JP2011077409A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2011077409A
JP2011077409A JP2009228925A JP2009228925A JP2011077409A JP 2011077409 A JP2011077409 A JP 2011077409A JP 2009228925 A JP2009228925 A JP 2009228925A JP 2009228925 A JP2009228925 A JP 2009228925A JP 2011077409 A JP2011077409 A JP 2011077409A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
film
pattern density
semiconductor device
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009228925A
Other languages
Japanese (ja)
Inventor
Takuo Ohashi
拓夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009228925A priority Critical patent/JP2011077409A/en
Publication of JP2011077409A publication Critical patent/JP2011077409A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device, which decreases dependence of temperature of a semiconductor substrate on a pattern density, in heat-processing the semiconductor substrate where multiple patterns with different pattern densities exist. <P>SOLUTION: The method includes: a step of forming a first region having a first pattern density on the semiconductor substrate 1, and a second region having a second pattern density that is smaller than the first pattern density; a step of forming a light transmission film that is composed of a silicon oxide film and silicon nitride film on the first region; and a step of irradiating the semiconductor substrate 1 with light through the light transmission film. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置の製造方法に係わり、特にパターン密度が異なる複数の種類のパターンを有する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a plurality of types of patterns having different pattern densities.

LSIの高集積化により素子が微細化されるに従い、低抵抗で浅い拡散層領域形成の重要性が高まっており、例えば拡散層の不純物活性化の熱処理をフラッシュランプアニールで行う方法が用いられている。   As devices are miniaturized due to high integration of LSIs, the importance of forming shallow diffusion layer regions with low resistance is increasing. For example, a method of performing heat treatment for impurity activation of diffusion layers by flash lamp annealing is used. Yes.

また、メモリセル部のようにパターン密度が大きい領域と、ロジック回路のようにパターン密度が小さい領域が同一の半導体基板上に存在する場合、活性化熱処理時の半導体基板の光吸収率はパターン密度の影響を大きく受ける。パターン幅及びパターン間隔が細く、パターン密度が大きいほど、フラッシュランプの光の反射率が低下して加熱効率が向上し、半導体基板の温度が上昇する。   In addition, when a region with a high pattern density such as a memory cell portion and a region with a low pattern density such as a logic circuit exist on the same semiconductor substrate, the light absorption rate of the semiconductor substrate during the activation heat treatment is the pattern density. Greatly influenced by. As the pattern width and pattern interval are narrower and the pattern density is larger, the light reflectance of the flash lamp is reduced, the heating efficiency is improved, and the temperature of the semiconductor substrate is increased.

このような、加熱効率のパターン密度依存性はフラッシュランプアニールのような短時間の熱処理の場合に顕著であるが、フラッシュランプアニールに限らず、例えば加熱時間が1秒程度のランプアニールの場合にも起こる。加熱効率のパターン密度依存性を低減するために、パターン上に光透過膜を形成した後、熱処理を行う方法が知られている(例えば、特許文献1)。   The pattern density dependency of the heating efficiency is remarkable in the case of a short-time heat treatment such as flash lamp annealing, but is not limited to the flash lamp annealing, for example, in the case of lamp annealing with a heating time of about 1 second. Also happens. In order to reduce the pattern density dependency of the heating efficiency, a method of performing a heat treatment after forming a light transmission film on the pattern is known (for example, Patent Document 1).

特開2006−278532号公報JP 2006-278532 A

本発明は、上記問題点を解決するためになされたもので、特に、パターン密度が異なる複数の種類のパターンが同一の半導体基板上に存在するときの熱処理において、半導体基板温度のパターン密度依存性を低減することが可能な半導体装置の製造方法を提供することを目的としている。   The present invention has been made to solve the above-described problems, and in particular, in the heat treatment when a plurality of types of patterns having different pattern densities exist on the same semiconductor substrate, the dependence of the semiconductor substrate temperature on the pattern density. An object of the present invention is to provide a method for manufacturing a semiconductor device capable of reducing the above.

本発明の一態様に係わる半導体装置の製造方法は、半導体基板上に、第1のパターン密度を有する第1の領域と、第1のパターン密度より密度が小さい第2のパターン密度を有する第2の領域を形成する工程と、前記第1の領域上に光透過膜を形成する工程と、前記光透過膜を通して前記半導体基板に光を照射する工程とを有することを特徴とする。   A method for manufacturing a semiconductor device according to one embodiment of the present invention includes: a first region having a first pattern density on a semiconductor substrate; and a second pattern having a second pattern density lower than the first pattern density. And forming a light transmission film on the first region, and irradiating the semiconductor substrate with light through the light transmission film.

本発明によれば、パターン密度が異なる複数の種類のパターンが同一の半導体基板上に存在するときの熱処理において、半導体基板温度のパターン密度依存性を低減することが可能な半導体装置の製造方法を提供することができる。   According to the present invention, there is provided a semiconductor device manufacturing method capable of reducing the pattern density dependency of the temperature of a semiconductor substrate in a heat treatment when a plurality of types of patterns having different pattern densities exist on the same semiconductor substrate. Can be provided.

本発明の実施例1に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体基板の光吸収率を示す特性図。The characteristic view which shows the light absorption rate of the semiconductor substrate which concerns on Example 1 of this invention. 本発明の実施例2に係る半導体装置の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the semiconductor device which concerns on Example 2 of this invention.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態に係る半導体装置の製造方法を、図1の半導体装置を例にして説明する。   A method for manufacturing a semiconductor device according to the embodiment will be described using the semiconductor device of FIG. 1 as an example.

図1は半導体装置を模式的に示した断面図であり、第1の領域A1であるメモリセル部と第2の領域A2であるロジック回路部を有する。第1の領域であるメモリセル部は第1のパターン密度を有し、第2の領域であるロジック回路部は第1のパターン密度より密度が小さい第2のパターン密度を有する。つまり、メモリセル部はロジック回路部よりもパターン密度が大きい。   FIG. 1 is a cross-sectional view schematically showing a semiconductor device, which includes a memory cell portion that is a first region A1 and a logic circuit portion that is a second region A2. The memory cell portion that is the first region has a first pattern density, and the logic circuit portion that is the second region has a second pattern density that is lower than the first pattern density. That is, the memory cell portion has a higher pattern density than the logic circuit portion.

メモリセル部およびロジック回路部はそれぞれ一定のパターンの繰り返しから成り、パターン密度とは、単位面積当たりのパターンの繰り返し数である。   Each of the memory cell portion and the logic circuit portion is formed by repeating a certain pattern, and the pattern density is the number of repeated patterns per unit area.

メモリセル部とロジック回路部は、半導体基板1上のシリコン酸化膜からなるゲート絶縁膜2と多結晶シリコン膜からなるゲート電極3を有している。さらに、ゲート絶縁膜2とゲート電極3の側面にシリコン酸化膜とシリコン窒化膜の積層構造からなる側壁絶縁膜4及び半導体基板1中に拡散層5が存在する。   The memory cell portion and the logic circuit portion have a gate insulating film 2 made of a silicon oxide film on the semiconductor substrate 1 and a gate electrode 3 made of a polycrystalline silicon film. Further, a sidewall insulating film 4 having a laminated structure of a silicon oxide film and a silicon nitride film and a diffusion layer 5 exist in the semiconductor substrate 1 on the side surfaces of the gate insulating film 2 and the gate electrode 3.

以下、図2乃至図6を参照して、本実施例に係る半導体装置の製造方法を説明する。図2に示すように、半導体基板1上に例えば、ゲート絶縁膜2となるシリコン酸化膜、及びゲート電極3となる多結晶シリコン膜を形成する。続いて、ゲート電極3及びゲート絶縁膜2を加工する。このときに、メモリセル部の方がロジック回路部よりパターン密度が大きくなるように加工する。   Hereinafter, with reference to FIGS. 2 to 6, a method of manufacturing the semiconductor device according to this example will be described. As shown in FIG. 2, for example, a silicon oxide film to be the gate insulating film 2 and a polycrystalline silicon film to be the gate electrode 3 are formed on the semiconductor substrate 1. Subsequently, the gate electrode 3 and the gate insulating film 2 are processed. At this time, the memory cell portion is processed so that the pattern density is higher than that of the logic circuit portion.

さらに、図3に示すようにゲート絶縁膜2及びゲート電極3の側壁にシリコン酸化膜及びシリコン窒化膜からなる側壁絶縁膜4を形成する。続いて、半導体基板1に側壁絶縁膜4をマスクにして導電型不純物をイオン注入し、拡散層5を形成する。   Further, as shown in FIG. 3, a sidewall insulating film 4 made of a silicon oxide film and a silicon nitride film is formed on the sidewalls of the gate insulating film 2 and the gate electrode 3. Subsequently, conductive impurities are ion-implanted into the semiconductor substrate 1 using the sidewall insulating film 4 as a mask to form a diffusion layer 5.

図4に示すように、半導体基板1の全面に例えば膜厚100nmから150nmのシリコン酸化膜6をALD法により形成した後、ロジック回路部のシリコン酸化膜6を剥離する。さらに、半導体基板1の全面に膜厚10nmのシリコン酸化膜7をALD法により形成する。   As shown in FIG. 4, after a silicon oxide film 6 having a film thickness of, for example, 100 nm to 150 nm is formed on the entire surface of the semiconductor substrate 1 by the ALD method, the silicon oxide film 6 in the logic circuit portion is peeled off. Further, a silicon oxide film 7 having a thickness of 10 nm is formed on the entire surface of the semiconductor substrate 1 by the ALD method.

次に、図5のように半導体基板1の全面に膜厚60nmシリコン窒化膜8をプラズマCVD法で形成する。このシリコン窒化膜8はプロセス誘起歪み技術の一種であるSMT(Stress Memorization Technique)として用いられる。   Next, as shown in FIG. 5, a 60 nm-thickness silicon nitride film 8 is formed on the entire surface of the semiconductor substrate 1 by plasma CVD. This silicon nitride film 8 is used as SMT (Stress Memory Technique) which is a kind of process induced strain technology.

続いて、図6に示すように、イオン注入による半導体基板1の欠陥回復及び、イオン注入元素の活性化のために熱処理を行う。例えば、半導体基板1の上方に設置されたランプを用いて、1000度から1050度の温度で1秒間のランプアニールを行った後、1200度から1300度の温度で1ミリ秒間のフラッシュランプアニールを行う。ランプアニールは主に欠陥を回復する目的で行い、フラッシュランプアニールは主にイオン注入元素の活性化を目的としているが、どちらか一方でも良いし、また先にフラッシュランプアニールを行った後、ランプアニールを行っても良い。   Subsequently, as shown in FIG. 6, heat treatment is performed for defect recovery of the semiconductor substrate 1 by ion implantation and activation of the ion implantation element. For example, after performing lamp annealing for 1 second at a temperature of 1000 ° C. to 1050 ° C. using a lamp installed above the semiconductor substrate 1, flash lamp annealing is performed for 1 millisecond at a temperature of 1200 ° C. to 1300 ° C. Do. Lamp annealing is performed mainly for the purpose of recovering defects, and flash lamp annealing is mainly used for the purpose of activating the ion-implanted element, but either one may be used, or after performing flash lamp annealing first, Annealing may be performed.

さらに、シリコン窒化膜8、シリコン酸化膜7及びシリコン酸化膜6を剥離し、図1のような構造とする。その後は、既知の方法で層間膜及び配線を形成し半導体装置を完成させる。   Further, the silicon nitride film 8, the silicon oxide film 7 and the silicon oxide film 6 are peeled to obtain a structure as shown in FIG. Thereafter, an interlayer film and wiring are formed by a known method to complete the semiconductor device.

本実施例では、図6の熱処理を行うときに、パターン密度の大きいメモリセル部にはシリコン酸化膜6、シリコン酸化膜7及びシリコン窒化膜8が存在し、パターン密度の小さいロジック回路部にはシリコン酸化膜7及びシリコン窒化膜8が存在している。つまり、メモリセル部には、膜厚100nmから150nmのシリコン酸化膜6と膜厚10nmのシリコン酸化膜7が存在し、ロジック回路部に存在するシリコン酸化膜は、膜厚10nmのシリコン酸化膜7のみである。   In this embodiment, when the heat treatment of FIG. 6 is performed, the silicon oxide film 6, the silicon oxide film 7 and the silicon nitride film 8 are present in the memory cell portion having a high pattern density, and the logic circuit portion having a low pattern density is present. A silicon oxide film 7 and a silicon nitride film 8 are present. That is, the silicon oxide film 6 having a thickness of 100 nm to 150 nm and the silicon oxide film 7 having a thickness of 10 nm exist in the memory cell portion, and the silicon oxide film present in the logic circuit portion is the silicon oxide film 7 having a thickness of 10 nm. Only.

よって、熱処理を行うときには、メモリセル部は、シリコン酸化膜6、シリコン酸化膜7及びシリコン窒化膜からなる光透過膜を通して、半導体基板1の表面に光が照射される。一方、ロジック回路部は、シリコン酸化膜7及びシリコン窒化膜8からなる光透過膜を通して、半導体基板1の表面に光が照射される。   Therefore, when heat treatment is performed, the memory cell portion is irradiated with light on the surface of the semiconductor substrate 1 through the light transmission film made of the silicon oxide film 6, the silicon oxide film 7, and the silicon nitride film. On the other hand, the logic circuit unit irradiates the surface of the semiconductor substrate 1 with light through a light transmission film composed of the silicon oxide film 7 and the silicon nitride film 8.

メモリセル部の光透過膜を膜厚が大きいシリコン酸化膜とシリコン窒化膜の積層構造にすることで、メモリセル部の半導体基板1の光吸収率を低下させることができる。つまり、熱処理時の半導体基板温度のパターン密度依存性を低減することができる。その理由を次に述べる。   The light absorption rate of the semiconductor substrate 1 in the memory cell portion can be reduced by making the light transmission film in the memory cell portion have a laminated structure of a silicon oxide film and a silicon nitride film having a large film thickness. That is, the pattern density dependence of the semiconductor substrate temperature during the heat treatment can be reduced. The reason is as follows.

図7は、半導体基板上に存在する膜の種類および膜厚によって、熱工程時の半導体基板の光吸収率がどのように変化するかを示したグラフである。図7の実線は半導体基板上にシリコン窒化膜だけを成膜し、そのシリコン窒化膜の膜厚を変えた場合の光吸収率を示しており、破線は半導体基板上に膜厚300nmのシリコン酸化膜を成膜し、そのシリコン酸化膜上に成膜するシリコン窒化膜の膜厚を変えた場合の光吸収率を示している。   FIG. 7 is a graph showing how the light absorption rate of the semiconductor substrate during the thermal process changes depending on the type and thickness of the film present on the semiconductor substrate. The solid line in FIG. 7 shows the optical absorptance when only the silicon nitride film is formed on the semiconductor substrate and the film thickness of the silicon nitride film is changed, and the broken line shows the silicon oxide film having a thickness of 300 nm on the semiconductor substrate. The light absorptance is shown when a film is formed and the thickness of the silicon nitride film formed on the silicon oxide film is changed.

つまり、実線はシリコン窒化膜を通して半導体基板に光を照射した場合であり、破線はシリコン酸化膜とシリコン窒化膜を通して半導体基板に光を照射した場合に相当する。この2種類の試料に照射時間2m秒のフラッシュランプアニールを行い、そのときの半導体基板の光吸収率を計算により求めた。横軸はシリコン窒化膜の膜厚、縦軸は半導体基板の光吸収率である。光吸収率は、半導体装置全体に与えた光の強度に対して、半導体基板が吸収する光の強度の割合を示している。   That is, the solid line corresponds to the case where the semiconductor substrate is irradiated with light through the silicon nitride film, and the broken line corresponds to the case where the semiconductor substrate is irradiated with light through the silicon oxide film and the silicon nitride film. The two types of samples were subjected to flash lamp annealing with an irradiation time of 2 milliseconds, and the light absorption rate of the semiconductor substrate at that time was obtained by calculation. The horizontal axis represents the thickness of the silicon nitride film, and the vertical axis represents the light absorption rate of the semiconductor substrate. The light absorptance indicates the ratio of the light intensity absorbed by the semiconductor substrate to the light intensity applied to the entire semiconductor device.

図7から、半導体基板上にシリコン窒化膜だけが存在する場合よりも、シリコン酸化膜とシリコン窒化膜が半導体基板上に存在する場合の方が、光の吸収率が低くなることが分かる。さらに、シリコン窒化膜の膜厚が40nmから90nmの場合に、吸収率低減の効果が大きい。これは、半導体基板の温度上昇を抑制できることを示している。   FIG. 7 shows that the light absorptance is lower when the silicon oxide film and the silicon nitride film are present on the semiconductor substrate than when only the silicon nitride film is present on the semiconductor substrate. Further, when the thickness of the silicon nitride film is 40 nm to 90 nm, the effect of reducing the absorption rate is great. This indicates that the temperature rise of the semiconductor substrate can be suppressed.

さらに、図7はシリコン酸化膜の膜厚が300nmの場合について示しているが、シリコン酸化膜の膜厚が100nmから500nmであれば同様の光吸収率を示すことが分かった。シリコン酸化膜の膜厚が100nm未満の場合には、シリコン窒化膜のみを成膜した実線のような光吸収率を示した。これは、シリコン酸化膜が薄いときには、光の屈折が起こり難く、光が直接、半導体基板に到達するためと考えられる。   Furthermore, although FIG. 7 shows the case where the film thickness of the silicon oxide film is 300 nm, it was found that the same light absorption rate is exhibited when the film thickness of the silicon oxide film is 100 nm to 500 nm. When the thickness of the silicon oxide film was less than 100 nm, the light absorptance indicated by the solid line in which only the silicon nitride film was formed was shown. This is presumably because when the silicon oxide film is thin, light refraction hardly occurs and the light directly reaches the semiconductor substrate.

このように、パターン密度の大きいメモリセル部に膜厚100nmから500nmのシリコン酸化膜と膜厚40nmから90nmのシリコン窒化膜からなる光透過膜を形成することで、熱工程時の半導体基板の温度上昇を抑制できる。よって、半導体基板温度のパターン密度依存性を低減することが可能となる。   As described above, the temperature of the semiconductor substrate during the thermal process is formed by forming the light transmission film made of the silicon oxide film having a film thickness of 100 nm to 500 nm and the silicon nitride film having a film thickness of 40 nm to 90 nm in the memory cell portion having a large pattern density. The rise can be suppressed. Therefore, it is possible to reduce the dependency of the semiconductor substrate temperature on the pattern density.

本実施例では、メモリセル部をパターン密度が大きい領域とし、ロジック回路部をパターン密度が小さい領域としているが、これに限らず、同一半導体基板上にパターン密度の異なる領域が存在しており、その半導体基板に対して熱処理を行う工程が存在すれば良い。   In this embodiment, the memory cell portion is a region having a high pattern density, and the logic circuit portion is a region having a low pattern density, but the present invention is not limited thereto, and there are regions having different pattern densities on the same semiconductor substrate. It suffices if there is a step of performing heat treatment on the semiconductor substrate.

図8を参照して、実施例2に係る半導体装置の製造方法を説明する。   With reference to FIG. 8, a method for manufacturing a semiconductor device according to the second embodiment will be described.

実施例2では、図6の熱処理の方法が実施例1と異なっている。実施例1では、半導体基板1の上方に存在するランプを用いて熱処理を行ったが、実施例2では半導体基板1の下方に存在するランプを用いて熱処理を行う。   In the second embodiment, the heat treatment method in FIG. 6 is different from the first embodiment. In the first embodiment, the heat treatment is performed using the lamp existing above the semiconductor substrate 1. In the second embodiment, the heat treatment is performed using the lamp existing below the semiconductor substrate 1.

図8に示すように、まず1200度から1300度の温度で1ミリ秒間のフラッシュランプアニールによる第1の熱処理を半導体基板1の表面側から行う。その後、1000度から1050度の温度で1秒間のランプアニールによる第2の熱処理を半導体基板1の裏面側から行う。ランプアニールによる加熱を裏面側から行うことで、膜厚の大きいシリコン酸化膜及びシリコン窒化膜からなる光透過膜を有するメモリセル部では光吸収率が低く、放熱が進む。よって、メモリセル部での温度上昇を抑制することができる。   As shown in FIG. 8, first, a first heat treatment is performed from the surface side of the semiconductor substrate 1 by flash lamp annealing at a temperature of 1200 to 1300 degrees for 1 millisecond. Thereafter, a second heat treatment is performed from the back side of the semiconductor substrate 1 by lamp annealing for 1 second at a temperature of 1000 to 1050 degrees. By performing heating by lamp annealing from the back side, the light absorption rate is low in the memory cell portion having the light transmissive film made of the silicon oxide film and the silicon nitride film having a large film thickness, and heat dissipation proceeds. Therefore, the temperature rise in the memory cell portion can be suppressed.

また、フラッシュランプアニールによる加熱を半導体基板1の裏面側から行った場合、加熱時間が短く、半導体基板1の表面側まで熱が伝わらない。よって、フラッシュランプアニールによる加熱は半導体基板1の表面側から行う。   In addition, when heating by flash lamp annealing is performed from the back surface side of the semiconductor substrate 1, the heating time is short and heat is not transmitted to the front surface side of the semiconductor substrate 1. Therefore, heating by flash lamp annealing is performed from the surface side of the semiconductor substrate 1.

実施例1と同様に熱処理はランプアニールのみを用いて行っても良い。さらに、初めにランプアニールによる加熱を半導体基板1の裏面側から行い、次にフラッシュランプアニールによる加熱を半導体基板1の表面側から行っても良い。しかし、先にフラッシュランプアニールによる加熱を行う方が、次のランプアニール時での放熱の効果が大きいため望ましい。   As in the first embodiment, the heat treatment may be performed using only lamp annealing. Furthermore, heating by lamp annealing may be performed first from the back surface side of the semiconductor substrate 1, and then heating by flash lamp annealing may be performed from the front surface side of the semiconductor substrate 1. However, it is preferable to perform the heating by flash lamp annealing first because the heat radiation effect at the next lamp annealing is large.

本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々に変形して実施することができる。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

1・・・ 半導体基板
2・・・ ゲート絶縁膜
3・・・ ゲート電極
4・・・ 側壁絶縁膜
5・・・ 拡散層
6・・・ シリコン酸化膜
7・・・ シリコン酸化膜
8・・・ シリコン窒化膜
A1・・・ 第1の領域
A2・・・ 第2の領域
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Gate insulating film 3 ... Gate electrode 4 ... Side wall insulating film 5 ... Diffusion layer 6 ... Silicon oxide film 7 ... Silicon oxide film 8 ... Silicon nitride film A1... First region A2... Second region

Claims (5)

半導体基板上に、第1のパターン密度を有する第1の領域と、第1のパターン密度より密度が小さい第2のパターン密度を有する第2の領域を形成する工程と、
前記第1の領域上に光透過膜を形成する工程と、
前記光透過膜を通して前記半導体基板に光を照射する工程と、
を有していることを特徴とする半導体装置の製造方法。
Forming a first region having a first pattern density and a second region having a second pattern density lower than the first pattern density on a semiconductor substrate;
Forming a light transmission film on the first region;
Irradiating the semiconductor substrate with light through the light transmission film;
A method for manufacturing a semiconductor device, comprising:
前記光透過膜はシリコン酸化膜とシリコン窒化膜を有していることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the light transmission film includes a silicon oxide film and a silicon nitride film. 前記第1の領域はメモリセル部であり、前記第2の領域はロジック回路部であることを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the first region is a memory cell portion, and the second region is a logic circuit portion. 前記光を照射する工程は、フラッシュランプアニールとランプアニールのいずれかで行うことを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of irradiating the light is performed by either flash lamp annealing or lamp annealing. 前記光を照射する工程は、前記半導体基板の裏面側から行う工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the step of irradiating includes a step of performing from the back side of the semiconductor substrate.
JP2009228925A 2009-09-30 2009-09-30 Method for manufacturing semiconductor device Pending JP2011077409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228925A JP2011077409A (en) 2009-09-30 2009-09-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228925A JP2011077409A (en) 2009-09-30 2009-09-30 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011077409A true JP2011077409A (en) 2011-04-14

Family

ID=44021050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228925A Pending JP2011077409A (en) 2009-09-30 2009-09-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011077409A (en)

Similar Documents

Publication Publication Date Title
JP2006278532A (en) Heat treatment method and method of manufacturing semiconductor device
JP2009141075A (en) Semiconductor device and method of manufacturing the same
JP2005011891A (en) Semiconductor device and manufacturing method therefor
JP2008204967A (en) Solar cell element and method for fabricating the same
JP2011091100A (en) Method of manufacturing silicon carbide semiconductor device
JP2011077408A (en) Method for manufacturing semiconductor device
KR20110020061A (en) Method of preparing selective emitter of solar cell and method of preparing solar cell
JP2008311633A5 (en)
JP6440853B2 (en) Manufacturing method of solar cell
KR101532721B1 (en) Spatially selective laser annealing applications in high-efficiency solar cells
JP2005167005A (en) Heat treatment method of semiconductor substrate, manufacturing method of semiconductor device and heat treatment device
JP2011077409A (en) Method for manufacturing semiconductor device
JP6559326B2 (en) Manufacturing method of solar cell
JP2008027988A (en) Manufacturing method of semiconductor device
JP2011205049A (en) Semiconductor integrated circuit
KR100552957B1 (en) Solar cell with improved energy conversion efficiency and method for fabricating the same using metal particles
JP2007109924A (en) Semiconductor device and manufacturing method therefor
JPWO2006013898A1 (en) Manufacturing method of semiconductor device
KR100976667B1 (en) Method of manufacturing a semiconductor device
CN107002277A (en) Using the solar cell for simplifying depositing operation manufacture
JP2014078659A (en) Method of manufacturing semiconductor device
JP4689155B2 (en) Method for manufacturing semiconductor device
JPH0750794B2 (en) Method for manufacturing photoelectric conversion element
US20050082549A1 (en) Light emitting and/or detecting device and method of manufacturing the same
JP2010040545A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Effective date: 20111205

Free format text: JAPANESE INTERMEDIATE CODE: A7424