JP2011079079A - Polishing device - Google Patents

Polishing device Download PDF

Info

Publication number
JP2011079079A
JP2011079079A JP2009232491A JP2009232491A JP2011079079A JP 2011079079 A JP2011079079 A JP 2011079079A JP 2009232491 A JP2009232491 A JP 2009232491A JP 2009232491 A JP2009232491 A JP 2009232491A JP 2011079079 A JP2011079079 A JP 2011079079A
Authority
JP
Japan
Prior art keywords
polishing
load
expansion
tool
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009232491A
Other languages
Japanese (ja)
Inventor
Ikuhiro Zaitsu
育浩 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009232491A priority Critical patent/JP2011079079A/en
Publication of JP2011079079A publication Critical patent/JP2011079079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the polishing load of a rotating polishing tool when pushed against a polished surface, and to control it with high accuracy. <P>SOLUTION: A polishing head includes a casing 9, a tool shaft 1 supported movably in the thrusting direction by a fluid bearing 2, a rotation driving means 7 for driving the tool shaft 1 to rotate, a displacing mechanism 8 for giving a load to the tool shaft 1, and a differential transformer 3 supported by the casing 9. The differential transformer 3 is opposed to a core 4 fixed to the tool shaft 1 and arranged on the lower side of an extensible connection part including a leaf spring 5 connecting the rotation driving means 7 to the tool shaft 1 for measuring the push-in length of the leaf spring 5 to detect the polishing load of a polishing pad 10 on the polished surface 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、工作物を研磨加工する研磨装置に関するものである。   The present invention relates to a polishing apparatus for polishing a workpiece.

近年、レンズやミラーといった光学素子においては、より高い加工精度が求められており、これらの研磨加工においては、研磨ヘッドが研磨工具の研磨荷重や回転数を制御している。一般に、研磨除去量は、研磨工具と被研磨面との接触圧力、研磨工具の回転数、加工時間に比例することがプレストンの経験則として知られている。したがって、研磨除去量を制御するためには、研磨工具を被研磨面に押し付ける研磨荷重と研磨工具の回転数を制御しなくてはならない。研磨荷重を精密に制御するには、研磨荷重をモニタリングし、計測した値をフィードバックすることが有効であり、一般に荷重の測定にはロードセルが用いられる。   In recent years, optical elements such as lenses and mirrors have been required to have higher processing accuracy. In these polishing processes, the polishing head controls the polishing load and the number of rotations of the polishing tool. Generally, it is known as Preston's rule of thumb that the removal amount of polishing is proportional to the contact pressure between the polishing tool and the surface to be polished, the number of revolutions of the polishing tool, and the processing time. Therefore, in order to control the polishing removal amount, the polishing load for pressing the polishing tool against the surface to be polished and the rotation speed of the polishing tool must be controlled. In order to precisely control the polishing load, it is effective to monitor the polishing load and feed back the measured value. In general, a load cell is used to measure the load.

従来の研磨ヘッドは、ロードセル等の荷重検出手段と、荷重の検出方向に移動可能に支持された工具駆動部を連結したものがある(特許文献1参照)。これは、図6に示すように、研磨ヘッドに、荷重発生部108と、荷重検出部103と、回転駆動手段107と、研磨工具110と、を設ける。筐体109は荷重発生部108を支持し、研磨工具110を回転駆動する回転駆動手段107は、筐体109の内部に設置されているガイド106に沿って、工具軸101のスラスト方向に移動可能に構成されている。荷重発生部108は、回転駆動手段107を移動させて、研磨工具110を被研磨面に押し付ける。研磨工具110と被研磨面との接触圧力である研磨荷重は、荷重検出部103で得られる荷重値に、荷重検出部103と被研磨面との間にある可動部の重量による影響を加算することで得られる。ここで、可動部とは、工具軸101のスラスト方向に移動可能に構成され、荷重検出部103の下側で、被研磨面に押し付けられる研磨ヘッドの構成要素の組み合わされたものを指す。すなわち、回転駆動手段107と研磨工具110と工具軸101の組み合わされたものが可動部である。   A conventional polishing head includes a load detection unit such as a load cell and a tool driving unit supported so as to be movable in the load detection direction (see Patent Document 1). As shown in FIG. 6, the polishing head is provided with a load generation unit 108, a load detection unit 103, a rotation driving means 107, and a polishing tool 110. The casing 109 supports the load generation unit 108, and the rotation driving means 107 that rotates the polishing tool 110 can move in the thrust direction of the tool shaft 101 along the guide 106 installed inside the casing 109. It is configured. The load generator 108 moves the rotation driving means 107 to press the polishing tool 110 against the surface to be polished. The polishing load, which is the contact pressure between the polishing tool 110 and the surface to be polished, is added to the load value obtained by the load detection unit 103 due to the weight of the movable part between the load detection unit 103 and the surface to be polished. Can be obtained. Here, the movable portion is configured to be movable in the thrust direction of the tool shaft 101 and refers to a combination of components of the polishing head pressed against the surface to be polished below the load detection unit 103. That is, a combination of the rotation driving means 107, the polishing tool 110, and the tool shaft 101 is a movable part.

図7は別例による研磨ヘッドを示す。この構成では、荷重発生部108が荷重検出部103を介して筐体109に支持されており、荷重発生部108と回転駆動手段107と研磨工具110と工具軸101の組み合わされたものが可動部である。   FIG. 7 shows a polishing head according to another example. In this configuration, the load generation unit 108 is supported by the casing 109 via the load detection unit 103, and the combination of the load generation unit 108, the rotation driving unit 107, the polishing tool 110, and the tool shaft 101 is a movable unit. It is.

いずれの場合も、研磨ヘッドが重力方向に対して角度θだけ傾斜している場合には、可動部の重量により、以下の式(1)で表される大きさの力(荷重)ΔFが研磨工具110と被研磨面との接触圧力である研磨荷重に影響している。
ΔF=M・g・cosθ・・・・・(1)
ここで、ΔF:研磨荷重のうちで可動部の重量による荷重
M:可動部の質量
g:重力加速度
θ:研磨ヘッドの重力方向に対する傾き角度
In any case, when the polishing head is inclined by an angle θ with respect to the direction of gravity, a force (load) ΔF having a magnitude represented by the following equation (1) is polished by the weight of the movable part. It affects the polishing load, which is the contact pressure between the tool 110 and the surface to be polished.
ΔF = M · g · cos θ (1)
Here, ΔF: Load due to weight of movable part among polishing load
M: Mass of the moving part
g: Gravity acceleration
θ: Angle of inclination of the polishing head with respect to the direction of gravity

研磨ヘッドは、荷重検出部103で得られる荷重値にΔFを加算することにより得られる値を基に、荷重発生部108を制御し、研磨工具110と被研磨面との間に任意の研磨荷重を発生させることができる。   The polishing head controls the load generation unit 108 based on a value obtained by adding ΔF to the load value obtained by the load detection unit 103, and an arbitrary polishing load between the polishing tool 110 and the surface to be polished. Can be generated.

特開平08−141899号公報Japanese Patent Laid-Open No. 08-141899

しかし、研磨ヘッドの重力方向に対する傾きθが正確に検出されない場合は、、研磨ヘッドの検出する研磨工具110と被研磨面との荷重値は、以下の式(2)で表される誤差Eを含む。
E=M・g・(cos(θ+Δθ)−cosθ)・・・・・(2)
ここで、E:研磨ヘッドの検出する荷重値に含まれる誤差
M:可動部の質量
g:重力加速度
θ:研磨ヘッドの重力方向に対する傾き角度
Δθ:研磨ヘッドの重力方向に対する傾き角度の誤差
However, when the inclination θ with respect to the gravitational direction of the polishing head is not accurately detected, the load value between the polishing tool 110 detected by the polishing head and the surface to be polished has an error E represented by the following equation (2). Including.
E = M · g · (cos (θ + Δθ) −cos θ) (2)
Where E: error included in the load value detected by the polishing head
M: Mass of the moving part
g: Gravity acceleration
θ: Angle of inclination of the polishing head with respect to the direction of gravity
Δθ: Error in tilt angle with respect to gravitational direction of polishing head

このように、誤差Eは、研磨ヘッドの可動部の質量Mに比例する。従来の研磨ヘッドのうち、研磨工具を押し付けながら回転駆動する研磨ヘッドにおいては、可動部の質量に回転駆動手段の質量が含まれるため、研磨加工中に検出する研磨荷重の誤差を増大させてしまうという問題があった。   Thus, the error E is proportional to the mass M of the movable part of the polishing head. Among conventional polishing heads, a polishing head that rotates while pressing a polishing tool increases the error of the polishing load detected during the polishing process because the mass of the movable part includes the mass of the rotation driving means. There was a problem.

本発明は、研磨工具を被研磨面に押し付ける研磨荷重を高精度に制御することが可能な研磨装置を提供することを目的とするものである。   An object of this invention is to provide the grinding | polishing apparatus which can control the grinding | polishing load which presses a grinding | polishing tool on a to-be-polished surface with high precision.

本発明の研磨装置は、回転する研磨工具によって被研磨面を研磨加工する研磨装置において、前記研磨工具と、前記研磨工具を保持し、スラスト方向に移動可能である工具軸と、前記工具軸を回転駆動するための回転駆動手段と、前記工具軸を介して前記研磨工具に前記スラスト方向の荷重を与える荷重付与手段と、前記回転駆動手段と前記工具軸とを前記スラスト方向に伸縮自在に連結し、前記回転駆動手段による回転トルクを前記工具軸に伝達する伸縮連結部と、前記伸縮連結部の伸縮長を測定する伸縮測定手段と、前記伸縮連結部の伸縮長から、前記研磨工具によって被研磨面を研磨加工するときの研磨荷重を算出する演算手段と、前記演算手段の出力に応じて前記荷重付与手段を制御する制御手段と、を有することを特徴とする。   The polishing apparatus of the present invention is a polishing apparatus that polishes a surface to be polished with a rotating polishing tool, the polishing tool, a tool axis that holds the polishing tool and is movable in a thrust direction, and the tool axis. A rotational driving means for rotationally driving, a load applying means for applying a load in the thrust direction to the polishing tool via the tool shaft, and the rotational driving means and the tool shaft are connected to be extendable in the thrust direction. Then, from the expansion / contraction connecting portion for transmitting the rotational torque of the rotation driving means to the tool shaft, the expansion / contraction measuring means for measuring the expansion / contraction length of the expansion / contraction connecting portion, and the expansion / contraction length of the expansion / contraction connecting portion, It has a calculating means for calculating a polishing load when polishing the polishing surface, and a control means for controlling the load applying means in accordance with the output of the calculating means.

工具軸に作用するスラスト力である研磨荷重を、伸縮連結部の伸縮長として研磨工具の回転中に回転を妨げることなく測定可能である。また、伸縮連結部と伸縮測定手段により構成される荷重測定部の下側の可動部に回転駆動手段が含まれないため、被研磨面に作用する研磨荷重を高精度に測定し、安定した精密な研磨加工を行うことができる。   The polishing load, which is a thrust force acting on the tool shaft, can be measured as the expansion / contraction length of the expansion / contraction connecting portion without obstructing the rotation during rotation of the polishing tool. In addition, since the rotational drive means is not included in the movable part below the load measuring part composed of the expansion / contraction connecting part and the expansion / contraction measuring means, the polishing load acting on the surface to be polished is measured with high precision and stable precision. Can be polished.

第1の実施形態による研磨装置の構成を説明する模式図である。It is a schematic diagram explaining the structure of the grinding | polishing apparatus by 1st Embodiment. 伸縮連結部を構成するマグネットカップリング、マグネットを用いたギア、弾性的に伸縮しトルクを伝達可能な弾性体を示す図である。It is a figure which shows the magnet coupling which comprises an expansion-contraction connection part, the gear using a magnet, and the elastic body which can expand-contract elastically and can transmit torque. 伸縮連結部の伸縮長の測定方法を説明する図である。It is a figure explaining the measuring method of the expansion-contraction length of an expansion-contraction connection part. 第2の実施形態による研磨装置の構成を説明する模式図である。It is a schematic diagram explaining the structure of the grinding | polishing apparatus by 2nd Embodiment. 第3の実施形態による研磨装置の構成を説明する模式図である。It is a schematic diagram explaining the structure of the grinding | polishing apparatus by 3rd Embodiment. 一従来例による研磨装置の構成を説明する模式図である。It is a schematic diagram explaining the structure of the grinding | polishing apparatus by one prior art example. 別の従来例による研磨装置の構成を説明する模式図である。It is a schematic diagram explaining the structure of the grinding | polishing apparatus by another prior art example.

図1は、第1の実施形態による研磨装置を示すもので、工具軸1は、下端に研磨工具である研磨パッド10を保持し、流体軸受2により回転自在かつスラスト方向に移動可能に支持され、差動トランス3は、工具軸1のスラスト方向の移動を検出する。工具軸1の支持手段は必ずしも流体軸受2に限定されるものではなく、接触式のボールブッシュなどを用いてもよい。ただし、空気軸受などの非接触方式のほうが望ましい。板ばね5と板ばね支持体6から構成される伸縮連結部は、回転駆動手段7と工具軸1とを伸縮自在に連結し、回転駆動手段7の回転トルクを工具軸1に伝達する。   FIG. 1 shows a polishing apparatus according to a first embodiment. A tool shaft 1 holds a polishing pad 10 as a polishing tool at a lower end and is supported by a fluid bearing 2 so as to be rotatable and movable in a thrust direction. The differential transformer 3 detects the movement of the tool shaft 1 in the thrust direction. The support means for the tool shaft 1 is not necessarily limited to the fluid bearing 2, and a contact-type ball bush or the like may be used. However, a non-contact method such as an air bearing is preferable. The expansion / contraction connecting portion composed of the leaf spring 5 and the leaf spring support 6 connects the rotation driving means 7 and the tool shaft 1 in a telescopic manner, and transmits the rotational torque of the rotation driving means 7 to the tool shaft 1.

伸縮連結部は、板ばね5と板ばね支持体6からなるカップリングに限定されるものではない。例えば、図2(a)に示す円筒型の内輪60に設けたマグネット61aを外輪62のマグネット61bに対向させたマグネットカップリングや、(b)に示すマグネット63aを用いた一対のギア63でもよい。また、図2(c)に示す金属や樹脂などの弾性体など、トルクを伝達可能でスラスト方向に弾性的に伸縮する部材64を介在させる構成でもよい。   The telescopic connecting portion is not limited to the coupling composed of the leaf spring 5 and the leaf spring support 6. For example, a magnet coupling in which the magnet 61a provided on the cylindrical inner ring 60 shown in FIG. 2A is opposed to the magnet 61b of the outer ring 62, or a pair of gears 63 using the magnet 63a shown in FIG. . Moreover, the structure which can transmit torque and elastically expands-contracts in a thrust direction, such as elastic bodies, such as a metal and resin shown in FIG.2 (c), may be interposed.

伸縮測定手段を構成する差動トランス3は、前記伸縮連結部の伸縮長を、工具軸1に固着された芯4の変位により工具軸1のスラスト方向の移動量として非接触にて測定する。伸縮連結部の伸縮長を測定する伸縮測定手段は、差動トランス3を用いる方法に限定されるものではない。例えば、図3(a)に示すように、レーザー変位計65により板ばね下面の測定点66を測定してもよいし、(b)に示すように工具軸1にフランジ部67を設けてその下面に測定点66を配置してもよい。また、レーザー変位計の代わりに、渦電流式変位計など他の変位センサを用いてもよい。工具軸1を介して研磨パッド10にスラスト方向の荷重を与える荷重付与手段である変位機構8には筐体9が接続され、筐体9は、回転駆動手段7、差動トランス3、流体軸受2を支持する。筐体9を介して、変位機構8により工具軸1をスラスト方向に移動させる。   The differential transformer 3 constituting the expansion / contraction measuring means measures the expansion / contraction length of the expansion / contraction connecting portion as a movement amount in the thrust direction of the tool shaft 1 in a non-contact manner by displacement of the core 4 fixed to the tool shaft 1. The expansion / contraction measuring means for measuring the expansion / contraction length of the expansion / contraction connecting portion is not limited to the method using the differential transformer 3. For example, as shown in FIG. 3A, a measurement point 66 on the lower surface of the leaf spring may be measured by a laser displacement meter 65, or as shown in FIG. The measurement point 66 may be arranged on the lower surface. Further, instead of the laser displacement meter, other displacement sensors such as an eddy current displacement meter may be used. A casing 9 is connected to a displacement mechanism 8 which is a load applying means for applying a load in the thrust direction to the polishing pad 10 via the tool shaft 1, and the casing 9 includes a rotation driving means 7, a differential transformer 3, a fluid bearing. 2 is supported. The tool shaft 1 is moved in the thrust direction by the displacement mechanism 8 through the housing 9.

次に、研磨パッド10と被研磨面11との間に作用する研磨荷重の測定について説明する。変位機構8により筐体9が被加工物に近づけられると、工具軸1の先端に取り付けられた研磨パッド10が回転しながら被研磨面11に接触する。工具軸1の先端の研磨パッド10が被研磨面11に接触した後もひき続き筐体9が被加工物に近づけられると、工具軸1が板ばね5に押込まれ板ばね5を変形させる。工具軸1の板ばね5への押込み長(伸縮連結部の伸縮長)は、差動トランス3により芯4の変位として計測される。変位機構8が板ばね5を介して工具軸1に作用させるスラスト力(スラスト方向の荷重)は、演算手段12により、板ばね5の押込み長の計測値及び既存のデータから算出することができる。また、研磨パッド10と工具軸1と芯4からなる可動部の質量をあらかじめ計測しておけば、工具軸1に作用するスラスト力とあわせて、研磨加工中の研磨パッド10と被研磨面11との間に作用する研磨荷重を知ることができる。   Next, measurement of the polishing load acting between the polishing pad 10 and the surface 11 to be polished will be described. When the housing 9 is brought close to the workpiece by the displacement mechanism 8, the polishing pad 10 attached to the tip of the tool shaft 1 contacts the surface 11 to be polished while rotating. Even after the polishing pad 10 at the tip of the tool shaft 1 comes into contact with the surface 11 to be polished, the tool shaft 1 is pushed into the leaf spring 5 to deform the leaf spring 5 when the casing 9 is brought close to the workpiece. The indentation length of the tool shaft 1 into the leaf spring 5 (the expansion / contraction length of the expansion / contraction connecting portion) is measured by the differential transformer 3 as the displacement of the core 4. The thrust force (the load in the thrust direction) that the displacement mechanism 8 acts on the tool shaft 1 via the leaf spring 5 can be calculated from the measured value of the pushing length of the leaf spring 5 and existing data by the calculation means 12. . Further, if the mass of the movable part consisting of the polishing pad 10, the tool shaft 1 and the core 4 is measured in advance, the polishing pad 10 and the surface 11 to be polished being polished together with the thrust force acting on the tool shaft 1 will be described. The polishing load acting between the two can be known.

研磨ヘッドが傾斜する場合には、図示しない傾斜測定手段により、研磨ヘッドの重力方向に対する傾斜角度を検知し、可動部の重量による荷重を傾斜角度分補正し、研磨パッド10と被研磨面11の間に作用する研磨荷重を算出すればよい。研磨荷重FPは以下の式(3)よって算出される。
FP=FC+M・g・(1−cosθ)・・・・・(3)
ここで、FP:研磨パッド10と被研磨面11の間に作用する研磨荷重
FC:板ばね5が工具軸1を押す力
M:可動部の質量(工具軸1と研磨パッド10と芯4の質量の合計)
g:重力加速度
θ:研磨ヘッドの傾斜角度
When the polishing head is tilted, the tilt measuring means (not shown) detects the tilt angle of the polishing head with respect to the gravitational direction, corrects the load due to the weight of the movable part by the tilt angle, and the polishing pad 10 and the surface 11 to be polished What is necessary is just to calculate the polishing load acting in between. The polishing load FP is calculated by the following equation (3).
FP = FC + M · g · (1−cos θ) (3)
Here, FP: polishing load acting between the polishing pad 10 and the surface 11 to be polished
FC: Force by which the leaf spring 5 pushes the tool shaft 1
M: Mass of the movable part (total of the masses of the tool shaft 1, the polishing pad 10, and the core 4)
g: Gravity acceleration
θ: Inclination angle of polishing head

傾斜角度θの測定に誤差があると、可動部の質量Mの大きさに比例して研磨荷重FPの測定誤差が大きくなる。したがって、可動部の質量Mを小さくすることで研磨荷重FPをより正確に計測することが可能である。   If there is an error in the measurement of the inclination angle θ, the measurement error of the polishing load FP increases in proportion to the mass M of the movable part. Therefore, it is possible to measure the polishing load FP more accurately by reducing the mass M of the movable part.

従来の研磨ヘッドでは、可動部に回転駆動手段が含まれるが、本実施形態による研磨装置の回転駆動手段7は、研磨荷重の測定に関わる可動部に含まれないため、可動部を軽量化でき、より高精度に研磨荷重の測定が可能である。   In the conventional polishing head, the movable part includes the rotational driving means. However, since the rotational driving means 7 of the polishing apparatus according to the present embodiment is not included in the movable part related to the measurement of the polishing load, the movable part can be reduced in weight. The polishing load can be measured with higher accuracy.

本実施形態の研磨装置において、研磨荷重を大きくするには、変位機構8により筐体9を被研磨面11に近づくよう移動させ、研磨荷重を小さくするには、変位機構8により筐体9を被研磨面11から遠ざけるよう移動させればよい。   In the polishing apparatus of this embodiment, in order to increase the polishing load, the displacement mechanism 8 moves the casing 9 so as to approach the surface 11 to be polished, and to decrease the polishing load, the displacement mechanism 8 moves the casing 9 to the polishing apparatus 9. What is necessary is just to move it away from the to-be-polished surface 11.

研磨荷重の測定結果に基づく演算手段12の出力に応じて、制御手段13により研磨荷重の変化を低減し、目標とする研磨荷重になるように変位機構8を制御することで、所望の研磨加工結果を得ることができる。   In accordance with the output of the calculation means 12 based on the measurement result of the polishing load, the change of the polishing load is reduced by the control means 13 and the displacement mechanism 8 is controlled so as to achieve the target polishing load. The result can be obtained.

図4は第2の実施形態を示す。本実施形態においては、変位機構8を筐体9の内部に配置する。これによって、変位機構8が移動させる構成要素が少なくなり、変位機構8が移動させる部分を軽量化して制御の応答性を高めることができる。また、差動トランス3を筐体9の内部に固定し、筐体9を変位機構8により移動させる代わりに、筐体内部の変位機構8に固定された差動トランスホルダ14に差動トランス3を固定し、回転駆動手段7を変位機構8により移動させる。研磨パッド10と被研磨面11との間に作用する研磨荷重の測定方法及び研磨加工については第1の実施形態と同じである。   FIG. 4 shows a second embodiment. In the present embodiment, the displacement mechanism 8 is disposed inside the housing 9. As a result, the number of components to be moved by the displacement mechanism 8 is reduced, and the portion to be moved by the displacement mechanism 8 can be reduced in weight, thereby improving the control responsiveness. Further, instead of fixing the differential transformer 3 inside the housing 9 and moving the housing 9 by the displacement mechanism 8, the differential transformer 3 is attached to the differential transformer holder 14 fixed to the displacement mechanism 8 inside the housing. And the rotational drive means 7 is moved by the displacement mechanism 8. The method for measuring the polishing load acting between the polishing pad 10 and the surface 11 to be polished and the polishing process are the same as those in the first embodiment.

図5は第3の実施形態を示すもので、これは、より高精度に工具軸1の板ばね5への押込み長を測定することにより、より精度良く研磨パッド10と被研磨面11との間に作用する研磨荷重を測定することを可能にする。   FIG. 5 shows a third embodiment, which measures the indentation length of the tool shaft 1 into the leaf spring 5 with higher accuracy, thereby allowing the polishing pad 10 and the surface 11 to be polished to be more accurately measured. It makes it possible to measure the polishing load acting in between.

筐体9には、伸縮測定手段を構成する2組の差動トランス3が固定され、それぞれ工具軸1に固定された芯4に対向する。板ばね5と板ばね支持体6により構成される伸縮連結部の上下に配置された2つの芯4の変位を計測して差をとることにより、工具軸1の板ばね5への押込み長を計測する。2つの芯4の変位の差をとることで、板ばね支持体6の回転駆動手段7への押込みの影響を排除できる。したがって、より高精度に工具軸1の板ばね5への押込み長を測定可能となり、より精度良く研磨パッド10と被研磨面11との間に作用する研磨荷重を測定できる。研磨荷重の測定方法及び研磨加工については第1の実施形態と同じである。   Two sets of differential transformers 3 constituting the expansion / contraction measuring means are fixed to the housing 9 and face the core 4 fixed to the tool shaft 1. The indentation length of the tool shaft 1 to the leaf spring 5 is determined by measuring the displacement of the two cores 4 arranged above and below the expansion / contraction connecting portion constituted by the leaf spring 5 and the leaf spring support 6. measure. By taking the difference in displacement between the two cores 4, it is possible to eliminate the influence of pushing the leaf spring support 6 into the rotation driving means 7. Therefore, it is possible to measure the indentation length of the tool shaft 1 into the leaf spring 5 with higher accuracy, and to measure the polishing load acting between the polishing pad 10 and the surface 11 to be polished with higher accuracy. The method for measuring the polishing load and the polishing process are the same as those in the first embodiment.

1 工具軸
2 流体軸受
3 差動トランス
4 芯
5 板ばね
6 板ばね支持体
7 回転駆動手段
8 変位機構
9 筐体
10 研磨パッド
11 被研磨面
12 演算手段
13 制御手段
DESCRIPTION OF SYMBOLS 1 Tool axis | shaft 2 Fluid bearing 3 Differential transformer 4 Core 5 Leaf spring 6 Leaf spring support 7 Rotation drive means 8 Displacement mechanism 9 Case 10 Polishing pad 11 Polishing surface 12 Calculation means 13 Control means

Claims (3)

回転する研磨工具によって被研磨面を研磨加工する研磨装置において、
前記研磨工具と、
前記研磨工具を保持し、スラスト方向に移動可能である工具軸と、
前記工具軸を回転駆動するための回転駆動手段と、
前記工具軸を介して前記研磨工具に前記スラスト方向の荷重を与える荷重付与手段と、
前記回転駆動手段と前記工具軸とを前記スラスト方向に伸縮自在に連結し、前記回転駆動手段による回転トルクを前記工具軸に伝達する伸縮連結部と、
前記伸縮連結部の伸縮長を測定する伸縮測定手段と、
前記伸縮連結部の伸縮長から、前記研磨工具によって被研磨面を研磨加工するときの研磨荷重を算出する演算手段と、
前記演算手段の出力に応じて前記荷重付与手段を制御する制御手段と、を有することを特徴とする研磨装置。
In a polishing apparatus that polishes a surface to be polished with a rotating polishing tool,
The polishing tool;
A tool shaft that holds the polishing tool and is movable in a thrust direction;
Rotation driving means for driving the tool shaft to rotate;
Load applying means for applying a load in the thrust direction to the polishing tool via the tool shaft;
An expansion / contraction connecting portion that connects the rotation driving means and the tool shaft so as to be extendable and contractible in the thrust direction, and transmits rotational torque generated by the rotation driving means to the tool shaft;
Expansion / contraction measuring means for measuring the expansion / contraction length of the expansion / contraction connection part;
An arithmetic means for calculating a polishing load when polishing the surface to be polished by the polishing tool from the expansion / contraction length of the expansion / contraction connecting portion,
And a control means for controlling the load applying means in accordance with the output of the calculating means.
前記伸縮測定手段は、非接触にて前記伸縮連結部の伸縮長を測定する差動トランスを有することを特徴とする請求項1に記載の研磨装置。   The polishing apparatus according to claim 1, wherein the expansion / contraction measuring unit includes a differential transformer that measures the expansion / contraction length of the expansion / contraction coupling portion in a non-contact manner. 前記制御手段は、前記演算手段により算出された研磨荷重の変化を低減するように、前記荷重付与手段を制御することを特徴とする請求項1又は2に記載の研磨装置。   The polishing apparatus according to claim 1, wherein the control unit controls the load applying unit so as to reduce a change in the polishing load calculated by the calculation unit.
JP2009232491A 2009-10-06 2009-10-06 Polishing device Pending JP2011079079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232491A JP2011079079A (en) 2009-10-06 2009-10-06 Polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232491A JP2011079079A (en) 2009-10-06 2009-10-06 Polishing device

Publications (1)

Publication Number Publication Date
JP2011079079A true JP2011079079A (en) 2011-04-21

Family

ID=44073684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232491A Pending JP2011079079A (en) 2009-10-06 2009-10-06 Polishing device

Country Status (1)

Country Link
JP (1) JP2011079079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058980A (en) * 2017-09-27 2019-04-18 株式会社荏原製作所 Polishing method and polishing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058980A (en) * 2017-09-27 2019-04-18 株式会社荏原製作所 Polishing method and polishing device

Similar Documents

Publication Publication Date Title
US10641592B2 (en) Ultra-light and ultra-accurate portable coordinate measurement machine with enhanced precision joints
US8347713B2 (en) Apparatus and method for measuring dynamic rigidity of a main shaft of a machine tool
CN105021338B (en) A kind of torque-measuring apparatus and method for miniature tension-torsion fatigue tester
JP5910331B2 (en) Positioning device
CN104132886B (en) Precision bearing ball and the testing device for friction coefficient in retainer pocket hole
CN108709747B (en) Device and method for testing start-stop performance of precise miniature spiral groove thrust gas bearing
KR20140090688A (en) Systems and methods for substrate polishing end point detection using improved friction measurement
CN109959514A (en) Match angular contact ball bearing dynamic friction performance online test device
CN104019929A (en) Online rotating shaft torque measurement method based on relative displacement measurement of eddy current
JP2011079079A (en) Polishing device
EP3225950B1 (en) Portable displacement measuring instrument with constant force mechanism
JP2015158401A (en) Eccentricity adjustment apparatus
JP2008101991A (en) Apparatus for measuring shape
JP2011149762A (en) Twist-amount measuring device
JP2008023683A (en) Machine tool
JP2009293965A (en) Testing apparatus for traction measurement
JP2007024622A (en) Horizontal displacement measuring instrument for base isolation structure
KR101314359B1 (en) Device for measuring displacement of main shaft in machining tools
Fan et al. Development of an automatic cumulative-lead error measurement system for ballscrew nuts
JP2010172988A5 (en) Polishing equipment
JP2008023684A (en) Machine tool
JP2022043641A (en) Processing device
US828731A (en) Torsion-indicator.
JP2011161534A (en) Abrasive head and abrading device
JP2011203064A (en) Apparatus and method of measuring rotation angle of rotating device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203