JP2011078902A - Agent, method, and apparatus for decontaminating chemical constituting chemical weapon - Google Patents

Agent, method, and apparatus for decontaminating chemical constituting chemical weapon Download PDF

Info

Publication number
JP2011078902A
JP2011078902A JP2009232609A JP2009232609A JP2011078902A JP 2011078902 A JP2011078902 A JP 2011078902A JP 2009232609 A JP2009232609 A JP 2009232609A JP 2009232609 A JP2009232609 A JP 2009232609A JP 2011078902 A JP2011078902 A JP 2011078902A
Authority
JP
Japan
Prior art keywords
agent
decontamination
chemical
chemical warfare
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009232609A
Other languages
Japanese (ja)
Other versions
JP5540170B2 (en
Inventor
Tsutomu Hirakawa
力 平川
Hiroshi Takeuchi
浩士 竹内
Nobuaki Negishi
信彰 根岸
Taizo Sano
泰三 佐野
Nobuaki Mera
信昭 米良
Yasuo Seto
康雄 瀬戸
Shintaro Kishi
慎太郎 岸
Keita Sato
啓太 佐藤
Akika Komano
明香 駒野
Hiromichi Ichinose
弘道 一ノ瀬
Hiroshi Kugishima
裕洋 釘島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT RES INST OF POLICE SCIENCE JAPAN
Saga Prefecture
National Institute of Advanced Industrial Science and Technology AIST
National Research Institute of Police Science
Original Assignee
NAT RES INST OF POLICE SCIENCE JAPAN
Saga Prefecture
National Institute of Advanced Industrial Science and Technology AIST
National Research Institute of Police Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT RES INST OF POLICE SCIENCE JAPAN, Saga Prefecture, National Institute of Advanced Industrial Science and Technology AIST, National Research Institute of Police Science filed Critical NAT RES INST OF POLICE SCIENCE JAPAN
Priority to JP2009232609A priority Critical patent/JP5540170B2/en
Publication of JP2011078902A publication Critical patent/JP2011078902A/en
Application granted granted Critical
Publication of JP5540170B2 publication Critical patent/JP5540170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agent, a method, and an apparatus for decontaminating a chemical constituting a chemical weapon. <P>SOLUTION: The agent for decontaminating a chemical includes a photocatalyst dispersed in a weak alkaline buffer solution of a pH of 10 or lower. The method of decontaminating a chemical constituting a chemical weapon employs the same. The apparatus for decontaminating a chemical constituting a chemical weapon includes a reaction chamber filled with the decontaminating agent comprising a photocatalyst dispersed in a weak alkaline buffer solution of a pH of 10 or lower, and a plurality of means of irradiating light each separated by the reaction chamber and a separation wall made from a light transmitting member, with the reaction chamber comprising an introduction port for introducing air contaminated with a chemical constituting a chemical weapon and a discharge port for discharging air clear of the chemical. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本願発明は、化学兵器に使用される化学兵器剤を、酸化物半導体光触媒材料による光触媒反応により分解して無毒化する除染剤に関するものである。さらに詳しくは、本願発明は、毒性が高く即効性の高い神経剤であるVXやサリン(GB)、タブン(GA)、あるいはびらん剤であるマスタード(HD)などの化学兵器剤を光触媒反応により分解および無毒化することで化学兵器剤汚染現場の除染を行うための光触媒を含む除染剤を提供するものである。   The present invention relates to a decontamination agent that decomposes and detoxifies a chemical warfare agent used in a chemical weapon by a photocatalytic reaction with an oxide semiconductor photocatalytic material. More specifically, the present invention decomposes chemical warfare agents such as VX, sarin (GB), tabun (GA), and mustard (HD), which are highly toxic and quick-acting nerve agents, by photocatalytic reaction. The present invention also provides a decontamination agent including a photocatalyst for decontamination at a chemical warfare agent contamination site by detoxification.

化学兵器剤の除染には、除洗剤を化学兵器剤に噴霧する除染方法が一般的であり、アルカリ性水溶剤、あるいは次亜塩素酸ナトリウム過酸化ナトリウム等の酸化作用を有する物質が除洗剤として最も効果的であることが知られているが、アルカリ性水溶液はGBやHDなどの化学兵器剤に対しては効果的とはいえ、完全に無毒な状態まで分解するには数時間から半日を必要とする。また、アルカリ性水溶液中では、VXの加水分解には長時間を有するので、除染現場が安全な状態に回復するまでは数十日間を必要とする。迅速に現場を復旧させるためには、除染に使用した大量のアルカリ性水溶液を処理施設まで運搬する必要がある。同様に次亜塩素酸塩ナトリウム等の酸化作用を有する物質についても施設、人体等に影響を与えないように洗浄等の処理が必要となる。   For decontamination of chemical warfare agents, a decontamination method in which a detergent is sprayed onto the chemical warfare agent is generally used. An alkaline water solvent or a substance having an oxidizing action such as sodium perchlorite sodium peroxide is a decontamination detergent. Although it is known that the alkaline aqueous solution is effective against chemical warfare agents such as GB and HD, it takes several hours to half a day to completely decompose it into a non-toxic state. I need. Further, in an alkaline aqueous solution, the hydrolysis of VX takes a long time, so it takes several tens of days until the decontamination site is restored to a safe state. In order to quickly restore the site, it is necessary to transport a large amount of alkaline aqueous solution used for decontamination to the treatment facility. Similarly, for substances having an oxidizing action such as sodium hypochlorite, treatment such as washing is required so as not to affect facilities, human bodies, and the like.

また、光触媒を含む液体を噴霧した後に、220〜390nmの光ビームを照射して化学兵器剤を酸化処理する方法が提案されている(例えば、特許文献1参照)。
しかしながら、光が届かない影の部分が生じ、完全な除染は困難であり、汚染現場を除洗剤や温水で最終的に洗浄する必要がある。
また、オゾンによって酸化分解した後にシリカ−チタニア複合ゲルからなる光触媒を備えた装置内に浄化すべき空気を導入して光触媒によって酸化処理することが提案されている(例えば、特許文献2参照)。
しかし、この方法では、大量の高濃度オゾンを必要とするのに加え、密閉空間に使用が制限されていると共に、処理後のオゾンの分解等が必要である。
Moreover, after spraying the liquid containing a photocatalyst, the method of oxidizing a chemical warfare agent by irradiating the light beam of 220-390 nm is proposed (for example, refer patent document 1).
However, a shadow portion that does not reach light occurs, and complete decontamination is difficult, and it is necessary to finally clean the contaminated site with a detergent or warm water.
In addition, it has been proposed to introduce air to be purified into an apparatus equipped with a photocatalyst made of silica-titania composite gel after oxidative decomposition with ozone (see, for example, Patent Document 2).
However, in this method, in addition to requiring a large amount of high-concentration ozone, the use is limited to a sealed space, and it is necessary to decompose ozone after the treatment.

化学兵器剤を迅速かつ確実に無毒化できることに加え、人間に対して安全であって環境負荷が小さく、除染後の処理も容易な効率的な除染方法が求められている。   In addition to being able to quickly and reliably detoxify chemical warfare agents, there is a need for an efficient decontamination method that is safe for humans, has a low environmental impact, and is easy to dispose of after decontamination.

特表2004−523262号公報JP-T-2004-523262 特表2005−519721号公報JP 2005-519721 A

本発明は、汚染現場において迅速かつ確実に除染を達成するために、化学兵器剤を分解して無毒化することができ、周囲環境に対して悪影響を及ぼすことがなく、2次処理を必要とせずに廃液を下水や周囲環境に廃棄できる化学兵器剤の除染剤を提供することを課題とする。   The present invention is capable of decomposing and detoxifying chemical warfare agents in order to achieve decontamination quickly and reliably at a contaminated site, and requires secondary treatment without adversely affecting the surrounding environment. It is an object to provide a chemical warfare agent decontamination agent that can dispose of waste liquid in sewage and the surrounding environment.

本発明は、pH10以下の弱アルカリ性緩衝液中に光触媒を分散した化学兵器剤の除染剤である。
また、光触媒が、TiO2 、SrTiO3,BaTiO3 ,SnO2 から選ばれるいずれか一種である前記の除染剤である。
The present invention is a chemical warfare agent decontamination agent in which a photocatalyst is dispersed in a weak alkaline buffer having a pH of 10 or less.
The photocatalyst is the above-described decontamination agent which is any one selected from TiO2, SrTiO3, BaTiO3, and SnO2.

また、光触媒が、Au、Ag、Pt、Rh、RuO2 ,Nb,Cu,Sn,NiO、SiO2 ,WO3、Cu2O,RuO2,Fe2O3,CeO2を担持した前記の化学兵器剤の除洗剤である。
また、pH10以下の弱アルカリ性緩衝液中に光触媒を分散した除染剤を紫外線の照射下において、化学兵器剤を分解する化学兵器剤の除染方法である。
The photocatalyst is the above-mentioned chemical warrant remover carrying Au, Ag, Pt, Rh, RuO2, Nb, Cu, Sn, NiO, SiO2, WO3, Cu2O, RuO2, Fe2O3, CeO2.
Further, the present invention is a chemical warfare agent decontamination method for decomposing a chemical warfare agent by irradiating a decontamination agent in which a photocatalyst is dispersed in a weak alkaline buffer having a pH of 10 or less under ultraviolet irradiation.

また、pH10以下の弱アルカリ性緩衝液中に光触媒を分散した除染剤を充填した反応室と、前記反応室と光透過性部材からなる区画壁で区画した光照射手段を有し、前記反応室には化学兵器剤によって汚染された空気の導入口と、化学兵器剤を除染した空気の排出口を有する化学兵器剤の除染装置である。   And a reaction chamber filled with a decontamination agent in which a photocatalyst is dispersed in a weak alkaline buffer having a pH of 10 or less, and a light irradiation means partitioned by a partition wall composed of the reaction chamber and a light transmissive member, and the reaction chamber Is a chemical warfare agent decontamination device having an air inlet polluted with chemical warfare agent and an air discharge port decontaminated with chemical warfare agent.

本発明の化学兵器剤の除染剤は、光触媒と、光触媒による化学兵器剤の分解反応を効率的に進めるうえで効果を発揮するアルカリ性緩衝液から構成されているので、化学兵器剤を効果的に分解可能であるため、短時間に毒性を有する分子を残留させずに分解して無毒化することが可能となる。したがって、化学兵器剤の除染剤による処理の後に中和剤による処理等の2次処理を必要とせず、効率的な除染が行える。
また、本発明の化学兵器剤の除染剤は、除染終了後に除洗剤は下水等に廃棄することが可能であり、除染場所の復旧作業も速やかに行うことが可能となる。
The chemical warfare agent decontamination agent of the present invention is composed of a photocatalyst and an alkaline buffer solution that is effective in efficiently promoting the decomposition reaction of the chemical warfare agent by the photocatalyst. Therefore, it is possible to decompose and detoxify without leaving toxic molecules in a short time. Therefore, secondary treatment such as treatment with a neutralizing agent after treatment with a chemical warfare agent decontamination agent is not required, and efficient decontamination can be performed.
Moreover, the chemical warfare agent decontamination agent of the present invention allows the decontamination detergent to be discarded in sewage after completion of decontamination, and the decontamination site can be restored quickly.

図1は、本発明の除洗剤を使用した除染装置の一例を説明する図であり、図1(A)は、側面図であり、図1(B)は、図1(A)におけるA−A’線での断面図である。FIG. 1 is a view for explaining an example of a decontamination apparatus using the decontamination detergent of the present invention, FIG. 1 (A) is a side view, and FIG. 1 (B) is A in FIG. 1 (A). It is sectional drawing in the -A 'line. 図2は、液中に分散したVXの分解特性を説明する図である。FIG. 2 is a diagram for explaining the decomposition characteristics of VX dispersed in the liquid. 図3は、液中に分散したVXの光触媒反応による分解と光触媒量との関係を説明する図である。FIG. 3 is a diagram for explaining the relationship between the decomposition of VX dispersed in the liquid by the photocatalytic reaction and the amount of photocatalyst. 図4は、化学兵器剤の除洗剤によるVXの光触媒分解速度とVX濃度依存性との関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between the photocatalytic degradation rate of VX and the VX concentration dependency by the chemical warfare agent removal detergent. 図5は、液中分散VXの光触媒反応による分解と金属担持光触媒含有除洗剤との関係を説明する図である。FIG. 5 is a diagram for explaining the relationship between the decomposition of the dispersion VX in liquid by the photocatalytic reaction and the metal-supported photocatalyst-containing detergent. 図6は、光触媒除洗剤中におけるVXの光触媒分解反応過程のATR−FTIR分光測定の一例を説明する図である。FIG. 6 is a diagram for explaining an example of ATR-FTIR spectroscopic measurement of the photocatalytic decomposition reaction process of VX in the photocatalyst removal detergent.

本発明は、光触媒を利用した化学兵器剤の除染において、アルカリ性雰囲気において、その分解速度を上昇させることができ、化学兵器剤を短時間に効率的に分解さることが可能であることを見いだしたものである。
例えば、代表的な光触媒である酸化チタン(IV)の1質量%を分散した水は、pH4程度の酸性を示すので、化学兵器剤の分解速度を促進することができなかったが、光触媒を分散した水中にアルカリ、弱酸のアルカリ塩等を添加することによってアルカリ性とすることによって除染剤の分解を促進することが可能となる。
また、弱アルカリ性物質には、緩衝作用を有する物質を用いることが好ましい。緩衝作用を有する物質を使用することによって、大気中の二酸化炭素等の酸性物質によるpHの変化を小さくすることができるので、化学兵器剤の分解速度を長期間にわたり促進することができる。
The present invention has found that in the decontamination of chemical warfare agents using a photocatalyst, the decomposition rate can be increased in an alkaline atmosphere, and the chemical warfare agents can be efficiently decomposed in a short time. It is a thing.
For example, water in which 1% by mass of titanium oxide (IV), which is a typical photocatalyst, is dispersed exhibits an acidity of about pH 4. Therefore, the decomposition rate of chemical warfare agents could not be accelerated, but the photocatalyst was dispersed. It becomes possible to accelerate the decomposition of the decontaminating agent by making it alkaline by adding an alkali, an alkali salt of a weak acid or the like into the water.
In addition, it is preferable to use a substance having a buffering action as the weak alkaline substance. By using a substance having a buffering action, a change in pH due to an acidic substance such as carbon dioxide in the atmosphere can be reduced, so that the decomposition rate of the chemical warfare agent can be promoted over a long period of time.

本発明において、使用可能な光触媒としては、酸化チタン(IV)の粒子が好ましいが、他の金属酸化物系の光触媒も使用することができる。また、これらの光触媒に金、銀等の金属イオン、金属錯体、金属及び金属酸化物を担持した材料及びこれらの複合された組成材料で半導体特性から光触媒反応を進行させられる化合物などが挙げられる。   In the present invention, titanium oxide (IV) particles are preferred as usable photocatalysts, but other metal oxide photocatalysts can also be used. In addition, a material in which a metal ion such as gold or silver, a metal complex, a metal, and a metal oxide are supported on these photocatalysts, and a compound that can cause a photocatalytic reaction to proceed from a semiconductor property using these composite materials may be used.

また、可視光領域の光を利用する場合には、可視光を吸収することで光反応または光触媒反応が起こる材料、例えば、酸化チタン(IV)の酸化サイトの一部に、窒素原子、硫黄原子、炭素原子又はNOxの配位又は置換された酸化チタン(IV)や、SrTiO3,BaTiO3 ,SnO2 等の酸化物半導体光触媒材料、これらにAu、Ag、Pt、Rh、RuO2 ,Nb,Cu,Sn,NiO、SiO2 ,WO3、Cu2 O,RuO2 ,Fe2 O3,CeO2などの金属、金属酸化物や金属錯体を担持または吸着、配位させたものなどを挙げることができる。   In the case where light in the visible light region is used, a material that undergoes a photoreaction or photocatalytic reaction by absorbing visible light, such as a nitrogen atom or a sulfur atom in a part of the oxidation site of titanium (IV) oxide. , Carbon atoms or NOx coordinated or substituted titanium oxide (IV), oxide semiconductor photocatalytic materials such as SrTiO3, BaTiO3, SnO2, etc., Au, Ag, Pt, Rh, RuO2, Nb, Cu, Sn, Examples thereof include metals such as NiO, SiO2, WO3, Cu2O, RuO2, Fe2O3, and CeO2 that are supported, adsorbed, or coordinated with metal oxides or metal complexes.

除染剤中に添加して所定のpHのアルカリ性域に保持する化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、ホウ酸ナトリウム、ホウ酸カリウム等のアルカリと弱酸との塩類を挙げることができる。
これらのなかでも、飲料水程度の弱アルカリであるpH9前後が好ましく、水による希釈等の処理のみで下水等に放流することが可能な物質であることが好ましい。
Examples of the compound that is added to the decontamination agent and kept in the alkaline region of a predetermined pH include alkalis such as sodium hydroxide and potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium borate, potassium borate, etc. And salts of alkali and weak acid.
Among these, a pH of around 9 which is a weak alkali such as drinking water is preferable, and a substance that can be discharged into sewage or the like only by treatment such as dilution with water is preferable.

また、アルカリ性の除染剤は、空気に触れたり、あるいは散布した場合には、空気中の二酸化炭素等の酸性物質と反応して、pHが低くなり、除染剤による化学兵器剤の分解作用が低下するので、緩衝作用を有する塩類を用いることによって、pHの変化を小さくすることが好ましい。
具体的には、ホウ酸ナトリウム、ホウ酸カリウム等の弱酸のアルカリ塩を挙げることができる。
In addition, alkaline decontamination agents, when exposed to air or sprayed, react with acidic substances such as carbon dioxide in the air, resulting in a low pH, and the decontamination of chemical warfare agents. Therefore, it is preferable to reduce the change in pH by using a salt having a buffering action.
Specific examples include alkali salts of weak acids such as sodium borate and potassium borate.

また、本発明の化学兵器剤の除染剤は、各成分を混合した固体状混合物を使用直前に所定の量の水との混合により調製することができる。あるいは、それぞれの物質を水に溶解あるいは分散した液状物として混合したり、一部のものを液状物として他の固体状物質と混合する等の方法によって所定のpHに調製することができる。    Moreover, the chemical warfare agent decontamination agent of the present invention can be prepared by mixing a solid mixture obtained by mixing each component with a predetermined amount of water immediately before use. Alternatively, it can be adjusted to a predetermined pH by a method of mixing each substance as a liquid substance dissolved or dispersed in water, or mixing a part of the substance as a liquid substance with another solid substance.

光触媒による化学兵器剤の除染には、太陽光のような光触媒が吸収するエネルギーを有する波長の光を照射することが必要である。酸化チタン(IV)を光触媒として使用する場合には、紫外光を含む光源を使用する。紫外光を含む光源としては、太陽光の他、ブラックライト、キセノンランプ、水銀灯、Hg-Xeランプ、LED、ネオン管、レーザー等の各種の光源を挙げることができる。また、可視光を含む光源を使用する場合には、太陽光、蛍光灯、白熱灯、キセノンランプ、水銀灯、Hg-Xeランプ、LED、ネオン管、レーザー等が挙げられる。   In order to decontaminate chemical warfare agents with photocatalysts, it is necessary to irradiate light having a wavelength having energy absorbed by the photocatalyst such as sunlight. When titanium (IV) oxide is used as a photocatalyst, a light source containing ultraviolet light is used. Examples of the light source including ultraviolet light include various light sources such as black light, xenon lamp, mercury lamp, Hg-Xe lamp, LED, neon tube, and laser in addition to sunlight. In addition, when a light source including visible light is used, sunlight, fluorescent lamp, incandescent lamp, xenon lamp, mercury lamp, Hg-Xe lamp, LED, neon tube, laser, and the like can be given.

本発明の除染剤を霧状または泡状にして汚染現場に噴霧し、前記したような光触媒が吸収するエネルギーを有する波長の光を照射することが必要である。また、光が当たらなかった影の部分は本発明の除染剤を散布して回収液に光照射することで除染を達成する。この場合、小規模な空間から大規模な空間まで光触媒除染剤による除染を行うことができる。   It is necessary to spray the decontamination agent of the present invention in the form of a mist or foam on the contamination site, and irradiate light having a wavelength having energy absorbed by the photocatalyst as described above. In addition, decontamination is achieved by spraying the decontamination agent of the present invention and irradiating the collected liquid with light on the shaded portion that was not exposed to light. In this case, decontamination with a photocatalytic decontamination agent can be performed from a small space to a large space.

また、小範囲の壁面や床や衣類に化学兵器剤が付着したような小規模な汚染現場においても、本発明の除染剤を霧吹き付け等によって化学兵器剤と接触させた後に所定の光を照射することで除染を行うことができる。   In addition, even in small-scale contamination sites where chemical warfare agents have adhered to a small range of walls, floors, or clothing, the prescribed decontamination agent is irradiated with chemical warfare agents by spraying, etc. By doing so, decontamination can be performed.

また、本発明の化学兵器剤の除洗剤は、上記したように、化学兵器剤に汚染された現場で噴霧剤として使用するのみではなく、汚染された現場の空気を導入して処理する除染装置に充填して使用しても良い。
図1は、除染装置の一例を説明する図であり、図1(A)は、縦方向の側面図であり、図1(B)は、図1(A)におけるA−A’線での断面図である。
除染装置1は、反応室3内に透明な区画壁5で区画して光照射手段7を有しており、反応室3内には、本発明の除洗剤9が充填されている。
化学兵器剤によって汚染された空気を導入口11から導入してポンプ13によって反応室へ供給して、光照射手段によって紫外線を含む光を照射することによって化学兵器剤を分解する。化学兵器剤を除染した空気は、排出口15から排出される。
In addition, as described above, the chemical warfare agent decontamination detergent of the present invention is not only used as a spray at a site contaminated with a chemical warfare agent, but also a decontamination method that introduces and treats contaminated site air. You may use it, filling an apparatus.
FIG. 1 is a diagram for explaining an example of a decontamination apparatus, FIG. 1 (A) is a vertical side view, and FIG. 1 (B) is an AA ′ line in FIG. 1 (A). FIG.
The decontamination apparatus 1 has a light irradiation means 7 partitioned by a transparent partition wall 5 in the reaction chamber 3, and the reaction chamber 3 is filled with the decontamination detergent 9 of the present invention.
Air contaminated with chemical warfare agent is introduced from the inlet 11 and supplied to the reaction chamber by the pump 13, and the chemical warfare agent is decomposed by irradiating light including ultraviolet rays by the light irradiation means. Air decontaminated with chemical warfare agents is discharged from the discharge port 15.

以下、実施例を示して本発明を説明する。
実施例1
光触媒として酸化チタン(IV)(日本アエロジル製P25)の1質量%の懸濁液を調製し、1mol/L水酸化ナトリウム水溶液を添加して、pHを7、8,9、10の各化学兵器剤の除染剤の試料を調製した。
それぞれの試料の10mLを内容量13mLのバイアルにいれ、そこへ添加後の濃度が2μM/Lとなるように1質量%VX―アセトニトリル溶液を添加した。VX添加後の懸濁液は1分間振とう攪拌した。
Hereinafter, the present invention will be described with reference to examples.
Example 1
Prepare a 1% by mass suspension of titanium (IV) oxide (P25 manufactured by Nippon Aerosil Co., Ltd.) as a photocatalyst, add 1 mol / L sodium hydroxide aqueous solution, and have chemical pH of 7, 8, 9, 10 An agent decontamination sample was prepared.
10 mL of each sample was placed in a 13 mL vial, and a 1 mass% VX-acetonitrile solution was added thereto so that the concentration after addition was 2 μM / L. The suspension after addition of VX was shaken and stirred for 1 minute.

VX含有懸濁液はシーソー型光照射器に乗せ、左右振とう攪拌しながらブラックライト(東芝ライテック製 FED15BLB)を用いてバイアルの片面から光照射を行った。この時、バイアルの位置における光強度は 10mW/cm2とした。 The VX-containing suspension was placed on a seesaw type light irradiator and irradiated with light from one side of a vial using a black light (FED15BLB manufactured by Toshiba Lighting & Technology Corporation) while stirring left and right. At this time, the light intensity at the position of the vial was 10 mW / cm 2 .

5分毎にVX含有懸濁液の1mLを採取し、ジクロロメタン1mLにトリス溶液(2−amino−2hydroxymethyl−1,3−propanediol)を100μL添加し、1分間振とう攪拌した。攪拌後、ジクロロメタン層を抽出して、GC−MS分析装置(アジレント・テクノロジー製6890/5973)によって、DB−5キャピラリーカラムを使用して、313から563Kまでの温度でVXの分析を行った。   Every 5 minutes, 1 mL of the VX-containing suspension was collected, 100 μL of Tris solution (2-amino-2hydroxymethyl-1,3-propanediol) was added to 1 mL of dichloromethane, and the mixture was shaken and stirred for 1 minute. After stirring, the dichloromethane layer was extracted and analyzed for VX at a temperature of 313 to 563 K using a DB-5 capillary column with a GC-MS analyzer (Agilent Technology 6890/5973).

以上の測定結果を図2に示す。一方、暗所においては、pH10の試料でも、VXの分解は認めらなかった。
光照射を開始すると、pHが7−10の範囲でVXの分解が進んだ。VXの初期濃度の99%以上に分解される時間は、pHが7では30分以上、pHが8では32分必要とした。一方、pHが9、10では、その時間は、13分、9分とおおよそ10分と減少した。
The above measurement results are shown in FIG. On the other hand, in the dark place, no degradation of VX was observed even in the pH 10 sample.
When light irradiation was started, the decomposition of VX proceeded in the pH range of 7-10. The time required for decomposition to 99% or more of the initial concentration of VX was 30 minutes or more at pH 7, and 32 minutes at pH 8. On the other hand, when the pH was 9, 10, the time decreased to 13 minutes and 9 minutes, approximately 10 minutes.

一方、水に酸化チタン(IV)1質量%のみを分散したものはpHが4.2であったが、VXの99%以上を分解するためには51分間の光照射が必要であった。   On the other hand, when only 1% by mass of titanium oxide (IV) was dispersed in water, the pH was 4.2. However, 51 minutes of light irradiation was required to decompose 99% or more of VX.

実施例2
ホウ酸12.4g、塩化カリウム14.9gを水120mLに溶解し、35mLの0.2Nの水酸化ナトリウム水溶液および45mLの水を加えたホウ酸ナトリウム緩衝液に更に水を加えて、ホウ酸ナトリウムの濃度を10mMに希釈した。
次いで、酸化チタン(IV)を混合して酸化チタン(IV)濃度が、それぞれ0.01質量%、0.1質量%、1質量%の懸濁液を調製した。調製した除洗剤のpHは9.05であった。
Example 2
Dissolve 12.4 g of boric acid and 14.9 g of potassium chloride in 120 mL of water, add water to a sodium borate buffer solution containing 35 mL of 0.2 N aqueous sodium hydroxide and 45 mL of water, and add sodium borate. The concentration of was diluted to 10 mM.
Next, titanium oxide (IV) was mixed to prepare suspensions with titanium oxide (IV) concentrations of 0.01 mass%, 0.1 mass%, and 1 mass%, respectively. The pH of the prepared detergent was 9.05.

実施例1と同様にしてVXの分解試験を行い、その結果を図3に示す。
図3において、光触媒の配合量を0.01質量%から1質量%と変えた際のVXの減少過程を示す。
光照射を行わない暗所において、VXの分解は認めらなかった。
光照射を開始するとVXが分解し、光触媒の配合量が増大するに伴い分解速度は増加した。VXの初期濃度が99%に分解される時間をみると、配合量が0.01質量%では約20分、0.1質量%で約13分、1質量%では約9分であった。
実施例1と同様に1質量%の場合では9分間から13分間で99%以上のVXを分解することができた。同様に0.1質量%の場合でも約13分と、10分前後で分解することができた。
A VX decomposition test was conducted in the same manner as in Example 1, and the results are shown in FIG.
FIG. 3 shows the process of decreasing VX when the amount of the photocatalyst is changed from 0.01% by mass to 1% by mass.
In the dark where no light irradiation was performed, no decomposition of VX was observed.
When light irradiation was started, VX was decomposed, and the decomposition rate was increased as the amount of photocatalyst was increased. Looking at the time when the initial concentration of VX was decomposed to 99%, the blending amount was about 20 minutes at 0.01% by weight, about 13 minutes at 0.1% by weight, and about 9 minutes at 1% by weight.
Similar to Example 1, in the case of 1% by mass, 99% or more of VX could be decomposed in 9 to 13 minutes. Similarly, even in the case of 0.1% by mass, the decomposition was possible in about 13 minutes and around 10 minutes.

実施例3
ホウ酸ナトリウムの濃度10mM、酸化チタン(IV)0.1質量%を含むpH9の除洗剤を実施例2と同様にして調製して、VX分解量の濃度依存性を実施例1と同様にして測定した。
図4にはVXの濃度を1、3、10質量%と変化させたときのVXの減少速度を示した。光照射を行わない暗所において、VXの分解は認めらなかった。
また、VXの濃度が高くなるに伴い、光触媒によるVX分解速度は低下したが、99%以上の分解が達成される時間は、それぞれ、12分(1%)16分(3%)28分(10%)といずれも短時間で分解した。
Example 3
A pH 9 removal detergent containing sodium borate at a concentration of 10 mM and titanium oxide (IV) 0.1% by mass was prepared in the same manner as in Example 2, and the concentration dependency of the amount of VX degradation was the same as in Example 1. It was measured.
FIG. 4 shows the decrease rate of VX when the concentration of VX is changed to 1, 3, and 10% by mass. In the dark where no light irradiation was performed, no decomposition of VX was observed.
In addition, the VX decomposition rate by the photocatalyst decreased as the concentration of VX increased, but the time at which decomposition of 99% or more was achieved was 12 minutes (1%) 16 minutes (3%) 28 minutes ( 10%) and all decomposed in a short time.

実施例4
酸化チタン(IV)(日本アエロジル製P25)0.5gを、1M−NaOHによりpHを9に調製した水溶液の25mLに懸濁し、15分間超音波により粉末を分散した。
その後、0.1mMとなるように硝酸銀を添加して、 暗所で1時間保持した後に、セプタムを用いて窒素により15分間パージした。その後、波長Hg−Xeランプ(SUPERCURE−203S、UV−LIGHTSOURCE、SAN−EI ELECTRIC)を用いて300nm以上の光を絞り調節無しの条件で1時間照射した。光を照射している間中、窒素は流し続けた。光照射終了後の粉末は、遠心分離器により回収し、水を用いて洗浄を3回繰り返した。洗浄後の粉末は、凍結乾燥機により6時間乾燥して、銀担持酸化チタン(IV)を得た。
硝酸銀に代えて塩化金酸(HAuCl4・3H2O)の水溶液を添加した点を除き、金担持酸化チタン(IV)を得た。
Example 4
0.5 g of titanium (IV) oxide (P25 manufactured by Nippon Aerosil Co., Ltd.) was suspended in 25 mL of an aqueous solution adjusted to pH 9 with 1M NaOH, and the powder was dispersed by ultrasonic waves for 15 minutes.
Thereafter, silver nitrate was added so as to be 0.1 mM, and the mixture was kept in the dark for 1 hour, and then purged with nitrogen using a septum for 15 minutes. Thereafter, using a wavelength Hg-Xe lamp (SUPERCURE-203S, UV-LIGHTSOURCE, SAN-EI ELECTRIC), irradiation with light of 300 nm or more was performed for 1 hour under the condition of no aperture adjustment. Nitrogen continued to flow during the light irradiation. The powder after the light irradiation was collected by a centrifuge and washed with water three times. The washed powder was dried with a freeze dryer for 6 hours to obtain silver-supported titanium (IV) oxide.
Gold-supported titanium oxide (IV) was obtained except that an aqueous solution of chloroauric acid (HAuCl4 · 3H2O) was added instead of silver nitrate.

得られた金属担持酸化チタン(IV)の0.1質量%を用いた点を除き、実施例2と同様にして、液中に分散したVXの分解特性を測定した。
銀担持酸化チタン(IV)で6分以内、金担持TiO2では10分以内でVXを初期濃度の99%以上分解できた。
その結果を図5に示す。
The decomposition characteristics of VX dispersed in the liquid were measured in the same manner as in Example 2 except that 0.1% by mass of the obtained metal-supported titanium (IV) oxide was used.
Within 6 minutes with silver-supported titanium oxide (IV) and within 10 minutes with gold-supported TiO2, VX could be decomposed by 99% or more of the initial concentration.
The result is shown in FIG.

実施例5
本発明の除洗剤によるVXの分解過程を確認するために、ATR−FTIR分光法により光触媒反応過程を観察した。
高気密性ATR―FTIRセルに本発明の除染剤を入れ、そこへ1%VXを注入した。
本実験は、ATR測定に影響の少ないNaOH水溶液を用いてpHを9に調整して測定を行った。
紫外線照射器(オムロン製 ZUV−C30H 360nm)を用いて懸濁液面上部から光照射を行った。この時、セル上部の石英窓を通過した懸濁液面における光強度を光鏡強度計(富士ゼロックス製 UVcaremate Pro)による測定値が2mW/cm2となるように調整した。
Example 5
In order to confirm the decomposition process of VX by the detergent according to the present invention, the photocatalytic reaction process was observed by ATR-FTIR spectroscopy.
The decontamination reagent of the present invention was placed in a highly airtight ATR-FTIR cell, and 1% VX was injected therein.
In this experiment, measurement was performed by adjusting the pH to 9 using an aqueous NaOH solution having little influence on ATR measurement.
Light irradiation was performed from the upper part of the suspension surface using an ultraviolet irradiator (ZUV-C30H 360 nm, manufactured by OMRON). At this time, the light intensity on the surface of the suspension that passed through the quartz window at the top of the cell was adjusted so that the measured value by a light mirror intensity meter (UV caremate Pro manufactured by Fuji Xerox) was 2 mW / cm 2 .

図6には、本発明の除染剤にVXを滴下10分後に、光照射を開始したときのATR−IRスペクトルの変化を示した。光照射時間1分から3分でVXに帰属するATR−IRスペクトルが大きく変化し、VXの構造が破壊されていることが確認された。
このとき、ジイソプロピルアミン,吸着イソプロパノール,吸着VXのP=O基や、そのほか低級アルコールに帰属されるシグナルが広範囲に渡り観測された。
FIG. 6 shows changes in the ATR-IR spectrum when light irradiation is started 10 minutes after dropping VX to the decontamination reagent of the present invention. It was confirmed that the ATR-IR spectrum attributed to VX changed greatly within 1 to 3 minutes of light irradiation, and the structure of VX was destroyed.
At this time, signals attributed to diisopropylamine, adsorbed isopropanol, P = O group of adsorbed VX, and other lower alcohols were observed over a wide range.

VXは加水分解によりP−S及びP−O結合が約50/50の割合で加水されることが知られている。その際、P−O結合の加水分解では、以下のように毒性の高いEA2192が主に生成されることが知られている。

Figure 2011078902
It is known that VX hydrolyzes PS and PO bonds at a ratio of about 50/50. At that time, it is known that EO2192 having high toxicity is mainly produced in the hydrolysis of PO bond as follows.
Figure 2011078902

VX及びEA2192のIRスペクトルに違いはほとんどなく、仮にEA2192が光触媒反応により生成されていたとしてもVXとの違いは見極めにくい。しかしながら、スペクトルの観測によって光照射開始から3分程度でVXの構造の破壊が確認されていることから、VXはEA2192を経由せずに迅速に分解されているものと考えられる。   There is almost no difference between the IR spectra of VX and EA2192, and even if EA2192 is produced by a photocatalytic reaction, the difference from VX is difficult to discern. However, since the destruction of the VX structure is confirmed in about 3 minutes from the start of light irradiation by spectrum observation, it is considered that VX is rapidly decomposed without going through EA2192.

本発明の化学兵器剤の除洗剤は、周辺環境に直接廃棄することが可能なものであって、化学兵器剤の処理後には中和剤の添加などの2次処理を必要とせず、効率的な除染が行うことができ、化学兵器剤の化学兵器剤の除洗剤として利用することができる。   The chemical warfare agent removal detergent of the present invention can be disposed of directly in the surrounding environment, and does not require a secondary treatment such as addition of a neutralizing agent after the treatment of the chemical warfare agent. Decontamination can be performed, and it can be used as a chemical warfare agent decontamination detergent.

1…除染装置、3…反応室、5…区画壁、7…光照射手段、9…除洗剤、11…導入口、13…ポンプ、15…排出口   DESCRIPTION OF SYMBOLS 1 ... Decontamination apparatus, 3 ... Reaction chamber, 5 ... Partition wall, 7 ... Light irradiation means, 9 ... Detergent, 11 ... Introduction port, 13 ... Pump, 15 ... Discharge port

Claims (5)

pH10以下の弱アルカリ性緩衝液中に光触媒を分散したことを特徴とする除染剤。   A decontamination agent, wherein a photocatalyst is dispersed in a weak alkaline buffer having a pH of 10 or less. 光触媒が、TiO2 、SrTiO3,BaTiO3 ,SnO2 から選ばれるいずれか一種であることを特徴とする請求項1に記載の除染剤。   2. The decontamination reagent according to claim 1, wherein the photocatalyst is any one selected from TiO2, SrTiO3, BaTiO3, and SnO2. 光触媒が、Au、Ag、Pt、Rh、RuO2 ,Nb,Cu,Sn,NiO、SiO2 ,WO3、Cu2 O,RuO2 ,Fe2 O3,CeO2を担持したものであることを特徴とする請求項1または2記載の化学兵器剤の除洗剤。   3. A photocatalyst carrying Au, Ag, Pt, Rh, RuO2, Nb, Cu, Sn, NiO, SiO2, WO3, Cu2 O, RuO2, Fe2 O3, or CeO2 Detergent for chemical warfare agent as described. pH10以下の弱アルカリ性緩衝液中に光触媒を分散した除染剤を紫外線の照射下において、化学兵器剤を分解することを特徴とする化学兵器剤の除染方法。   A chemical warfare agent decontamination method comprising decomposing a decontamination agent in which a photocatalyst is dispersed in a weak alkaline buffer having a pH of 10 or less under ultraviolet light irradiation. pH10以下の弱アルカリ性緩衝液中に光触媒を分散した除染剤を充填した反応室と、前記反応室と光透過性部材からなる区画壁で区画した光照射手段を有し、前記反応室には化学兵器剤によって汚染された空気の導入口と、化学兵器剤を除染した空気の排出口を有することを特徴とする化学兵器剤の除染装置。   a reaction chamber filled with a decontamination agent in which a photocatalyst is dispersed in a weak alkaline buffer solution having a pH of 10 or less, and a light irradiation means partitioned by a partition wall composed of the reaction chamber and a light transmissive member, A chemical warfare agent decontamination apparatus having an air inlet contaminated with a chemical warfare agent and an air discharge port decontaminated with a chemical warfare agent.
JP2009232609A 2009-10-06 2009-10-06 Chemical warfare agent decontaminant, decontamination method and decontamination apparatus Active JP5540170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232609A JP5540170B2 (en) 2009-10-06 2009-10-06 Chemical warfare agent decontaminant, decontamination method and decontamination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232609A JP5540170B2 (en) 2009-10-06 2009-10-06 Chemical warfare agent decontaminant, decontamination method and decontamination apparatus

Publications (2)

Publication Number Publication Date
JP2011078902A true JP2011078902A (en) 2011-04-21
JP5540170B2 JP5540170B2 (en) 2014-07-02

Family

ID=44073545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232609A Active JP5540170B2 (en) 2009-10-06 2009-10-06 Chemical warfare agent decontaminant, decontamination method and decontamination apparatus

Country Status (1)

Country Link
JP (1) JP5540170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137452A1 (en) 2012-03-16 2013-09-19 株式会社ウイングターフ Decontamination method for organic compound
KR20200074778A (en) * 2018-12-17 2020-06-25 한국과학기술연구원 metal oxide catalyst with Sulphur doping for removal of Sulphur mustard and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331969A (en) * 2003-05-05 2004-11-25 Northrop Grumman Corp Protective autologous decontamination or autologous cleaning coating against deleterious biological pathogen and toxic chemical
JP2005281031A (en) * 2004-03-29 2005-10-13 Sagaken Chiiki Sangyo Shien Center Metal-supporting titanium dioxide sol and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331969A (en) * 2003-05-05 2004-11-25 Northrop Grumman Corp Protective autologous decontamination or autologous cleaning coating against deleterious biological pathogen and toxic chemical
JP2005281031A (en) * 2004-03-29 2005-10-13 Sagaken Chiiki Sangyo Shien Center Metal-supporting titanium dioxide sol and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137452A1 (en) 2012-03-16 2013-09-19 株式会社ウイングターフ Decontamination method for organic compound
CN104411371A (en) * 2012-03-16 2015-03-11 卢纳埃尔公司 Decontamination method for organic compound
US9452307B2 (en) 2012-03-16 2016-09-27 Lunaere Inc. Decontamination method for organic compound
KR20200074778A (en) * 2018-12-17 2020-06-25 한국과학기술연구원 metal oxide catalyst with Sulphur doping for removal of Sulphur mustard and preparation method thereof
KR102206636B1 (en) 2018-12-17 2021-01-22 한국과학기술연구원 metal oxide catalyst with Sulphur doping for removal of Sulphur mustard and preparation method thereof

Also Published As

Publication number Publication date
JP5540170B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
Gligorovski et al. Environmental implications of hydroxyl radicals (• OH)
Tizaoui et al. Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques
Antonopoulou et al. Photocatalytic degradation of pentachlorophenol by NF-TiO 2: identification of intermediates, mechanism involved, genotoxicity and ecotoxicity evaluation
US20070042902A1 (en) Novel photocatalyst and method for producing same
Naseri et al. Photoassisted and photocatalytic degradation of sulfur mustard using TiO 2 nanoparticles and polyoxometalates
JP5540170B2 (en) Chemical warfare agent decontaminant, decontamination method and decontamination apparatus
US20070170121A1 (en) Ultraviolet laser system for decomposing chemical pollutants
EP2617492A1 (en) Glass with photocatalytic function
JP2003001237A (en) Method for decomposing organic environmental pollutant
JP2000042575A (en) Treatment of water containing endocrine disrupters
US9187353B2 (en) Method of treating treatment object containing harmful compound
US20080135399A1 (en) Ultraviolet laser system for decomposing chemical pollutants
Wang et al. Plasma jet decontamination of sulfur mustard and its analogues in water by oxidation effect
KR101824834B1 (en) Method and its apparatus for removal volatile organic compounds by the plasma process and chemical reaction on ozone decomposition catalysts
US9452307B2 (en) Decontamination method for organic compound
JP3679969B2 (en) Composite photocatalyst and organic halogen compound decomposition method
JP4551723B2 (en) Waste treatment method and photocatalytic material
US20110104013A1 (en) Method for producing photocatalytic materials and materials and apparatus therewith
JP2015107477A (en) Solution, method, and system for decomposition and/or removal of odor material
Khalaf et al. Removal of Diclofenace Sodium from Aqueous Environments Using Heterogeneous Photocatalysis Treatment
JP2005161216A (en) Method for purifying gas containing harmful organic matter by irradiation with electron beam
JP4575649B2 (en) Photochemical reaction apparatus and photochemical reaction method
JPS61178402A (en) Method of decomposition treatment of ozone
JP2002119982A (en) Apparatus, system and method for decomposing dioxins
Oppenländer Excilamp photochemistry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5540170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250