JP2011077764A - 多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法 - Google Patents

多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法 Download PDF

Info

Publication number
JP2011077764A
JP2011077764A JP2009226271A JP2009226271A JP2011077764A JP 2011077764 A JP2011077764 A JP 2011077764A JP 2009226271 A JP2009226271 A JP 2009226271A JP 2009226271 A JP2009226271 A JP 2009226271A JP 2011077764 A JP2011077764 A JP 2011077764A
Authority
JP
Japan
Prior art keywords
image
information
multidimensional
multidimensional image
feature region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009226271A
Other languages
English (en)
Inventor
Hiroshi Tanabe
泰士 田辺
Sukekazu Kameyama
祐和 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009226271A priority Critical patent/JP2011077764A/ja
Publication of JP2011077764A publication Critical patent/JP2011077764A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Cameras In General (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

【課題】コンパクトな設計のIP画像取得装置で複雑な立体形状を有する被写体を撮影した場合であっても高精度なIP画像を得ることができる多次元画像処理装置および方法を提供することにある。
【解決手段】インテグラルフォトグラフィ画像取得手段で取得された多次元画像から予め定められた特徴的な被写体が含まれる特徴領域を検出し、予め定められた特徴的な被写体に対する多次元画像よりも高精度な複数種類のモデルの画像情報を格納したモデルデータベースから特徴領域に対応するモデルの画像情報を抽出して特徴領域に対する合成画像情報を生成し、多次元画像における特徴領域を合成画像情報により補完する。
【選択図】図1

Description

本発明は、インテグラルフォトグラフィ画像取得装置により取得された多次元画像の画像処理を行い、多次元画像の画質を向上させる多次元画像処理装置および方法に関するものである。
また、本発明は、このような多次元画像処理装置を用いて多次元画像を出力する多次元画像撮影システム、並びに、出力された多次元画像印刷物にも関している。
近年、立体画像への関心が高まるにつれ、被写体の3次元情報、距離情報、焦点深度情報など、様々な情報を得られるインテグラルフォトグラフィ(IP)が注目されている。
IPは、例えば特許文献1に開示されているように、人の左右の目に対する被写体の視差を、マイクロレンズアレイを利用して発生させることで立体画像を得ることができる。マイクロレンズアレイとは、多数のマイクロレンズを格子状に配列したものであり、各マイクロレンズに対応してそれぞれフォトセンサの複数の画素が配置されている。IPでは、被写体からの光が様々な角度で各マイクロレンズを介して複数の画素のそれぞれに入射するため、各画素では対応する各方向からの被写体を記録することができる。
このように、IPは、実際に被写体から出射される光の状態と同等のものを記録することで立体画像に関する様々な情報を取得し記録することができるが、特にIP画像取得装置は光学設計の精密性が要求されるため、コスト低減の目的で、よりコンパクトな設計が求められ、例えば、各マイクロレンズに対応するフォトセンサの画素数を削減する等の手段が採られていた。
特開2002−199417号公報
しかしながら、各マイクロレンズに対応するフォトセンサの画素数を削減すると、十分な奥行き情報を取得することができなくなり、特に複雑な立体形状を有する被写体を撮影した場合、奥行き情報が不足して平面的な画像となるおそれがある。
本発明は、このような従来の問題点を解消するためになされたもので、コンパクトな設計のIP画像取得装置で複雑な立体形状を有する被写体を撮影した場合であっても高精度なIP画像を得ることができる多次元画像処理装置および方法を提供することを目的とする。
また、本発明は、このような多次元画像処理装置を用いて多次元画像を出力する多次元画像撮影システム、並びに、出力された多次元画像印刷物を提供することも目的としている。
上記目的を達成するために、本発明に係る多次元画像処理装置は、インテグラルフォトグラフィ画像取得手段により取得された多次元画像に対して画像処理を行う多次元画像処理装置であって、前記インテグラルフォトグラフィ画像取得手段で取得された多次元画像から予め定められた特徴的な被写体が含まれる特徴領域を検出する特徴領域検出手段と、前記予め定められた特徴的な被写体に対する前記多次元画像よりも高精度な複数種類のモデルの画像情報を格納するモデルデータベースと、前記特徴領域検出手段により検出された前記特徴領域に対応するモデルの画像情報を前記モデルデータベースから抽出して前記特徴領域に対する合成画像情報を生成する合成画像生成手段と、前記多次元画像における前記特徴領域を前記合成画像生成手段で生成された合成画像情報により補完する補完手段とを有することを特徴とする多次元画像処理装置を提供するものである。
ここで、前記多次元画像は、位置情報および方向情報を含み、前記モデルデータベースは、前記多次元画像の方向情報よりも高精度のモデルの方向情報を格納し、前記合成画像生成手段は、方向情報からなる合成画像情報を生成することができる。
また、前記多次元画像は、位置情報および方向情報を含み、前記モデルデータベースは、前記多次元画像の位置情報よりも高精度のモデルの位置情報を格納し、前記合成画像生成手段は、位置情報からなる合成画像情報を生成することもできる。
また、前記多次元画像は、位置情報および方向情報に加えてさらに色情報を含み、前記モデルデータベースは、前記多次元画像の色情報よりも高精度のモデルの色情報を格納し、前記合成画像生成手段は、色情報からなる合成画像情報を生成してもよい。
また、前記多次元画像は、位置情報および方向情報に加えてさらに階調レンジ情報を含み、前記モデルデータベースは、前記多次元画像の階調レンジ情報よりも高精度のモデルの階調レンジ情報を格納し、前記合成画像生成手段は、階調レンジ情報からなる合成画像情報を生成することもできる。
また、前記多次元画像は、位置情報および方向情報に加えてさらに焦点深度情報を含み、前記モデルデータベースは、前記多次元画像の焦点深度情報よりも高精度のモデルの焦点深度情報を格納し、前記合成画像生成手段は、焦点深度情報からなる合成画像情報を生成してもよい。
また、前記特徴領域検出手段は、前記多次元画像から複数の特徴領域を検出し、前記合成画像生成手段は、前記特徴領域検出手段で検出された前記複数の特徴領域に対応するモデルの画像情報を順次前記モデルデータベースから抽出して前記複数の特徴領域に対する複数の合成画像情報を生成し、前記補完手段は、前記多次元画像における前記複数の特徴領域を前記合成画像生成手段で生成された前記複数の合成画像情報によりそれぞれ補完するように構成することもできる。
また、本発明に係る多次元画像撮影システムは、上記のいずれかに記載の多次元画像処理装置と、多次元画像を取得して前記多次元画像処理装置に出力するインテグラルフォトグラフィ画像取得手段と、前記多次元画像処理装置により画像処理された前記多次元画像を出力する出力部とを有するものである。
ここで、前記インテグラルフォトグラフィ画像取得手段は、それぞれレンズとフォトセンサを有すると共に格子状に配列された複数のカメラを備えていることが好ましい。
また、前記インテグラルフォトグラフィ画像取得手段として、マイクロレンズアレイを有するカメラを用いることもできる。この場合、前記カメラは、前記マイクロレンズアレイの前方に配置されたメインレンズをさらに備えていてもよい。
また、前記インテグラルフォトグラフィ画像取得手段は、レンズとフォトセンサを有するカメラを備え、前記カメラの位置を移動させて連続的に撮影するようにしてもよい。
また、前記出力部として、プリンタを使用することができる。
また、本発明に係る多次元画像印刷物は、上記の多次元画像撮影システムの前記出力部として用いられたプリンタにより出力されたものである。
また、本発明に係る多次元画像処理方法は、インテグラルフォトグラフィ画像取得手段により取得された多次元画像に対して画像処理を行う多次元画像処理方法であって、前記インテグラルフォトグラフィ画像取得手段で取得された多次元画像から予め定められた特徴的な被写体が含まれる特徴領域を検出し、前記予め定められた特徴的な被写体に対する前記多次元画像よりも高精度な複数種類のモデルの画像情報を格納するモデルデータベースから検出された前記特徴領域に対応するモデルの画像情報を抽出して前記特徴領域に対する合成画像情報を生成し、前記多次元画像における前記特徴領域を前記合成画像情報により補完する方法である。
本発明によれば、コンパクトな設計のIP画像取得装置で複雑な立体形状を有する被写体を撮影した場合であっても高精度なIP画像を得ることができる。
本発明の実施形態1に係るIP画像撮影システムの構成を表すブロック図である。 実施形態1で用いられたIP画像取得装置を示す側面図である。 マイクロレンズアレイを示す正面図である。 特徴領域方向合成画像生成部のブロック構成を示す図である。 パラメータ格納部が格納しているパラメータを示す図である。 実施形態2に係るIP画像撮影システムの構成を表すブロック図である。 実施形態3に係るIP画像撮影システムの構成を表すブロック図である。 実施形態4に係るIP画像撮影システムの構成を表すブロック図である。 実施形態5に係るIP画像撮影システムの構成を表すブロック図である。 実施形態6で用いられたIP画像取得装置を示す側面図である。 実施形態6の変形例で用いられたIP画像取得装置を示す側面図である。 実施形態6の他の変形例で用いられたIP画像取得装置を示す側面図である。
以下に、添付の図面に示す好適な実施形態に基づいて、この発明を詳細に説明する。
実施形態1
図1に、本発明の実施形態1に係るIP画像撮影システムの構成を示す。IP画像撮影システムは、IP画像取得装置1と、IP画像処理装置2と、IP画像出力装置3とを有して構成される。
IP画像取得装置1は、マイクロレンズアレイを利用したカメラからなり、カメラから見た被写体各部の2次元的な位置に関する位置情報と被写体各部の奥行きに関する方向情報とを有するIP画像を取得することができる。
IP画像処理装置2は、IP画像取得装置1と接続されており、IP画像取得装置1から入力された位置情報から特徴的な画像領域(特徴領域)を検出する特徴領域検出部4を有する。特徴領域とは、撮影画像における人物、車両など、予め定められた特徴的な被写体が含まれる、特定の形状および色等を有する領域である。特徴領域の検索は、形状や色などの各特徴領域に特徴的なパターンに基づいて行い、例えば、検出する特徴領域が人物の場合であれば、顔あるいは目の形状パターンなどを利用して検索を行う。
特徴領域検出部4は、特徴領域方向合成画像生成部5と接続されている。特徴領域方向合成画像生成部5には方向モデルデータベース6が接続されている。
方向モデルデータベース6には、予め定められた特徴的な被写体に対する複数種類の方向情報モデルが格納されている。これらの方向情報モデルは、IP画像取得装置1により取得されるIP画像の方向情報よりも高精度な情報を含んでいる。
特徴領域方向画像生成部5は、特徴領域検出部4から受信した特徴領域に基づいて方向モデルデータベース6に格納された多種類の方向モデルを検索し、特徴領域に最も相関性の高い方向モデルを抽出する。
特徴領域方向合成画像生成部5は、出力用IP画像生成部7と接続されている。出力用IP画像生成部7には、IP画像取得装置1により取得されたIP画像の位置情報および方向情報が入力されると共に特徴領域方向合成画像生成部5で抽出された方向モデルが入力されており、特徴領域検出部4で検出された特徴領域を、特徴領域方向合成画像生成部5から入力した方向モデルで補完することにより出力用のIP画像情報を生成する。ここで、方向モデルデータベース6に格納されている多種類の方向モデルは、それぞれIP画像取得装置1により得られる方向情報よりも高精度な方向情報を有するものとする。
出力用IP画像生成部7は、IP画像出力装置3と接続されている。IP画像出力装置3は、出力用IP画像生成部7により補完されたIP画像情報を用いてIP画像を表示、印刷等の形式で出力するものであり、例えば、液晶ディスプレイやプリンタ等で構成される。
図2にIP画像取得装置1の構成を示す。IP画像取得装置1は、メインレンズ11と、マイクロレンズアレイ12と、フォトセンサ13とを有して構成される。メインレンズ11は、被写体Sに対向して配置され、被写体Sからの光を集光する。マイクロレンズアレイ12は、メインレンズ11に対して被写体Sからの光の進行方向の下流側に位置し、図3に示すように、例えば(s×t)個のマイクロレンズMが格子状に配置されたものである。フォトセンサ13は、被写体Sに対してマイクロレンズアレイ12の背部に位置し、多数の画素を有している。これにより、メインレンズ11を透過した被写体Sからの光は、各マイクロレンズMにより、フォトセンサ13の各画素に集光される。図3に示すように、フォトセンサ13は各マイクロレンズMに対応して(u×v)個の画素を有するものとする。
このようなIP画像取得装置1により、マイクロレンズMの個数(s×t)に応じた位置情報(s,t)および各マイクロレンズMに対応する画素数(u×v)に応じた方向情報(u,v)を有するIP画像を得ることができる。
次に、図1に示したIP画像撮影システムの動作を説明する。
まず、IP画像取得装置1により被写体Sが撮影され、図2に示すように、被写体Sからの光がメインレンズ11を介してマイクロレンズアレイ12の各マイクロレンズMに入射する。各マイクロレンズMには、様々な角度で被写体Sからの光が入射しており、それぞれの光がこのマイクロレンズMに対応するフォトセンサ13の(u×v)個の画素のいずれかに入射する。このようにしてフォトセンサ13の各画素が対応する方向から被写体Sを記録することで、位置情報(s,t)および方向情報(u,v)を有するIP画像がIP画像取得装置1によって取得される。
IP画像取得装置1で取得されたIP画像に含まれる位置情報(s,t)は、IP画像処理装置2の特徴領域検出部4に入力され、特徴領域検出部4により位置情報(s,t)において特定の形状および色等を有する領域が特徴領域として検出される。特徴領域検出部4は、検出する特徴領域の特徴的なパターン(人物を検出する場合における顔の形状パターンなど)に予め定められた一致度以上に一致する領域の検索を行う。特徴領域検出部4において位置情報(s,t)に含まれる特徴領域が検出されると、位置情報(s,t)に含まれる特徴領域の画素位置の情報および特徴領域の特徴的なパターンの情報などが特徴領域方向合成画像生成部5に出力される。
特徴領域方向合成画像生成部5は、特徴領域検出部4から受信した特徴領域の情報に基づいて方向モデルデータベース6の検索を行う。方向モデルデータベース6には予め取得された多種類の方向モデルが格納されており、特徴領域方向合成画像生成部5は、特徴領域のパターンに最も相関性の高い方向モデルを検索し抽出する。特徴領域方向合成画像生成部5により抽出された方向モデルと位置情報(s,t)に含まれる特徴領域の画素位置の情報は、出力用IP画像生成部7に出力される。
出力用IP画像生成部7は、位置情報(s,t)に含まれる特徴領域の画素位置の情報に基づいて、IP画像取得装置1により取得されたIP画像情報の特徴領域における方向情報(u,v)を特徴領域方向合成画像生成部5により抽出された方向モデルで入れ替えることでIP画像情報を補完して出力用のIP画像情報を生成する。
ここで、各方向モデルは、IP画像取得装置1により得られる方向情報(u,v)よりも高精度な方向情報(u’,v’)、すなわち、IP画像取得装置1における各マイクロレンズMに対応する画素数(u×v)よりも多数(u’×v’)の画素による画像情報となっているため、IP画像取得装置1で撮影された被写体が複雑な立体形状を有するものであっても高精度なIP画像情報を得ることができる。
出力用IP画像生成部7により生成された出力用IP画像情報はIP画像出力装置3に出力され、IP画像がディスプレイに表示またはプリンタにより印刷物として印刷される。
本実施形態のIP画像撮影システムによれば、IP画像取得装置1で取得されたIP画像を高精度な方向情報を有するモデルを用いて補完することで、より精細な方向情報(奥行き情報)を有する高精度なIP画像を得ることができる。
これにより、一般写真用途に用いてIP画像表示を行う場合、通常では人物の顔の皮膚の陰翳を再現できる十分な立体感が得られないが、本実施形態の手法を適用すればその場にその人物が存在するかのような皮膚の質感を再現した立体表現を得ることができる。
なお、特徴領域検出部4は、IP画像取得装置1により取得されたIP画像に複数種類の特徴領域が含まれる場合、各特徴領域に特徴的なパターンに基づいてこれら複数種類の特徴領域を順次検出してもよい。
また、特徴領域検出部4が検出する特徴領域は、その領域全体における一部分であってもよい。例えば、人物の頭部または人物の手等の人体の一部の部位、あるいは人体以外の生体の少なくとも一部の部位を含む領域を、特徴領域として検出することができる。なお、生体とは、生体内部の血管等のように、生体の内部に存在する特定の組織を含む。IP画像撮影システムが内視鏡システムである場合など、生体内部の画像を処理する場合には、生体の内部に存在する特定の組織として、生体内部の腫瘍組織を例示することもできる。特徴領域検出部4は、生体の他にも、貨幣、キャッシュカード等のカード、車輌、あるいは車両のナンバープレートが撮像された領域を特徴領域として検出してもよい。
また、特徴領域検出部4は、テンプレートマッチング等によるパターンマッチングの他にも、例えば特開2007−188419号公報に記載された機械学習等による学習結果に基づいて特徴領域を検出してもよい。例えば、予め定められた被写体の画像から抽出された画像特徴量と、予め定められた被写体以外の被写体の画像から抽出された画像特徴量とを用いて、予め定められた被写体の画像から抽出された画像特徴量の特徴を学習する。そして、特徴領域検出部4は、当該学習された特徴に適合する特徴を有する画像特徴量が抽出された領域を、特徴領域として検出してもよい。
また、特徴領域検出部4は、特願2008−078641号に記載された方法で特徴領域を検出してもよい。例えば、特徴領域検出部4は、検出対象の位置画像(s,t)を所定比率で間引くことにより、または当該所定比率で段階的に間引くことより生成した、一枚以上の間引位置画像(s,t)に基づいて抽出過程を繰り返すことで特徴領域を検出してもよい。これにより、複数の各抽出過程において順次に特徴領域の存在の有無が選別されていき、特徴領域をより高精度に検出することができる。また、小さいサイズの画像で特徴領域の粗ぶるいが行なわれるので、より高速に特徴領域を検出することができる。
また、特徴領域検出部4は、特願2008−078636号に記載された方法で特徴領域を検出してもよい。例えば、特徴領域検出部4は、特徴領域の輪郭および内部などの様々な特徴を表わすパターンを組み合わせてもよい。これにより、例えば輪郭の形状だけによる抽出と比べて、高精度に特徴領域を抽出することができる。
なお、特徴領域方向合成画像生成部5および出力用IP画像生成部7は、特願2008−099748号に記載された方法でIP画像情報を生成してもよい。例えば、特徴領域方向合成画像生成部5がIP画像における被写体Sの部位毎に方向モデルを抽出し、出力用IP画像生成部7が部位毎に選択された方向モデルと被写体Sとの差分情報に基づいて方向モデルを変更することによって、IP画像情報を生成してもよい。この時、方向モデルに対して変更することが許容される変更量の許容範囲内で方向モデルを変更することにより、IP画像情報の生成を行う。
また、特徴領域方向合成画像生成部5において、被写体Sとの相関性が許容範囲内にない方向モデルが複数抽出された場合、出力用IP画像生成部7は複数の方向モデルを用いてIP画像情報を補完してもよい。例えば、抽出された複数の方向モデルを平均化した方向情報を用いてIP画像情報を補完することができる。
また、特徴領域方向合成画像生成部5は特願2008−099748号に記載された方法でIP画像情報を補完してもよい。図4に、特徴領域方向合成画像生成部5において方向モデルを補完する方向モデル補完部70のブロック構成の一例を示す。方向モデル補完部70は、パラメータ格納部71、属性特定部72、パラメータ選択部73、および画像生成部74を含む。
パラメータ格納部71は、方向モデルデータベース6に格納される方向モデルについての複数の属性にそれぞれ対応づけて、それぞれの属性の方向モデルをそれぞれ補完する複数の補完処理パラメータを格納している。属性特定部72は、特徴領域検出部4から受信した特徴領域内の被写体の属性を特定する。パラメータ選択部73は、属性特定部72により特定された属性により適合する属性に対応づけてパラメータ格納部71が格納している複数の補完処理パラメータをより優先して選択する。画像生成部74は、パラメータ選択部73により選択された複数の補完処理パラメータをともに用いて、特徴領域の情報に基づいて方向モデルデータベース6を検索し抽出された方向モデルを補完することができる。
ここで、属性としては、被写体の向きなど、被写体の状態を例示することができる。すなわち、パラメータ格納部71は、方向モデルデータベース6に格納されている方向モデルの状態を示す複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納している。属性特定部72は、特徴領域検出部4で検出された特徴領域に含まれる被写体の状態を特定する。
被写体の状態としては、特徴領域に含まれる被写体の向きを例示することができる。すなわち、パラメータ格納部71は、方向モデルデータベース6に格納される方向モデルの向きを示す複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納している。属性特定部72は、特徴領域に含まれる被写体の向きを特定する。被写体の向きとは、被写体の一例としての人物の顔の向きであってもよい。すなわち、パラメータ格納部71は、方向モデルデータベース6に格納される方向モデルとしての被写体の向きを示す複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納している。属性特定部72は、特徴領域に含まれる人物の顔の向きを特定する。
その他、属性とは、被写体の種別であってもよい。すなわち、パラメータ格納部71は、方向モデルデータベース6に格納される方向モデルとしての被写体の種別を示す複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納している。属性特定部72は、特徴領域に含まれる被写体の種別を特定する。
ここで、被写体の種別とは、被写体としての人物の性別であってもよい。すなわち、パラメータ格納部71は、方向モデルデータベース6に格納される人物の性別を示す複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納している。属性特定部72は、特徴領域に含まれる人物の性別を特定する。他にも、被写体の種別とは、人物の年齢であってもよい。すなわち、パラメータ格納部71は、方向モデルデータベース6に格納される人物の年齢を示す複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納している。そして、属性特定部72は、特徴領域に含まれる人物の年齢を特定する。その他、被写体の種別として、表情などを例示することができる。
被写体の向き、被写体の種別の他、被写体の属性としては、人物の表情、人物のしぐさ、人物の姿勢、人物の人種、人物が着用している着用物、照明状態などを例示することができる。着用物としては、めがね、サングラス、マスク、帽子など、人物が頭部に着用しているものを例示することができる。パラメータ格納部71は、これら各種の属性の少なくともいずれかを含む複数の属性にそれぞれ対応づけて、複数の補完処理パラメータを格納してもよい。この場合、属性特定部72は、特徴領域に含まれる人物の対応する属性を特定する。
図5は、パラメータ格納部71が格納しているパラメータの一例をテーブル形式で示したものである。パラメータ格納部71は、人物の顔用の補完処理パラメータである特定パラメータA0、A1・・・を、顔の向きに対応づけて格納している。特定パラメータA0、A1は、対応する顔の向きの画像を訓練画像とした事前学習により、予め算出されている。
ここで、注目画素の周辺画素の画素値を加重加算することによる補完処理を例に挙げて、事前学習による特定パラメータAの算出処理を説明する。ここでは、注目画素の画素値yが、n個の周辺画素の画素値x(ただし、i=1〜n)の加重加算により算出されると仮定する。すなわち、y=Σ(w)と仮定する。ここで、Σは、iにわたる加算を示している。wは、周辺画素の画素値xに対する加重係数であり、加重係数wが事前学習により算出されるべき特定パラメータAとなる。
特定の向きの顔が撮像されたm個の顔画像を訓練画像として用いるものとする。k番目(ただし、k=1〜m)の訓練画像の注目画素の画素値をyとすると、y=Σwkiで表されることになる。この場合、加重係数wは、最小二乗法などの演算処理によって算出することができる。例えば、k番目の成分eがe=y−Σ(wki)で表されるベクトルの2乗を実質的に最小化するwを、最小二乗法などの演算処理より算出することができる。上記の特定パラメータの算出処理を、複数の顔向きの顔画像について行うことで、各顔向きに対応する特定パラメータAを算出することができる。
実施形態2
図6に実施形態2に係るIP画像撮影システムの構成を示す。このIP画像撮影システムでは、図1に示した実施形態1のシステムにおけるIP画像処理装置2に代えてIP画像処理装置21が用いられている。IP画像処理装置21は、実施形態1のIP画像処理装置2において、特徴領域方向合成画像生成部5の代わりに特徴領域位置合成画像生成部51を特徴領域検出部4に接続すると共に方向モデルデータベース6の代わりに位置モデルデータベース61を特徴領域位置合成画像生成部51に接続したものである。すなわち、特徴領域検出部4と位置モデルデータベース61の双方に特徴領域位置合成画像生成部51が接続され、特徴領域位置合成画像生成部51に出力用IP画像生成部7が接続されている。
位置モデルデータベース61には、予め定められた特徴的な被写体に対する複数種類の位置モデルが格納されており、これらの位置モデルは、IP画像取得装置1により得られる位置情報(s,t)よりも高精度な位置情報(s’,t’)、すなわち、IP画像取得装置1におけるマイクロレンズMの個数(s×t)よりも多数(s’×t’)のマイクロレンズによる画像情報となっている。
実施形態1と同様にして特徴領域検出部4により特徴領域が検出されると、特徴領域位置合成画像生成部51は、特徴領域検出部4から受信した特徴領域の情報に基づいて位置モデルデータベース61から特徴領域のパターンに最も相関性の高い位置モデルを検索し抽出する。出力用IP画像生成部7は、IP画像取得装置1により取得されたIP画像情報の特徴領域における位置情報(s,t)を特徴領域位置合成画像生成部51により抽出された位置モデルで入れ替えることでIP画像情報を補完して出力用のIP画像情報を生成する。そして、出力用IP画像情報を用いてIP画像出力装置3からIP画像が出力される。
この実施形態2によれば、IP画像取得装置1で取得されたIP画像を高精度な位置情報を有するモデルを用いて補完することで、特徴領域の解像度を向上させた画像等、より精細な位置情報を有する高精度なIP画像を得ることができる。
また、解像度の小さな監視カメラを用いて、例えば凶器の有無を探知しようとする場合において、実施形態2によれば、犯人の所持するナイフなど金属製の凶器が視野内に存在すれば、位置情報によらず方向情報を用い、その変化率の大きい特徴を用いてナイフの位置を特定し、その位置に位置モデルをフィッティングしナイフ形状の合成位置情報を生成することができる。さらに、ナイフの存在位置を特定することで、ナイフを持った犯人の位置を容易に特定することもできる。また、逆に反射特性を用いて鏡面反射成分を特定する際にこれがノイズとなる場合、位置情報から不必要な照明情報成分として取り除くこともできる。これは他の実施形態でも同様である。
実施形態3
図7に実施形態3に係るIP画像撮影システムの構成を示す。このIP画像撮影システムでは、図1に示した実施形態1のシステムにおけるIP画像処理装置2に代えてIP画像処理装置22が用いられている。IP画像処理装置22は、実施形態1のIP画像処理装置2において、特徴領域方向合成画像生成部5の代わりに特徴領域色合成画像生成部52を特徴領域検出部4に接続すると共に方向モデルデータベース6の代わりに色モデルデータベース62を特徴領域色合成画像生成部52に接続したものである。すなわち、特徴領域検出部4と色モデルデータベース62の双方に特徴領域色合成画像生成部52が接続され、特徴領域色合成画像生成部52に出力用IP画像生成部7が接続されている。
この実施形態3においては、IP画像取得装置1で取得されたIP画像が位置情報および方向情報に加えてさらに色情報としてマルチスペクトル情報を含んでいるものとする。
色モデルデータベース62には、予め定められた特徴的な被写体に対する複数種類の色モデル(マルチスペクトル情報に基づくモデル)が格納されており、これらの色モデルは、IP画像取得装置1により得られるIP画像の色情報よりも高精度な色情報から構成されている。
実施形態1と同様にして特徴領域検出部4により特徴領域が検出されると、特徴領域色合成画像生成部52は、特徴領域検出部4から受信した特徴領域の情報に基づいて色モデルデータベース62から特徴領域に最も相関性の高い色モデルを検索し抽出する。出力用IP画像生成部7は、IP画像取得装置1により取得されたIP画像の特徴領域における色情報を特徴領域色合成画像生成部52により抽出された色モデルで入れ替えることでIP画像情報を補完して出力用のIP画像情報を生成する。そして、出力用IP画像情報を用いてIP画像出力装置3からIP画像が出力される。
この実施形態3によれば、IP画像取得装置1で取得されたIP画像を高精度な色情報からなるモデルを用いて補完することで、例えば、特徴領域をより自然な色彩で表した画像等、より精細な色情報を有する高精度なIP画像を得ることができる。
例えば、内視鏡を用いる場合、通常ではRGBのカラーの3種類の撮像素子を用いるために、特定の組織の血中ヘモグロビンの吸収量など、短波長域の分光情報を算出することは難しい。これに対して、実施形態3によれば、足りないスペクトル情報について、位置・方向情報を用いて組織を認識し、その組織の分光吸収スペクトルモデルを当てはめることにより、血中ヘモグロビンの波長域の吸収量を合成して、見積もることができる。
実施形態4
図8に実施形態4に係るIP画像撮影システムの構成を示す。このIP画像撮影システムでは、図1に示した実施形態1のシステムにおけるIP画像処理装置2に代えてIP画像処理装置23が用いられている。IP画像処理装置23は、実施形態1のIP画像処理装置2において、特徴領域方向合成画像生成部5の代わりに特徴領域階調レンジ合成画像生成部53を特徴領域検出部4に接続すると共に方向モデルデータベース6の代わりに階調レンジモデルデータベース63を特徴領域階調レンジ合成画像生成部53に接続したものである。すなわち、特徴領域検出部4と階調レンジモデルデータベース63の双方に特徴領域階調レンジ合成画像生成部53が接続され、特徴領域階調レンジ合成画像生成部53に出力用IP画像生成部7が接続されている。
この実施形態4においては、IP画像取得装置1で取得されたIP画像が位置情報および方向情報に加えてさらに階調レンジ情報を含んでいるものとする。
階調レンジモデルデータベース63には、予め定められた特徴的な被写体に対する複数種類の階調レンジモデルが格納されており、これらの階調レンジモデルは、IP画像取得装置1により得られるIP画像の階調レンジ情報よりも高精度な階調レンジ情報から構成されている。
実施形態1と同様にして特徴領域検出部4により特徴領域が検出されると、特徴領域階調レンジ合成画像生成部53は、特徴領域検出部4から受信した特徴領域の情報に基づいて階調レンジモデルデータベース63から特徴領域に最も相関性の高い階調レンジモデルを検索し抽出する。出力用IP画像生成部7は、IP画像取得装置1により取得されたIP画像の特徴領域における階調レンジ情報を特徴領域階調レンジ合成画像生成部53により抽出された階調レンジモデルで入れ替えることでIP画像情報を補完して出力用のIP画像情報を生成する。そして、出力用IP画像情報を用いてIP画像出力装置3からIP画像が出力される。
この実施形態4によれば、IP画像取得装置1で取得されたIP画像を高精度な階調レンジ情報からなるモデルを用いて補完することで、より精細な階調レンジ情報を有する高精度なIP画像を得ることができる。したがって、例えば、被写体に応じて複数のND(減光)フィルタを使い分けてIP画像取得装置1によりIP画像を取得した場合でも、全体にわたって適切な階調で表された画像が得られる。
例えば、一般写真において、黒いタキシードの服装を撮影する場合は高ダイナミックレンジの輝度情報が必要であるが、撮像装置のダイナミックレンジが不足し十分な輝度情報が取得できず、結果としてディスプレイやプリントなどの出力手段上で十分な階調再現ができない場合が多い。これに対して、実施形態4によれば、例えば濃度の異なる複数種類のNDフィルタを各個眼に用いて、異なるダイナミックレンジの輝度情報を取得した場合において、それでも足りない輝度情報について、位置・方向情報を用いてタキシードを認識し、タキシード用の階調モデルを当てはめて再現することで、出力手段上で豊かな階調情報を有する階調再現が可能になる。
実施形態5
図9に実施形態5に係るIP画像撮影システムの構成を示す。このIP画像撮影システムでは、図1に示した実施形態1のシステムにおけるIP画像処理装置2に代えてIP画像処理装置24が用いられている。IP画像処理装置24は、実施形態1のIP画像処理装置2において、特徴領域方向合成画像生成部5の代わりに特徴領域焦点深度合成画像生成部54を特徴領域検出部4に接続すると共に方向モデルデータベース6の代わりに焦点深度モデルデータベース64を特徴領域焦点深度合成画像生成部54に接続したものである。すなわち、特徴領域検出部4と焦点深度モデルデータベース64の双方に特徴領域焦点深度合成画像生成部54が接続され、特徴領域焦点深度合成画像生成部54に出力用IP画像生成部7が接続されている。
この実施形態5においては、IP画像取得装置1で取得されたIP画像が位置情報および方向情報に加えてさらに焦点深度情報を含んでいるものとする。
焦点深度モデルデータベース64には、予め定められた特徴的な被写体に対する複数種類の焦点深度モデルが格納されており、これらの焦点深度モデルは、IP画像取得装置1により得られるIP画像の焦点深度情報よりも高精度な焦点深度情報から構成されている。
実施形態1と同様にして特徴領域検出部4により特徴領域が検出されると、特徴領域焦点深度合成画像生成部54は、特徴領域検出部4から受信した特徴領域の情報に基づいて焦点深度モデルデータベース64から特徴領域に最も相関性の高い焦点深度モデルを検索し抽出する。出力用IP画像生成部7は、IP画像取得装置1により取得されたIP画像の特徴領域における焦点深度情報を特徴領域焦点深度合成画像生成部54により抽出された焦点深度モデルで入れ替えることでIP画像情報を補完して出力用のIP画像情報を生成する。そして、出力用IP画像情報を用いてIP画像出力装置3からIP画像が出力される。
この実施形態5によれば、IP画像取得装置1で取得されたIP画像を高精度な焦点深度情報からなるモデルを用いて補完することで、例えば、特徴領域をよりシャープに、あるいは、よりソフトに表す等、より精細な焦点深度情報を有する高精度なIP画像を得ることができる。
例えば、顕微鏡で腫瘍細胞の撮影を行う場合について、通常では腫瘍細胞は空間的に広がるために焦点深度が不足し鮮明な画像を得ることができない。これに対して、実施形態5によれば、例えば焦点深度の異なる複数種類のマイクロレンズを各個眼に用いて、異なる焦点深度の情報を得る場合において、それでも足りない焦点深度情報について、特定の腫瘍細胞の位置・空間的な特徴を用いた奥行き情報に関する焦点深度モデルを当てはめて焦点深度情報を合成することにより、焦点深度の深い、ボケの少ない鮮明な画像を得ることができる。
実施形態6
上述した実施形態1で用いられたIP画像取得装置1は、メインレンズ11とマイクロレンズアレイ12とフォトセンサ13とを有していたが、これに限るものではなく、例えば、図10に示されるように、メインレンズ11を省略して、マイクロレンズアレイ12とフォトセンサ13のみから構成することもできる。この場合、マイクロレンズアレイ12の各マイクロレンズMによって被写体Sの像がフォトセンサ13上に形成される。このような構成としても、位置情報と方向情報とを有するIP画像を取得することができる。
また、図11に示されるように、それぞれレンズ14とフォトセンサ15とを有する複数のカメラ16を支持体17上に格子状に配列したカメラアレイをIP画像取得装置1として使用することもできる。例えば、各カメラ16のフォトセンサ15が数万〜数十万の画素を有し、これらの画素により被写体Sの位置情報を得ると共に、配列された複数のカメラ16により被写体Sの方向情報を得ることで、位置情報と方向情報とを有するIP画像を取得することができる。
さらに、図12に示されるように、レンズ14とフォトセンサ15とを有する1台のカメラ16を移動可能に構成したものをIP画像取得装置1として使用することもできる。カメラ16の位置を移動させて、このカメラ16により被写体Sを連続的に撮影することによっても、図11に示したカメラアレイと同様に位置情報と方向情報とを有するIP画像を取得することができる。
なお、実施形態1〜5のIP画像処理装置は、方向モデル、位置モデル、色モデル、階調レンジモデル、焦点深度モデルをそれぞれ独立して用いることで特徴領域の合成画像を生成しているが、これらのモデルの2つ以上を組み合わせて用いることで合成画像を生成してもよい。これにより、方向情報、位置情報、色情報、階調レンジ情報、焦点深度情報のうち複数の情報を高精度としたIP画像を得ることができる。
また、実施形態1〜6において、IP画像取得装置1の代わりに、単眼/多眼のレンズ特性を動的に切り替え可能なIP画像取得装置を用いることもできる。これにより、単眼カメラの単一方向情報しか得られないが高解像という特性と、多眼カメラの低解像であるが多方向情報が得られるという2状態の情報を組み合わせて検出することが可能となり、複数カメラで実現する場合と比べ、IPで行った方が、より小型で実現できる。
また、実施形態1〜5で示すIP画像の補完において、隠蔽領域が広い方向のモデル(特に隠蔽領域)は使わず、隠蔽領域の少ない方向のモデルを用いて補完することで、方向に寄らず一律に補完する場合に比べ、高精度のIP画像を生成することができる。
1 IP画像取得装置、2,21,22,23,24 IP画像処理装置、3 IP画像出力装置、4 特徴領域検出部、5 特徴領域方向合成画像生成部、6 方向モデルデータベース、7 出力用IP画像生成部、11 メインレンズ、12 マイクロレンズアレイ、13,15 フォトセンサ、14 レンズ、16 カメラ、17 支持体、51 特徴領域位置合成画像生成部、52 特徴領域色合成画像生成部、53 特徴領域階調レンジ合成画像生成部、54 特徴領域焦点深度合成画像生成部、61 位置モデルデータベース、62 色モデルデータベース、63 階調レンジモデルデータベース、64 焦点深度モデルデータベース、70 方向モデル補完部、71 パラメータ格納部、72 属性特定部、73 パラメータ選択部、74 画像生成部、S 被写体、M マイクロレンズ

Claims (15)

  1. インテグラルフォトグラフィ画像取得手段により取得された多次元画像に対して画像処理を行う多次元画像処理装置であって、
    前記インテグラルフォトグラフィ画像取得手段で取得された多次元画像から予め定められた特徴的な被写体が含まれる特徴領域を検出する特徴領域検出手段と、
    前記予め定められた特徴的な被写体に対する前記多次元画像よりも高精度な複数種類のモデルの画像情報を格納するモデルデータベースと、
    前記特徴領域検出手段により検出された前記特徴領域に対応するモデルの画像情報を前記モデルデータベースから抽出して前記特徴領域に対する合成画像情報を生成する合成画像生成手段と、
    前記多次元画像における前記特徴領域の情報を前記合成画像生成手段で生成された合成画像情報により補完する補完手段と
    を有することを特徴とする多次元画像処理装置。
  2. 前記多次元画像は、位置情報および方向情報を含み、
    前記モデルデータベースは、前記多次元画像の方向情報よりも高精度のモデルの方向情報を格納し、
    前記合成画像生成手段は、方向情報からなる合成画像情報を生成する請求項1に記載の多次元画像処理装置。
  3. 前記多次元画像は、位置情報および方向情報を含み、
    前記モデルデータベースは、前記多次元画像の位置情報よりも高精度のモデルの位置情報を格納し、
    前記合成画像生成手段は、位置情報からなる合成画像情報を生成する請求項1に記載の多次元画像処理装置。
  4. 前記多次元画像は、位置情報および方向情報に加えてさらに色情報を含み、
    前記モデルデータベースは、前記多次元画像の色情報よりも高精度のモデルの色情報を格納し、
    前記合成画像生成手段は、色情報からなる合成画像情報を生成する請求項1に記載の多次元画像処理装置。
  5. 前記多次元画像は、位置情報および方向情報に加えてさらに階調レンジ情報を含み、
    前記モデルデータベースは、前記多次元画像の階調レンジ情報よりも高精度のモデルの階調レンジ情報を格納し、
    前記合成画像生成手段は、階調レンジ情報からなる合成画像情報を生成する請求項1に記載の多次元画像処理装置。
  6. 前記多次元画像は、位置情報および方向情報に加えてさらに焦点深度情報を含み、
    前記モデルデータベースは、前記多次元画像の焦点深度情報よりも高精度のモデルの焦点深度情報を格納し、
    前記合成画像生成手段は、焦点深度情報からなる合成画像情報を生成する請求項1に記載の多次元画像処理装置。
  7. 前記特徴領域検出手段は、前記多次元画像から複数の特徴領域を検出し、
    前記合成画像生成手段は、前記特徴領域検出手段で検出された前記複数の特徴領域に対応するモデルの画像情報を順次前記モデルデータベースから抽出して前記複数の特徴領域に対する複数の合成画像情報を生成し、
    前記補完手段は、前記多次元画像における前記複数の特徴領域の情報を前記合成画像生成手段で生成された前記複数の合成画像情報によりそれぞれ補完する請求項1に記載の多次元画像処理装置。
  8. 請求項1〜7のいずれか一項に記載の多次元画像処理装置と、
    多次元画像を取得して前記多次元画像処理装置に出力するインテグラルフォトグラフィ画像取得手段と、
    前記多次元画像処理装置により画像処理された前記多次元画像を出力する出力部と
    を有することを特徴とする多次元画像撮影システム。
  9. 前記インテグラルフォトグラフィ画像取得手段は、それぞれレンズとフォトセンサを有すると共に格子状に配列された複数のカメラを備えている請求項8に記載の多次元画像撮影システム。
  10. 前記インテグラルフォトグラフィ画像取得手段は、マイクロレンズアレイを有するカメラである請求項8に記載の多次元画像撮影システム。
  11. 前記カメラは、前記マイクロレンズアレイの前方に配置されたメインレンズをさらに備えた請求項10に記載の多次元画像撮影システム。
  12. 前記インテグラルフォトグラフィ画像取得手段は、レンズとフォトセンサを有するカメラを備え、前記カメラの位置を移動させて連続的に撮影する請求項8に記載の多次元画像撮影システム。
  13. 前記出力部は、プリンタからなる請求項8〜12のいずれか一項に記載の多次元画像撮影システム。
  14. 請求項13に記載の多次元画像撮影システムの前記出力部により出力されたことを特徴とする多次元画像印刷物。
  15. インテグラルフォトグラフィ画像取得手段により取得された多次元画像に対して画像処理を行う多次元画像処理方法であって、
    前記インテグラルフォトグラフィ画像取得手段で取得された多次元画像から予め定められた特徴的な被写体が含まれる特徴領域を検出し、
    前記予め定められた特徴的な被写体に対する前記多次元画像よりも高精度な複数種類のモデルの画像情報を格納するモデルデータベースから検出された前記特徴領域に対応するモデルの画像情報を抽出して前記特徴領域に対する合成画像情報を生成し、
    前記多次元画像における前記特徴領域の情報を前記合成画像情報により補完する
    ことを特徴とする多次元画像処理方法。
JP2009226271A 2009-09-30 2009-09-30 多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法 Withdrawn JP2011077764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226271A JP2011077764A (ja) 2009-09-30 2009-09-30 多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226271A JP2011077764A (ja) 2009-09-30 2009-09-30 多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法

Publications (1)

Publication Number Publication Date
JP2011077764A true JP2011077764A (ja) 2011-04-14

Family

ID=44021283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226271A Withdrawn JP2011077764A (ja) 2009-09-30 2009-09-30 多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法

Country Status (1)

Country Link
JP (1) JP2011077764A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947544B2 (en) 2011-07-07 2015-02-03 Olympus Imaging Corp. Image pickup apparatus that allows for short-distance photographing
JP2015513113A (ja) * 2011-12-29 2015-04-30 ザズル インコーポレイテッド 可視光及び近可視光の大口径波頭を効率的に記録するシステム及び方法
WO2018142634A1 (ja) 2017-02-01 2018-08-09 オムロン株式会社 画像処理システム、光学センサ、及び学習装置
WO2018155019A1 (en) 2017-02-22 2018-08-30 Omron Corporation Optical sensor, learning apparatus, and image processing system
CN111382639A (zh) * 2018-12-30 2020-07-07 深圳市光鉴科技有限公司 一种活体人脸检测方法及装置
US10719862B2 (en) 2008-07-29 2020-07-21 Zazzle Inc. System and method for intake of manufacturing patterns and applying them to the automated production of interactive, customizable product
KR20210041057A (ko) * 2019-04-01 2021-04-14 구글 엘엘씨 동적 깊이 이미지를 캡처 및 편집하는 기술
JP2021076855A (ja) * 2014-05-30 2021-05-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. 仮想および拡張現実のためのアドレス可能焦点を伴う自由形状光学システムを用いて立体視を表示する方法およびシステム
US11157977B1 (en) 2007-10-26 2021-10-26 Zazzle Inc. Sales system using apparel modeling system and method
US11422374B2 (en) 2014-05-30 2022-08-23 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
US11487121B2 (en) 2015-01-26 2022-11-01 Magic Leap, Inc. Virtual and augmented reality systems and methods having improved diffractive grating structures
CN115294603A (zh) * 2022-08-02 2022-11-04 南京莱科智能工程研究院有限公司 一种针对多维图像的人车重识别算法构建方法
US11520164B2 (en) 2014-01-31 2022-12-06 Magic Leap, Inc. Multi-focal display system and method
US12092817B2 (en) 2016-04-07 2024-09-17 Magic Leap, Inc. Systems and methods for augmented reality

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11157977B1 (en) 2007-10-26 2021-10-26 Zazzle Inc. Sales system using apparel modeling system and method
US12093987B2 (en) 2007-10-26 2024-09-17 Zazzle Inc. Apparel modeling system and method
US10719862B2 (en) 2008-07-29 2020-07-21 Zazzle Inc. System and method for intake of manufacturing patterns and applying them to the automated production of interactive, customizable product
US9148570B2 (en) 2011-07-07 2015-09-29 Olympus Corporation Image pickup apparatus that allows for short-distance photographing
US8947544B2 (en) 2011-07-07 2015-02-03 Olympus Imaging Corp. Image pickup apparatus that allows for short-distance photographing
JP2015513113A (ja) * 2011-12-29 2015-04-30 ザズル インコーポレイテッド 可視光及び近可視光の大口径波頭を効率的に記録するシステム及び方法
US10969743B2 (en) 2011-12-29 2021-04-06 Zazzle Inc. System and method for the efficient recording of large aperture wave fronts of visible and near visible light
US11520164B2 (en) 2014-01-31 2022-12-06 Magic Leap, Inc. Multi-focal display system and method
US11422374B2 (en) 2014-05-30 2022-08-23 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
JP7299932B2 (ja) 2014-05-30 2023-06-28 マジック リープ, インコーポレイテッド 仮想および拡張現実のためのアドレス可能焦点を伴う自由形状光学システムを用いて立体視を表示する方法およびシステム
JP2021076855A (ja) * 2014-05-30 2021-05-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. 仮想および拡張現実のためのアドレス可能焦点を伴う自由形状光学システムを用いて立体視を表示する方法およびシステム
US11474355B2 (en) 2014-05-30 2022-10-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
US12099193B2 (en) 2015-01-26 2024-09-24 Magic Leap, Inc. Virtual and augmented reality systems and methods having improved diffractive grating structures
US11487121B2 (en) 2015-01-26 2022-11-01 Magic Leap, Inc. Virtual and augmented reality systems and methods having improved diffractive grating structures
US12092817B2 (en) 2016-04-07 2024-09-17 Magic Leap, Inc. Systems and methods for augmented reality
US11087498B2 (en) 2017-02-01 2021-08-10 Omron Corporation Image processing system, optical sensor, and learning apparatus with irregular lens array
WO2018142634A1 (ja) 2017-02-01 2018-08-09 オムロン株式会社 画像処理システム、光学センサ、及び学習装置
WO2018155019A1 (en) 2017-02-22 2018-08-30 Omron Corporation Optical sensor, learning apparatus, and image processing system
US11563903B2 (en) 2017-02-22 2023-01-24 Omron Corporation Optical sensor, learning apparatus, and image processing system for selection and setting light-receving elements
CN111382639A (zh) * 2018-12-30 2020-07-07 深圳市光鉴科技有限公司 一种活体人脸检测方法及装置
US11949848B2 (en) 2019-04-01 2024-04-02 Google Llc Techniques to capture and edit dynamic depth images
KR102461919B1 (ko) * 2019-04-01 2022-11-01 구글 엘엘씨 동적 깊이 이미지를 캡처 및 편집하는 기술
KR20210041057A (ko) * 2019-04-01 2021-04-14 구글 엘엘씨 동적 깊이 이미지를 캡처 및 편집하는 기술
CN115294603A (zh) * 2022-08-02 2022-11-04 南京莱科智能工程研究院有限公司 一种针对多维图像的人车重识别算法构建方法

Similar Documents

Publication Publication Date Title
JP2011077764A (ja) 多次元画像処理装置、多次元画像撮影システム、多次元画像印刷物および多次元画像処理方法
US8345936B2 (en) Multispectral iris fusion for enhancement and interoperability
JP6929047B2 (ja) 画像処理装置、情報処理方法及びプログラム
CN109377469B (zh) 一种热成像融合可见光图像的处理方法、系统及存储介质
Levin et al. Image and depth from a conventional camera with a coded aperture
CN103685922B (zh) 图像处理设备、摄像设备和图像处理方法
TWI489858B (zh) 使用三維重建之影像捕捉
JP5818091B2 (ja) 画像処理装置、画像処理システム、画像処理方法、および、プログラム
US20040103111A1 (en) Method and computer program product for determining an area of importance in an image using eye monitoring information
CN108055452A (zh) 图像处理方法、装置及设备
CN111368601B (zh) 活体检测方法和装置、电子设备和计算机可读存储介质
JP2001194114A (ja) 画像処理装置および画像処理方法、並びにプログラム提供媒体
JP2014515587A (ja) デジタル画像装置用の画像処理パイプラインの学習
Pouli et al. Image Statistics and their Applications in Computer Graphics.
JP2010045613A (ja) 画像識別方法および撮像装置
EP3756161B1 (en) Method and system for calibrating a plenoptic camera system
JP6376474B2 (ja) 多眼撮像システム、取得画像の合成処理方法、及びプログラム
Pouli et al. Image statistics in visual computing
CN111052175A (zh) 用于成像的装置和方法
CN102959942A (zh) 立体观看用图像拍摄装置及其控制方法
CN108292457A (zh) 识别装置、识别方法、识别程序及包含识别程序的计算机可读介质
WO2021172019A1 (ja) 画像処理装置および画像処理装置の制御方法
CN112257641A (zh) 一种人脸识别活体检测方法
JP2015080647A (ja) 撮影画像表示装置
Song et al. Face liveness detection based on joint analysis of rgb and near-infrared image of faces

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204