JP2011078894A - Washing method using ultrasonic cavitation - Google Patents

Washing method using ultrasonic cavitation Download PDF

Info

Publication number
JP2011078894A
JP2011078894A JP2009232301A JP2009232301A JP2011078894A JP 2011078894 A JP2011078894 A JP 2011078894A JP 2009232301 A JP2009232301 A JP 2009232301A JP 2009232301 A JP2009232301 A JP 2009232301A JP 2011078894 A JP2011078894 A JP 2011078894A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic wave
incident
wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009232301A
Other languages
Japanese (ja)
Inventor
Katsunobu Watanabe
勝信 渡邉
Yasuki Kitajima
靖己 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009232301A priority Critical patent/JP2011078894A/en
Publication of JP2011078894A publication Critical patent/JP2011078894A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a washing method using ultrasonic cavitation that does not require a long time in a washing work, for example, even in washing and removing solid matters sticking to a structure constituting a pressure boundary of a cooling member of a nuclear reactor using an ultrasonic wave, can reduce the exposure to radiation on the part of a worker, is not of a complicated structure, and prevents its cost from greatly increasing. <P>SOLUTION: The method of washing and removing solid matters sticking to the inner surface of a cylindrical structure 14 filled with water 7 using an ultrasonic wave generated by an ultrasonic oscillator 2, wherein the ultrasonic wave generated by the ultrasonic oscillator 2 enters the structure 14 from outside, is characterized by controlling the frequency of the entering ultrasonic wave to make an integer multiple of the half wavelength of the ultrasonic wave equal to the thickness t of the structure 14, and causing the controlled ultrasonic wave to enter the structure 14 to generate resonance in the thickness direction to generate cavity bubbles 21 on the inner surface of the structure 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種プラントの配管内や配管内構造物などに付着するクラッド等の固形物の洗浄、除去に好適する超音波キャビテーション洗浄方法に関する。   The present invention relates to an ultrasonic cavitation cleaning method suitable for cleaning and removing solid matters such as clads adhering to pipes and structures in various plants.

発電プラントや各種産業用プラントにおいては、長期間に渡るプラント稼動により配管内面や配管内設置構造物などの表面にクラッド(CRUD:Chalk River Unclassified Deposit)等の固形物が付着する。こうした固形物の付着、例えば沸騰水型原子力プラントにおけるジェットポンプ内面に付着した場合には、再循環系の圧力損失の増大を招き、発電効率の低下等の不具合が発生する可能性がある。このような事象が生じるのを防ぐためには、通常、配管内面や配管内設置構造物などの表面を定期的に洗浄することが必要である。洗浄方法としては、ブラシ洗浄やウォータジェット洗浄、化学反応を利用した化学洗浄、さらには超音波を利用した洗浄などの方法がある。   In power plants and various industrial plants, solid matter such as cladding (CRUD: Chalk River Unclassified Deposit) adheres to the inner surface of the pipe and the surface of the installed structure in the pipe by operating the plant for a long period of time. When such solid matter adheres, for example, to the inner surface of a jet pump in a boiling water nuclear power plant, the pressure loss of the recirculation system increases, which may cause problems such as a decrease in power generation efficiency. In order to prevent such an event from occurring, it is usually necessary to periodically clean the inner surface of the pipe and the surface of the installed structure in the pipe. Cleaning methods include brush cleaning, water jet cleaning, chemical cleaning using chemical reaction, and cleaning using ultrasonic waves.

こうした洗浄方法のうちの超音波を利用した洗浄方法には、例えば電子部品等の比較的対象物が小型である場合、水等の洗浄液が満たされた洗浄槽に洗浄する対象物を浸すように入れて超音波を照射し、照射することにより発生するキャビテーションの崩壊時の衝撃力を利用して付着した固形物を付着面から剥がし、除去するもの(例えば、特許文献1参照)がある。また、発電プラント内部に設置された比較的大型の構造物等を対象とした超音波を利用した洗浄方法としては、例えば熱交換器の伝熱管内にひも付きの超音波振動子を投入し、移動させながら行うもの(例えば、特許文献2)、プール内の燃料集合体の周囲に超音波振動子を配置し、上下に移動させながら行うもの(例えば、特許文献3)、インターナルポンプケーシングのストレッチチューブ又はノズル内に超音波振動子を備える洗浄具を挿入して行うもの(例えば、特許文献4)があり、さらに、構造物である配管に形成した開口からロッドを挿入、接触させて外部から超音波を照射し、管内のベンチュリフローノズルを洗浄するもの(例えば、特許文献5参照)がある。   Of these cleaning methods, the ultrasonic cleaning method uses, for example, a relatively small target object such as an electronic component so that the target object to be cleaned is immersed in a cleaning tank filled with a cleaning liquid such as water. There is one that removes and removes the solid matter attached by using an impact force at the time of collapse of cavitation generated by irradiating with ultrasonic waves. In addition, as a cleaning method using ultrasonic waves targeting a relatively large structure installed in a power plant, for example, an ultrasonic transducer with a string is put in a heat transfer tube of a heat exchanger, What is performed while moving (for example, Patent Document 2), what is performed by moving an ultrasonic vibrator around the fuel assembly in the pool and moving it vertically (for example, Patent Document 3), an internal pump casing There is one (for example, Patent Document 4) in which a cleaning tool having an ultrasonic vibrator is inserted into a stretch tube or nozzle, and a rod is further inserted into and contacted from an opening formed in a piping that is a structure. There is one that cleans the venturi flow nozzle in the tube by irradiating ultrasonic waves from the tube (for example, see Patent Document 5).

しかし、構造体、例えば沸騰水型原子力発電プラント等の原子炉圧力容器やその付属物、原子炉冷却系を構成するジェットポンプ等の機器や配管、接続配管などの原子炉冷却材圧力バウンダリの表面に、長期稼動により冷却水内の放射性不純物が付着したことによるクラッド等の固形物を超音波利用により除去する場合、洗浄槽を用いる洗浄装置の場合には、大型で半永久的に設置される原子炉内機器では、適用が不可能であり、直接構造体内の洗浄対象部分に洗浄装置を設置したり、装置設置のために分解作業を必要としたりすることになると、作業員の被爆量が増大する要因となってしまう。また、洗浄装置が移動洗浄を行うようなものの場合には、装置構成が複雑な機構を備えたものとなり、固形物の洗浄、除去に長時間を要し、高コストとなってしまう。さらに原子炉冷却材圧力バウンダリである配管等に開口を形成するような場合には、開口部分のシール構造が複雑なものとなってしまう。   However, the surface of the reactor coolant pressure boundary, such as structures, reactor pressure vessels such as boiling water nuclear power plants and their accessories, equipment such as jet pumps constituting the reactor cooling system, piping, and connecting piping In addition, when removing solid matter such as clad due to radioactive impurities adhering to the cooling water due to long-term operation, in the case of a cleaning device using a cleaning tank, large and semi-permanently installed atoms In-furnace equipment is not applicable, and if a cleaning device is installed directly on the part to be cleaned in the structure or if disassembly work is required to install the device, the amount of exposure to workers increases. Will be a factor. Further, in the case where the cleaning device performs mobile cleaning, the device configuration has a complicated mechanism, and it takes a long time to clean and remove the solid material, resulting in high costs. Further, when an opening is formed in a pipe or the like that is a reactor coolant pressure boundary, the sealing structure of the opening becomes complicated.

特許第2832443号公報Japanese Patent No. 2832443 特許第2537056号公報Japanese Patent No. 2537056 特許第3293928号公報Japanese Patent No. 329328 特許第2896443号公報Japanese Patent No. 2896443 特許第2548721号公報Japanese Patent No. 2554821

こうした状況に鑑みて本発明はなされたもので、その目的とするところは、超音波を用いて、例えば原子炉の通常運転時に原子炉冷却材を内包して原子炉と同じ条件となり、異常時の圧力障壁を形成する原子炉冷却材圧力バウンダリを構成する構造体(原子炉圧力容器、一次系配管等)の表面に付着した固形物の洗浄、除去を行う際、複雑な構成とならず、また洗浄対象部分への直接の装置設置や分解作業を要さず作業員の被爆量が軽減でき、さらに長時間を必要とせず、大幅にコスト上昇することもなく洗浄、除去を行うことができる超音波キャビテーション洗浄方法を提供することにある。   The present invention has been made in view of such a situation, and the object of the present invention is to use ultrasonic waves, for example, to contain the reactor coolant during normal operation of the reactor, so that the conditions are the same as those of the reactor. When cleaning and removing solids adhering to the surface of the structure (reactor pressure vessel, primary piping, etc.) that constitutes the reactor coolant pressure boundary that forms the pressure barrier, the structure is not complicated. In addition, there is no need to install or disassemble the equipment directly on the part to be cleaned, so that the amount of exposure to workers can be reduced. In addition, it does not require a long time and can be cleaned and removed without a significant increase in cost. The object is to provide an ultrasonic cavitation cleaning method.

この発明は上記目的を達成するものであって、内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、前記構造体に外方側から前記超音波振動子の発する超音波を入射すると共に、入射する超音波の周波数を、超音波の1/2波長の整数倍と該構造体の厚さとが等しくなるよう調整し、調整した超音波を該構造体に入射して厚さ方向の共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする方法である。   The present invention achieves the above object, and the adhered solid matter on the inner surface of a cylindrical structure filled with a liquid is washed and removed using ultrasonic waves emitted from an ultrasonic vibrator. In the ultrasonic cavitation cleaning method, the ultrasonic wave emitted from the ultrasonic transducer is incident on the structure from the outside, and the frequency of the incident ultrasonic wave is an integral multiple of a half wavelength of the ultrasonic wave. The thickness of the structure was adjusted to be equal, and the adjusted ultrasonic wave was incident on the structure to cause resonance in the thickness direction to generate cavity bubbles on the inner surface of the structure. It is the method characterized by this.

また、内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、前記構造体に外方側から前記超音波振動子の発する超音波を入射すると共に、入射する超音波の周波数を、波長の整数倍と該構造体の周方向長とが等しくなるよう調整し、調整した超音波を該構造体に入射して周方向の共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする方法である。   Also, an ultrasonic cavitation cleaning method for cleaning and removing a solid adhering matter on the inner surface of a cylindrical structure whose inside is filled with a liquid using an ultrasonic wave generated by an ultrasonic vibrator, the structure The ultrasonic wave emitted from the ultrasonic transducer is incident on the body from the outside, and the frequency of the incident ultrasonic wave is adjusted so that the integral multiple of the wavelength is equal to the circumferential length of the structure. The method is characterized in that ultrasonic waves are incident on the structure to cause circumferential resonance to generate cavity bubbles on the inner surface of the structure.

また、内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、前記構造体に外方側から前記超音波振動子の発する超音波を入射すると共に、超音波の周波数を、該構造体の周方向の高次の固有周波数と一致するように調整し、周方向の共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする方法である。   Also, an ultrasonic cavitation cleaning method for cleaning and removing a solid adhering matter on the inner surface of a cylindrical structure whose inside is filled with a liquid using an ultrasonic wave generated by an ultrasonic vibrator, the structure The ultrasonic wave emitted from the ultrasonic transducer is incident on the body from the outside, and the frequency of the ultrasonic wave is adjusted so as to coincide with the higher-order natural frequency in the circumferential direction of the structure. Is generated, and cavity bubbles are generated on the inner surface of the structure.

また、内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、前記構造体に外方側から複数の前記超音波振動子の発する各超音波を、位相を同期させるようにして入射すると共に、該超音波の周波数を、波長の整数倍と該構造体の周方向長とが等しくなるよう調整して周方向の共振をそれぞれ生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする方法である。   Also, an ultrasonic cavitation cleaning method for cleaning and removing a solid adhering matter on the inner surface of a cylindrical structure whose inside is filled with a liquid using an ultrasonic wave generated by an ultrasonic vibrator, the structure Each ultrasonic wave emitted from the plurality of ultrasonic transducers is incident on the body from the outer side so that the phase is synchronized, and the frequency of the ultrasonic wave is set to an integral multiple of the wavelength and the circumferential length of the structure. Are adjusted to be equal to each other to cause circumferential resonances to generate cavity bubbles on the inner surface of the structure.

本発明によれば、複雑な構成とならず、また洗浄対象部分への装置の直接設置や分解作業をする必要がなく、さらに長時間を必要とせず、作業員の被爆量が軽減でき、大幅にコスト上昇することもなく、超音波を用いて、例えば原子炉冷却材圧力バウンダリ等の構造体における付着固形物の洗浄、除去を行うことができる。   According to the present invention, there is no complicated configuration, and it is not necessary to directly install or disassemble the apparatus on the part to be cleaned, and it does not require a long time, and the amount of exposure to workers can be reduced. In addition, it is possible to clean and remove the adhered solid matter in a structure such as a reactor coolant pressure boundary, for example, without increasing the cost.

本発明の第1の実施形態における超音波洗浄装置の構成及び洗浄状態を示す図である。It is a figure which shows the structure and cleaning state of the ultrasonic cleaning apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態に使用される沸騰水型原子炉の概略を示す縦断面図である。1 is a longitudinal sectional view showing an outline of a boiling water reactor used in a first embodiment of the present invention. 本発明の第1の実施形態における洗浄方法を説明する図である。It is a figure explaining the washing | cleaning method in the 1st Embodiment of this invention. 本発明の第1の実施形態の変形形態における超音波洗浄装置を示す構成図で、図4(a)は第1変形形態の構成図、図4(b)は第2変形形態の構成図である。FIG. 4A is a configuration diagram illustrating an ultrasonic cleaning apparatus according to a modification of the first embodiment of the present invention, FIG. 4A is a configuration diagram of the first modification, and FIG. 4B is a configuration diagram of the second modification. is there. 本発明の第2の実施形態における超音波洗浄装置の構成及び洗浄状態を示す図である。It is a figure which shows the structure and washing | cleaning state of the ultrasonic cleaning apparatus in the 2nd Embodiment of this invention. 本発明の第3の実施形態における超音波洗浄装置の構成及び洗浄状態を示す図である。It is a figure which shows the structure and washing | cleaning state of the ultrasonic cleaning apparatus in the 3rd Embodiment of this invention.

以下本発明の実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
先ず本発明の第1の実施形態と変形形態を図1乃至図4により説明する。
(First embodiment)
First, a first embodiment and a modification of the present invention will be described with reference to FIGS.

図1乃至図3において、超音波洗浄装置1は、20kHz以上の超音波を発する超音波振動子2を有する振動子部3と、超音波振動子2を駆動する発振回路等を設けて構成された駆動部4と、超音波振動子2の振動周波数が所定の周波数に、音圧が所定の音圧以上になるよう駆動部4を制御する制御部5を備えて構成されている。また振動子部3の超音波振動子2の先端部分には、必要に応じて取着される超音波の伝送効率を高めるためのホーン6が取着されている。   1 to 3, the ultrasonic cleaning apparatus 1 includes a vibrator unit 3 having an ultrasonic vibrator 2 that emits ultrasonic waves of 20 kHz or more, an oscillation circuit that drives the ultrasonic vibrator 2, and the like. The drive unit 4 and the control unit 5 that controls the drive unit 4 so that the vibration frequency of the ultrasonic vibrator 2 is set to a predetermined frequency and the sound pressure is equal to or higher than the predetermined sound pressure are configured. A horn 6 is attached to the tip portion of the ultrasonic transducer 2 of the transducer unit 3 in order to increase the transmission efficiency of ultrasonic waves that are attached as necessary.

そして洗浄を行うのに際し、超音波洗浄装置1の振動子部3を、洗浄対象である内部に液体、例えば原子炉冷却材である水7が満たされた、例えば図2に示すような沸騰水型原子力発電プラント等の原子炉8の原子炉圧力容器9やその付属物、原子炉冷却系を構成する再循環ポンプ10、ジェットポンプ11等の機器や配管12、接続配管などである原子炉冷却材圧力バウンダリ13を構成する円筒状をなす構造体14の外面に、ホーン6先端との間に密着性が悪い場合には超音波が良好に伝達されるように必要に応じて接触媒質を設けるようにして取り付ける。なお、15は炉心、16は炉心シュラウド、17は制御棒案内管、18は給水スパージャ、19は気水分離器、20は蒸気乾燥器であり、実線矢印は冷却材である水7の流れを示す。   When cleaning is performed, the vibrator unit 3 of the ultrasonic cleaning apparatus 1 is filled with a liquid, for example, water 7 that is a reactor coolant, in boiling water as shown in FIG. Reactor pressure vessel 9 of nuclear reactor 8 such as type nuclear power plant and its accessories, recirculation pump 10 constituting reactor cooling system, equipment such as jet pump 11, piping 12, connection piping, etc. If necessary, a contact medium is provided on the outer surface of the cylindrical structure 14 constituting the material pressure boundary 13 so that ultrasonic waves can be transmitted satisfactorily when the adhesion with the tip of the horn 6 is poor. To attach. In addition, 15 is a core, 16 is a core shroud, 17 is a control rod guide pipe, 18 is a feed water sparger, 19 is a steam separator, 20 is a steam dryer, and a solid arrow indicates the flow of water 7 as a coolant. Show.

構造体14に外方側から振動子部3の取付けを行った後、制御部5による制御のもとに駆動部4を駆動させ、超音波振動子2から超音波を発生させ、超音波振動を構造体14に入射、伝播させる。このとき、構造体14には超音波振動子2から超音波の進行方向である厚さ方向に縦波が伝播される。そして伝播される超音波は、その周波数を制御部5の周波数調整を行うことで、図1に超音波波長Sを模式的に示すように、超音波の1/2波長の整数倍が構造体14の厚さtと等しくなるような所定の周波数に調整する。同時に、超音波の圧力振幅ΔP[Pa]が構造体14内部の水圧P1[Pa]と飽和蒸気圧Pv[Pa]との差よりも大きくなるように制御部5で調整する。   After the vibrator unit 3 is attached to the structure 14 from the outer side, the drive unit 4 is driven under the control of the control unit 5 to generate ultrasonic waves from the ultrasonic transducer 2 and to generate ultrasonic vibrations. Enters and propagates into the structure 14. At this time, a longitudinal wave is propagated to the structure 14 from the ultrasonic transducer 2 in the thickness direction, which is the traveling direction of the ultrasonic wave. Then, by adjusting the frequency of the ultrasonic wave to be propagated by the control unit 5, an integral multiple of ½ wavelength of the ultrasonic wave is a structural body, as schematically shown in FIG. 14 to a predetermined frequency so as to be equal to the thickness t. At the same time, the control unit 5 adjusts the pressure amplitude ΔP [Pa] of the ultrasonic wave so as to be larger than the difference between the water pressure P1 [Pa] inside the structure 14 and the saturated vapor pressure Pv [Pa].

これによって、超音波振動子2から発せられた超音波と構造体14との共振が厚さ方向で生起し、超音波は構造体14内で大きく減衰することなく構造体14内表面から内部の水7に伝播する。超音波が水7に伝播することでキャビティ泡21が発生し、構造体14内面の超音波キャビテーションによる洗浄が行われる。   As a result, resonance between the ultrasonic wave emitted from the ultrasonic transducer 2 and the structure 14 occurs in the thickness direction, and the ultrasonic wave is not greatly attenuated in the structure 14 but from the inner surface of the structure 14 to the inside. Propagates to water 7. Cavity bubbles 21 are generated by the propagation of ultrasonic waves to the water 7, and the inner surface of the structure 14 is cleaned by ultrasonic cavitation.

なお、超音波の水中の圧力振幅ΔP[Pa]を、構造体14内部の水圧P1[Pa]と飽和蒸気圧Pv[Pa]との差よりも大きくなるよう調整するのは、以下の理由による。   The reason why the pressure amplitude ΔP [Pa] of the ultrasonic water is adjusted to be larger than the difference between the water pressure P1 [Pa] and the saturated vapor pressure Pv [Pa] inside the structure 14 is as follows. .

すなわち、キャビテーションは、圧力が低下し、その圧力が飽和蒸気圧以下となった場合に、局所的に液相から気相になる現象で、超音波キャビテーションにおいては、
σ=(P1−Pv)/ΔP で定義されるキャビテーション数σによってキャビテーションの発生有無の評価が行われ、キャビテーション数σが1以下、
σ=(P1−Pv)/ΔP<1
にならないとキャビテーションは発生しないことになる。
In other words, cavitation is a phenomenon in which when the pressure drops and the pressure drops below the saturated vapor pressure, the liquid phase changes locally to the gas phase. In ultrasonic cavitation,
The presence / absence of cavitation is evaluated by the cavitation number σ defined by σ = (P1−Pv) / ΔP, and the cavitation number σ is 1 or less,
σ = (P1−Pv) / ΔP <1
Otherwise, cavitation will not occur.

これを図示すると図3に示す通りで、水圧P1[Pa]と飽和蒸気圧Pv[Pa]に対し、超音波の音圧が大きく、実線Aで示す超音波波形に飽和蒸気圧Pv[Pa]以下の部分が生じ、圧力振幅ΔP[Pa]が(P1−Pv)より大きくなると、(P1−Pv)<ΔPの部分がキャビテーション発生領域Xとなる。また超音波の音圧が小さく、点線Bで示す超音波波形に飽和蒸気圧Pv[Pa]以下の部分が生じない状態だと、キャビテーション発生領域Xは生じない。しかし、実際には水中には気体が溶け込んでいるので、溶け込んでいる気体がキャビテーション核となって、キャビテーション数σが1より大きくても初生キャビテーションが発生する。こうして発生する初生キャビテーションの衝撃力は、気体のクッション効果によりあまり大きなものではない。   As shown in FIG. 3, the ultrasonic sound pressure is larger than the water pressure P1 [Pa] and the saturated vapor pressure Pv [Pa], and the saturated vapor pressure Pv [Pa] is shown in the ultrasonic waveform indicated by the solid line A. When the following portion is generated and the pressure amplitude ΔP [Pa] becomes larger than (P1−Pv), the portion of (P1−Pv) <ΔP becomes the cavitation generation region X. Further, when the ultrasonic sound pressure is small and the ultrasonic waveform indicated by the dotted line B does not have a portion below the saturated vapor pressure Pv [Pa], the cavitation generation region X does not occur. However, since the gas is actually dissolved in water, the dissolved gas becomes a cavitation nucleus, and even if the cavitation number σ is larger than 1, initial cavitation occurs. The impact force of the primary cavitation generated in this way is not so great due to the gas cushion effect.

このため、確実な洗浄効果が得られるよう、少なくともキャビテーション数σが1以下、すなわち、超音波の圧力振幅ΔP[Pa]の大きさが、洗浄対象とする構造体14内部の水の圧力P1[Pa]と飽和蒸気圧力Pv[Pa]との差よりも大きくなるように調整しなければならないことになる。ここで、圧力振幅ΔP[Pa]を、超音波強度I[W/m]、水密度ρ[kg/m]、水中での音速c[m/s]を用いて示すと、
ΔP=(2ρcI)1/2
となり、キャビテーション数σ<1となるように超音波強度I[W/m]を調整すればよい。このときの超音波強度I[W/m]については、超音波は構造体14を透過して水7に作用するため、構造体14透過後の超音波強度でなければならず、構造体14の透過率を加味した所要強度の超音波を構造体14に入射する。
For this reason, at least the cavitation number σ is equal to or less than 1, that is, the pressure amplitude ΔP [Pa] of the ultrasonic wave has a pressure P1 [ It is necessary to adjust so that it is larger than the difference between Pa] and saturated vapor pressure Pv [Pa]. Here, when the pressure amplitude ΔP [Pa] is shown using the ultrasonic intensity I [W / m 2 ], the water density ρ [kg / m 3 ], and the sound velocity c [m / s] in water,
ΔP = (2ρcI) 1/2
Therefore, the ultrasonic intensity I [W / m 2 ] may be adjusted so that the cavitation number σ <1. Regarding the ultrasonic intensity I [W / m 2 ] at this time, since the ultrasonic wave passes through the structure 14 and acts on the water 7, it must be the ultrasonic intensity after passing through the structure 14. An ultrasonic wave having a required intensity considering the transmittance of 14 is incident on the structure 14.

以上の通り本実施形態を構成することで、例えば内部に原子炉冷却材である水7が満たされた沸騰水型原子力発電プラント等の原子炉冷却材圧力バウンダリ13となる構造体14の内表面に、長期稼動によって冷却用の水7内の放射性不純物がクラッド等の固形物として付着した場合でも、超音波洗浄装置1の振動子部3を構造体14の外面に取り付け、外方側からの超音波を利用しての付着固形物の洗浄、除去が、作業者の被爆量を軽減した状態で簡単に行える。   By configuring the present embodiment as described above, for example, the inner surface of the structure 14 that becomes the reactor coolant pressure boundary 13 in a boiling water nuclear power plant or the like in which the reactor coolant 7 is filled. In addition, even when radioactive impurities in the cooling water 7 adhere as solid matter such as cladding due to long-term operation, the vibrator unit 3 of the ultrasonic cleaning device 1 is attached to the outer surface of the structure 14, Cleaning and removal of attached solids using ultrasonic waves can be easily performed with a reduced amount of exposure to workers.

またこの際、超音波の周波数を構造体14の厚さtに対応して所定の適正周波数に調整し、圧力振幅も構造体14内部の水圧と飽和蒸気圧に対応して適正に調整するので、超音波振動子2からの超音波と構造体14の共振が生起し、さらに超音波が構造体14内で大きく減衰することなく効率よく内部の水7に伝播され、超音波キャビテーションの発生効率がより向上したものになり、構造体14内面の付着固形物の洗浄、除去が、キャビティ泡21の崩壊による高い衝撃圧が加わることによって、確実に行える。   At this time, the ultrasonic frequency is adjusted to a predetermined appropriate frequency corresponding to the thickness t of the structure 14, and the pressure amplitude is also adjusted appropriately corresponding to the water pressure and saturated vapor pressure inside the structure 14. Then, resonance between the ultrasonic wave from the ultrasonic transducer 2 and the structure 14 occurs, and the ultrasonic wave is efficiently propagated to the internal water 7 without being greatly attenuated in the structure 14, thereby generating ultrasonic cavitation. Thus, the solid matter adhering to the inner surface of the structure 14 can be reliably washed and removed by applying a high impact pressure due to the collapse of the cavity bubbles 21.

なお、上記において、構造体14の厚さtが不明の場合、また構造体14の透過率が不明の場合は、予め超音波振動子2に超音波を発する機能と共に受信の機能を持たせるようにして厚さ、あるいは透過率を求めるようにすればよい。例えば図4(a)に示す第1変形形態のように、超音波洗浄装置1aの振動子部3aを超音波振動子2と、超音波振動子2から発した超音波の反射波を受信する受信用振動子22とを設けて構成し、構造体14への超音波の入射時間と構造体14内面で反射した反射波の受信時間との時間差に基づき、制御部5aで演算を行い構造体14の厚さを求める。また透過率については、構造体14への入射波と受信した反射波の大きさの違いに基づき制御部5aで演算を行って求める。   In the above description, when the thickness t of the structure 14 is unknown or when the transmittance of the structure 14 is unknown, the ultrasonic transducer 2 is provided with a reception function as well as a function of emitting an ultrasonic wave in advance. Thus, the thickness or transmittance may be obtained. For example, as in the first modification shown in FIG. 4A, the transducer unit 3a of the ultrasonic cleaning apparatus 1a receives the ultrasonic transducer 2 and the reflected wave of the ultrasonic wave emitted from the ultrasonic transducer 2. The receiving vibrator 22 is provided, and the structure is calculated by the control unit 5a based on the time difference between the incident time of the ultrasonic wave to the structure 14 and the reception time of the reflected wave reflected from the inner surface of the structure 14. A thickness of 14 is determined. Further, the transmittance is obtained by calculating in the control unit 5a based on the difference in magnitude between the incident wave to the structure 14 and the received reflected wave.

さらに、図4(b)に示す第2変形形態のように、超音波洗浄装置1bの振動子部3bを超音波の送信と受信が可能な超音波振動子2bで構成し、超音波振動子2bで超音波の構造体14への入射を外面から行うと共に、構造体14内面での反射波を受信し、受信回路23を介して制御部5bに入力し、同様に、構造体14への超音波の入射時間と構造体14内面からの反射波の受信時間との時間差に基づき、制御部5bで演算を行い構造体14の厚さを求める。また透過率についても、構造体14への入射波と受信した反射波の大きさの違いに基づき制御部5bで演算を行って求める。   Further, as in the second modification shown in FIG. 4B, the vibrator unit 3b of the ultrasonic cleaning apparatus 1b is constituted by an ultrasonic vibrator 2b capable of transmitting and receiving ultrasonic waves, and the ultrasonic vibrator. In 2b, the ultrasonic wave is incident on the structure 14 from the outer surface, and the reflected wave on the inner surface of the structure 14 is received and input to the control unit 5b via the receiving circuit 23. Based on the time difference between the incident time of the ultrasonic wave and the reception time of the reflected wave from the inner surface of the structure 14, the control unit 5 b calculates to determine the thickness of the structure 14. Further, the transmittance is also obtained by calculating in the control unit 5b based on the difference in magnitude between the incident wave to the structure 14 and the received reflected wave.

なおまた、構造体14に1つの振動子部3を取り付けるようにしたが、複数の振動子部3を取り付けるようにして、各超音波振動子2の周波数を互いに整数倍または1/2倍ずらすようにし、キャビテーションの発生する位置が細かく分布するようにして、構造体14内面をむらなく洗浄するようにしてもよい。   In addition, although the single vibrator unit 3 is attached to the structure 14, the frequency of each ultrasonic transducer 2 is shifted by an integral multiple or a half multiple from each other by attaching a plurality of transducer units 3. In this way, the inner surface of the structure 14 may be cleaned evenly by finely distributing the positions where cavitation occurs.

(第2の実施形態)
次に本発明の第2の実施形態を図5により説明する。なお、第1の実施形態と同一部分には同一符号を付して説明を省略し、第1の実施形態と異なる本発明の実施の形態の構成について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment, description is abbreviate | omitted, and the structure of embodiment of this invention different from 1st Embodiment is demonstrated.

図5において、超音波洗浄装置31は、20kHz以上の超音波を発する超音波振動子32を有する振動子部33と、超音波振動子32を駆動する発振回路等を設けて構成された駆動部34と、超音波振動子32の振動周波数が所定の周波数に、音圧が所定の音圧以上になるよう駆動部34を制御する制御部35を備え、さらに超音波センサ36を備えて構成され、超音波センサ36の検出信号が制御部35に入力されるようになっている。   In FIG. 5, the ultrasonic cleaning device 31 includes a vibrator unit 33 having an ultrasonic vibrator 32 that emits ultrasonic waves of 20 kHz or higher, and a drive unit configured to include an oscillation circuit that drives the ultrasonic vibrator 32. 34, and a control unit 35 that controls the drive unit 34 so that the vibration frequency of the ultrasonic transducer 32 is a predetermined frequency and the sound pressure is equal to or higher than the predetermined sound pressure, and further includes an ultrasonic sensor 36. The detection signal of the ultrasonic sensor 36 is input to the control unit 35.

そして洗浄を行うのに際し、超音波洗浄装置31の振動子部33を、洗浄対象である内部に液体、例えば水7が満たされた、例えば図2に示すような沸騰水型原子力発電プラントの原子炉冷却材圧力バウンダリ13を構成する円筒状をなす構造体14の外面に、ホーン6先端との間に必要に応じ接触媒質を設けるようにして取り付ける。また、超音波センサ36を、超音波の入射位置である振動子部33の取付け位置の反対側となる構造体14の対向位置(180度対称位置)に設ける。   Then, when performing the cleaning, the vibrator 33 of the ultrasonic cleaning device 31 is replaced with an atom of a boiling water nuclear power plant as shown in FIG. It is attached to the outer surface of the cylindrical structure 14 constituting the furnace coolant pressure boundary 13 with a contact medium provided between the tip of the horn 6 as necessary. In addition, the ultrasonic sensor 36 is provided at a position facing the structure body 14 (a 180-degree symmetrical position) on the side opposite to the attachment position of the transducer unit 33 that is an ultrasonic incident position.

構造体14に振動子部33を入射位置に取り付け、超音波センサ36を設置した後、先ず制御部35による制御のもとに駆動部34を駆動させ、超音波振動子32から超音波を発生させ、超音波振動を構造体14に入射、伝播させ、超音波センサ36により構造体14に伝播された超音波を捕らえる。超音波を捕らえた後、制御部35において、超音波振動子32から発せられた超音波と超音波センサ36で捕らえた超音波の時間差、すなわち入射時間と捕捉時間の時間差に基づき、筒体状の構造体14の半周の長さを算出し、構造体14の周方向長(周方向の長さ)を得る。なお、構造体14の周方向長が明らかである場合は、超音波センサ36を用いての算出は不要となる。   After the transducer unit 33 is attached to the structure 14 at the incident position and the ultrasonic sensor 36 is installed, the drive unit 34 is first driven under the control of the control unit 35 to generate ultrasonic waves from the ultrasonic transducer 32. Then, the ultrasonic vibration is incident on and propagates to the structure 14, and the ultrasonic wave propagated to the structure 14 is captured by the ultrasonic sensor 36. After capturing the ultrasonic wave, the control unit 35 has a cylindrical shape based on the time difference between the ultrasonic wave emitted from the ultrasonic transducer 32 and the ultrasonic wave captured by the ultrasonic sensor 36, that is, the time difference between the incident time and the capture time. The length of the half circumference of the structure 14 is calculated, and the circumferential length (length in the circumferential direction) of the structure 14 is obtained. When the circumferential length of the structure 14 is clear, the calculation using the ultrasonic sensor 36 is not necessary.

次に構造体14の周方向長を得た後、再び制御部35による制御のもとに駆動部34を駆動して超音波振動子32から超音波を発し、超音波振動を構造体14に入射、伝播させる。そして超音波振動子32から構造体14に伝播される超音波の周波数を調整し、超音波の進行方向(縦波伝播方向)に垂直な方向(横波伝播方向)となる構造体14の周方向長が、超音波波長の整数倍である所定周波数となるように周波数の調整を行う。   Next, after obtaining the circumferential length of the structure 14, the drive unit 34 is driven again under the control of the control unit 35 to emit ultrasonic waves from the ultrasonic transducer 32, and ultrasonic vibrations are transmitted to the structure 14. Incident and propagate. Then, the frequency of the ultrasonic wave propagated from the ultrasonic transducer 32 to the structure body 14 is adjusted, and the circumferential direction of the structure body 14 becomes a direction (transverse wave propagation direction) perpendicular to the traveling direction of the ultrasonic wave (longitudinal wave propagation direction). The frequency is adjusted so that the length becomes a predetermined frequency that is an integral multiple of the ultrasonic wavelength.

このように超音波波長の整数倍が構造体14の周方向長に等しくなるような所定周波数に超音波を調整することで、図5に超音波波形を実線Cで模式的に示すように、超音波振動子32から発せられた超音波により構造体14の周方向の共振が生起し、定在波が生じる。超音波による構造体14の周方向の共振については、構造体14の周方向の高次の固有振動数に一致させるようにして生起させてもよい。また周方向の共振と同時に、構造体14の内表面における超音波の圧力振幅ΔP[Pa]が、構造体14内部の水圧P1[Pa]と飽和蒸気圧Pv[Pa]との差よりも大きくなるように制御部35での調整を行う。   In this way, by adjusting the ultrasonic wave to a predetermined frequency such that an integral multiple of the ultrasonic wavelength is equal to the circumferential length of the structure 14, as shown schematically in FIG. Resonance in the circumferential direction of the structure 14 is generated by the ultrasonic waves emitted from the ultrasonic transducer 32, and a standing wave is generated. The resonance in the circumferential direction of the structure 14 due to ultrasonic waves may be caused to coincide with the higher natural frequency in the circumferential direction of the structure 14. Simultaneously with the resonance in the circumferential direction, the pressure amplitude ΔP [Pa] of the ultrasonic wave on the inner surface of the structure 14 is larger than the difference between the water pressure P1 [Pa] inside the structure 14 and the saturated vapor pressure Pv [Pa]. Adjustment is performed by the control unit 35.

また、超音波による構造体14の共振が周方向で生起することで、超音波は構造体14内で大きく減衰することなく内表面から内部の水7に伝播する。超音波が水7に伝播することで定在波の圧力振幅が最大となる腹部分近傍にキャビティ泡21が発生し、構造体14内面の超音波キャビテーションによる洗浄が行われる。   Further, the resonance of the structure 14 due to the ultrasonic waves occurs in the circumferential direction, so that the ultrasonic waves propagate from the inner surface to the internal water 7 without being greatly attenuated in the structure 14. As the ultrasonic wave propagates to the water 7, a cavity bubble 21 is generated in the vicinity of the antinode where the pressure amplitude of the standing wave is maximized, and the inner surface of the structure 14 is cleaned by ultrasonic cavitation.

以上の通り本実施形態を構成することで、第1の実施形態と同様に、例えば内部に原子炉冷却材である水7が満たされた沸騰水型原子力発電プラントの原子炉冷却材圧力バウンダリ13等の構造体14の表面に、長期稼動によって冷却用の水7内の放射性不純物がクラッド等の固形物として付着した場合でも、超音波洗浄装置31の振動子部33を構造体14の外面に取り付け、外方側からの超音波を利用しての付着固形物の洗浄、除去が、作業者の被爆量を軽減した状態で簡単に行える。   By configuring the present embodiment as described above, as in the first embodiment, for example, the reactor coolant pressure boundary 13 of the boiling water nuclear power plant in which the water 7 as the reactor coolant is filled. Even when radioactive impurities in the cooling water 7 adhere to the surface of the structure 14 such as a clad as a solid matter such as a clad due to long-term operation, the vibrator unit 33 of the ultrasonic cleaning device 31 is attached to the outer surface of the structure 14. Attachment and washing and removal of attached solids using ultrasonic waves from the outside can be easily performed with the amount of exposure to the worker reduced.

またこの際、超音波の周波数を構造体14の周方向長に対応して所定の適正周波数に調整され、圧力振幅も構造体14内部の水圧と飽和蒸気圧に対応して適正に調整がなされるので、超音波振動子32からの超音波と構造体14の共振が生起し、さらに超音波が構造体14内で大きく減衰することなく効率よく内部の水7に伝播され、超音波キャビテーションの発生効率がより向上したものになり、キャビティ泡21の崩壊による高い衝撃圧が加わって、構造体14内面の付着固形物を確実に洗浄、除去することができる。   At this time, the frequency of the ultrasonic wave is adjusted to a predetermined appropriate frequency corresponding to the circumferential length of the structure 14, and the pressure amplitude is also appropriately adjusted corresponding to the water pressure and saturated vapor pressure inside the structure 14. Therefore, resonance between the ultrasonic wave from the ultrasonic transducer 32 and the structure 14 occurs, and the ultrasonic wave is efficiently propagated to the internal water 7 without being greatly attenuated in the structure 14, thereby causing ultrasonic cavitation. The generation efficiency is further improved, and a high impact pressure due to the collapse of the cavity bubbles 21 is applied, so that the adhered solid matter on the inner surface of the structure 14 can be reliably washed and removed.

なお、本実施形態において、振動子部33が周波数スイープ機能を有するよう、例えば超音波振動子32の発する超音波周波数が連続可変、かつ周波数制御が可能となるよう構成し、制御部35による制御によって周波数連続可変の超音波を構造体14に周波数スイープを行いながら加えると共に、超音波センサ36により構造体14の振動変位又は受信される超音波の強度を測定し、振動変位又は超音波強度が最大となる周波数を予め求め、その最大となる周波数に超音波周波数を設定して超音波の入射を振動子部33から構造体14に行うことにより、共振周波数が不明であっても、構造体14を共振状態とすることができ、同様に、付着固形物を確実に洗浄、除去することができる。   In the present embodiment, for example, the ultrasonic frequency generated by the ultrasonic transducer 32 is configured to be continuously variable and frequency control is possible so that the transducer unit 33 has a frequency sweep function. The ultrasonic wave whose frequency is continuously variable is applied to the structure 14 while performing a frequency sweep, and the vibration displacement of the structure 14 or the intensity of the received ultrasonic wave is measured by the ultrasonic sensor 36. Even if the resonance frequency is unknown, the maximum frequency is obtained in advance, the ultrasonic frequency is set to the maximum frequency, and the ultrasonic wave is incident on the structure 14 from the transducer unit 33, even if the resonance frequency is unknown. 14 can be brought into a resonance state, and similarly, attached solids can be reliably washed and removed.

なおまた、構造体14に1つの振動子部33を取り付けるようにしたが、複数の振動子部33を取り付けるようにして、各超音波振動子32の周波数を互いに整数倍または1/2倍ずらすようにし、キャビテーションの発生する位置が細かく分布するようにして、構造体14内面をむらなく洗浄するようにしてもよい。   In addition, although the single transducer portion 33 is attached to the structure 14, the frequencies of the ultrasonic transducers 32 are shifted from each other by an integral multiple or ½ times by attaching a plurality of transducer portions 33. In this way, the inner surface of the structure 14 may be cleaned evenly by finely distributing the positions where cavitation occurs.

(第3の実施形態)
次に本発明の第3の実施形態を図6により説明する。なお、第1、第2の実施形態と同一部分には同一符号を付して説明を省略し、第1、第2の実施形態と異なる本発明の実施の形態の構成について説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as 1st, 2nd embodiment, description is abbreviate | omitted, and the structure of embodiment of this invention different from 1st, 2nd embodiment is demonstrated.

図6において、超音波洗浄装置41は、それぞれ整数倍または1/2倍ずつ異なる周波数の超音波を発する複数の超音波振動子32a,32b,・・・をそれぞれ有する振動子部33a,33b,・・・と、超音波振動子32a,32b,・・・を駆動する発振回路等を設けて構成された駆動部34a,34b,・・・と、超音波振動子32a,32b,・・・の振動周波数が所定の周波数に、また音圧が所定の音圧以上になるよう駆動部34a,34b,・・・を制御すると共に、位相制御回路を設けて各超音波振動子32a,32b,・・・の振動位相を同位相、逆位相に同期させるよう位相制御を行う制御部42を備えて構成されている。   In FIG. 6, the ultrasonic cleaning device 41 has a plurality of ultrasonic transducers 32a, 32b,... That emit ultrasonic waves having different frequencies by an integral multiple or a half, respectively. .., And drive units 34a, 34b,... Configured by providing oscillation circuits for driving the ultrasonic transducers 32a, 32b,..., And ultrasonic transducers 32a, 32b,. Are controlled so that the vibration frequency becomes a predetermined frequency and the sound pressure becomes equal to or higher than the predetermined sound pressure, and a phase control circuit is provided to provide each ultrasonic transducer 32a, 32b,. The control unit 42 is configured to perform phase control so that the vibration phases are synchronized with the same phase and the opposite phase.

そして洗浄を行うのに際し、超音波洗浄装置41の各振動子部33a,33b,・・・を、洗浄対象である内部に液体、例えば水7が満たされた、例えば図2に示すような沸騰水型原子力発電プラントの原子炉冷却材圧力バウンダリ13を構成する円筒状をなす構造体14外面の異なる取付け位置(超音波入射位置)に、ホーン6先端との間に必要に応じ接触媒質を設けるようにして、それぞれ取り付ける。   When performing the cleaning, each of the vibrator portions 33a, 33b,... Of the ultrasonic cleaning device 41 is boiled as shown in FIG. A contact medium is provided as necessary between the tip of the horn 6 at different mounting positions (ultrasonic incident positions) on the outer surface of the cylindrical structure 14 constituting the reactor coolant pressure boundary 13 of the water nuclear power plant. And attach each.

構造体14に振動子部33a,33b,・・・を取り付けた後、先ず制御部42による制御のもとに駆動部34a,34b,・・・を駆動し、超音波振動子32a,32b,・・・から超音波を発し、超音波振動を構造体14に入射、伝播させる。さらに超音波振動子32a,32b,・・・から構造体14に伝播される超音波の周波数をそれぞれ調整し、超音波の横波伝播方向となる構造体14の周長が、超音波波長の整数倍である所定周波数となるように各超音波振動子32a,32b,・・・の超音波周波数の調整を行う。   After the transducer units 33a, 33b,... Are attached to the structure 14, the drive units 34a, 34b,... Are first driven under the control of the control unit 42, and the ultrasonic transducers 32a, 32b,. The ultrasonic wave is emitted from... And the ultrasonic vibration is incident on the structure body 14 and propagated. Further, the frequency of the ultrasonic wave propagating from the ultrasonic transducers 32a, 32b,... To the structure 14 is adjusted, and the circumference of the structure 14 in the transverse wave propagation direction of the ultrasonic wave is an integer of the ultrasonic wavelength. The ultrasonic frequency of each of the ultrasonic transducers 32a, 32b,... Is adjusted so that the predetermined frequency is doubled.

このように構造体14の周方向長が、波長の整数倍であるような所定周波数に各超音波を調整することで、図6に超音波波形を実線D,E,・・・で模式的に示すように、超音波振動子32から発せられた超音波により構造体14の周方向の共振が生起し、定在波が生じる。超音波による構造体14の周方向の共振は、構造体14の周方向の高次の固有振動数に一致させるようにして生起させてもよい。また周方向の共振と同時に、構造体14の内表面における各超音波の圧力振幅ΔP[Pa]が、構造体14内部の水圧P1[Pa]と飽和蒸気圧Pv[Pa]との差よりも大きくなるように制御部42での調整を行う。   Thus, by adjusting each ultrasonic wave to a predetermined frequency such that the circumferential length of the structure 14 is an integral multiple of the wavelength, the ultrasonic waveform is schematically shown by solid lines D, E,... In FIG. As shown in FIG. 4, the ultrasonic wave emitted from the ultrasonic transducer 32 causes resonance in the circumferential direction of the structural body 14 to generate a standing wave. The resonance in the circumferential direction of the structure 14 by ultrasonic waves may be caused to coincide with the higher-order natural frequency in the circumferential direction of the structure 14. Simultaneously with the resonance in the circumferential direction, the pressure amplitude ΔP [Pa] of each ultrasonic wave on the inner surface of the structure 14 is larger than the difference between the water pressure P1 [Pa] and the saturated vapor pressure Pv [Pa] inside the structure 14. Adjustment by the control unit 42 is performed so as to increase.

また、各超音波による構造体14の共振が周方向でそれぞれ生起することで、超音波は構造体14内で大きく減衰することなく内表面から内部の水7に伝播する。超音波が水7に伝播することで定在波の圧力振幅が最大となる腹部分近傍にキャビティ泡21が発生し、構造体14内面の超音波キャビテーションによる洗浄が行われる。このとき、複数の共振する周波数が構造体14に加わっていることで、構造体14の略全内面においてキャビティ泡21を発生させることができることになる。   Further, the resonance of the structure 14 by each ultrasonic wave occurs in the circumferential direction, so that the ultrasonic wave propagates from the inner surface to the internal water 7 without being greatly attenuated in the structure 14. As the ultrasonic wave propagates to the water 7, a cavity bubble 21 is generated in the vicinity of the antinode where the pressure amplitude of the standing wave is maximized, and the inner surface of the structure 14 is cleaned by ultrasonic cavitation. At this time, since a plurality of resonant frequencies are applied to the structure 14, the cavity bubbles 21 can be generated on substantially the entire inner surface of the structure 14.

以上の通り本実施形態を構成することで、第1、第2の実施形態と同様に、例えば内部に冷却材である水7が満たされた沸騰水型原子力発電プラントの原子炉冷却材圧力バウンダリ13を構成する構造体14の表面に、長期稼動により冷却用の水7内の放射性不純物がクラッド等の固形物として付着した場合でも、超音波洗浄装置41の振動子部33a,33b,・・・を構造体14の外面に取り付け、外方側からの超音波を利用しての付着固形物の洗浄、除去が、作業者の被爆量を軽減した状態で簡単に行える。   By configuring the present embodiment as described above, as in the first and second embodiments, for example, the reactor coolant pressure boundary of the boiling water nuclear power plant in which the coolant 7 is filled. Even when radioactive impurities in the cooling water 7 adhere to the surface of the structure 14 constituting the structure 13 as a solid matter such as a clad due to long-term operation, the vibrator portions 33a, 33b,. -Is attached to the outer surface of the structure 14, and the adhered solid matter can be easily cleaned and removed using ultrasonic waves from the outside in a state where the exposure amount of the worker is reduced.

またこの際、各超音波の周波数を構造体14の周方向長に対応してそれぞれ適正周波数に調整し、圧力振幅も構造体14内部の水圧と飽和蒸気圧に対応して適正に調整するので、超音波振動子32a,32b,・・・からの超音波と構造体14の共振が生起し、さらに超音波が構造体14内で大きく減衰することなく効率よく内部の水7に伝播され、超音波キャビテーションの発生効率がより向上したものになり、キャビティ泡21の崩壊による高い衝撃圧が加わって、構造体14内面の付着固形物が確実に洗浄、除去することができる。   At this time, the frequency of each ultrasonic wave is adjusted to an appropriate frequency corresponding to the circumferential length of the structure 14, and the pressure amplitude is also adjusted appropriately corresponding to the water pressure and saturated vapor pressure inside the structure 14. , Resonance of the ultrasonic wave from the ultrasonic vibrators 32a, 32b,... And the structure 14 occurs, and the ultrasonic wave is efficiently propagated to the internal water 7 without being greatly attenuated in the structure 14. The generation efficiency of ultrasonic cavitation is further improved, and a high impact pressure due to the collapse of the cavity bubble 21 is applied, so that the adhered solid matter on the inner surface of the structure 14 can be reliably washed and removed.

さらに、複数の共振する周波数が構造体14に加わることで、構造体14の略全内面においてキャビティ泡21が発生し、洗浄むらを生じることなく付着固形物を洗浄、除去することができる。また複数の周波数における定在波が干渉し合うことによる音圧強度の強まりが生じ、干渉位置での付着固形物の洗浄、除去を効果的に行うことができ、振動子部33a,33b,・・・取付け位置を適正に選定することで、より効果的な洗浄、除去が行える。   Furthermore, since a plurality of resonant frequencies are applied to the structure 14, cavity bubbles 21 are generated on substantially the entire inner surface of the structure 14, and the attached solid matter can be cleaned and removed without causing uneven cleaning. Further, the intensity of sound pressure increases due to the interference of standing waves at a plurality of frequencies, so that the adhering solid matter can be effectively cleaned and removed at the interference position, and the vibrator portions 33a, 33b,.・ ・ By selecting the proper mounting position, more effective cleaning and removal can be performed.

1,1a,1b,31,41…超音波洗浄装置、2,2a,2b,32,32a,32b…超音波振動子、3,3a,3b,33,33a,33b…振動子部、4,34,34a,34b…駆動部、5,5a,5b,35,42…制御部、6…ホーン、7…水、8…原子炉、9…原子炉圧力容器、10…再循環ポンプ、11…ジェットポンプ、12…配管、13…原子炉冷却材圧力バウンダリ、14…構造体、15…炉心、16…炉心シュラウド、17…制御棒案内管、18…給水スパージャ、19…気水分離器、20…蒸気乾燥器、21…キャビティ泡、22…受信用振動子、23…受信回路、36…超音波センサ 1, 1a, 1b, 31, 41 ... ultrasonic cleaning device, 2, 2a, 2b, 32, 32a, 32b ... ultrasonic transducer, 3, 3a, 3b, 33, 33a, 33b ... transducer unit, 4, 34, 34a, 34b ... drive unit, 5, 5a, 5b, 35, 42 ... control unit, 6 ... horn, 7 ... water, 8 ... nuclear reactor, 9 ... reactor pressure vessel, 10 ... recirculation pump, 11 ... Jet pump, 12 ... piping, 13 ... reactor coolant pressure boundary, 14 ... structure, 15 ... core, 16 ... core shroud, 17 ... control rod guide tube, 18 ... feed water sparger, 19 ... air-water separator, 20 ... Vapor dryer, 21 ... Cavity foam, 22 ... Receiving vibrator, 23 ... Receiving circuit, 36 ... Ultrasonic sensor

Claims (10)

内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、
前記構造体に外方側から前記超音波振動子の発する超音波を入射すると共に、入射する超音波の周波数を、超音波の1/2波長の整数倍と該構造体の厚さとが等しくなるよう調整し、調整した超音波を該構造体に入射して厚さ方向の共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする超音波キャビテーション洗浄方法。
An ultrasonic cavitation cleaning method that cleans and removes the attached solid matter on the inner surface of a cylindrical structure filled with a liquid using ultrasonic waves generated by an ultrasonic vibrator,
The ultrasonic wave emitted from the ultrasonic transducer is incident on the structure from the outside, and the frequency of the incident ultrasonic wave is equal to an integral multiple of ½ wavelength of the ultrasonic wave and the thickness of the structure. The ultrasonic cavitation cleaning method is characterized in that the adjusted ultrasonic wave is incident on the structure to cause resonance in the thickness direction, and cavity bubbles are generated on the inner surface of the structure. .
前記構造体に入射した超音波の前記構造体内表面での反射波を受信するよう構成して超音波入射時と反射波受信時の時間差に基づいて該構造体の厚さを予め算出し、算出した該構造体の厚さと超音波の1/2波長の整数倍とが等しくなるよう超音波の周波数を調整し、調整した超音波を該構造体に入射して厚さ方向の共振を生起させることを特徴とする請求項1記載の超音波キャビテーション洗浄方法。   The structure is configured to receive the reflected wave of the ultrasonic wave incident on the structure on the surface of the structure, and the thickness of the structure is calculated in advance based on the time difference between the incident of the ultrasonic wave and the reception of the reflected wave. The frequency of the ultrasonic wave is adjusted so that the thickness of the structured body is equal to an integral multiple of ½ wavelength of the ultrasonic wave, and the adjusted ultrasonic wave is incident on the structural body to cause resonance in the thickness direction. The ultrasonic cavitation cleaning method according to claim 1. 内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、
前記構造体に外方側から前記超音波振動子の発する超音波を入射すると共に、入射する超音波の周波数を、波長の整数倍と該構造体の周方向長とが等しくなるよう調整し、調整した超音波を該構造体に入射して周方向の共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする超音波キャビテーション洗浄方法。
An ultrasonic cavitation cleaning method that cleans and removes attached solid matter on the inner surface of a cylindrical structure filled with a liquid using ultrasonic waves generated by an ultrasonic vibrator,
The ultrasonic wave emitted from the ultrasonic transducer is incident on the structure from the outside, and the frequency of the incident ultrasonic wave is adjusted so that the integral multiple of the wavelength and the circumferential length of the structure are equal. An ultrasonic cavitation cleaning method, wherein adjusted ultrasonic waves are incident on the structure to cause circumferential resonance to generate cavity bubbles on the inner surface of the structure.
超音波の入射位置の反対側となる前記構造体の対向位置に、該構造体を伝播してくる超音波を検知する超音波センサを設け、超音波入射時と前記超音波センサでの超音波受信時との時間差に基づいて該構造体の周方向長を予め算出し、算出した周方向長と波長の整数倍とが等しくなるよう超音波の周波数を調整し、調整した超音波を該構造体に入射して周方向の共振を生起させることを特徴とする請求項3記載の超音波キャビテーション洗浄方法。   An ultrasonic sensor for detecting the ultrasonic wave propagating through the structure is provided at a position opposite to the structure on the opposite side of the ultrasonic incident position. Based on the time difference from the time of reception, the circumferential length of the structure is calculated in advance, the frequency of the ultrasonic wave is adjusted so that the calculated circumferential length is equal to an integral multiple of the wavelength, and the adjusted ultrasonic wave is The ultrasonic cavitation cleaning method according to claim 3, wherein the ultrasonic wave cavitation cleaning method is caused to enter a body to cause circumferential resonance. 前記超音波振動子の発する超音波周波数を連続可変とし、予め周波数連続可変の超音波を前記構造体に周波数をスイープしながら加え、前記超音波センサで該構造体の振動変位又は超音波の強度を測定して振動変位又は超音波強度が最大となる周波数を求めた後、得られた最大となる周波数の超音波を該構造体に入射して周方向の共振を生起させることを特徴とする請求項3又は4記載の超音波キャビテーション洗浄方法。   The ultrasonic frequency generated by the ultrasonic transducer is continuously variable, and an ultrasonic wave having a continuously variable frequency is added to the structure while sweeping the frequency in advance, and the vibration displacement of the structure or the intensity of the ultrasonic wave is detected by the ultrasonic sensor. After measuring the frequency to determine the frequency at which the vibration displacement or the ultrasonic intensity becomes maximum, the ultrasonic wave having the maximum frequency obtained is incident on the structure to cause circumferential resonance. The ultrasonic cavitation cleaning method according to claim 3 or 4. 内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、
前記構造体に外方側から前記超音波振動子の発する超音波を入射すると共に、超音波の周波数を、該構造体の周方向の高次の固有周波数と一致するように調整し、周方向の共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする超音波キャビテーション洗浄方法。
An ultrasonic cavitation cleaning method that cleans and removes attached solid matter on the inner surface of a cylindrical structure filled with a liquid using ultrasonic waves generated by an ultrasonic vibrator,
The ultrasonic wave emitted from the ultrasonic transducer is incident on the structure from the outside, and the frequency of the ultrasonic wave is adjusted so as to coincide with the higher-order natural frequency in the circumferential direction of the structure. The ultrasonic cavitation cleaning method is characterized in that a cavity bubble is generated on the inner surface of the structure.
複数の超音波振動子を設けると共に、各超音波振動子の発する周波数が互いに整数倍又は1/2倍ずれた複数の超音波を、前記構造体にそれぞれ入射して共振を生起させ、該構造体の内表面にキャビティ泡を発生させるようにしことを特徴とする請求項1又は3又は6に記載の超音波キャビテーション洗浄方法。   A plurality of ultrasonic transducers are provided, and a plurality of ultrasonic waves whose frequencies emitted from the respective ultrasonic transducers are shifted from each other by an integral multiple or a half are incident on the structure to cause resonance. The ultrasonic cavitation cleaning method according to claim 1, wherein cavity bubbles are generated on the inner surface of the body. 内部が液体で満たされた円筒状をなす構造体の内表面の付着固体物を、超音波振動子の発する超音波を用いて洗浄、除去する超音波キャビテーション洗浄方法であって、
前記構造体に外方側から複数の前記超音波振動子の発する各超音波を、位相を同期させるようにして入射すると共に、該超音波の周波数を、波長の整数倍と該構造体の周方向長とが等しくなるよう調整して周方向の共振をそれぞれ生起させ、該構造体の内表面にキャビティ泡を発生させるようにしたことを特徴とする超音波キャビテーション洗浄方法。
An ultrasonic cavitation cleaning method that cleans and removes attached solid matter on the inner surface of a cylindrical structure filled with a liquid using ultrasonic waves generated by an ultrasonic vibrator,
Each ultrasonic wave emitted from the plurality of ultrasonic transducers is incident on the structure body from the outer side so that the phases are synchronized, and the frequency of the ultrasonic wave is set to an integral multiple of the wavelength and the circumference of the structure body. An ultrasonic cavitation cleaning method, characterized in that a circumferential bubble is generated on the inner surface of the structure by adjusting circumferential lengths to be equal to each other to generate circumferential resonances.
前記構造体の内表面における超音波の圧力振幅の大きさが、該構造体内部の液体の圧力と飽和蒸気圧力との差よりも大きくなるように調整することを特徴とする請求項1又は3又は6又は8記載の超音波キャビテーション洗浄方法。   4. The pressure amplitude of the ultrasonic wave on the inner surface of the structure is adjusted so as to be larger than the difference between the pressure of the liquid inside the structure and the saturated vapor pressure. Or the ultrasonic cavitation washing | cleaning method of 6 or 8. 前記構造体の内表面における超音波の圧力振幅が、予め前記構造体に入射した超音波の入射波の圧力振幅と、入射した超音波の前記構造体内表面での反射波の圧力振幅との大きさの差に基づいて算出した超音波透過率を乗じた値であることを特徴とする請求項9記載の超音波キャビテーション洗浄方法。   The pressure amplitude of the ultrasonic wave on the inner surface of the structure is larger than the pressure amplitude of the incident wave of the ultrasonic wave incident on the structure in advance and the pressure amplitude of the reflected wave of the incident ultrasonic wave on the surface of the structure. The ultrasonic cavitation cleaning method according to claim 9, wherein the ultrasonic cavitation cleaning method is a value obtained by multiplying the ultrasonic transmittance calculated based on the difference in thickness.
JP2009232301A 2009-10-06 2009-10-06 Washing method using ultrasonic cavitation Withdrawn JP2011078894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232301A JP2011078894A (en) 2009-10-06 2009-10-06 Washing method using ultrasonic cavitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232301A JP2011078894A (en) 2009-10-06 2009-10-06 Washing method using ultrasonic cavitation

Publications (1)

Publication Number Publication Date
JP2011078894A true JP2011078894A (en) 2011-04-21

Family

ID=44073538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232301A Withdrawn JP2011078894A (en) 2009-10-06 2009-10-06 Washing method using ultrasonic cavitation

Country Status (1)

Country Link
JP (1) JP2011078894A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406306A (en) * 2013-08-23 2013-11-27 江苏星马力科技有限公司 Novel homogeneous self-cleaning material feeding nozzle device
CN103831270A (en) * 2014-03-19 2014-06-04 中国科学院声学研究所 Ultrasonic cavitation intensifying device and ultrasonic cavitation intensifying method
CN104128328A (en) * 2014-07-24 2014-11-05 中国科学院声学研究所 Jetting and nucleus supplementing ultrasonic cavitation device and method
JP2016515469A (en) * 2013-03-15 2016-05-30 ドミニオン エンジニアリング, インク.Dominion Engineering, Inc. Method and apparatus for cleaning containers and pipes using ultrasound
JP2017506156A (en) * 2014-02-24 2017-03-02 ザ・ボーイング・カンパニーThe Boeing Company System and method for surface cleaning
JP2017087205A (en) * 2015-11-11 2017-05-25 ゼネラル・エレクトリック・カンパニイ Ultrasonic cleaning system and method
KR20180103538A (en) * 2017-03-10 2018-09-19 서강대학교산학협력단 Controlling Method Of Bubble Volume And Controlling Method Of The Same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515469A (en) * 2013-03-15 2016-05-30 ドミニオン エンジニアリング, インク.Dominion Engineering, Inc. Method and apparatus for cleaning containers and pipes using ultrasound
CN103406306A (en) * 2013-08-23 2013-11-27 江苏星马力科技有限公司 Novel homogeneous self-cleaning material feeding nozzle device
JP2017506156A (en) * 2014-02-24 2017-03-02 ザ・ボーイング・カンパニーThe Boeing Company System and method for surface cleaning
CN103831270A (en) * 2014-03-19 2014-06-04 中国科学院声学研究所 Ultrasonic cavitation intensifying device and ultrasonic cavitation intensifying method
CN104128328A (en) * 2014-07-24 2014-11-05 中国科学院声学研究所 Jetting and nucleus supplementing ultrasonic cavitation device and method
JP2017087205A (en) * 2015-11-11 2017-05-25 ゼネラル・エレクトリック・カンパニイ Ultrasonic cleaning system and method
US10018113B2 (en) 2015-11-11 2018-07-10 General Electric Company Ultrasonic cleaning system and method
US11286849B2 (en) 2015-11-11 2022-03-29 General Electric Company Ultrasonic cleaning system and method
KR20180103538A (en) * 2017-03-10 2018-09-19 서강대학교산학협력단 Controlling Method Of Bubble Volume And Controlling Method Of The Same
KR101950569B1 (en) * 2017-03-10 2019-02-20 서강대학교산학협력단 Controlling Method Of Bubble Volume And Controlling Method Of The Same
US11406950B2 (en) 2017-03-10 2022-08-09 Sogang University Research Foundation Bubble volume control method and bubble volume controlling apparatus

Similar Documents

Publication Publication Date Title
JP2011078894A (en) Washing method using ultrasonic cavitation
US6290778B1 (en) Method and apparatus for sonic cleaning of heat exchangers
EP2969271B1 (en) Ultrasonically cleaning vessels and pipes
KR101181002B1 (en) Segmental ultrasonic cleaning equipment for removing the scale and sludge on the top of tube-sheet in a heat exchanger
CN103959055B (en) Fouling reduction device and method
EP1200789B1 (en) An ultrasonic cleaning method
KR101033010B1 (en) Ultrasonic scale prevention device with ultrasonic generator and transducer as one structure device
KR20120108012A (en) Apparatus and method for ultrasonically cleaning industrial components
JP2008062162A (en) Cleaning method and device
US20180238646A1 (en) Methods For Negating Deposits Using Cavitation Induced Shock Waves
JP2022536055A (en) System and method for cleaning equipment
KR20110005178A (en) Ultrasonic piping cleaner
JP5061886B2 (en) In-place cleaning equipment for piping lines
WO2007074780A1 (en) Atomic reactor water supply piping structure and ultrasonic flowmeter system
Lais et al. Application of high power ultrasonics for fouling removal in submerged structures
KR101801927B1 (en) Non-separable cleaning apparatus for plate type heat exchanger with easy transfer of ultrasonic waves
CN206868731U (en) A kind of welding wire ultrasonic wave water washing groove
RU2779101C1 (en) Heat exchange boiler and method for ultrasonic scale deposit removal in a heat exchange boiler
JP5775430B2 (en) Reactor vibration monitoring apparatus and reactor vibration monitoring method
Mohammadi et al. Improving the Descaling Rate of an In-situ Ultrasonic Fouling Removal Method for Industrial Water-filled Pipelines
Lais The generation of cavitation for the removal of fouling on submerged structures using high power ultrasonic transducers
RU2173826C1 (en) Method of cleaning the surfaces from contaminations
TW201521889A (en) Fouling reduction device and method
JP2022078147A (en) Ultrasonic shower washing device
JP2013111566A (en) Ultrasonic washing device and method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110422

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108