 0.273, the center thickness of the lens is 0.4, and the focal length is f1 = −0.204, which is the same as the two-lens system. The condition of −0.4 ≦ f1 ≦ −0.2 is satisfied. The intermediate lens 9 is a convex lens made of a spherical surface, R3 = 1.03, R4 = -0.443, and the center thickness is 0.3. The condensing lens 8 in FIG. 3 is an aspherical lens having a curvature of R5 = 2.404 R6 = -2.263 and including a 16th-order high-order term, and its center thickness is 0.4. Assuming that the combined focal length of the intermediate lens 9 and the condenser lens 8 is f23, f23 = 0.578, which is substantially equivalent to the focal length f2 of the condenser lens in the case of two lenses. The distance between lenses d1 is 0.3, d2 is 0.3, and the back focus distance dN is 1.0. Further, the focal length of the entire three-lens system in the figure is f = 0.34. The characteristics of this lens are specified in detail in FIGS. 8, 9, 10, and 11 to be described later. The conditions according to the present invention having similar imaging performance are 0.3 ≦ f23 ≦ 0.9, 0.5 ≦ dN. Defined within the range of ≦ 1.5. The lens diaphragm is characterized by being placed immediately before the lens 8 (the distance between the diaphragm and 8 is zero), and the overall focal length satisfies 0.3 ≦ f ≦ 0.5.

図4は前記2枚構成のマイクロレンズ光学系のMTF伝達函数による解像度の特性を示すもので、図の上段は極めて近距離接写撮影時特性で、レンズ先端から観察物体までの距離をa とおくとが上段は a=1の時、下段は観察物体から離したときの特性を示し、a=1000の時を示す。この図には書かれてないが距離が、a=15を超えると特性は無限遠時とほぼ変らない。図の上方に記された直線は無収差レンズの回折限界曲線を示す。ここでT, S細文字で書かれている部分はそれぞれSagital (球欠像面)に対してTはTangential(子午像面)に対して光線追跡を行ったときの識別記号である。この図から、従来のロッドレンズ及び球面レンズを用いたときの場合に比して特性と著しく向上し、本発明によるレンズ系では、MTF曲線が a=1の近接から無限遠までほとんど変らないことが分る。通常の広角レンズでも90度以上の全視野角を持たせるには数枚のレンズ構成が必要であるが、本発明では僅か2枚構成のレンズにおいて、広角な視野の領域まで画像が明確に観察可能である。縦軸はMTFの値を示し最大値が1.0、横軸は1mmあたりの解像本数を示す。通常、MTFが30%前後に至る点を基準とすると、この図の横軸は最大を120本/mmとし表示している。   FIG. 4 shows the resolution characteristics of the two-lens microlens optical system according to the MTF transfer function. The upper part of the figure shows the characteristics at the time of close-up close-up photography, and the distance from the lens tip to the observation object is a The upper row shows the characteristics when a = 1, the lower row shows the characteristics when separated from the observation object, and the time when a = 1000. Although not shown in this figure, when the distance exceeds a = 15, the characteristics are almost the same as at infinity. The straight line marked at the top of the figure shows the diffraction limit curve of the aberration-free lens. Here, the portions written in T and S fine letters are identification symbols when ray tracing is performed for Sagital (spherical image plane) and Tangential (meridian image plane), respectively. From this figure, the characteristics and the characteristics are remarkably improved as compared with the case of using the conventional rod lens and spherical lens. In the lens system according to the present invention, the MTF curve hardly changes from the proximity of a = 1 to infinity. I understand. Even with a normal wide-angle lens, several lens configurations are required to give a full viewing angle of 90 degrees or more. In the present invention, an image is clearly observed up to a wide-angle field of view with only two lenses. Is possible. The vertical axis indicates the MTF value, the maximum value is 1.0, and the horizontal axis indicates the number of resolutions per mm. Normally, when the point where the MTF reaches about 30% is used as a reference, the horizontal axis in this figure is displayed with a maximum of 120 lines / mm.

図5は像面に集光するスポット形状を示し上段は物体までの距離が a= 2 の時、下段は a= 20の時の形状を示す。各図において、左上から右下へ順に視野角がそれぞれ、0、10、 20、 30、 35、40、 45度の場合のスポット像を示す。又、ブロックの一片は20μmであり、これらの図において非常にスポット径の小さく光束の十分な収束が得られている。広角においてもコマ収差少ないことが言える。
図6は波面収差形状を示し、上段は観察物体からの距離が a=2の時で入射角0°場合、波面収差のRMSは0.045λ(λ=0.587μm),下段はa=20の時で入射角0°の場合、波面収差のRMSは0.120λである。なお。入射角45度でもa=2では、RMSは0.146λとなり、波面収差がレーリーの1/4波長則以内である。すなわち、近接においても極めて像の劣化が少ない結果となっている。
図7は他の収差を示し、上段図の左側はa=2の時の像面湾曲及び色収差、その右側は歪曲収差を示し、入射角45度に対し最大44.2%となる。a がほぼ無限遠でも歪曲度はほとんど変らない。図7の下段図は、a=20 の時の入射角に対する相対照度を示す。入射角45度の画面端においても、中心部の96.5%の照度が得られる。この照度は近接から無限遠まで特性がほとんど変らない。
FIG. 5 shows the spot shape focused on the image plane. The upper part shows the shape when the distance to the object is a = 2, and the lower part shows the shape when a = 20. In each figure, spot images are shown when the viewing angles are 0, 10, 20, 30, 35, 40, and 45 degrees in order from the upper left to the lower right. One block is 20 μm, and in these figures, the spot diameter is very small and sufficient convergence of the light beam is obtained. It can be said that the coma aberration is small even at a wide angle.
Figure 6 shows the wavefront aberration shape. The top row is when the distance from the observation object is a = 2 and the incident angle is 0 °. The wavefront aberration RMS is 0.045λ (λ = 0.587μm), and the bottom row is when a = 20. When the incident angle is 0 °, the RMS of the wavefront aberration is 0.120λ. Note that. Even at an incident angle of 45 degrees, at a = 2, the RMS is 0.146λ, and the wavefront aberration is within the Rayleigh quarter wavelength rule. That is, the image degradation is extremely small even in the vicinity.
FIG. 7 shows other aberrations. The left side of the upper diagram shows field curvature and chromatic aberration when a = 2, and the right side shows distortion aberration, which is a maximum of 44.2% with respect to an incident angle of 45 degrees. Even if a is almost infinite, the degree of distortion hardly changes. The lower diagram of FIG. 7 shows the relative illuminance with respect to the incident angle when a = 20. Even at the edge of the screen at an incident angle of 45 degrees, 96.5% of the illuminance at the center can be obtained. This illuminance has almost no change in characteristics from close to infinity.

図8は前記3枚構成のマイクロレンズ光学系のMTF伝達函数による解像度の特性を示すもので、図の上段は極めて近距離接写撮影時特性で、上段図はa=2の時を示す。下段図は観察物体から離したときの特性でa=20の時を示す。図の横軸は最大解像度を150本/mmにとり表示している。 図3のMTFに比べると、3枚レンズの効果により光学特性が改善され、解像度がより回折限界に近づいていることが見られる。特にa=2ではもっとも回折限界に近づくが、通常使用するa=3程度までこれとほぼ同じ性能が保たれる。a=20 以上ではこれらの近接に対して無限遠に近いと考えられる。   FIG. 8 shows the characteristics of the resolution by the MTF transfer function of the three-lens microlens optical system. The upper part of FIG. The lower diagram shows the characteristics when a = 20 from the observation object. The horizontal axis in the figure shows the maximum resolution of 150 lines / mm. Compared to the MTF in FIG. 3, it can be seen that the optical characteristics are improved by the effect of the three lenses, and the resolution is closer to the diffraction limit. In particular, when a = 2, the diffraction limit is approached most, but almost the same performance is maintained until a = 3, which is normally used. Above a = 20, it is considered close to infinity with respect to these proximity.

図9は上記と同じ3枚構成のマイクロレンズ光学系による像面に集光するスポット形状を示し、上段図は物体までの距離が a= 2の時、下段図は a= 20の時の形状を示す。各ブロックはそれぞれ視野角がそれぞれ、0、10、20、30、40、 45度の場合のスポット像を示す。
図10は上記と同じ3枚構成の場合の波面収差形状を示し、上段図は a=2の時で入射角0°の場合得られた波面で波面収差のRMSは0.023λ,下段図は a=20 の時で入射角0°の場合得られた波面で波面収差のRMSは0.101λである。この図でも、2枚レンズの場合に対し収差の改善が見られる。
図11は上記と同じ3枚構成の場合、他の収差を示し、上段の左図は a=20の時の像面湾曲及び色収差、右図は歪曲収差を示し入射角45度に対し最大46.4%となる。歪曲収差は近接から無限遠に至ってもほとんど変らない。2枚レンズ系に比して色収差は改善されている。像面湾曲収差の劣化が見られるが、レンズの曲率を変えることにより改善が可能でほとんど問題にならない。下段は、a=20の 時の入射角に対する相対照度を示す。入射角45度の画面端においても、中心部の97.6%の照度が得られる。なお、これらのレンズ系の中で、前面レンズと中間レンズは球面形状用いるため外径がφ0.3程度でも切削加工が可能であり、よく使われる市販の硝子材料,BK7、SF66等を用いる。しかし集光レンズは16次高次項を考慮した非球面を用いるためマイクロレンズの切削加工は不可能であり、最新の低融点高屈折率の硝子材を用いることにより金型成形加工を行う。
Fig. 9 shows the spot shape that is focused on the image plane by the same three-lens microlens optical system as above. The upper diagram shows the shape when the distance to the object is a = 2 and the lower diagram shows the shape when a = 20. Indicates. Each block shows a spot image when the viewing angle is 0, 10, 20, 30, 40, and 45 degrees, respectively.
FIG. 10 shows the wavefront aberration shape in the case of the same three-lens configuration as above, and the upper diagram shows the wavefront obtained when the angle of incidence is 0 ° when a = 2 and the RMS of the wavefront aberration is 0.023λ, and the lower diagram shows a When the angle is 20 and the incident angle is 0 °, the wavefront obtained by the wavefront has an RMS of 0.101λ. Also in this figure, the improvement in aberration is seen compared to the case of two lenses.
FIG. 11 shows other aberrations in the case of the same three-lens configuration as above, the upper left figure shows field curvature and chromatic aberration when a = 20, the right figure shows distortion aberration, and a maximum of 46.4 for an incident angle of 45 degrees. %. Distortion is almost unchanged even from close to infinity. The chromatic aberration is improved compared to the two-lens system. Although the field curvature aberration is deteriorated, it can be improved by changing the curvature of the lens, and hardly causes a problem. The lower row shows the relative illuminance with respect to the incident angle when a = 20. Even at the edge of the screen with an incident angle of 45 degrees, an illuminance of 97.6% in the center can be obtained. In these lens systems, the front lens and the intermediate lens use spherical shapes, so that cutting is possible even with an outer diameter of about φ0.3, and commonly used glass materials such as BK7 and SF66 are used. However, since the condensing lens uses an aspherical surface considering the 16th order higher order term, it is impossible to cut the microlens, and the molding process is performed by using the latest low melting point and high refractive index glass material.

総合倍率mは2枚レンズ系の場合a=2の時m=-0.148であり、結像面の解像度は図3による物体面での解像度120〜150本/mmにmを掛けると、18〜22本/mm程度の解像度が得られる。3枚レンズ系の場合はa=2の時m=-0.153で物体面での解像度150〜200本/mmと解すると、像面の解像度は23〜30本/mmが得られる。これはロッドレンズを用いて浅い被写界深度の最良の位置で得られる解像度の実測値9本/mmに比して3倍程度の解像度を得ることになる。実際、従来のレンズによる結像は、被写界深度は高々±0.4mm程度かそれ以下と言われている。この状態で本発明によるような1mm〜無限遠までの深度特性と比較するのは難しく、従来のマイクロレンズは、図5及び9に示す程度のスポット集光と、図6及び10の波面収差を論ずるには至らず、合焦点から少し離すと像がすぐに不鮮明になる。又、従来の方法では、球面マイクロレンズの使用も含めて、レンズを光ファイバーの端面に接着する機構になっているため、本発明によるようなレンズのバックフォーカスを考慮した光学系は考えられていない。これは、ただレンズ系の長さを短くし、体内を含めたの細管内部での屈曲性を良くするためには都合がよい方法と考えられる。本発明では、2枚及び3枚レンズの構成において全長は、2.2〜2.7mm程度の範囲となっている。一方、市販の映像用広角レンズの例では、数枚のレンズ構成からなり少なくとも全長が30〜40mm、外径がφ20〜30のレンズ系が多い。本発明ではこれらに比べ非常に小さいマイクロな形状を有し、且つ超高被写界深度の優れた光学系もつものである。   In the case of a two-lens system, the total magnification m is m = -0.148 when a = 2, and the resolution of the image plane is 18 to 18 when the resolution on the object plane in FIG. A resolution of about 22 lines / mm can be obtained. In the case of a three-lens system, when a = 2, m = −0.153 and the resolution on the object plane is 150 to 200 lines / mm, the image plane resolution is 23 to 30 lines / mm. This means that a resolution about three times as high as the actual measurement value of 9 lines / mm obtained at the best position with a shallow depth of field using a rod lens is obtained. Actually, it is said that the image formation by the conventional lens has a depth of field of about ± 0.4 mm or less at most. In this state, it is difficult to compare with the depth characteristics from 1 mm to infinity according to the present invention, and the conventional microlens has the spot focusing as shown in FIGS. 5 and 9 and the wavefront aberration of FIGS. It's hard to argue, and if you move it a little away from the focal point, the image will soon become blurry. Further, the conventional method has a mechanism for adhering the lens to the end face of the optical fiber, including the use of a spherical microlens, and therefore an optical system considering the back focus of the lens according to the present invention is not considered. . This is considered to be a convenient method for shortening the length of the lens system and improving the flexibility inside the narrow tube including the inside of the body. In the present invention, the total length of the two-lens and three-lens configurations is in the range of about 2.2 to 2.7 mm. On the other hand, in the case of commercially available wide-angle lenses for video, there are many lens systems having several lens configurations and at least a total length of 30 to 40 mm and an outer diameter of φ20 to 30. In the present invention, the optical system has a very small micro shape compared to these and an excellent optical system with an extremely high depth of field.

本発明の実際の用途に関しては、上記のような全長が2〜3mm程度でも図1の光ファイバー結像系においても、カテーテル内視鏡においても十分な仕様を持ち、あらゆる位置で高性能な画像を観察することが可能である。(例えば通常の直視鏡の長さは10〜20センチのオーダーである)。図1の場合には光学系を固定するため、固定チューブ3はステンレス製などを用いる場合もある。しかし、本発明による非球面レンズ系では、レンズ間のチルト、傾きに対しする影響があっても、ロッドレンズの使用時などに比較して、性能を維持できる可能性があると考えられる。前記のような金属製のチューブを用いずに樹脂製のチューブにより、少しの屈曲性を持たせたレンズ取付け構造を、メカ的に工夫することも可能である。さらに、本発明の特徴はたった2枚のレンズ構成でも広角まで解像度が保たれる点であり、通常は枚数が少ないと広角において十分なMTF特性が得られず、周辺ボケ、色収差などによるMTF曲線の応答が急激に落ちる現象がよく見られる。さらに、より広角性を必要とする場合は光束の蹴られをなくすため、外径を大きくしφ0.7mm程度のレンズを用いれば110度以上の全視野角が可能である。また、歪曲収差は図7,11による特性図から、全視野角が40度以内の領域の映像では歪曲収差が10%前後の歪みの少なく、正確な形状を把握することが可能である。この性能は医療分野のみならず、観察を必要とする多くの工業分野でレンズの小型化、マイクロレンズ化に大きく貢献することが出来る。   Regarding the actual application of the present invention, even if the total length is about 2 to 3 mm as described above, the optical fiber imaging system of FIG. 1 and the catheter endoscope have sufficient specifications, and high performance images can be obtained at any position. It is possible to observe. (For example, the length of a normal direct endoscope is on the order of 10 to 20 cm). In the case of FIG. 1, in order to fix the optical system, the fixing tube 3 may be made of stainless steel. However, in the aspheric lens system according to the present invention, even if there is an influence on the tilt and tilt between the lenses, it is considered that the performance may be maintained as compared with the case of using a rod lens. It is also possible to mechanically devise a lens mounting structure having a slight flexibility by using a resin tube without using the metal tube as described above. Further, the feature of the present invention is that the resolution can be maintained up to a wide angle even with only two lens configurations. Usually, if the number is small, sufficient MTF characteristics cannot be obtained at a wide angle, and an MTF curve due to peripheral blur, chromatic aberration, etc. The phenomenon of sudden drop in response is often seen. Further, when a wider angle is required, the entire viewing angle of 110 degrees or more is possible by using a lens having a large outer diameter and a diameter of about 0.7 mm in order to eliminate kicking of the light beam. In addition, the distortion aberration can be grasped from the characteristic diagrams shown in FIGS. 7 and 11 and an accurate shape can be grasped with less distortion of about 10% in the image of the region where the total viewing angle is within 40 degrees. This performance can greatly contribute not only to the medical field but also to many other industrial fields that require observation, for miniaturization of lenses and microlenses.

1 対物レンズ系
2 光ファイバー
3 固定チューブ
4 被服チューブ
5 ロッドレンズ
6 接着剤
7 前面レンズ
8 集光レンズ
9 中間レンズ









1 Objective Lens System 2 Optical Fiber 3 Fixed Tube 4 Clothing Tube 5 Rod Lens 6 Adhesive 7 Front Lens 8 Condensing Lens 9 Intermediate Lens









Claims (4)

非球面を含む複数のレンズと絞りを有するレンズ外径が直径1mm以下の内視鏡用対物レンズにおいて、もっとも結像面に近い集光レンズの後端から結像面までの距離(バックフォーカス)dNが0.5mm≦dN≦1.5mmの範囲を満足し、かつ、最初に物体側に配置する前面レンズが両面凹面形状のレンズであり、その焦点距離f1が −0.4mm≦f1≦−0.2mmの範囲にある特性を有し、レンズ系全体の合成焦点距離fは 0.3mm≦f≦0.5mmの範囲にあることを特徴とするマイクロレンズ光学系。   The distance from the rear end of the condenser lens closest to the imaging plane to the imaging plane (back focus) in an endoscope objective lens having a plurality of aspherical lenses and a lens having a diaphragm with an outer diameter of 1 mm or less The dN satisfies the range of 0.5 mm ≦ dN ≦ 1.5 mm, and the front lens first arranged on the object side is a double-sided concave lens, and its focal length f1 is −0.4 mm ≦ f1 ≦ −. A microlens optical system having characteristics in a range of 0.2 mm and a combined focal length f of the entire lens system in a range of 0.3 mm ≦ f ≦ 0.5 mm. 請求項1に示す内視鏡用対物レンズにおいて2枚構成のレンズからなり、集光レンズは非球面レンズを用い、その焦点距離f2は0.3mm≦f2≦0.7mmを満足し、絞りを集光レンズの直前に設けることを特徴とする光学系。 The endoscope objective lens according to claim 1 is composed of two lenses, the condenser lens is an aspheric lens, the focal length f2 satisfies 0.3 mm ≦ f2 ≦ 0.7 mm, and the aperture is An optical system characterized by being provided immediately before the condenser lens. 請求項1に示す内視鏡用対物レンズにおいて3枚構成のレンズからなり、集光レンズの前に結像用中間レンズを設け、このレンズと集光レンズとの合成焦点距離f23が0.3mm≦f23≦0.9mmを満足し、絞りを集光レンズの直前に設けることを特徴とする光学系。   The objective lens for an endoscope according to claim 1, which is composed of three lenses, is provided with an imaging intermediate lens in front of the condenser lens, and a combined focal length f23 of this lens and the condenser lens is 0.3 mm. ≦ f23 ≦ 0.9 mm is satisfied, and an aperture is provided immediately before the condenser lens. 2〜3枚構成のレンズからなる内視鏡用対物レンズにおいて、レンズの焦点距離が上記各請求項に示す各f1、f2,f23,fの条件を満足し、レンズ外径が0.5mm以下で且つ全視野角が90度以上の広角特性を有し、レンズ先端から物体面までの作動距離が1mmから無限遠に至るまで、波面収差が1/4波長以下の特性を有し高解像度MTF特性が保たれる高被写界深度特性を特徴とする光学系。   In an endoscope objective lens composed of two to three lenses, the focal length of the lens satisfies the conditions of f1, f2, f23, and f shown in the above claims, and the outer diameter of the lens is 0.5 mm or less. In addition, it has a wide-angle characteristic with a total viewing angle of 90 degrees or more, and a wavefront aberration of ¼ wavelength or less until the working distance from the lens tip to the object surface is 1 mm to infinity. An optical system characterized by high depth-of-field characteristics that preserve the characteristics.
JP2009235675A 2009-10-09 2009-10-09 Microlens optical system having super-high depth of field Pending JP2011081323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235675A JP2011081323A (en) 2009-10-09 2009-10-09 Microlens optical system having super-high depth of field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235675A JP2011081323A (en) 2009-10-09 2009-10-09 Microlens optical system having super-high depth of field

Publications (1)

Publication Number Publication Date
JP2011081323A true JP2011081323A (en) 2011-04-21

Family

ID=44075410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235675A Pending JP2011081323A (en) 2009-10-09 2009-10-09 Microlens optical system having super-high depth of field

Country Status (1)

Country Link
JP (1) JP2011081323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215481A (en) * 2011-03-31 2012-11-08 Honda Motor Co Ltd Distance measuring system
CN114488511A (en) * 2021-12-23 2022-05-13 南京大学 Depth measurement auxiliary imaging-based extended depth-of-field optical fiber endoscopic imaging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215481A (en) * 2011-03-31 2012-11-08 Honda Motor Co Ltd Distance measuring system
CN114488511A (en) * 2021-12-23 2022-05-13 南京大学 Depth measurement auxiliary imaging-based extended depth-of-field optical fiber endoscopic imaging method

Similar Documents

Publication Publication Date Title
JP4575198B2 (en) Endoscopic imaging unit
JP4934233B2 (en) Objective optical system
JP6064105B1 (en) Endoscope objective optical system
JP4659645B2 (en) Magnifying endoscope optical system
JP2012230434A (en) Objective optical system
JP6197147B1 (en) Objective optical system
JP6899030B2 (en) Objective optics, imaging devices, endoscopes, and endoscope systems
JP2001194580A (en) Objective lens for endoscope
CN109416459B (en) Endoscope objective optical system
JP5850065B2 (en) Eyepiece optical system and optical apparatus
JP5231688B1 (en) Endoscope objective optical system
WO2018042797A1 (en) Objective optical system for endoscope
JP2009163256A (en) Optical system
JP5705014B2 (en) Imaging lens, imaging optical system, and microscope
JP6836466B2 (en) Endoscopic objective optical system
JP2011081323A (en) Microlens optical system having super-high depth of field
JP6857572B2 (en) Objective optical system for endoscopes
JP2011099963A (en) Single microlens for high depth of field
JP6701508B2 (en) Eyepiece and optical equipment
JP6754916B2 (en) Variable magnification optics for endoscopes and endoscopes
JP7024100B2 (en) Objective optical system and endoscope
JP2017037276A (en) Microscope objective lens
JPWO2020174561A1 (en) Objective optical system for endoscopes and endoscopes
JP5099712B2 (en) Special photographing method using an optical device having a lens having a curved depth of field using curvature of field
CN217561828U (en) Endoscope optical system and endoscope