JP2011080105A - Method for manufacturing steel for spring - Google Patents

Method for manufacturing steel for spring Download PDF

Info

Publication number
JP2011080105A
JP2011080105A JP2009231682A JP2009231682A JP2011080105A JP 2011080105 A JP2011080105 A JP 2011080105A JP 2009231682 A JP2009231682 A JP 2009231682A JP 2009231682 A JP2009231682 A JP 2009231682A JP 2011080105 A JP2011080105 A JP 2011080105A
Authority
JP
Japan
Prior art keywords
less
steel
excluding
rolling
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231682A
Other languages
Japanese (ja)
Other versions
JP5330181B2 (en
Inventor
琢哉 ▲高▼知
Takuya Kochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009231682A priority Critical patent/JP5330181B2/en
Publication of JP2011080105A publication Critical patent/JP2011080105A/en
Application granted granted Critical
Publication of JP5330181B2 publication Critical patent/JP5330181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel for a spring, which prevents super cooling and improves workability in wire drawing, while securing fatigue characteristics by suppressing ferrite decarburization in a steel material. <P>SOLUTION: The method for manufacturing the steel for the spring includes: extracting the steel material which includes 0.35-0.65% C (mass%, hereinafter the same), 1.4-3.0% Si, 0.1-1.0% Mn, 0.1-2.0% Cr, 0.025% or less P (excluding 0), 0.025% or less S (excluding 0) and the balance Fe with unavoidable impurities, from a heating furnace; then hot-rolling the steel material while setting a temperature before finish rolling at lower than 1,000°C; finish-rolling the plate; keeping the plate in the range of 1,000-1,150°C for 5 sec or shorter and winding up the plate; cooling the coil to 750°C or lower at a cooling rate of 2-8°C/s; and then slowly cooling the coil to 600°C while spending 150 sec or longer after the winding-up. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は自動車用懸架ばねなどの工業用のばねに適したばね用鋼の製造方法に関する。   The present invention relates to a spring steel manufacturing method suitable for industrial springs such as automobile suspension springs.

周知の通り、自動車用の高強度懸架ばねに代表される工業用のばねの素材となるばね用鋼(圧延材)には、ばねの疲労特性の確保や圧延、熱処理後のピーリング工程の省略などの観点から、鋼のフェライト組織の脱炭(脱炭層)の抑制が要求されており、また最近ではフェライト組織のみならずフェライトの占める割合の多い領域を含めた組織の脱炭(全脱炭層という)も問題になり、より厳しい条件下での疲労特性が求められる状況に至っている。   As is well known, spring steel (rolled material), which is a material for industrial springs represented by high-strength suspension springs for automobiles, ensures the fatigue characteristics of springs, omits the peeling process after rolling and heat treatment, etc. From this point of view, it is required to suppress the decarburization (decarburization layer) of the ferrite structure of steel, and recently, the decarburization of the structure including not only the ferrite structure but also the region where the ferrite occupies a large proportion (called the total decarburization layer) ) Has also become a problem, and the fatigue properties under more severe conditions have been demanded.

このような背景の下に、従来よりこの脱炭層の抑制のために、各種の方法が提案されているが、主たるものは鋼材の加熱、圧延の温度やその圧延後の冷却速度をコントロールするものである。   Against this background, various methods have been proposed for the suppression of this decarburized layer, but the main ones are those that control the heating of steel, the temperature of rolling and the cooling rate after rolling. It is.

たとえば、特許文献1では熱間圧延に際して1170℃以上で少なくとも2分間加熱し、かつ圧延後の750〜600℃の温度域を5〜300℃/分の冷却速度で冷却する工程及び脱スケーリング工程を含む方法が、また、特許文献2では熱間圧延の開始から終了まで全工程でA3変態点以上の温度域とし、圧延後に0.5〜3.0℃/分の冷却速度で実施する方法がそれぞれ示されている。   For example, in Patent Document 1, a process of heating at 1170 ° C. or higher for at least 2 minutes at the time of hot rolling and cooling a temperature range of 750 to 600 ° C. after rolling at a cooling rate of 5 to 300 ° C./min and a descaling process are performed. In addition, Patent Document 2 discloses a method in which a temperature range of A3 transformation point or more is set in all steps from the start to the end of hot rolling, and the rolling is performed at a cooling rate of 0.5 to 3.0 ° C./min after rolling. Each is shown.

しかしながら、これらの従来法はいずれも高温に加熱し、高温で圧延する必要があるため、圧延後の冷却過程で過冷が発生しやすく、また全脱炭も大きくなる傾向がある。   However, all of these conventional methods require heating to a high temperature and rolling at a high temperature, so that overcooling tends to occur during the cooling process after rolling, and total decarburization tends to increase.

過冷が発生すると鋼中にマルテンサイトやベイナイトなどの硬くて脆い組織(過冷組織)を含むことになり、この過冷組織は圧延後に行われる鋼材の伸線時の加工性(伸線加工性)を劣化させることになる。また、全脱炭が大きくなると、バネ用鋼材としての疲労特性(大気疲労特性)を低下させる悪影響が生じることになる。   When overcooling occurs, the steel contains hard and brittle structures (supercooled structure) such as martensite and bainite, and this supercooled structure is the workability (drawing process) of the steel material that is performed after rolling. ). Moreover, when total decarburization becomes large, the bad influence which reduces the fatigue characteristics (atmospheric fatigue characteristics) as a steel material for springs will arise.

特開2003−268483号公報JP 2003-268383 A 特開2002−194432号公報JP 2002-194432 A

本発明は、上記従来の問題を解消し、鋼材のフェライト脱炭を抑制して疲労特性を確保しつつ、しかも過冷を防止して伸線時の加工性を改善するばね用鋼の製造方法を提供することを主たる解決課題としたものである。また、これに加えて全脱炭の抑制が可能なばね用鋼の製造方法の提供をその副次的な解決課題としている。   The present invention eliminates the above-mentioned conventional problems, suppresses ferrite decarburization of the steel material to ensure fatigue characteristics, and further prevents overcooling and improves workability at the time of wire drawing. Is the main solution to the problem. In addition to this, the secondary solution is to provide a spring steel manufacturing method capable of suppressing total decarburization.

本発明は、この課題を解決するための具体的手段として、以下のばね用鋼材の製造方法を提案するものである。   The present invention proposes the following spring steel manufacturing method as a specific means for solving this problem.

(1)C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下(0を含まない)、S:0.025%以下(0を含まない)、残部がFeおよび不可避的不純物からなる鋼材を、加熱炉抽出後、仕上前温度を1000℃未満として熱間圧延し、仕上圧延後、1000〜1150℃の範囲に5sec以下保持して巻き取った後に冷却速度2〜8℃/sで750℃以下に冷却し、その後、巻取りから150sec以上かけて600℃まで徐冷することを特徴とするばね用鋼の製造方法。   (1) C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less (excluding 0), S: 0.025% or less (excluding 0), steel material with the balance consisting of Fe and inevitable impurities, hot-rolled after extraction in the furnace, with a pre-finishing temperature of less than 1000 ° C, and after finish rolling, 1000-1150 ° C For springs, which is held in the range of 5 seconds or less, cooled to 750 ° C. or less at a cooling rate of 2 to 8 ° C./s, and then gradually cooled to 600 ° C. over 150 seconds after winding. Steel manufacturing method.

(2)C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下(0を含まない)、S:0.025%以下(0を含まない)、残部がFeおよび不可避的不純物からなる鋼材を、加熱炉抽出後、仕上前温度を1000℃未満として熱間圧延し、仕上圧延後、1000〜1150℃の範囲に5sec以下保持して巻き取った後に冷却速度2〜8℃/sで750℃以下に冷却し、その後、巻取りから150sec以上かけて600℃まで徐冷すること特徴とするばね用鋼の製造方法。   (2) C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less (excluding 0), S: 0.025% or less (excluding 0), steel material with the balance consisting of Fe and inevitable impurities, hot-rolled after extraction in the furnace, with a pre-finishing temperature of less than 1000 ° C, and after finish rolling, 1000-1150 ° C The steel for springs is characterized in that it is held in the range of 5 sec or less and wound up, then cooled to 750 ° C. or less at a cooling rate of 2 to 8 ° C./s, and then gradually cooled to 600 ° C. over 150 sec after winding. Manufacturing method.

(3)C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下(0を含まない)、S:0.025%以下(0を含まない)、残部がFeおよび不可避的不純物からなる鋼材を、加熱炉抽出温度を1000〜1100℃として加熱した後、仕上前温度を1000℃未満として熱間圧延し、仕上圧延後、1000〜1150℃の範囲に5sec以下保持して巻き取った後に冷却速度2〜8℃/sで750℃以下に冷却し、その後、巻取りから150sec以上かけて600℃まで徐冷することを特徴とするばね用鋼の製造方法。   (3) C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less (excluding 0), S: 0.025% or less (excluding 0), steel material with the balance consisting of Fe and inevitable impurities is heated at a furnace extraction temperature of 1000-1100 ° C and then hot rolled at a pre-finishing temperature of less than 1000 ° C. After finishing rolling, hold in the range of 1000 to 1150 ° C for 5 seconds or less, wind up, cool to 750 ° C or less at a cooling rate of 2 to 8 ° C / s, and then gradually take up to 600 ° C over 150 seconds from winding. A method for producing spring steel, characterized by cooling.

(4)前記鋼材がさらにNi:1.0 %以下(0を含まない)、Cu:1.0%(0を含まない)の一種以上を含むことを特徴とする請求項1〜3のいずれかに記載のばね用鋼の製造方法。   (4) The steel material further includes one or more of Ni: 1.0% or less (excluding 0) and Cu: 1.0% (excluding 0). A method for producing spring steel.

(5)前記鋼材がさらにMo:1.0%以下(0を含まない)、V:0.3%以下(0を含まない)、Ti:0.1%以下(0を含まない)、Nb:0.1%以下(0を含まない)、Zr:0.1%以下(0を含まない)の一種以上を含むことを特徴とする請求項1〜4のいずれかに記載のばね用鋼の製造方法。   (5) The steel material is further Mo: 1.0% or less (excluding 0), V: 0.3% or less (not including 0), Ti: 0.1% or less (not including 0), Nb: 0.1% or less (0 5), Zr: 0.1% or less (not including 0), or one or more of the following: The method for producing spring steel according to any one of claims 1 to 4.

本発明(全請求項)によれば、鋼材のフェライト脱炭を抑制して優れた疲労特性を確保しつつ、しかも過冷を防止して伸線時の加工性を改善することができる。また、本発明(請求項2、3)によれば、鋼材のフェライト脱炭のみならず全脱炭を抑制してより優れた疲労特性を確保しつつ、しかも過冷を防止して伸線時の加工性を改善することができる。   According to the present invention (all claims), ferritic decarburization of a steel material can be suppressed to ensure excellent fatigue characteristics, and overcooling can be prevented to improve workability during wire drawing. Further, according to the present invention (Claims 2 and 3), not only ferrite decarburization of steel material but also total decarburization is suppressed, and more excellent fatigue characteristics are ensured. The workability of the can be improved.

前述のように、従来においてはフェライト脱炭抑制のために比較的高温で加熱、圧延していた。しかしながら、高温で圧延するとγ粒径の粗大化により焼入れ性が高くなり、後の冷却工程で過冷が発生しやすい。また、高強度化に伴って合金成分が種々添加されているが、炭窒化物を生成する合金元素の場合、炭窒化物のままであれば焼入れ性に寄与しないが、高温加熱によってそれらが固溶すると焼入れ性が上昇する。よって、γ粒径粗大化抑制、合金元素の固溶抑制の観点から加熱温度は高すぎない方が好ましい。   As described above, conventionally, heating and rolling were performed at a relatively high temperature in order to suppress ferrite decarburization. However, when rolled at a high temperature, the hardenability increases due to the coarsening of the γ grain size, and overcooling tends to occur in the subsequent cooling step. In addition, various alloy components are added as the strength increases. In the case of alloy elements that produce carbonitrides, the carbonitrides do not contribute to the hardenability, but they are solidified by high-temperature heating. When melted, the hardenability increases. Therefore, it is preferable that the heating temperature is not too high from the viewpoint of suppressing the coarsening of the γ grain size and suppressing the solid solution of the alloy element.

従って、本発明においては、この過冷抑制のために、熱間圧延前の鋼材の加熱温度を1100℃以下、もしくは/及び、仕上圧延の前の鋼材の温度を1000℃未満に制御する方法を採用する。   Therefore, in the present invention, in order to suppress this overcooling, a method of controlling the heating temperature of the steel material before hot rolling to 1100 ° C. or less, and / or the temperature of the steel material before finish rolling to less than 1000 ° C. adopt.

まず、γ粒径粗大化抑制の観点から、本発明では、熱間圧延時の仕上圧延前の温度を1000℃未満に制御し、過冷を抑制する。過冷抑制に対してこの仕上圧延前温度は低い方が良く、好ましくは990℃以下、更に好ましくは980℃以下、より一層好ましくは970℃以下とする。   First, from the viewpoint of suppressing the coarsening of the γ grain size, in the present invention, the temperature before finish rolling at the time of hot rolling is controlled to less than 1000 ° C. to suppress overcooling. The temperature before the finish rolling should be low for suppressing overcooling, preferably 990 ° C. or less, more preferably 980 ° C. or less, and even more preferably 970 ° C. or less.

また、炭窒化物の固溶抑制の観点から、本発明では、鋼材の加熱温度を1100℃以下に制御する。この加熱温度は好ましくは、1080℃以下、更に好ましくは1060℃以下、より一層好ましくは1040℃以下とする。   Further, from the viewpoint of suppressing solid solution of carbonitride, in the present invention, the heating temperature of the steel material is controlled to 1100 ° C. or lower. This heating temperature is preferably 1080 ° C. or lower, more preferably 1060 ° C. or lower, and even more preferably 1040 ° C. or lower.

これらの2種類の手段はどちらか一方で十分に過冷抑制の効果があるが、加熱温の低下は同時に全脱炭抑制の効果もあり、大気疲労特性の改善に有効である。   Either one of these two means is sufficiently effective in suppressing supercooling, but the reduction in heating temperature also has the effect of suppressing total decarburization and is effective in improving the atmospheric fatigue characteristics.

一方、従来技術のとおり、加熱温度、圧延温度の低下はフェライト脱炭を発生しやすい。加熱温度が低いと加熱中にフェライト脱炭が進行する。このため本発明では加熱温度を1000℃以上とする。好ましくは1020℃以上、更に好ましくは1040℃以上とする。   On the other hand, as in the prior art, a decrease in heating temperature and rolling temperature tends to cause ferrite decarburization. When the heating temperature is low, ferrite decarburization proceeds during heating. For this reason, in this invention, heating temperature shall be 1000 degreeC or more. Preferably it is 1020 degreeC or more, More preferably, it is 1040 degreeC or more.

また、フェライト脱炭は圧延中にも発生する。本発明では、仕上圧延後の温度を1000〜1150℃に上昇、5sec以下保持することで、圧延中に生成したフェライト脱炭を消去する。1000℃未満であるとフェライト脱炭消去の効果が無く、1150℃を超えるとフェライト脱炭は消去できるが、γ粒径が粗大化し過冷が発生する。温度の下限は好ましくは1010℃、更に好ましくは1020℃、より一層好ましくは1030℃以上とする。温度の上限は、好ましくは1100℃以下、更に好ましくは1080℃以下、より一層好ましくは1050℃以下とする。また、フェライト脱炭を消去するには、上記の温度域である程度時間保持する必要があるが、時間が長くなるとγ粒径が粗大化し、過冷が発生するため、本発明では5sec以下とする。好ましくは4sec以下、更に好ましくは3sec以下、より一層好ましくは2sec以下とする。   Ferrite decarburization also occurs during rolling. In the present invention, the temperature after finish rolling is increased to 1000 to 1150 ° C. and maintained for 5 seconds or less to eliminate ferrite decarburization generated during rolling. If it is less than 1000 ° C, there is no effect of eliminating the ferrite decarburization. If it exceeds 1150 ° C, the ferrite decarburization can be eliminated, but the γ grain size becomes coarse and overcooling occurs. The lower limit of the temperature is preferably 1010 ° C, more preferably 1020 ° C, and even more preferably 1030 ° C or higher. The upper limit of the temperature is preferably 1100 ° C. or lower, more preferably 1080 ° C. or lower, and even more preferably 1050 ° C. or lower. Further, in order to eliminate the ferrite decarburization, it is necessary to hold for a certain period of time in the above temperature range, but as the time becomes longer, the γ grain size becomes coarse and overcooling occurs. . It is preferably 4 seconds or less, more preferably 3 seconds or less, and even more preferably 2 seconds or less.

フェライト脱炭は、冷却中にも発生する。冷却中のフェライト脱炭抑制のためには、巻取りから750℃までの温度域を比較的急冷する必要がある。本発明では2℃/sec以上とする。2℃/sec未満ではフェライト脱炭が生じる。好ましくは3℃/sec以上、更好ましくは4℃/sec以上、より一層好ましくは5℃/sec以上とする。冷却速度は8℃/secを超えると過冷が発生する危険があるため、本発明では8℃/sec以下とする。好ましくは7℃/sec以下、更好ましくは6℃/sec以下、より一層好ましくは5℃/sec以下とする。   Ferrite decarburization also occurs during cooling. In order to suppress ferrite decarburization during cooling, it is necessary to relatively rapidly cool the temperature range from winding to 750 ° C. In the present invention, it is 2 ° C./sec or more. If it is less than 2 ° C / sec, ferrite decarburization occurs. It is preferably 3 ° C./sec or more, more preferably 4 ° C./sec or more, and even more preferably 5 ° C./sec or more. If the cooling rate exceeds 8 ° C./sec, there is a risk of overcooling, so in the present invention, it is set to 8 ° C./sec or less. Preferably it is 7 degrees C / sec or less, More preferably, it is 6 degrees C / sec or less, More preferably, it is 5 degrees C / sec or less.

冷却中のフェライト脱炭は750℃までの冷却制御により抑制できるが、過冷抑制のために750℃以下の温度域の制御も必要である。本発明では750℃から600℃までの冷却時間を150sec以上とする。150sec未満だと過冷が発生する危険が高い。好ましくは160sec以上、更に好ましくは170sec以上、より一層好ましくは180sec以上とする。   While ferrite decarburization during cooling can be suppressed by cooling control up to 750 ° C, control of a temperature range of 750 ° C or lower is also necessary to suppress overcooling. In the present invention, the cooling time from 750 ° C. to 600 ° C. is 150 seconds or more. If it is less than 150 seconds, there is a high risk of overcooling. It is preferably 160 seconds or longer, more preferably 170 seconds or longer, and even more preferably 180 seconds or longer.

高強度懸架ばねに適用する場合、脱炭、過冷抑制、伸線加工性確保に加えて、最終的な要求特性を満足する必要がある。この観点から、鋼成分は下記のように限定される。   When applied to a high-strength suspension spring, it is necessary to satisfy the final required characteristics in addition to decarburization, supercooling suppression and wire drawing processability. From this viewpoint, the steel components are limited as follows.

すなわち、C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下、S:0.025%以下を必須の成分とし、また必要に応じ、この成分に加えてNi:1.0 %以下(0を含まない)、Cu: 1.0%(0を含む)を一種以上、あるいは/およびMo: 1.0%以下(0を含まない)、V: 0.3%以下(0を含まない)、Ti: 0.1%以下(0を含まない)、Nb:0.1%以下(0を含まない)、Zr:0.1%以下(0を含まない)の一種以上を含有し、残部がFeおよび不可避的不純物からなるものである。   That is, C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less, S: 0.025% or less are essential In addition to this component, Ni: 1.0% or less (excluding 0), Cu: 1.0% (including 0) or more, and / or Mo: 1.0% or less (0 V: 0.3% or less (not including 0), Ti: 0.1% or less (not including 0), Nb: 0.1% or less (not including 0), Zr: 0.1% or less (not including 0) ), And the balance consists of Fe and inevitable impurities.

以下、上記鋼成分の限定理由を説明する。   Hereinafter, the reasons for limiting the steel components will be described.

C:0.35〜0.65%
Cは鋼材の強度への影響が大きい。高強度懸架ばねに適用するには0.35%以上の添加が必要である。一方で、懸架ばねには耐食性が求められるが、C増量するほど耐食性は劣化する。高強度懸架ばねに必要な耐食性を確保するには0.65%以下にする必要がある。
C: 0.35-0.65%
C has a great influence on the strength of steel. Addition of 0.35% or more is necessary to apply to high strength suspension springs. On the other hand, the suspension spring is required to have corrosion resistance, but the corrosion resistance deteriorates as the C content is increased. In order to ensure the corrosion resistance required for high-strength suspension springs, it is necessary to make it 0.65% or less.

Si:1.4〜3.0%
Siはばねに必要な耐へたり性確保に有効である。高強度懸架ばねに求められる耐へたり性確保には1.4%以上の添加が必要である。一方で、Siの増量は焼戻し時のセメンタイト析出を抑制し、残留γを増加させるが、残留γの増加によりばね特性が劣化する。このため本発明では、Si量の上限を3.0%とする。
Si: 1.4-3.0%
Si is effective in securing the sag resistance necessary for the spring. In order to ensure the sag resistance required for high-strength suspension springs, it is necessary to add 1.4% or more. On the other hand, increasing the amount of Si suppresses cementite precipitation during tempering and increases the residual γ, but the spring characteristics deteriorate due to an increase in the residual γ. Therefore, in the present invention, the upper limit of Si content is set to 3.0%.

Mn:0.1〜1.0%
Mnは靭性劣化元素であるSの固定に有効であり、0.1%以上の添加が必要になる。一方で、Mnを増量すると鋳造時の凝固偏析が顕著になり、偏析部で破壊が生じやすくなる。よって、上限を1.0%とする。
Mn: 0.1-1.0%
Mn is effective for fixing S, which is a toughness degrading element, and needs to be added in an amount of 0.1% or more. On the other hand, when the amount of Mn is increased, solidification segregation during casting becomes prominent, and breakage tends to occur at the segregated portion. Therefore, the upper limit is 1.0%.

Cr:0.1〜2.0%
Crは耐食性向上に有効であり、0.1%以上の添加で効果が得られる。一方で、Crを増量すると粗大なCr系炭化物が生成し、靭性を劣化させる。よって上限を2.0%とする。
Cr: 0.1-2.0%
Cr is effective in improving corrosion resistance, and an effect can be obtained by adding 0.1% or more. On the other hand, when the amount of Cr is increased, coarse Cr-based carbides are generated and the toughness is deteriorated. Therefore, the upper limit is set to 2.0%.

P:0.025%以下(0を含まない)
Pは粒界偏析して靭性を劣化させるため低いほど良い。高強度懸架ばねとしての特性を確保するためには0.025%以下に制御する必要がある。
P: 0.025% or less (excluding 0)
The lower the P, the better because it segregates at the grain boundaries and degrades the toughness. In order to ensure the characteristics as a high-strength suspension spring, it is necessary to control to 0.025% or less.

S:0.025%以下(0を含まない)
Sは粒界脆化や粗大硫化物形成により靭性劣化させるため低いほど良い。高強度懸架ばねとしての特性を確保するためには0.025%以下に制御する必要がある。
S: 0.025% or less (excluding 0)
The lower the S, the better, since it deteriorates toughness due to grain boundary embrittlement and coarse sulfide formation. In order to ensure the characteristics as a high-strength suspension spring, it is necessary to control to 0.025% or less.

さらに、以下の元素は添加することで高強度懸架ばねの特性を更に向上させるため適宜添加すると良い。   Further, the following elements may be added as appropriate in order to further improve the characteristics of the high-strength suspension spring.

Ni: 1.0 %以下(0を含まない)
Niは耐食性向上元素である。一方で、過剰添加すると残留γを増加させてばね特性を劣化させる。よって、1.0%以下に制御するのが良い。
Ni: 1.0% or less (excluding 0)
Ni is an element that improves corrosion resistance. On the other hand, excessive addition increases residual γ and degrades the spring characteristics. Therefore, it is good to control to 1.0% or less.

Cu:1.0%以下(0を含まない)
Cuは耐食性向上元素である。一方で、過剰添加すると残留γを増加させてばね特性を劣化させる。よって、1.0%以下に制御するのが良い。
Cu: 1.0% or less (excluding 0)
Cu is an element that improves corrosion resistance. On the other hand, excessive addition increases residual γ and degrades the spring characteristics. Therefore, it is good to control to 1.0% or less.

Mo:1.0%以下(0を含まない)
Moは強度確保や、P偏析の悪影響軽減など、強靭化に有効な元素である。しかし、凝固偏析しやすいため、過剰添加すると偏析部で破壊発生しやすい。よって1.0%以下に制御するのが良い。
Mo: 1.0% or less (excluding 0)
Mo is an element effective for toughening such as securing strength and reducing the adverse effects of P segregation. However, since it is easy to solidify and segregate, if it is added excessively, breakage is likely to occur at the segregated part. Therefore, it is better to control to 1.0% or less.

V:0.3%以下(0を含まない)
Vは炭窒化物を形成するため、微細組織が得られ靭性向上に有効である。しかしながら、過剰添加は炭窒化物が粗大化し靭性を劣化させる。よって、0.3%以下に制御するのが良い。
V: 0.3% or less (excluding 0)
Since V forms carbonitride, a fine structure is obtained and is effective in improving toughness. However, excessive addition makes the carbonitride coarse and deteriorates toughness. Therefore, it is good to control to 0.3% or less.

Ti:0.1%以下(0を含まない)
Tiは炭窒化物を形成するため、微細組織が得られ靭性向上に有効である。しかしながら、過剰添加は炭窒化物が粗大化し靭性を劣化させる。よって、0.1%以下に制御するのが良い。
Ti: 0.1% or less (excluding 0)
Since Ti forms carbonitrides, a fine structure is obtained and effective in improving toughness. However, excessive addition makes the carbonitride coarse and deteriorates toughness. Therefore, it is better to control to 0.1% or less.

Nb:0.1%以下(0を含まない)
Nbは炭窒化物を形成するため、微細組織が得られ靭性向上に有効である。しかしながら、過剰添加は炭窒化物が粗大化し靭性を劣化させる。よって、0.1%以下に制御するのが良い。
Nb: 0.1% or less (excluding 0)
Since Nb forms carbonitride, a fine structure is obtained and effective in improving toughness. However, excessive addition makes the carbonitride coarse and deteriorates toughness. Therefore, it is better to control to 0.1% or less.

Zr:0.1%(0を含まない)
Zrは炭窒化物を形成するため、微細組織が得られ靭性向上に有効である。しかしながら、過剰添加は炭窒化物が粗大化し靭性を劣化させる。よって、0.1%以下に制御するのが良い。
Zr: 0.1% (excluding 0)
Since Zr forms carbonitride, a fine structure is obtained and it is effective for improving toughness. However, excessive addition makes the carbonitride coarse and deteriorates toughness. Therefore, it is better to control to 0.1% or less.

本発明の製造方法による優れた効果を実証するため、表1に示す三種の高強度懸架ばね用鋼材を対象とし、これらを本発明で規定する製造条件及びそれ以外の条件で熱間圧延を行い、得られた熱間圧延線材(線径:15mm)の各試料についてフェライト脱炭、全脱炭及び過冷の状態を調査し、それらの評価を実施した。フェライト脱炭、全脱炭及び過冷の調査、評価の具体的な方法は下記の通りである。   In order to demonstrate the excellent effect of the production method of the present invention, the three types of steel materials for high-strength suspension springs shown in Table 1 are targeted, and these are hot-rolled under the production conditions specified in the present invention and other conditions. The state of ferrite decarburization, total decarburization, and supercooling was investigated for each sample of the obtained hot-rolled wire (wire diameter: 15 mm), and their evaluation was performed. Specific methods for investigating and evaluating ferrite decarburization, total decarburization, and supercooling are as follows.

Figure 2011080105
Figure 2011080105

(1)フェライト脱炭及び全脱炭の調査、評価
熱間圧延線材から採取した線材リングから湿式切断加工により長さ10mmの試料を切断した後、試料調整として湿式研磨、バフ研磨、化学研磨を行い、研磨加工の歪みと凹凸を極力低減した試料を作成した。このとき、観察面は鋼線材の横断面となるように研磨加工した。ナイタールで腐食して金属組織を現出させた後、光学顕微鏡で、フェライト脱炭の有無を観察した。この観察により、フェライト脱炭がみられないものを○、みられるものを×として評価した。また、全脱炭量を測定し、その量が少ないものすなわ全脱炭深さが0.2 mm以下を○とし、その量がこれを超えるものを△として評価した。
(1) Investigation and evaluation of ferrite decarburization and total decarburization After cutting a 10 mm long sample from a wire ring taken from hot-rolled wire rod by wet cutting, wet polishing, buffing, and chemical polishing are performed as sample preparation. The sample which reduced the distortion and unevenness | corrugation of grinding | polishing processing as much as possible was created. At this time, it grind | polished so that the observation surface might become the cross section of a steel wire. After corrosion with nital to reveal a metal structure, the presence or absence of ferrite decarburization was observed with an optical microscope. From this observation, the case where no ferrite decarburization was observed was evaluated as ◯, and the case where it was observed was evaluated as ×. Further, the total decarburization amount was measured, and a small amount, that is, a total decarburization depth of 0.2 mm or less was evaluated as ◯, and an amount exceeding this amount was evaluated as Δ.

(2)過冷組織の調査、評価
熱間圧延線材から採取した線材リングから湿式切断加工により長さ10mmの試料を切断した後、試料調整として湿式研磨、バフ研磨、化学研磨を行い、研磨加工の歪みと凹凸を極力低減した試料を作成した。このとき、観察面は鋼線材の横断面となるように研磨加工した。ナイタールで腐食して金属組織を現出させた後、光学顕微鏡で過冷組織(ベイナイト、マルテンサイト)観察した。この結果、過冷組織がみられないものを○、みられるものを×として評価した。
(2) Investigation and evaluation of supercooled structure After cutting a 10mm long sample from a wire ring taken from a hot-rolled wire rod by wet cutting, we perform wet polishing, buff polishing, chemical polishing as sample preparation, and polishing Samples with as much distortion and irregularities as possible were prepared. At this time, it grind | polished so that the observation surface might become the cross section of a steel wire. After corroding with nital to reveal a metal structure, a supercooled structure (bainite, martensite) was observed with an optical microscope. As a result, the case where no supercooled structure was observed was evaluated as ◯, and the case where it was observed was evaluated as ×.

各実施例(発明例、比較例)におけるこれらの評価結果について、製造条件と合わせて表2に示す。   These evaluation results in each example (invention example, comparative example) are shown in Table 2 together with the production conditions.

Figure 2011080105
Figure 2011080105

同表2より、本発明の規定する製造条件を満足する発明例については全てフェライト脱炭及び過冷が抑制されており、疲労特性(大気疲労特性)及び伸線加工性の改善に有効であることが判明するとともに、過熱温度が高めの一部発明例(鋼材No.A1-1, A2
-1及びA3-1)を除いてそのほとんどが同時に全脱炭も抑制されており、疲労特性がさらに一層有効に改善されることが分かる。
From Table 2, all of the invention examples satisfying the production conditions defined by the present invention are suppressed in ferrite decarburization and supercooling, and are effective in improving fatigue characteristics (atmospheric fatigue characteristics) and wire drawing workability. As a result, some invention examples (steel No. A1-1, A2)
Except for -1 and A3-1), almost all of them were also suppressed at the same time, and it can be seen that the fatigue characteristics were improved even more effectively.

これに対し、本発明の条件外の比較例についてみると、鋼材No.A1-2は仕上げ前温度(T2)及び仕上げ後保持温度(T3)がともに高いため過冷が発生し、No.A1-4は仕上げ後保持温度(T3)が低いためフェライト脱炭が発生し、No.A1-7は加熱温度(T1)が低いためフェライト脱炭が発生している。また、No.A2-2は750℃から650℃までの冷却時間が短いため過冷が発生し、No.A2-3は仕上げ前温度(T2)が高いために過冷が発生するとともに巻取りから750℃までの冷却速度(CR1)が遅いためにフェライト脱炭が発生し、No.A2-6は仕上げ圧延後の1000〜1050℃での保持時間(Ht)が長いため過冷が発生し、No.A2-8は巻取りから750℃までの冷却速度(CR1)が速いために過冷が発生し、No.A2-12は同冷却速度(CR1)が遅いためにフェライト脱炭が発生ししている。さらに、No.A3-1は仕上げ後保持温度が高いため過冷が発生している。   On the other hand, regarding the comparative example outside the conditions of the present invention, steel material No. A1-2 has high pre-finishing temperature (T2) and post-finishing holding temperature (T3), and thus overcooling occurred. Since No. A1-7 has a low holding temperature (T3) after finishing, ferrite decarburization has occurred, and No. A1-7 has a low heating temperature (T1), so ferrite decarburization has occurred. No.A2-2 has overcooling due to the short cooling time from 750 ° C to 650 ° C, and No.A2-3 has high pre-finishing temperature (T2), so overcooling occurs and winding Ferrite decarburization occurs because the cooling rate (CR1) from 750 to 750 ° C is slow, and overcooling occurs because No.A2-6 has a long holding time (Ht) at 1000 to 1050 ° C after finish rolling. No.A2-8 has a high cooling rate (CR1) from coiling to 750 ° C, so overcooling occurs, and No.A2-12 has a slow cooling rate (CR1), and ferrite decarburization occurs. I am doing. Furthermore, No.A3-1 has overcooling due to its high holding temperature after finishing.

Claims (5)

C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下(0を含まない)、S:0.025%以下(0を含まない)、残部がFeおよび不可避的不純物からなる鋼材を、加熱炉抽出後、仕上前温度を1000℃未満として熱間圧延し、仕上圧延後、1000〜1150℃の範囲に5sec以下保持して巻き取った後に冷却速度2〜8℃/sで750℃以下に冷却し、その後、巻取りから150sec以上かけて600℃まで徐冷することを特徴とするばね用鋼の製造方法。   C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less (excluding 0), S: 0.025 % Of steel (not including 0), the balance being Fe and inevitable impurities, hot-rolled after extraction in the furnace, with a pre-finishing temperature of less than 1000 ° C, and after finish rolling, in the range of 1000-1150 ° C Production of spring steel characterized by holding for 5 seconds or less, winding to 750 ° C or less at a cooling rate of 2-8 ° C / s, and then gradually cooling to 600 ° C over 150 seconds after winding Method. C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下(0を含まない)、S:0.025%以下(0を含まない)、残部がFeおよび不可避的不純物からなる鋼材を、加熱炉抽出温度を1000〜1100℃として加熱した後、熱間圧延し、仕上圧延後、1000〜1150℃の範囲に5sec以下保持して巻き取った後に冷却速度2〜8℃/sで750℃以下に冷却し、その後、巻取りから150sec以上かけて600℃まで徐冷することを特徴とするばね用鋼の製造方法。   C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less (excluding 0), S: 0.025 % Or less (excluding 0), with the balance consisting of Fe and inevitable impurities, heated at a furnace extraction temperature of 1000-1100 ° C, hot-rolled, and after finish rolling, in the range of 1000-1150 ° C The steel for springs is characterized in that it is held at 5 sec or less for winding and then cooled to 750 ° C. or less at a cooling rate of 2 to 8 ° C./s, and then gradually cooled to 600 ° C. over 150 sec after winding. Production method. C:0.35〜0.65%(質量%、以下同様)、Si:1.4〜3.0%、Mn:0.1〜1.0%、Cr:0.1〜2.0%、P:0.025%以下(0を含まない)、S:0.025%以下(0を含まない)、残部がFeおよび不可避的不純物からなる鋼材を、加熱炉抽出温度を1000〜1100℃として加熱した後、仕上前温度を1000℃未満として熱間圧延し、仕上圧延後、1000〜1150℃の範囲に5sec以下保持して巻き取った後に冷却速度2〜8℃/sで750℃以下に冷却し、その後、巻取りから150sec以上かけて600℃まで徐冷することを特徴とするばね用鋼の製造方法。   C: 0.35-0.65% (mass%, the same applies hereinafter), Si: 1.4-3.0%, Mn: 0.1-1.0%, Cr: 0.1-2.0%, P: 0.025% or less (excluding 0), S: 0.025 % Of steel (not including 0), the balance being Fe and unavoidable impurities, heated at a furnace extraction temperature of 1000-1100 ° C, hot rolled at a pre-finishing temperature of less than 1000 ° C, and finished rolling After that, hold it in the range of 1000 to 1150 ° C for 5 seconds or less, wind it down, cool it to 750 ° C or less at a cooling rate of 2 to 8 ° C / s, and then gradually cool it down to 600 ° C over 150 seconds from winding. A method for producing spring steel. 前記鋼材がさらにNi:1.0 %以下(0を含まない)、Cu:1.0%以下(0を含まない)の一種以上を含むことを特徴とする請求項1〜3のいずれかに記載のばね用鋼の製造方法。   4. The spring according to claim 1, wherein the steel material further includes at least one of Ni: 1.0% or less (excluding 0) and Cu: 1.0% or less (excluding 0). Steel manufacturing method. 前記鋼材がさらにMo:1.0%以下(0を含まない)、V: 0.3%以下(0を含まない)、Ti: 0.1%以下(0を含まない)、Nb:0.1%以下(0を含まない)、Zr:0.1%以下(0を含まない)の一種以上を含むことを特徴とする請求項1〜4のいずれかに記載のばね用鋼の製造方法。   The steel is further Mo: 1.0% or less (excluding 0), V: 0.3% or less (not including 0), Ti: 0.1% or less (not including 0), Nb: 0.1% or less (not including 0) ), Zr: 0.1% or less (not including 0), or one or more of the following. 5. The method for producing spring steel according to claim 1.
JP2009231682A 2009-10-05 2009-10-05 Manufacturing method for spring steel Expired - Fee Related JP5330181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231682A JP5330181B2 (en) 2009-10-05 2009-10-05 Manufacturing method for spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231682A JP5330181B2 (en) 2009-10-05 2009-10-05 Manufacturing method for spring steel

Publications (2)

Publication Number Publication Date
JP2011080105A true JP2011080105A (en) 2011-04-21
JP5330181B2 JP5330181B2 (en) 2013-10-30

Family

ID=44074436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231682A Expired - Fee Related JP5330181B2 (en) 2009-10-05 2009-10-05 Manufacturing method for spring steel

Country Status (1)

Country Link
JP (1) JP5330181B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101569A (en) * 2012-11-22 2014-06-05 Kobe Steel Ltd Method of manufacturing steel wire material for spring
KR101571949B1 (en) 2011-05-12 2015-11-25 닛폰 하츠죠 가부시키가이샤 Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
KR101745210B1 (en) 2015-12-15 2017-06-09 현대자동차주식회사 High durability coil spring steel
KR101745211B1 (en) 2015-12-15 2017-06-09 현대자동차주식회사 High durability coil spring steel
KR101795265B1 (en) 2016-06-01 2017-11-08 현대자동차주식회사 High durability coil spring steel
CN109881117A (en) * 2019-03-20 2019-06-14 包头钢铁(集团)有限责任公司 A kind of high-carbon spring hot-rolled coil and its production method
CN110735087A (en) * 2019-11-13 2020-01-31 宁夏全一机械设备研究院有限公司 high-speed rail fastener production process
CN111485086A (en) * 2020-04-08 2020-08-04 中天钢铁集团有限公司 Controlled rolling and cooling process for reducing decarburized layer depth of high-carbon alloy tool steel wire rod
CN114717466A (en) * 2021-11-26 2022-07-08 安阳钢铁股份有限公司 Preparation method of high-carbon spring steel hot-rolled coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571949B1 (en) 2011-05-12 2015-11-25 닛폰 하츠죠 가부시키가이샤 Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
JP2014101569A (en) * 2012-11-22 2014-06-05 Kobe Steel Ltd Method of manufacturing steel wire material for spring
KR101745210B1 (en) 2015-12-15 2017-06-09 현대자동차주식회사 High durability coil spring steel
KR101745211B1 (en) 2015-12-15 2017-06-09 현대자동차주식회사 High durability coil spring steel
US10000831B2 (en) 2015-12-15 2018-06-19 Hyundai Motor Company Highly durable coil spring steel
KR101795265B1 (en) 2016-06-01 2017-11-08 현대자동차주식회사 High durability coil spring steel
CN109881117A (en) * 2019-03-20 2019-06-14 包头钢铁(集团)有限责任公司 A kind of high-carbon spring hot-rolled coil and its production method
CN110735087A (en) * 2019-11-13 2020-01-31 宁夏全一机械设备研究院有限公司 high-speed rail fastener production process
CN111485086A (en) * 2020-04-08 2020-08-04 中天钢铁集团有限公司 Controlled rolling and cooling process for reducing decarburized layer depth of high-carbon alloy tool steel wire rod
CN114717466A (en) * 2021-11-26 2022-07-08 安阳钢铁股份有限公司 Preparation method of high-carbon spring steel hot-rolled coil

Also Published As

Publication number Publication date
JP5330181B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5121360B2 (en) Spring steel wire rod excellent in decarburization resistance and wire drawing workability, and method for producing the same
JP5330181B2 (en) Manufacturing method for spring steel
CN107614726B (en) Steel sheet and method for producing same
JP5476597B2 (en) Seamless steel pipe for high-strength hollow springs
JP4476846B2 (en) High strength spring steel with excellent cold workability and quality stability
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP6225995B2 (en) High carbon steel sheet and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
WO2016190370A1 (en) Steel sheet and method for producing same
JP5504636B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5590254B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
CN111406124B (en) High-strength cold-rolled steel sheet and method for producing same
JP5824443B2 (en) Method of manufacturing steel wire for spring
JP5358914B2 (en) Super soft high carbon hot rolled steel sheet
JP5644966B2 (en) High carbon hot-rolled steel sheet with excellent in hardenability and low in-plane anisotropy and method for producing the same
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP5986434B2 (en) Seamless steel pipe for hollow spring
JP6018394B2 (en) Hollow seamless pipe for high strength springs
JP2018016873A (en) High strength and high processability cold-rolled steel sheet coil with small variation of strength in coil and manufacturing method thereof
JP6338012B2 (en) Suspension spring steel and manufacturing method thereof
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5330181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees