JP2011080121A - Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle - Google Patents

Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle Download PDF

Info

Publication number
JP2011080121A
JP2011080121A JP2009234296A JP2009234296A JP2011080121A JP 2011080121 A JP2011080121 A JP 2011080121A JP 2009234296 A JP2009234296 A JP 2009234296A JP 2009234296 A JP2009234296 A JP 2009234296A JP 2011080121 A JP2011080121 A JP 2011080121A
Authority
JP
Japan
Prior art keywords
tube
mass
heat exchanger
air conditioner
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009234296A
Other languages
Japanese (ja)
Inventor
Munehisa Takahashi
宗尚 高橋
Yasunori Hyogo
靖憲 兵庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2009234296A priority Critical patent/JP2011080121A/en
Publication of JP2011080121A publication Critical patent/JP2011080121A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extruded tube made of an aluminum alloy which has excellent strength and corrosion resistance as the tube of a heat exchanger for an air conditioner, and to provide refrigerant piping for a heat exchanger cycle having excellent strength and corrosion resistance. <P>SOLUTION: The extruded tube for a fin tube type heat exchanger for an air conditioner or refrigerant piping for a heat exchange cycle is composed of an aluminum alloy having a composition containing 0.01 to 1.2 mass% Fe, 0.01 to 1.5 mass% Mn, 0.01 to 0.3 mass% Cr and &le;0.2 mass% Si, and the balance Al with inevitable impurities. In this invention, it is preferable that the content of Cu is controlled to &le;0.05 mass%, the content of Na is controlled to &le;10 mass% and also the content of Zn is controlled to 0.1 to 1.0 mass%. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、熱交換器に組み込まれる伝熱管に関し、特にエアコン用の熱交換サイクルに組み込まれるのが好適な、強度及び耐食性に優れるアルミニウム合金製のフィンチューブ型エアコン熱交換器用押出チューブ及び熱交換サイクル用冷媒配管に関する。   TECHNICAL FIELD The present invention relates to a heat transfer tube incorporated in a heat exchanger, and in particular, an extruded tube for a fin tube type air conditioner heat exchanger made of aluminum alloy having excellent strength and corrosion resistance, and heat exchange suitable for being incorporated in a heat exchange cycle for an air conditioner. The present invention relates to a refrigerant pipe for a cycle.

近年、家庭用や業務用のエアコンの普及は目覚しく、日常生活における快適さの実現にはなくてはならないものになっている。エアコンは、圧縮器、凝縮器、膨張弁、蒸発器を冷媒配管で繋ぎ、各機器に冷媒を循環させる熱交換サイクルが採用されており、凝縮器、蒸発器などの熱交換器によって冷媒の気化と液化を繰り返すことにより気化熱で周囲の熱を奪い室内の冷房を行っている。   In recent years, air conditioners for home use and business use have been remarkably widespread, and have become indispensable for realizing comfort in daily life. The air conditioner employs a heat exchange cycle that connects the compressor, condenser, expansion valve, and evaporator with refrigerant piping and circulates the refrigerant to each device. The refrigerant is vaporized by the heat exchanger such as the condenser and evaporator. And by repeating the liquefaction, the surrounding heat is taken away by the heat of vaporization and the room is cooled.

これらの熱交換器には、冷媒が通過するチューブとして熱伝導性および加工性に優れた銅または銅合金製配管材が使用され、銅管の周囲に複数のアルミニウム合金製薄肉フィン材を平行に配設しているフィンチューブ型熱交換器が使用されている(例えば、特許文献1)。図1、図2に基づいてフィンチューブ型熱交換器の概略構成を説明する。   In these heat exchangers, pipes made of copper or copper alloy with excellent thermal conductivity and workability are used as tubes through which the refrigerant passes, and multiple thin fins made of aluminum alloy are placed in parallel around the copper pipe. An arranged fin tube type heat exchanger is used (for example, Patent Document 1). Based on FIG. 1, FIG. 2, the schematic structure of a fin tube type heat exchanger is demonstrated.

図1(a)はフィンチューブ型熱交換器の構成を示す側面図であり、図1(b)は図1(a)に示すフィンチューブ型熱交換器をヘアピン管側から見た斜視図である。図2(a)はフィンチューブ型熱交換器をUベンド管側から見た斜視図であり、図2(b)は図2(a)の一部拡大図である。   Fig.1 (a) is a side view which shows the structure of a fin tube type heat exchanger, FIG.1 (b) is the perspective view which looked at the fin tube type heat exchanger shown in Fig.1 (a) from the hairpin tube side. is there. Fig.2 (a) is the perspective view which looked at the fin tube type heat exchanger from the U bend pipe side, FIG.2 (b) is a partially expanded view of Fig.2 (a).

図1(a)に示すフィンチューブ型熱交換器は次のようにして作製される。銅又は銅合金からなる伝熱管(チューブ)をその中央でヘアピン状に曲げ加工をしてU字型のヘアピン管2を作製し、所定の間隔をおいて平行に配置したアルミニウム又はアルミニウム合金製のフィン材1にヘアピン管2を挿通した後、拡管により両者を密着させて固定する。次に、隣接するヘアピン管2の管端に予め曲げ加工を施してあるUベンド管3を嵌合し、ヘアピン管2とUベンド管3とをろう付けすることにより複数個のヘアピン管2とUベンド管3を連結させる。   The finned tube heat exchanger shown in FIG. 1A is manufactured as follows. A heat transfer tube (tube) made of copper or a copper alloy is bent into a hairpin shape at the center to produce a U-shaped hairpin tube 2, which is made of aluminum or aluminum alloy arranged in parallel at a predetermined interval. After the hairpin tube 2 is inserted through the fin material 1, both are brought into close contact with each other and expanded by expansion. Next, a plurality of hairpin tubes 2 are formed by fitting a U-bend tube 3 that has been previously bent to the tube ends of adjacent hairpin tubes 2 and brazing the hairpin tube 2 and the U-bend tube 3 together. The U bend pipe 3 is connected.

ヘアピン管2、Uベンド管3を構成するチューブとしては、熱伝導性、耐食性、加工性、強度等に優れている銅管が広く使用されている。また、フィン材1としては軽量性、加工性および熱伝導性に優れるという観点からアルミニウムやアルミニウム合金が広く用いられている。フィン材1は、薄肉化、高強度化が進められるとともに、表面処理を施すことで表面の親水性や耐食性の向上が図られている。   As the tubes constituting the hairpin tube 2 and the U-bend tube 3, copper tubes that are excellent in thermal conductivity, corrosion resistance, workability, strength, etc. are widely used. In addition, as the fin material 1, aluminum or an aluminum alloy is widely used from the viewpoint of being excellent in lightness, workability, and thermal conductivity. The fin material 1 is made thinner and higher in strength, and surface treatment is performed to improve the hydrophilicity and corrosion resistance of the surface.

しかし、近年、熱交換器は高性能、高機能化だけでなく、少資源、少エネルギ、少スペースなどの環境側面も配慮した設計が求められている。さらには銅価格の高騰に伴い、安価な部材の使用によるコストダウンの要求も非常に高まっている。したがって、今後、熱交換器には高性能化、高品質化に加え、さらなるコストダウンや軽量化、リサイクル性などの向上も必要不可欠となっている。   However, in recent years, heat exchangers are required to be designed not only with high performance and high functionality, but also with consideration for environmental aspects such as low resources, low energy, and low space. Furthermore, as the price of copper soars, the demand for cost reduction through the use of inexpensive members is also increasing. Therefore, in the future, in addition to higher performance and higher quality, further cost reduction, lighter weight, and improved recyclability are indispensable for heat exchangers.

エアコン用熱交換器の高性能化を進めるとともに、コストダウンや軽量化、さらにはリサイクル性を兼ね備えた熱交換器を得るためには、チューブを軽量で銅に比べ安価なアルミニウム合金から作製することが有効となる。   To improve the performance of heat exchangers for air conditioners, and to reduce the cost and weight, and to obtain a heat exchanger that combines recyclability, the tube must be made of an aluminum alloy that is lighter and cheaper than copper. Becomes effective.

特開2002−147981号公報JP 2002-147981 A

しかし、アルミニウムは銅に比べ、素材強度が低いため、ヘアピン加工やチューブ拡管時に局部変形を生じ、成形不良や割れが発生しやすいなどの問題がある。また、熱交換器としての構造強度や耐久強度確保のため、チューブには高い強度も要求される。さらにはヘアピン管2とUベンド管3はろう付けで接合されるため、ろう付けが可能な合金を選定しなければならない。
また、アルミニウムは銅に比べて耐食性が劣るため、耐食性に優れる合金選定も必要となる。耐食性については、アルミニウム合金製押出チューブを熱間押出によって製造すると、ウエルドラインと一般的に呼ばれている線状痕が発生し、このウエルドラインが優先的に腐食されるという問題もある。ウエルドラインとは、軟化した金属を金型に押し込んで成形を行う場合に、金型内で2つ以上の軟化金属の流れが合流した部分を示す。
However, since aluminum has a lower material strength than copper, there is a problem that local deformation occurs during hairpin processing or tube expansion, and molding defects or cracks are likely to occur. In addition, the tube is required to have high strength in order to ensure structural strength and durability as a heat exchanger. Furthermore, since the hairpin tube 2 and the U-bend tube 3 are joined by brazing, an alloy capable of brazing must be selected.
Moreover, since aluminum has inferior corrosion resistance compared to copper, it is also necessary to select an alloy having excellent corrosion resistance. Regarding the corrosion resistance, when an aluminum alloy extruded tube is manufactured by hot extrusion, there is a problem that a linear mark generally called a weld line is generated, and this weld line is preferentially corroded. The weld line indicates a portion where two or more softened metal flows merge in the mold when the softened metal is pressed into the mold.

さらに、熱交換サイクルにおいて、熱交換器と圧縮器や膨張弁などの機器を繋ぐ冷媒配管も、チューブと同様の環境下で使用されるため、チューブと同様の強度や耐食性、ろう付け性が求められている。   Furthermore, in the heat exchange cycle, the refrigerant piping that connects the heat exchanger to the compressor, expansion valve, and other equipment is also used in the same environment as the tube, so the same strength, corrosion resistance, and brazing properties as the tube are required. It has been.

本発明は前記事情に鑑みてなされたもので、エアコン用熱交換器のチューブとして強度や耐食性に優れ、ろう付け性にも優れるアルミニウム合金製の押出チューブ及び熱交換サイクル用の冷媒配管を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides an extruded tube made of an aluminum alloy having excellent strength and corrosion resistance as a tube of a heat exchanger for an air conditioner and excellent in brazing and a refrigerant pipe for a heat exchange cycle. The purpose is that.

熱交換器製造時、チューブの拡管はチューブ内径よりやや大きい拡管ロッドをチューブ内部に挿入、通過させ、内部から押し拡げることでフィンとの隙間をなくして固着させている。しかし、チューブ強度が低すぎると拡管ロッドにアルミニウムが付着し、挿引時の圧力が著しく増大したり、また、拡管後に都度アルミ片の除去が必要になるなど、生産性が低下する要因となる。また、チューブ強度が高すぎて伸びが低くなると拡管時に一部で減肉等の局部変形が生じ、割れが発生する原因となる。さらにはヘアピン加工の曲げ部やUベンド管との接合部となるフレア加工部でも成形時に割れや減肉の発生が問題となる。   At the time of manufacturing the heat exchanger, the tube is expanded by inserting a tube expansion rod that is slightly larger than the tube inner diameter into the tube, passing it through, and then expanding it from the inside to eliminate the gap between the fins. However, if the tube strength is too low, aluminum adheres to the tube expansion rod, and the pressure at the time of insertion increases remarkably, and it becomes necessary to remove the aluminum piece each time after tube expansion, which causes a decrease in productivity. . Also, if the tube strength is too high and the elongation is low, local deformation such as thinning occurs in part during tube expansion, causing cracking. Furthermore, the occurrence of cracks and thinning during molding is also a problem in the bent portion of the hairpin processing and the flared portion that becomes the joint portion with the U-bend tube.

以上のようにエアコン用チューブは成形性や拡管性向上のため、チューブを構成するアルミニウム合金成分の最適化を行なう必要がある。また、機械的性質や調質の最適化により加工性を向上することが必要となる。
また、熱交換器としての構造強度や熱交換器として使用する際の耐久強度確保のため、チューブを構成するアルミニウム合金としての強度向上も必要となる。肉厚の増加により強度を確保することも可能だが、拡管性や成形性が低下するため、できるだけ高い強度の合金が必要となる。一般的な純アルミニウムでは強度が不足するため、添加元素を含むアルミニウム合金として強度向上が必要となる。
As described above, the air conditioner tube needs to optimize the aluminum alloy components constituting the tube in order to improve formability and tube expansion. In addition, it is necessary to improve workability by optimizing mechanical properties and tempering.
Further, in order to ensure the structural strength as a heat exchanger and the durability strength when used as a heat exchanger, it is necessary to improve the strength as an aluminum alloy constituting the tube. Although it is possible to ensure strength by increasing the wall thickness, an alloy having as high a strength as possible is required because tube expandability and formability deteriorate. Since general pure aluminum has insufficient strength, it is necessary to improve the strength of an aluminum alloy containing an additive element.

そこで本発明者等は、強度および耐食性を高める添加元素としてFe、Mn、Siなど様々な元素の添加を検討した。その結果、Fe、Mnは強度および耐食性の向上に有効であること、耐食性向上に有効な元素として知られるSiはろう付け性を劣化させるので規制するのが好ましいこと、ろう付け性の改善にはCrが有効であることを知見した。   Therefore, the present inventors examined the addition of various elements such as Fe, Mn, and Si as additive elements that enhance strength and corrosion resistance. As a result, Fe and Mn are effective in improving strength and corrosion resistance, Si, which is known as an element effective in improving corrosion resistance, deteriorates brazeability and is preferably regulated. It was found that Cr is effective.

したがって、本発明は、Fe:0.01〜1.2質量%、Mn:0.01〜1.5質量%、Cr:0.01〜0.3質量%、Si:0.2質量%以下、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金から構成されるフィンチューブ型エアコン熱交換器用押出チューブである。
本発明フィンチューブ型エアコン熱交換器用押出チューブでは、アルミニウム合金におけるCuの含有量が0.05質量%以下であること、さらにはNaの含有量が10質量ppm以下であることが好ましい。また本発明フィンチューブ型エアコン熱交換器用押出チューブでは、Zn:0.1〜1.0質量%を含有することが好ましい。Znの含有は耐食性の向上に効果がある。
Therefore, the present invention is Fe: 0.01-1.2 mass%, Mn: 0.01-1.5 mass%, Cr: 0.01-0.3 mass%, Si: 0.2 mass% or less An extruded tube for a finned tube air conditioner heat exchanger, the balance of which is made of an aluminum alloy having a composition comprising Al and inevitable impurities.
In the extruded tube for a fin tube type air conditioner heat exchanger of the present invention, the Cu content in the aluminum alloy is preferably 0.05 mass% or less, and the Na content is preferably 10 mass ppm or less. Moreover, it is preferable that the extrusion tube for fin tube type air conditioner heat exchangers of the present invention contains Zn: 0.1 to 1.0% by mass. The inclusion of Zn is effective in improving the corrosion resistance.

本発明のフィンチューブ型エアコン熱交換器用押出チューブに好適なアルミニウム合金の組成は、熱交換サイクル用冷媒配管にも好適である。
したがって、本発明は、Fe:0.01〜1.2質量%、Mn:0.01〜1.5質量%、Cr:0.01〜0.3質量%、Si:0.2質量%以下、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金からなることを特徴とする熱交換サイクル用冷媒配管を提供する。
本発明の熱交換サイクル用冷媒配管は、アルミニウム合金におけるCuの含有量が0.05質量%以下であること、さらにはNaの含有量が10質量ppm以下であること、Znを0.1〜1.0質量%含有することが好ましい。
The composition of the aluminum alloy suitable for the extruded tube for the fin tube type air conditioner heat exchanger of the present invention is also suitable for the refrigerant piping for the heat exchange cycle.
Therefore, the present invention is Fe: 0.01-1.2 mass%, Mn: 0.01-1.5 mass%, Cr: 0.01-0.3 mass%, Si: 0.2 mass% or less A refrigerant pipe for a heat exchange cycle, characterized in that the balance is made of an aluminum alloy having a composition consisting of Al and inevitable impurities.
In the refrigerant pipe for heat exchange cycle of the present invention, the Cu content in the aluminum alloy is 0.05 mass% or less, the Na content is 10 mass ppm or less, and Zn is 0.1 to 0.1 mass%. It is preferable to contain 1.0 mass%.

本発明のフィンチューブ型エアコン熱交換器用押出チューブおよび熱交換サイクル用冷媒配管は、優れた強度、耐食性およびろう付け性を有しており、本チューブおよび本配管を使用することで部材コストの低減や軽量化を図ることができる。また、現行の銅管と同じ製造設備で熱交換器を作成することが可能なため、新たな設備投資を必要とせず、工業上顕著な効果を有する。   The extruded tube for the fin tube type air conditioner heat exchanger and the refrigerant piping for the heat exchange cycle of the present invention have excellent strength, corrosion resistance and brazing properties, and the use of this tube and this piping reduces the member cost. And weight reduction. Moreover, since it is possible to produce a heat exchanger with the same production equipment as the current copper pipe, there is no need for new equipment investment, and there is a remarkable industrial effect.

(a)はフィンチューブ型熱交換器の構成を示す側面図であり、(b)は図1(a)に示すフィンチューブ型熱交換器をヘアピン管側から見た斜視図である。(A) is a side view which shows the structure of a fin tube type heat exchanger, (b) is the perspective view which looked at the fin tube type heat exchanger shown to Fig.1 (a) from the hairpin tube side. (a)はフィンチューブ型熱交換器をUベンド管側から見た斜視図であり、(b)は(a)の一部拡大図である。(A) is the perspective view which looked at the fin tube type heat exchanger from the U bend pipe side, (b) is the partially expanded view of (a). 熱交換サイクルの構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of a heat exchange cycle.

本発明は、フィンチューブ型エアコン熱交換器用押出チューブ(以下、単にチューブと略記する場合もある)および熱交換サイクル用冷媒配管(以下、単に配管と略記する場合もある)を構成するアルミニウム合金の組成に特徴を有しており、以下では本発明において規定している組成の限定理由を説明する。   The present invention relates to an aluminum alloy that constitutes an extruded tube for a fin tube type air conditioner heat exchanger (hereinafter sometimes simply referred to as a tube) and a refrigerant pipe for a heat exchange cycle (hereinafter sometimes simply referred to as a pipe). The composition has characteristics, and the reasons for limiting the composition defined in the present invention will be described below.

<Fe:0.01〜1.2質量%>
Feは、Al−Fe系あるいはAl−Fe−Mn系金属間化合物の生成および組織の微細化により強度を向上させる。また、Siの析出を促し融点を高め押出性、ろう付け性を向上させる。さらに、Mnの析出を促し押出性を向上させる。さらに、Fe系の晶出物が材料中に微細に存在するため、それらが孔食の発生源となり深い孔食の発生を抑制する効果がある。これら効果を得るために、本発明はFeを0.01質量%以上含有させる。しかし、含有量が多くなるとAl−Fe系金属間化合物が過剰に生成し、カソードの過剰分布による耐食性低下、Al−Mn−Fe系の巨大金属間化合物の生成による曲げ加工性とフレア加工性の低下を引き起こすので、Feの含有量は1.2質量%以下とする。好ましいFeの含有量は0.5〜1.0質量%である。
<Fe: 0.01 to 1.2% by mass>
Fe improves strength by generating Al-Fe-based or Al-Fe-Mn-based intermetallic compounds and refining the structure. Moreover, precipitation of Si is promoted, the melting point is increased, and extrudability and brazing properties are improved. Furthermore, precipitation of Mn is promoted and the extrudability is improved. Furthermore, since Fe-based crystallized substances are finely present in the material, they become a source of pitting corrosion and have an effect of suppressing the occurrence of deep pitting corrosion. In order to acquire these effects, this invention contains 0.01 mass% or more of Fe. However, when the content is increased, an excessive amount of Al-Fe intermetallic compound is formed, the corrosion resistance is reduced due to the excessive distribution of the cathode, and the bending workability and flare workability due to the formation of the Al-Mn-Fe giant intermetallic compound are reduced. Since it causes a decrease, the Fe content is set to 1.2 mass% or less. The content of Fe is preferably 0.5 to 1.0% by mass.

<Mn:0.01〜1.5質量%>
Mnは、添加量に応じてアルミニウムマトリックス中に固溶しあるいはAl−Mn系金属間化合物として析出し、強度を向上させる。また、Siの析出を促して融点を高める。さらに高温での変形抵抗が高まるのでろう付け性を向上させる効果を有する。またさらにMn添加により、AlFe系金属間化合物がAl−Fe−Mn系金属間化合物として析出するので耐食性低下を抑制する。
<Mn: 0.01 to 1.5% by mass>
Mn is dissolved in the aluminum matrix or precipitated as an Al—Mn intermetallic compound depending on the amount added, and improves the strength. Moreover, precipitation of Si is promoted to increase the melting point. Further, since the deformation resistance at high temperature is increased, it has the effect of improving the brazing property. Further, addition of Mn causes AlFe-based intermetallic compounds to precipitate as Al—Fe—Mn-based intermetallic compounds, thereby suppressing a decrease in corrosion resistance.

これら効果を得るために、本発明はMnを0.01質量%以上含有させる。しかし、含有量が多くなると粗大なAl−Mn系金属間化合物が多数生成し、押出性が著しく低下する。また、含有量が多くなるとチューブ拡管性を低下させる。そこで、本発明はMnの含有量を1.5質量%以下とする。好ましいMnの含有量は0.8〜1.4質量%である。   In order to obtain these effects, the present invention contains 0.01% by mass or more of Mn. However, when the content increases, a large number of coarse Al—Mn intermetallic compounds are produced, and the extrudability is remarkably lowered. Moreover, if the content is increased, the tube expandability is lowered. Therefore, the present invention sets the Mn content to 1.5 mass% or less. A preferable Mn content is 0.8 to 1.4% by mass.

<Cr:0.01〜0.3質量%>
Crは、合金の融点を高めてろう付け性を向上させ、高温での変形抵抗を向上させる効果を有し、ろう付け時の剛性確保に寄与する。
しかし、Crの含有量が0.01質量%未満では融点を高め、ろう付け性を向上させる効果が不十分である。一方、0.3質量%を超えて含有すると、押出性が低下する。したがって、Crの含有量を0.01〜0.3質量%とする。好ましいCrの含有量は0.1〜0.2質量%である。
<Cr: 0.01 to 0.3% by mass>
Cr has the effect of increasing the melting point of the alloy to improve brazing properties and improving deformation resistance at high temperatures, and contributes to securing rigidity during brazing.
However, when the Cr content is less than 0.01% by mass, the effect of increasing the melting point and improving the brazing property is insufficient. On the other hand, when it contains exceeding 0.3 mass%, extrudability will fall. Therefore, the Cr content is set to 0.01 to 0.3% by mass. The preferable Cr content is 0.1 to 0.2% by mass.

<Si:0.2質量%以下>
Siは、アルミニウムマトリックス中に固溶し、強度および耐食性を向上させる元素ではあるが、一方で融点を低下させるので、押出性およびろう付け性を低下させる。本発明では、融点を高めることによりろう付性向上を図るためにCrを上記のように添加するが、Crによるろう付性向上の効果を十分に得るためには、合金の融点を低下させる元素であるSiの含有量を規制する必要がある。そこで、本発明ではSiの含有量を0.2質量%以下とする。Siの好ましい含有量は0.15質量%以下、より好ましい含有量は0.1質量%以下である。
<Si: 0.2 mass% or less>
Si is an element that dissolves in an aluminum matrix and improves strength and corrosion resistance, but lowers the melting point, and thus lowers extrudability and brazing. In the present invention, Cr is added as described above in order to improve the brazing property by increasing the melting point, but in order to sufficiently obtain the effect of improving the brazing property by Cr, an element that lowers the melting point of the alloy. It is necessary to regulate the Si content. Therefore, in the present invention, the Si content is 0.2 mass% or less. The preferable content of Si is 0.15% by mass or less, and the more preferable content is 0.1% by mass or less.

<Cu:0.05質量%以下>
Cuは、含有量が多くなると、チューブの腐食速度が増加し、耐食性が低下する。そこで、本発明はCuの含有量を0.05質量%以下と低く規制することが好ましい。より好ましいCuの含有量は、0.02質量%以下である。
<Cu: 0.05% by mass or less>
As the content of Cu increases, the corrosion rate of the tube increases and the corrosion resistance decreases. Therefore, the present invention preferably regulates the Cu content as low as 0.05% by mass or less. A more preferable Cu content is 0.02 mass% or less.

<Zn:0.1〜1.0質量%>
Znは耐食性の向上にとって有効な元素である。しかし、含有量が0.1質量%未満では耐食性向上効果が不十分である。一方、1.0質量%を超えて含有すると、耐食性が劣化する。したがって、任意元素であるZnを含有させる場合には、Zn:0.1〜1.0質量%とするのが好ましく、Zn:0.1〜0.7質量%とするのがより好ましい。
<Zn: 0.1 to 1.0% by mass>
Zn is an effective element for improving corrosion resistance. However, if the content is less than 0.1% by mass, the effect of improving corrosion resistance is insufficient. On the other hand, when it contains exceeding 1.0 mass%, corrosion resistance will deteriorate. Therefore, when Zn which is an arbitrary element is contained, Zn: 0.1 to 1.0% by mass is preferable, and Zn: 0.1 to 0.7% by mass is more preferable.

<Na:10質量ppm以下>
Naは、10質量ppmを超えると高温加工性が低下し、熱間押出時にクラックが発生する。したがって、Naは10質量ppm以下とすることが好ましい。
<Na: 10 mass ppm or less>
When Na exceeds 10 ppm by mass, the high-temperature workability decreases, and cracks occur during hot extrusion. Therefore, Na is preferably 10 ppm by mass or less.

なお、本発明のチューブおよび配管は、以上の元素の他に強度や成形性、耐食性の向上のために微量添加元素としてそれぞれ0.3質量%以下のZr、Ti、V、Sr、Biを添加することもできる。   In addition to the above elements, the tubes and pipes of the present invention are each added with 0.3 mass% or less of Zr, Ti, V, Sr, Bi as trace addition elements in order to improve strength, formability, and corrosion resistance. You can also

本発明のチューブおよび配管を構成するアルミニウム合金は、本発明の組成範囲となるよう各元素の含有量を調整することにより融点を640℃以上とすることができる。融点が640℃未満と低くなるとろう付け性が低下するので、融点は640℃以上であることが好ましい。   The aluminum alloy constituting the tube and piping of the present invention can have a melting point of 640 ° C. or higher by adjusting the content of each element so as to be within the composition range of the present invention. When the melting point is lower than 640 ° C., the brazing property is lowered. Therefore, the melting point is preferably 640 ° C. or higher.

本発明のチューブおよび配管の製造方法は、常法に従えばよい。つまり、アルミニウム合金ビレットを半連続鋳造法によって作製し、熱間押出を行なうことで製造される。押出性の向上のためにビレットの均質化処理を行うことが好ましい。なお、熱間押出前にビレットを加熱する工程は均質化処理を兼ねているとみなすことができる。   The manufacturing method of the tube and piping of this invention should just follow a conventional method. That is, the aluminum alloy billet is manufactured by a semi-continuous casting method and hot extrusion is performed. In order to improve the extrudability, it is preferable to perform a homogenization treatment of the billet. In addition, it can be considered that the process of heating a billet before hot extrusion serves as a homogenization process.

本発明のチューブはいずれの形状でも耐食性に影響を及ぼすものではない。具体的には熱交換性能向上のために内面に溝を有したチューブが通常使用されるが、その内面形状は問わない。チューブの外径(直径)は、5〜12mmの範囲から適宜選択される。チューブの耐食性を高めるために、チューブ外表面にZnの拡散層等の表面処理を行うことを本発明は許容する。   The tube of the present invention does not affect the corrosion resistance in any shape. Specifically, a tube having a groove on the inner surface is usually used for improving heat exchange performance, but the inner surface shape is not limited. The outer diameter (diameter) of the tube is appropriately selected from the range of 5 to 12 mm. In order to increase the corrosion resistance of the tube, the present invention allows the surface of the tube outer surface to be subjected to a surface treatment such as a Zn diffusion layer.

<熱交換器>
本発明のチューブを使用したエアコン用熱交換器は、チューブとして銅管を使用する場合とほぼ同じ工程で製造される。
すなわち、チューブをその中央でヘアピン状に曲げ加工をしてU字型のヘアピン管2を作製し、所定の間隔をおいて平行に配置したアルミニウム又はアルミニウム合金製のフィン材1にヘアピン管2を挿通する。その後、拡管により両者を密着させて固定し、隣接するヘアピン管2の管端に予め曲げ加工を施してあるアルミニウム合金製Uベンド管3を嵌合し、ヘアピン管2とUベンド管3とをアルミニウム合金ろう材を使用してろう付けすることにより複数個のヘアピン管2がUベンド管3と連結されて熱交換器となる。ろう付けはトーチろう付けが好ましい。
<Heat exchanger>
The heat exchanger for an air conditioner using the tube of the present invention is manufactured in substantially the same process as when a copper tube is used as the tube.
That is, a U-shaped hairpin tube 2 is produced by bending the tube into a hairpin shape at the center, and the hairpin tube 2 is attached to the fin material 1 made of aluminum or aluminum alloy arranged in parallel at a predetermined interval. Insert. After that, the two are closely fixed by expanding the tube, and an aluminum alloy U-bend tube 3 that has been previously bent is fitted to the tube end of the adjacent hairpin tube 2, and the hairpin tube 2 and the U-bend tube 3 are connected to each other. A plurality of hairpin tubes 2 are connected to the U-bend tube 3 by brazing using an aluminum alloy brazing material to form a heat exchanger. The brazing is preferably a torch brazing.

<熱交換サイクル>
本発明のチューブおよび配管は、熱交換サイクルにおいて熱交換器用押出チューブおよび冷媒配管として用いられる。熱交換サイクルにおける冷却過程の概要を図3に基づいて説明する。
<Heat exchange cycle>
The tube and piping of the present invention are used as an extruded tube for heat exchanger and refrigerant piping in a heat exchange cycle. The outline of the cooling process in the heat exchange cycle will be described with reference to FIG.

図3は熱交換サイクルの構成を示す冷媒回路図である。図3に示す冷媒回路10において、圧縮器11で圧縮された冷媒は、気液混相の状態で冷媒配管12aに吐出され、冷媒配管12aを介して凝縮器13に流入する。凝縮器13のチューブ(図示せず)内を放熱しながら通過し液化の進んだ冷媒は、冷媒配管12bを介して膨張弁14に流入する。膨張弁14に流入した冷媒は、膨張弁14の微小なノズル穴から噴射され冷媒配管12cを介して蒸発器15のチューブ(図示せず)に流入し、室内空気から吸熱して蒸発(気化)する。その結果、室内空気は冷却される。蒸発器15で蒸発した冷媒は、冷媒配管12dを介して圧縮器11に流入し、圧縮器11において圧縮され、再び気液混相の状態となる。なお、暖房の場合には、冷媒が以上と逆に流れる。   FIG. 3 is a refrigerant circuit diagram showing the configuration of the heat exchange cycle. In the refrigerant circuit 10 shown in FIG. 3, the refrigerant compressed by the compressor 11 is discharged to the refrigerant pipe 12a in a gas-liquid mixed phase state, and flows into the condenser 13 through the refrigerant pipe 12a. The refrigerant that has passed through the tube (not shown) of the condenser 13 while radiating heat and has been liquefied flows into the expansion valve 14 via the refrigerant pipe 12b. The refrigerant flowing into the expansion valve 14 is injected from a minute nozzle hole of the expansion valve 14 and flows into a tube (not shown) of the evaporator 15 through the refrigerant pipe 12c, and absorbs heat from the room air to evaporate (vaporize). To do. As a result, the room air is cooled. The refrigerant evaporated in the evaporator 15 flows into the compressor 11 through the refrigerant pipe 12d, is compressed in the compressor 11, and becomes a gas-liquid mixed phase state again. In the case of heating, the refrigerant flows in the opposite direction.

以上説明のとおり、熱交換サイクルは、凝縮器、蒸発器などの熱交換器や圧縮器、膨張弁などの機器を、冷媒が冷媒配管を介して循環することによって成り立っている。本発明のチューブは、強度や耐食性に優れ、ろう付け性にも優れるので、凝縮器、蒸発器などの熱交換器に好適である。また熱交換器用のチューブとして好適な性能を有する本発明の組成範囲を有するアルミニウム合金は、チューブと同様の環境下で使用される冷媒配管にも好適である。   As described above, the heat exchange cycle is formed by circulating the refrigerant through a refrigerant pipe through a heat exchanger such as a condenser and an evaporator, and a device such as a compressor and an expansion valve. The tube of the present invention is suitable for heat exchangers such as a condenser and an evaporator because it has excellent strength and corrosion resistance and is excellent in brazing. Moreover, the aluminum alloy which has the composition range of this invention which has a suitable performance as a tube for heat exchangers is suitable also for refrigerant | coolant piping used in the environment similar to a tube.

熱交換サイクルにおいて、凝縮器、蒸発器などの熱交換器として本発明のチューブを備える熱交換器と、本発明の配管とを組み合わせることが好ましいが、本発明のチューブ以外を用いた熱交換器と本発明の配管とを組み合わせてもよいし、本発明のチューブを備える熱交換器と本発明以外の配管とを組み合わせてもよい。   In the heat exchange cycle, it is preferable to combine the heat exchanger provided with the tube of the present invention as a heat exchanger such as a condenser and an evaporator, and the pipe of the present invention, but the heat exchanger using other than the tube of the present invention And the pipe of the present invention may be combined, or a heat exchanger provided with the tube of the present invention and a pipe other than the present invention may be combined.

表1、2に示す組成のアルミニウム合金(表1、2の残部はAl及び不可避不純物)を使用して作製したビレットを用い、常法に従い、均質化処理後、熱間押出を行い、外径7mm、内径6mm、肉厚0.5mmの丸管(チューブ)を作製した。
熱間押出の後、チューブ表面の荒れを観察し、以下の基準で押出性を評価した。
押出性: 荒れなし;○ 軽微な荒れ;△ 著しい荒れ;×
Using billets prepared using aluminum alloys having the compositions shown in Tables 1 and 2 (the balances in Tables 1 and 2 are Al and inevitable impurities), in accordance with conventional methods, after homogenization treatment, hot extrusion is performed, and the outer diameter A round tube (tube) having a diameter of 7 mm, an inner diameter of 6 mm, and a thickness of 0.5 mm was produced.
After hot extrusion, the tube surface was observed for roughness, and the extrudability was evaluated according to the following criteria.
Extrudability: No roughness; ○ Minor roughness; △ Extreme roughness; ×

熱間押出されたチューブを用いて、ヘアピン曲げ加工、チューブ拡管試験、Uベンド部と接合を行うためのフレア加工を実施し、さらにトーチによりろう付けを行い、チューブの形状変化や割れの発生について評価を行った。また、チューブの耐食性を評価した。その結果を表3、4に示す。なお、ヘアピン曲げ加工、チューブ拡管試験及びフレア加工の条件、各評価の基準は以下の通りである。
さらに、融点を測定し、その結果を表3、4に合わせて示す。
Using hot-extruded tubes, hairpin bending, tube expansion test, flare processing for joining with U-bend, and brazing with a torch, tube shape change and occurrence of cracks Evaluation was performed. Moreover, the corrosion resistance of the tube was evaluated. The results are shown in Tables 3 and 4. The conditions for hairpin bending, tube expansion test and flare processing, and the criteria for each evaluation are as follows.
Further, the melting point was measured, and the results are shown in Tables 3 and 4.

ヘアピン曲げ加工:上記アルミニウム管を銅管と同じ製法でヘアピン曲げ加工用パイプベンダを使用して、ヘアピン曲げ(曲率半径8mm)を実施
正常;○ 表面あれ;△ 割れ発生;×
チューブ拡管試験:拡管率(チューブ外径変化)が5%と一定となるように拡管ロッドのサイズを変えて拡管を実施
拡管荷重40N以上;×(焼き着き発生) 拡管荷重40N未満;○
フレア加工:フレア加工寸法9mmで加工し、Uベンド管挿入部へ割れが発生するかを観察
正常;○ 一部割れ;△ 全て割れ;×
トーチろう付け性:Al−Si合金粉末を含むろう材組成物をトーチにてろう付けし、ろう材の接合状況を観察
正常;○ 管が変形又は溶融し、接合不可;×
チューブ耐食性:SWATT(ASTM G85規格)にて、20日間暴露
肉厚の1/4未満の孔食;◎ 肉厚の1/4以上1/2未満の孔食;○
肉厚の1/2以上の孔食;△ 貫通孔の発生;×
融点: 640℃以上;○ 640℃未満;×
Hairpin bending: Hairpin bending (curvature radius 8mm) is performed using the above-mentioned aluminum tube pipe bender with the same manufacturing method as copper tube.
Normal; ○ Surface roughness; △ Crack generation; ×
Tube expansion test: Tube expansion was performed by changing the size of the expansion rod so that the expansion rate (change in tube outer diameter) was constant at 5%.
Expanded tube load 40N or more; x (seizure occurrence) Expanded tube load less than 40N;
Flare processing: Processed with a flare processing dimension of 9 mm and observed whether cracks occurred in the U-bend tube insertion part
Normal; ○ Partially cracked; △ All cracked; ×
Torch brazing: brazing a brazing material composition containing Al-Si alloy powder with a torch and observing the joining condition of the brazing material
Normal: ○ The tube is deformed or melted and cannot be joined; ×
Tube corrosion resistance: 20 days exposure with SWATT (ASTM G85 standard)
Pitting corrosion less than 1/4 of the wall thickness; ◎ Pitting corrosion less than 1/4 or less than 1/2 the wall thickness;
Pitting corrosion of 1/2 or more of wall thickness; Δ Generation of through holes; ×
Melting point: 640 ° C. or higher; ○ <640 ° C .; ×

次に作製したヘアピン管を使用して、JIS 1050合金からなり板厚0.1mmのアルミニウム合金製フィン材と組み合わせて熱交換器を作製し、耐圧試験を行い、破壊圧力を評価した。評価基準は、以下の通りである。その結果を表3、4に示す。
破壊圧力: 12MPa未満;× 12〜14MPa未満;△ 14MPa以上;○
Next, using the prepared hairpin tube, a heat exchanger was manufactured by combining with a fin material made of JIS 1050 alloy and having a plate thickness of 0.1 mm, a pressure resistance test was performed, and a breaking pressure was evaluated. The evaluation criteria are as follows. The results are shown in Tables 3 and 4.
Breaking pressure: less than 12 MPa; x 12 to less than 14 MPa; Δ 14 MPa or more;

Figure 2011080121
Figure 2011080121

Figure 2011080121
Figure 2011080121

Figure 2011080121
Figure 2011080121

Figure 2011080121
Figure 2011080121

表3、表4より、以下のことがわかった。
Fe、Mn、Cr、Siを本発明の範囲内で含むと、耐圧試験時の破壊圧力、押出性、チューブ成形性、耐食性、トーチろう付け性がともに優れる。
これに対して、Feが本発明の範囲より少ないと、チューブ成形性(ヘアピン曲げ、フレア加工)と破壊圧力が劣り、Feが本発明の範囲より多いと、チューブ成形性(ヘアピン曲げ、チューブ拡管フレア加工)、耐食性が劣る。
From Tables 3 and 4, the following was found.
When Fe, Mn, Cr, and Si are included within the scope of the present invention, the fracture pressure, extrudability, tube formability, corrosion resistance, and torch brazing properties during the pressure test are excellent.
On the other hand, if Fe is less than the range of the present invention, tube formability (hairpin bending, flare processing) and fracture pressure are inferior. If Fe is more than the range of the present invention, tube formability (hairpin bending, tube expansion). Flare processing) and corrosion resistance are inferior.

Mnを含まない、またはMnを含むが本発明の範囲より少ないと破壊圧力が劣る。Mnが本発明の範囲より多いと、押出性、チューブ成形性(チューブ拡管性)が劣る。
Crを含まない、またはがCrを含むが本発明の範囲より少ないと、トーチろう付け性が劣り、Crが本発明の範囲より多いと押出性が劣る。
Siが本発明の範囲より多いと、融点が低下し、トーチろう付け性が劣る。
また、Cuが本発明の範囲より多いと、押出性、耐食性が若干劣り、Naが本発明の範囲より多いと、押出性が若干劣る。
When Mn is not included or Mn is included but is less than the range of the present invention, the fracture pressure is inferior. When there is more Mn than the range of this invention, extrudability and tube moldability (tube pipe expandability) will be inferior.
When Cr is not included or when Cr is included but less than the range of the present invention, the torch brazing property is inferior, and when Cr is more than the range of the present invention, the extrudability is inferior.
When there is more Si than the range of this invention, melting | fusing point will fall and torch brazing property will be inferior.
Moreover, when there is more Cu than the range of this invention, extrudability and corrosion resistance are a little inferior, and when there is more Na than the range of this invention, extrudability is a little inferior.

さらに、Znは耐食性の向上に効果があるが、含有量が1.0質量%を超え1.2質量%になると、耐食性が若干劣る。
さらにまた、融点が640℃未満ではトーチろう付け性が劣る。
Furthermore, Zn is effective in improving the corrosion resistance, but when the content exceeds 1.0 mass% and becomes 1.2 mass%, the corrosion resistance is slightly inferior.
Furthermore, when the melting point is less than 640 ° C., the torch brazing property is inferior.

1…フィン材、2…ヘアピン管、3…Uベンド管
10…冷媒回路、11…圧縮器、12a、12b、12c、12d…冷媒配管、13…凝縮器、14…膨張弁、15…蒸発器
DESCRIPTION OF SYMBOLS 1 ... Fin material, 2 ... Hairpin pipe, 3 ... U bend pipe 10 ... Refrigerant circuit, 11 ... Compressor, 12a, 12b, 12c, 12d ... Refrigerant piping, 13 ... Condenser, 14 ... Expansion valve, 15 ... Evaporator

Claims (5)

Fe:0.01〜1.2質量%、Mn:0.01〜1.5質量%、Cr:0.01〜0.3質量%、Si:0.2質量%以下、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金から構成されることを特徴とするフィンチューブ型エアコン熱交換器用押出チューブ。   Fe: 0.01-1.2 mass%, Mn: 0.01-1.5 mass%, Cr: 0.01-0.3 mass%, Si: 0.2 mass% or less, the balance being Al and inevitable An extruded tube for a fin tube type air conditioner heat exchanger, characterized in that it is made of an aluminum alloy having a composition comprising impurities. 前記アルミニウム合金におけるCuの含有量が0.05質量%以下であることを特徴とする請求項1に記載のフィンチューブ型エアコン熱交換器用押出チューブ。   The extruded tube for a finned tube air conditioner heat exchanger according to claim 1, wherein the content of Cu in the aluminum alloy is 0.05% by mass or less. 前記アルミニウム合金におけるNaの含有量が10質量ppm以下であることを特徴とする請求項1又は2に記載のフィンチューブ型エアコン熱交換器用押出チューブ。   The extruded tube for a finned-tube air conditioner heat exchanger according to claim 1 or 2, wherein the content of Na in the aluminum alloy is 10 mass ppm or less. 前記アルミニウム合金が、Zn:0.1〜1.0質量%を含有する請求項1ないし3のいずれか一項に記載のフィンチューブ型エアコン熱交換器用押出チューブ。   The extruded tube for a finned-tube air conditioner heat exchanger according to any one of claims 1 to 3, wherein the aluminum alloy contains Zn: 0.1 to 1.0 mass%. 請求項1ないし4のいずれか一項に記載の組成を有するアルミニウム合金からなることを特徴とする熱交換サイクル用冷媒配管。   A refrigerant pipe for a heat exchange cycle, comprising an aluminum alloy having the composition according to any one of claims 1 to 4.
JP2009234296A 2009-10-08 2009-10-08 Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle Pending JP2011080121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234296A JP2011080121A (en) 2009-10-08 2009-10-08 Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234296A JP2011080121A (en) 2009-10-08 2009-10-08 Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle

Publications (1)

Publication Number Publication Date
JP2011080121A true JP2011080121A (en) 2011-04-21

Family

ID=44074451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234296A Pending JP2011080121A (en) 2009-10-08 2009-10-08 Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle

Country Status (1)

Country Link
JP (1) JP2011080121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204711A (en) * 2012-04-12 2014-12-10 开利公司 Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
WO2018211947A1 (en) * 2017-05-16 2018-11-22 住友化学株式会社 Aluminum alloy for extrusion processing, aluminum alloy extruded article using same, method for producing said aluminum alloy for extrusion processing, and method for producing said aluminum alloy extruded article
WO2019198174A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Air conditioning device
CN112254563A (en) * 2019-07-22 2021-01-22 海德鲁铝业(苏州)有限公司 Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy
JP2021018024A (en) * 2019-07-19 2021-02-15 ダイキン工業株式会社 Refrigerating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134294A (en) * 1981-02-10 1982-08-19 Sukai Alum Kk Aluminum alloy solder joint for heat exchanger
JPH02236251A (en) * 1989-03-07 1990-09-19 Kobe Steel Ltd Corrosion-resistant aluminum alloy and its manufacture
JP2004520488A (en) * 2001-04-23 2004-07-08 アルコア インコーポレーテツド Aluminum alloy having grain boundary corrosion resistance, method for producing the same, and use thereof
JP2009058139A (en) * 2007-08-30 2009-03-19 Mitsubishi Alum Co Ltd Member for aluminum-made heat exchanger having superior corrosion resistance
WO2009043993A1 (en) * 2007-07-27 2009-04-09 Alcan Rhenalu Extruded products in aluminium alloy al-mn with improved mechanical strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134294A (en) * 1981-02-10 1982-08-19 Sukai Alum Kk Aluminum alloy solder joint for heat exchanger
JPH02236251A (en) * 1989-03-07 1990-09-19 Kobe Steel Ltd Corrosion-resistant aluminum alloy and its manufacture
JP2004520488A (en) * 2001-04-23 2004-07-08 アルコア インコーポレーテツド Aluminum alloy having grain boundary corrosion resistance, method for producing the same, and use thereof
WO2009043993A1 (en) * 2007-07-27 2009-04-09 Alcan Rhenalu Extruded products in aluminium alloy al-mn with improved mechanical strength
JP2009058139A (en) * 2007-08-30 2009-03-19 Mitsubishi Alum Co Ltd Member for aluminum-made heat exchanger having superior corrosion resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204711A (en) * 2012-04-12 2014-12-10 开利公司 Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
US10422593B2 (en) 2012-04-12 2019-09-24 Carrier Corporation Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
WO2018211947A1 (en) * 2017-05-16 2018-11-22 住友化学株式会社 Aluminum alloy for extrusion processing, aluminum alloy extruded article using same, method for producing said aluminum alloy for extrusion processing, and method for producing said aluminum alloy extruded article
WO2019198174A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Air conditioning device
JPWO2019198174A1 (en) * 2018-04-11 2021-02-12 三菱電機株式会社 Air conditioner
JP2021018024A (en) * 2019-07-19 2021-02-15 ダイキン工業株式会社 Refrigerating device
JP7037079B2 (en) 2019-07-19 2022-03-16 ダイキン工業株式会社 Refrigeration equipment
CN112254563A (en) * 2019-07-22 2021-01-22 海德鲁铝业(苏州)有限公司 Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy
EP4004476A4 (en) * 2019-07-22 2023-08-09 Hydro Precision Tubing (Suzhou) Co., Ltd. Long-life aluminum alloy with a high corrosion resistance and helically grooved tube produced from the alloy

Similar Documents

Publication Publication Date Title
JP6087982B2 (en) Copper alloy for heat exchange tubes
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
JP6115892B2 (en) Aluminum alloy brazing sheet for fins, heat exchanger and heat exchanger manufacturing method
JP2006045667A (en) Heat exchanger tube made of aluminum and its production method
JP2007152421A (en) Aluminum alloy brazing sheet
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP2012126950A (en) Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
JP2014098185A (en) Aluminum alloy brazing sheet and manufacturing method thereof
JP5730655B2 (en) Plate fin material for heat exchanger and method for producing the same, heat exchanger using the plate fin material and method for producing the same
JP2010085065A (en) Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger
JP2013216935A (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger
JP2011080121A (en) Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle
JP2006316294A (en) Extruded tube material of aluminum alloy for heat exchanger using natural refrigerant
JP5534777B2 (en) Copper alloy seamless pipe
JP2010185646A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
WO2013024732A1 (en) Aluminum alloy fin material for heat exchanger offering excellent post-brazing strength and corrosion resistance
JP2017020108A (en) Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
JP2013512341A (en) Copper alloy and heat exchange tube
JP4484510B2 (en) Aluminum tube manufacturing method
JP2016028219A (en) Inner surface grooved pipe excellent in extrudability
JP2009161832A (en) Aluminum alloy plate for plate fin
JP2010185647A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
TW201441389A (en) Cold/hot water supply copper alloy seamless tube
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A02 Decision of refusal

Effective date: 20140318

Free format text: JAPANESE INTERMEDIATE CODE: A02