JP2011077079A - Chip-type solid electrolytic capacitor - Google Patents

Chip-type solid electrolytic capacitor Download PDF

Info

Publication number
JP2011077079A
JP2011077079A JP2009223865A JP2009223865A JP2011077079A JP 2011077079 A JP2011077079 A JP 2011077079A JP 2009223865 A JP2009223865 A JP 2009223865A JP 2009223865 A JP2009223865 A JP 2009223865A JP 2011077079 A JP2011077079 A JP 2011077079A
Authority
JP
Japan
Prior art keywords
anode
connection terminal
support member
solid electrolytic
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009223865A
Other languages
Japanese (ja)
Inventor
Koji Fukuzawa
康志 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009223865A priority Critical patent/JP2011077079A/en
Publication of JP2011077079A publication Critical patent/JP2011077079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip-type solid electrolytic capacitor which reduces internal connection failure of an anode portion. <P>SOLUTION: The chip-type solid electrolytic capacitor has: an anode lead line 2 led out therefrom; an anode connection terminal 4 and a cathode connection terminal which are provided opposite to a capacitor element 1, equipped with a cathode layer on the top surface of an insulation plate and connected to a capacitor element 1; an anode packaging terminal 5 and a cathode packaging terminal on the under surface of the insulation plate which are connected via through-holes to the anode connection terminal 4 and the cathode connection terminal respectively, and is provided with a support member 3, which is connected to the anode lead line 2 and the anode connection terminal 4, wherein the support member 3 has a height which varies by being pressed vertically with respect to the connection surface of the anode connection terminal 4 and is connected to the anode connection terminal 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チップ型固体電解コンデンサに関するものである。   The present invention relates to a chip-type solid electrolytic capacitor.

従来から弁作用金属として、タンタル、ニオブなどを用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、CPUの電源回路などに広く使用されている。また、携帯型電子機器の発展に伴い、特にチップ型固体電解コンデンサの小型化及び薄型化が進行している。その中で、電極端子を製品の実装面に限定することで、コンデンサの内部構造を効率化し、コンデンサ素子の体積をより大きくする下面電極構造タイプの製品が登場している。このような下面電極構造のチップ型固体電解コンデンサとしては、たとえば、特許文献1に開示された技術がある。   Conventionally, solid electrolytic capacitors using tantalum, niobium or the like as a valve action metal are small, have a large capacitance, are excellent in frequency characteristics, and are widely used in power supply circuits for CPUs. In addition, with the development of portable electronic devices, chip-type solid electrolytic capacitors are particularly becoming smaller and thinner. Among them, a product of a bottom electrode structure type has appeared that makes the internal structure of the capacitor more efficient and limits the volume of the capacitor element by limiting the electrode terminal to the mounting surface of the product. As a chip-type solid electrolytic capacitor having such a bottom electrode structure, for example, there is a technique disclosed in Patent Document 1.

従来の技術について図面を用いて説明する。図4はチップ型固体電解コンデンサを示す正面から見た概略断面図である。図5は従来のチップ型固体電解コンデンサを側面から見た透視図である。   Conventional techniques will be described with reference to the drawings. FIG. 4 is a schematic cross-sectional view of the chip-type solid electrolytic capacitor as seen from the front. FIG. 5 is a perspective view of a conventional chip-type solid electrolytic capacitor viewed from the side.

図4に示すようなチップ型固体電解コンデンサは、従来、コンデンサ素子1のそれぞれの電極を実装端子に変換する電極端子を備えた変換基板を用いている。この変換基板は、絶縁基板の上面にコンデンサ接続端子面を有し、更に下面に実装端子面を有し、上下面を電気的に接続した構造を有している。従来のチップ型固体電解コンデンサ15は、陽極リード線2が導出された弁作用金属からなる多孔質の焼結体からなる陽極体表面に誘電体、電解質、陰極層を順次形成してコンデンサ素子1を形成する。   A chip-type solid electrolytic capacitor as shown in FIG. 4 conventionally uses a conversion substrate provided with electrode terminals for converting each electrode of the capacitor element 1 into a mounting terminal. This conversion board has a capacitor connection terminal surface on the upper surface of the insulating substrate, a mounting terminal surface on the lower surface, and a structure in which the upper and lower surfaces are electrically connected. A conventional chip-type solid electrolytic capacitor 15 is formed by sequentially forming a dielectric, an electrolyte, and a cathode layer on the surface of an anode body made of a porous sintered body made of a valve metal from which the anode lead wire 2 is led out. Form.

その後、コンデンサ素子1の陽極リード線2に抵抗溶接によって接続された金属片からなる支持部材3と、支持部材3に高温はんだ又は導電性接着剤10を介して陽極接続端子4と接続する。コンデンサ素子陰極接続面1aは導電性接着剤11を介して陰極接続端子6と接続する。陽極接続端子4、陰極接続端子6は、ガラスエポキシ層13を基材とした変換基板12で、それぞれスルーホール8を介して外部実装面の陽極実装端子5及び陰極実装端子7に接続され、それぞれの外部実装面5a,7aを露出させるように外装樹脂9で覆う。   Thereafter, the support member 3 made of a metal piece connected to the anode lead wire 2 of the capacitor element 1 by resistance welding, and the anode connection terminal 4 is connected to the support member 3 via high temperature solder or conductive adhesive 10. The capacitor element cathode connection surface 1 a is connected to the cathode connection terminal 6 through the conductive adhesive 11. The anode connection terminal 4 and the cathode connection terminal 6 are conversion substrates 12 having a glass epoxy layer 13 as a base material, and are connected to the anode mounting terminal 5 and the cathode mounting terminal 7 on the external mounting surface through the through holes 8, respectively. The external mounting surfaces 5a and 7a are covered with an exterior resin 9 so as to be exposed.

前述の外装樹脂9で覆った後、製品外形形状に整えるため、ダイシング加工により切断し、チップ型固体電解コンデンサが得られる。   After covering with the above-mentioned exterior resin 9, in order to adjust to the product outer shape, it is cut by dicing and a chip-type solid electrolytic capacitor is obtained.

特開2008−270317号公報JP 2008-270317 A

ここまで従来のチップ型固体電解コンデンサの構造を説明してきたが自動化された製造ラインで大量に生産される場合において以下に示す問題の発生が懸念されていた。それについて図を用いて説明する。図6は、従来のチップ型固体電解コンデンサの側面から見た透視図であるが部材の供給ロットの組み合わせによる寸法ばらつきや溶接状態などが起因し支持部材溶接位置3aが上方向へずれたことにより、隙間14が発生したことを示している。図7は同じく従来のチップ型固体電解コンデンサの側面から見た透視図で高温はんだ又は導電性接着剤10の塗布量が少ないため、高温はんだ又は導電性接着剤接続面10aが下方向へずれたことにより、隙間14が発生したことを示している。   So far, the structure of the conventional chip-type solid electrolytic capacitor has been described. However, in the case of mass production on an automated production line, the following problems have been concerned. This will be described with reference to the drawings. FIG. 6 is a perspective view as seen from the side of a conventional chip-type solid electrolytic capacitor. This is because the support member welding position 3a is shifted upward due to dimensional variation or welding state due to the combination of member supply lots. This indicates that the gap 14 has occurred. FIG. 7 is also a perspective view seen from the side of a conventional chip-type solid electrolytic capacitor. Since the amount of high-temperature solder or conductive adhesive 10 applied is small, the high-temperature solder or conductive adhesive connecting surface 10a is shifted downward. This indicates that the gap 14 has occurred.

図8は、コンデンサ素子1、陽極リード線2、支持部材3の従来の配置を示したものであり、コンデンサ素子1の底部と支持部材3の底部は同じ位置である。   FIG. 8 shows a conventional arrangement of the capacitor element 1, the anode lead wire 2, and the support member 3, and the bottom of the capacitor element 1 and the bottom of the support member 3 are in the same position.

このように、従来の技術では、陽極リード線2と支持部材3の抵抗溶接精度位置のばらつき、高温はんだ又は導電性接着剤10の塗布厚精度のばらつき等が起き得るため、図8に示したコンデンサ素子1底部と支持部材3底部が同じ位置であっても、支持部材3と高温はんだ又は導電性接着剤10の間に隙間14が生じてしまい、接続部分が電気的な不良となり、接続抵抗が無限大になる状態、すなわちオープン不良の発生が懸念されていた。   As described above, in the conventional technique, variation in resistance welding accuracy position between the anode lead wire 2 and the support member 3 and variation in coating thickness accuracy of the high temperature solder or the conductive adhesive 10 may occur. Even if the bottom of the capacitor element 1 and the bottom of the support member 3 are at the same position, a gap 14 is generated between the support member 3 and the high-temperature solder or conductive adhesive 10, resulting in an electrical failure in the connection portion, and connection resistance. There is a concern about the state of the infinite, that is, the occurrence of open defects.

本発明の課題は、陽極リード線と支持部材の抵抗溶接精度位置のばらつき、高温はんだ又は導電性接着剤の塗布厚精度のばらつき等が生じても、支持部材と陽極接続端子がオープン不良とならないチップ型固体電解コンデンサを提供することにある。   The problem of the present invention is that the support member and the anode connection terminal do not become defective in opening even if there is a variation in resistance welding accuracy position between the anode lead wire and the support member, a variation in coating thickness accuracy of high-temperature solder or conductive adhesive, etc. The object is to provide a chip-type solid electrolytic capacitor.

本発明のチップ型固体電解コンデンサによれば、陽極リード線が導出され、陰極層を備えたコンデンサ素子と上面に前記陽極リード線と支持部材を介して電気的に接続する陽極接続端子および、前記陰極層と導電性接着剤を介して電気的に接続する陰極接続端子を有し、下面に前記陽極接続端子および前記陰極接続端子とそれぞれ電気的に接続された陽極実装端子および陰極実装端子を有する変換基板を備えたチップ型固体電解コンデンサであって前記支持部材は二股形状で二股の先端を前記陽極接続端子に押し付けて接続されていることを特徴とする。   According to the chip-type solid electrolytic capacitor of the present invention, an anode lead wire is derived, and an anode connection terminal electrically connected to a capacitor element having a cathode layer and an upper surface via the anode lead wire and a support member, and A cathode connection terminal electrically connected to the cathode layer via a conductive adhesive; and an anode mounting terminal and a cathode mounting terminal electrically connected to the anode connection terminal and the cathode connection terminal, respectively, on the lower surface A chip-type solid electrolytic capacitor provided with a conversion substrate, wherein the support member has a bifurcated shape and is connected by pressing a bifurcated tip against the anode connection terminal.

本発明のチップ型固体電解コンデンサの前記支持部材は前記支持部材はFe−Ni合金もしくは銅の材質から構成されていることを特徴とする。   The support member of the chip-type solid electrolytic capacitor of the present invention is characterized in that the support member is made of a Fe—Ni alloy or a copper material.

本発明のチップ型固体電解コンデンサの前記支持部材は高温はんだ又は導電性接着剤で陽極接続端子と接続されることを特徴とする。   The support member of the chip-type solid electrolytic capacitor of the present invention is characterized in that it is connected to the anode connection terminal with a high-temperature solder or a conductive adhesive.

本発明によれば、コンデンサ素子から導出した陽極リード線に接続する支持部材の形状
が二股で、二股の先端が陽極接続端子に押し付けて接続されることにより、陽極リード線と支持部材の抵抗溶接精度位置のばらつき、高温はんだ又は導電性接着剤の塗布厚精度のばらつきが生じても、その精度ばらつきを吸収することが出来、支持部材と陽極接続端子との固着信頼性を向上させるものである。
According to the present invention, the shape of the support member connected to the anode lead wire derived from the capacitor element is bifurcated, and the tip of the fork is pressed and connected to the anode connection terminal, whereby resistance welding between the anode lead wire and the support member is performed. Even if there is a variation in accuracy position, a variation in coating thickness accuracy of high-temperature solder or conductive adhesive, the accuracy variation can be absorbed, and the fixing reliability between the support member and the anode connection terminal is improved. .

本発明のチップ型固体電解コンデンサの側面から見た透視図。The perspective view seen from the side of the chip type solid electrolytic capacitor of the present invention. 本発明のチップ型固体電解コンデンサのコンデンサ素子、陽極リード線、支持部材の配置を示す側面から見た透視図。The perspective view seen from the side surface which shows arrangement | positioning of the capacitor | condenser element, anode lead wire, and supporting member of the chip-type solid electrolytic capacitor of this invention. 本発明のチップ型固体電解コンデンサの支持部材の高さが可変することを示す図。The figure which shows that the height of the supporting member of the chip type solid electrolytic capacitor of this invention changes. チップ型固体電解コンデンサを示す正面から見た概略断面図。The schematic sectional drawing seen from the front which shows a chip type solid electrolytic capacitor. 従来のチップ型固体電解コンデンサを示す側面から見た透視図。The perspective view seen from the side which shows the conventional chip type solid electrolytic capacitor. 従来のチップ型固体電解コンデンサの支持部材溶接位置が上方向へずれたことにより、隙間が発生したことを示す側面から見た透視図。The perspective view seen from the side surface which shows that the clearance gap generate | occur | produced when the supporting member welding position of the conventional chip-type solid electrolytic capacitor shifted | deviated upwards. 従来のチップ型固体電解コンデンサの高温はんだ又は導電性接着剤接続面が下方向へずれたことにより、隙間が発生したことを示す側面から見た透視図。The perspective view seen from the side surface which shows that the clearance gap generate | occur | produced because the high temperature solder or conductive adhesive connection surface of the conventional chip-type solid electrolytic capacitor shifted | deviated downward. 従来のチップ型固体電解コンデンサのコンデンサ素子、陽極リード線、支持部材の配置を示す側面から見た透視図。The perspective view seen from the side surface which shows arrangement | positioning of the capacitor | condenser element, anode lead wire, and supporting member of the conventional chip type solid electrolytic capacitor.

次に、本発明の実施の形態について、図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の実施の形態について図1を参照して説明する。コンデンサ素子1は従来と同じ構造であり、陽極リード線2が導出された弁作用金属からなる多孔質の焼結体で構成される陽極体表面に誘電体、電解質、陰極層を順次形成した陰極部を有する構造である。弁作用金属としてはタンタル、ニオブ、アルミニウム等を用いることができる。   First, an embodiment of the present invention will be described with reference to FIG. Capacitor element 1 has the same structure as that of the prior art, and is a cathode in which a dielectric, an electrolyte, and a cathode layer are sequentially formed on the surface of an anode body made of a porous sintered body made of a valve metal from which anode lead 2 is derived. It is the structure which has a part. Tantalum, niobium, aluminum or the like can be used as the valve metal.

コンデンサ素子1の陽極リード線2には抵抗溶接によって接続された下方に二股の形状を有した金属片からなる支持部材3が溶接されている。支持部材3は金属片の材料としてはFe−42%Ni42合金片や銅などを主成分とした板材を加工したものであり、陽極リード線2を溶接する平面部分を有する支持部材溶接位置3aと高温はんだ又は導電性接着剤10を介して陽極接続端子4に接続される可変部分からなっている。   A support member 3 made of a metal piece having a bifurcated shape is welded to the anode lead wire 2 of the capacitor element 1 by resistance welding. The support member 3 is obtained by processing a plate material mainly composed of Fe-42% Ni42 alloy piece or copper as a material of the metal piece, and a support member welding position 3a having a flat portion for welding the anode lead wire 2; It consists of a variable portion connected to the anode connection terminal 4 via high temperature solder or conductive adhesive 10.

図2に示すように支持部材3の可変部分は、陽極リード線2と溶接された時点では陽極接続端子に接続される二股の先端がコンデンサ素子1底部よりも下方に突出した状態である。   As shown in FIG. 2, the variable portion of the support member 3 is in a state in which the bifurcated tip connected to the anode connection terminal protrudes downward from the bottom of the capacitor element 1 when it is welded to the anode lead wire 2.

そして、支持部材3が陽極接続端子に接続固定される段階で陽極リード線2と溶接された支持部材溶接位置3aの平面に垂直方向に押し圧が加わり、接触している可変部分がハの字に開き、図6や図7で述べた隙間が生じない状態まで塑性変形する。陽極接続端子の面には予め高温はんだ又は導電性接着剤が塗布されており支持部材3と陽極接続端子は最適な位置関係で固定接続される。図3は押し圧が加わったときに支持部材3の可動部分がハの字に開いた状態を示している。   Then, when the support member 3 is connected and fixed to the anode connection terminal, a pressing force is applied in the vertical direction to the plane of the support member welding position 3a welded to the anode lead wire 2, and the variable part in contact is a letter C. And is plastically deformed until the gap described in FIGS. 6 and 7 does not occur. The surface of the anode connection terminal is preliminarily coated with high-temperature solder or a conductive adhesive, and the support member 3 and the anode connection terminal are fixedly connected in an optimal positional relationship. FIG. 3 shows a state in which the movable part of the support member 3 is opened in a letter C when a pressing pressure is applied.

この作用により懸念されていた陽極リード線2と支持部材3の抵抗溶接精度位置のばらつき、高温はんだ又は導電性接着剤の塗布厚精度のばらつきが生じても、その精度ばらつきを吸収することが出来、支持部材3と陽極接続端子との固着信頼性を向上させることが可能になる。   Even if a variation in resistance welding accuracy position between the anode lead wire 2 and the support member 3 and a variation in coating thickness accuracy of high-temperature solder or conductive adhesive, which have been a concern due to this action, can be absorbed. It is possible to improve the adhesion reliability between the support member 3 and the anode connection terminal.

尚、支持部材3と陽極接続端子4の接続手段で高温はんだを使用する場合は、支持部材3の上面の溶接された陽極リード線2を避けるようにレーザー光を照射する。レーザー光の熱が支持部材3を通して高温はんだ10に伝わり、その熱によって高温はんだ10を効率よく溶融することができる。また、支持部材3と陽極接続端子4の接続手段でAg等を含む導電性接着剤を使用する場合は乾燥硬化して接続固定する   When high temperature solder is used for the connection means between the support member 3 and the anode connection terminal 4, the laser light is irradiated so as to avoid the welded anode lead wire 2 on the upper surface of the support member 3. The heat of the laser light is transmitted to the high temperature solder 10 through the support member 3, and the high temperature solder 10 can be efficiently melted by the heat. Further, when a conductive adhesive containing Ag or the like is used in the connection means between the support member 3 and the anode connection terminal 4, the connection is fixed by drying and curing.

図1に戻って、コンデンサ素子1の陰極部は導電性接着剤11を介して陰極接続端子と接続される。変換基板12はガラスエポキシ層13を基材としており、それぞれスルーホール8により接続された陽極接続端子4及び陰極接続端子と陽極実装端子5及び陰極実装端子を有している。更に、ガラス含有エポキシ樹脂または液晶ポリマー、またはトランスファーモールド樹脂、または液状エポキシ樹脂等の外装樹脂9で変換基板12の外部実装面5aとガラスエポキシ層13の一部を露出させるような状態で全体を覆い、変換基板12と外装樹脂9を所定の寸法に切断することでチップ型固体電解コンデンサ15が得られる。   Returning to FIG. 1, the cathode portion of the capacitor element 1 is connected to the cathode connection terminal via the conductive adhesive 11. The conversion substrate 12 has a glass epoxy layer 13 as a base material, and has an anode connection terminal 4 and a cathode connection terminal, an anode mounting terminal 5 and a cathode mounting terminal which are connected through the through holes 8 respectively. Further, the entire outer mounting surface 5a of the conversion substrate 12 and a part of the glass epoxy layer 13 are exposed with an exterior resin 9 such as glass-containing epoxy resin or liquid crystal polymer, transfer mold resin, or liquid epoxy resin. The chip-type solid electrolytic capacitor 15 is obtained by covering and cutting the conversion substrate 12 and the exterior resin 9 into predetermined dimensions.

(実施例)
実施例について図1から図3を用いて説明する。
(Example)
Examples will be described with reference to FIGS. 1 to 3.

以下、実施例について、実施の形態で用いた図1を参照しながら説明する。コンデンサ素子1の製作については公知の技術であるので詳細は省略する。弁作用金属として、タンタルを用いて実施した場合について説明する。タンタル線のまわりに、タンタル粉末をプレス機で成型し、高真空・高温度で焼結してタンタル焼結ペレットを製作した。次に、焼結ペレットをリン酸水溶液中で15V通電し、陽極酸化して焼結体の表面に酸化被膜を形成した。さらに、硝酸マンガンに浸漬した後、熱分解して、固体電解質である二酸化マンガンを形成し、引き続き、グラファイト及び銀ペーストによる陰極層を形成して、コンデンサ素子1を得た。尚、固体電解質である二酸化マンガンに換えて、ポリチオフェンあるいはポリピロールなどの導電性高分子を用いると、1つのコンデンサ素子として低ESRを得るのが容易になる。   Hereinafter, examples will be described with reference to FIG. 1 used in the embodiment. Since the manufacturing of the capacitor element 1 is a known technique, the details are omitted. A case where tantalum is used as the valve metal will be described. A tantalum powder was molded around a tantalum wire with a press and sintered at high vacuum and high temperature to produce a tantalum sintered pellet. Next, the sintered pellet was energized with 15 V in an aqueous phosphoric acid solution and anodized to form an oxide film on the surface of the sintered body. Further, after being immersed in manganese nitrate, it was thermally decomposed to form manganese dioxide which is a solid electrolyte, and subsequently a cathode layer made of graphite and silver paste was formed to obtain capacitor element 1. If a conductive polymer such as polythiophene or polypyrrole is used instead of manganese dioxide, which is a solid electrolyte, it is easy to obtain a low ESR as one capacitor element.

次に、本実施例1で用いた変換基板12はガラスエポキシを基材とした。変換基板12には陽極接続端子4及び陰極接続端子(図4に記載の陰極接続端子6)が形成されており、また、反対のコンデンサ実装面には、外部実装面(図4に記載の外部実装面7a)をそれぞれ備えた陽極実装端子5及び陰極実装端子(図4に記載の陰極実装端子7)が形成されている。更に陽極接続端子4及び陰極接続端子6と陽極実装端子5及び陰極実装端子7をそれぞれ導通化するようにするために、変換基板12内に、スルーホール8を形成した。   Next, the conversion substrate 12 used in Example 1 was based on glass epoxy. An anode connection terminal 4 and a cathode connection terminal (cathode connection terminal 6 shown in FIG. 4) are formed on the conversion substrate 12, and an external mounting surface (external connection shown in FIG. 4) is formed on the opposite capacitor mounting surface. An anode mounting terminal 5 and a cathode mounting terminal (cathode mounting terminal 7 shown in FIG. 4) each having a mounting surface 7a) are formed. Further, in order to make the anode connection terminal 4 and the cathode connection terminal 6, the anode mounting terminal 5, and the cathode mounting terminal 7 conductive, through holes 8 were formed in the conversion substrate 12.

つづいて、図2を用いて陽極リード線2と溶接した時点での支持部材3の状態を説明する。図2に示すように陽極リード線2に抵抗溶接によって接続した支持部材3は厚み0.03mmであり、銅を主成分とした金属板から打ち抜き後曲げ加工により得た。支持部材溶接位置3aの平面に垂直に形成した二股の可変部分の寸法はコンデンサ素子1の底部よりも下方に突き出る長さとした。この時、支持部材3の可変部分の先端は外側に開く必要があるため根元部分より拡げた状態にした。   Next, the state of the support member 3 when it is welded to the anode lead wire 2 will be described with reference to FIG. As shown in FIG. 2, the support member 3 connected to the anode lead wire 2 by resistance welding had a thickness of 0.03 mm, and was obtained by punching from a metal plate containing copper as a main component and bending it. The dimension of the bifurcated variable portion formed perpendicular to the plane of the support member welding position 3 a was set to a length protruding downward from the bottom of the capacitor element 1. At this time, the tip of the variable portion of the support member 3 needs to be opened outward, so that it is expanded from the root portion.

図1に戻って、コンデンサ素子1に陽極リード線2を介して接続した支持部材3を陽極接続端子4の所定の位置に配置し、陽極リード線2と溶接された支持部材溶接位置3aの平面部分へ垂直方向に押し圧を加えた。そして陽極接続端子4に接触している支持部材3の可変部分を接続される最適な状態と判断される85度から95度の角度でハの字に変形させた。   Returning to FIG. 1, the support member 3 connected to the capacitor element 1 via the anode lead wire 2 is disposed at a predetermined position of the anode connection terminal 4, and the plane of the support member welding position 3 a welded to the anode lead wire 2. A pressure was applied to the part in the vertical direction. Then, the variable portion of the support member 3 in contact with the anode connection terminal 4 was deformed into a square shape at an angle of 85 degrees to 95 degrees, which is judged to be the optimum state to be connected.

陽極接続端子4の面には予め高温はんだ10を塗布しており、高温はんだはSn、Ag、Cuを主成分としたものを使用した。尚、高温はんだ10はSn−Ag−Cuの複合材で200℃以上の熱で溶融し、一度硬化してしまうと300℃でも再溶融しない、はんだのことを指す。高温はんだの溶融はレーザー光を用いた。レーザー光の照射には、波長940nmの半導体レーザーを用い、レーザービーム径は0.35mmとし、レーザー光を支持部材溶接位置3aの上面の溶接された陽極リード線2を避けるようにして両端の2箇所を同時照射した。これにより支持部材3の可変部分の先端は85度から95度の角度を保ったまま陽極接続端子4の面に隙間の発生がない状態で接続固定することができた。   The surface of the anode connection terminal 4 is coated with high-temperature solder 10 in advance, and the high-temperature solder used was composed mainly of Sn, Ag, and Cu. The high-temperature solder 10 is a Sn—Ag—Cu composite material which is melted by heat of 200 ° C. or higher and once cured, it does not remelt even at 300 ° C. Laser light was used to melt the high-temperature solder. The laser beam is irradiated with a semiconductor laser having a wavelength of 940 nm, the laser beam diameter is set to 0.35 mm, and the laser beam is set to 2 at both ends so as to avoid the welded anode lead wire 2 on the upper surface of the support member welding position 3a. The part was irradiated simultaneously. As a result, the tip of the variable portion of the support member 3 could be connected and fixed in a state where no gap was generated on the surface of the anode connection terminal 4 while maintaining an angle of 85 to 95 degrees.

以上の実施例により懸念されていた陽極リード線と支持部材の抵抗溶接精度位置のばらつき、高温はんだ又は導電性接着剤の塗布厚精度のばらつきが生じても、その精度ばらつきを吸収することが出来、支持部材3と陽極接続端子4との固着信頼性を向上させることが可能になった。   Even if variations in the resistance welding accuracy position between the anode lead wire and the support member, and variations in the coating thickness accuracy of the high-temperature solder or conductive adhesive, which were concerned by the above embodiments, can be absorbed. Thus, it is possible to improve the adhesion reliability between the support member 3 and the anode connection terminal 4.

コンデンサ素子1の陰極接続面(図4に記載のコンデンサ素子陰極接続面1a)は変換基板12の陰極接続端子にAgを含む導電性接着剤11を塗布して接続した。次いで、外装樹脂9としてガラス含有エポキシ樹脂を用いて熱成型して外装を行った後、製品外形寸法を整える為にダイシングソーにより、チップ型固体電解コンデンサ15の外側面となる四面を切断し、本実施例のチップ型固体電解コンデンサ15を得た。   The cathode connection surface of the capacitor element 1 (capacitor element cathode connection surface 1a shown in FIG. 4) was connected to the cathode connection terminal of the conversion substrate 12 by applying a conductive adhesive 11 containing Ag. Next, after heat-molding by using a glass-containing epoxy resin as the exterior resin 9, the exterior surface of the chip-type solid electrolytic capacitor 15 is cut by a dicing saw in order to adjust the product external dimensions, A chip-type solid electrolytic capacitor 15 of this example was obtained.

(比較例)
従来の技術の直方体をした形状である支持部材3をコンデンサ素子の陽極リード線に抵抗溶接した後、その他の製造方法は本発明と同様に実施し固体電解コンデンサを作製した。それにより比較例となる従来の技術の固体電解コンデンサを作製した。
(Comparative example)
After the support member 3 having a rectangular parallelepiped shape according to the prior art was resistance-welded to the anode lead wire of the capacitor element, other manufacturing methods were carried out in the same manner as in the present invention to produce a solid electrolytic capacitor. Thus, a conventional solid electrolytic capacitor as a comparative example was produced.

本発明の実施例の固体電解コンデンサと従来技術である固体電解コンデンサのオープン不良率を比較した。尚、オープン不良は、電気的検査で接続抵抗を測定し、検出した。   The open defect rate of the solid electrolytic capacitor of the Example of this invention and the solid electrolytic capacitor which is a prior art was compared. The open failure was detected by measuring the connection resistance by electrical inspection.

表1に本発明と従来技術の結果を示す。   Table 1 shows the results of the present invention and the prior art.

Figure 2011077079
Figure 2011077079

表1より実施例は比較例と比べてオープン不良が減少していることが確認され本発明の効果が伺える。   From Table 1, it is confirmed that the open defects are reduced in the examples as compared with the comparative examples, and the effect of the present invention can be seen.

支持部材3の形状は上記形状にだけ限定するものではなく、支持部材3と高温はんだ又は導電性接着剤10の間に発生する隙間14を吸収できる可変性を有し、製造工程上で押し付け圧を加えたときに高温はんだ又は導電性接着剤10を介して陽極リード線2と陽極接続端子4とを接続させられる形状、寸法であればよい。   The shape of the support member 3 is not limited to the above shape, and has a variability capable of absorbing the gap 14 generated between the support member 3 and the high-temperature solder or the conductive adhesive 10, and is a pressing pressure in the manufacturing process. Any shape and size may be used as long as the anode lead wire 2 and the anode connection terminal 4 can be connected via the high-temperature solder or the conductive adhesive 10.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1 コンデンサ素子
1a コンデンサ素子陰極接続面
2 陽極リード線
3 支持部材
3a 支持部材溶接位置
3b 支持部材可動領域
4 陽極接続端子
5 陽極実装端子
5a、7a 外部実装面
6 陰極接続端子
7 陰極実装端子
8 スルーホール
9 外装樹脂
10 高温はんだ又は導電性接着剤
10a 高温はんだ又は導電性接着剤接続面
11 導電性接着剤
12 変換基板
13 ガラスエポキシ層
14 隙間
15 チップ型固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Capacitor element 1a Capacitor element cathode connection surface 2 Anode lead wire 3 Support member 3a Support member welding position 3b Support member movable area 4 Anode connection terminal 5 Anode mounting terminal 5a, 7a External mounting surface 6 Cathode connection terminal 7 Cathode mounting terminal 8 Through Hole 9 Exterior resin 10 High-temperature solder or conductive adhesive 10a High-temperature solder or conductive adhesive connecting surface 11 Conductive adhesive 12 Conversion substrate 13 Glass epoxy layer 14 Gap 15 Chip-type solid electrolytic capacitor

Claims (3)

陽極リード線が導出され、陰極層を備えたコンデンサ素子と、上面に前記陽極リード線と支持部材を介して電気的に接続する陽極接続端子、および前記陰極層と導電性接着剤を介して電気的に接続する陰極接続端子を有し、下面に前記陽極接続端子および前記陰極接続端子とそれぞれ電気的に接続された陽極実装端子および陰極実装端子を有する変換基板を備えたチップ型固体電解コンデンサであって、前記支持部材は二股の形状を有し、前記二股の先端を前記陽極接続端子に押し付けて接続することを特徴とするチップ型固体電解コンデンサ。   An anode lead wire is led out, a capacitor element having a cathode layer, an anode connecting terminal electrically connected to the upper surface via the anode lead wire and a support member, and an electric connection via the cathode layer and a conductive adhesive A chip-type solid electrolytic capacitor having a cathode connection terminal to be electrically connected and a conversion substrate having an anode mounting terminal and a cathode mounting terminal electrically connected to the anode connection terminal and the cathode connection terminal, respectively, on a lower surface thereof The support member has a bifurcated shape, and the tip of the bifurcated end is pressed against the anode connection terminal for connection. 前記支持部材はFe−Ni合金もしくは銅およびその合金から構成されていることを特徴とする請求項1に記載のチップ型固体電解コンデンサ。   The chip-type solid electrolytic capacitor according to claim 1, wherein the support member is made of an Fe—Ni alloy or copper and an alloy thereof. 前記支持部材は加工後に300℃以下の耐熱温度を備えるはんだ、又は導電性接着剤で陽極接続端子に接続することを特徴とする請求項1または2に記載のチップ型固体電解コンデンサ。   3. The chip-type solid electrolytic capacitor according to claim 1, wherein the support member is connected to the anode connection terminal by solder having a heat-resistant temperature of 300 ° C. or less after processing or a conductive adhesive. 4.
JP2009223865A 2009-09-29 2009-09-29 Chip-type solid electrolytic capacitor Pending JP2011077079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223865A JP2011077079A (en) 2009-09-29 2009-09-29 Chip-type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223865A JP2011077079A (en) 2009-09-29 2009-09-29 Chip-type solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2011077079A true JP2011077079A (en) 2011-04-14

Family

ID=44020801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223865A Pending JP2011077079A (en) 2009-09-29 2009-09-29 Chip-type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2011077079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133390A1 (en) * 2014-11-07 2016-05-12 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133390A1 (en) * 2014-11-07 2016-05-12 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor and method of manufacturing the same
US10475589B2 (en) 2014-11-07 2019-11-12 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor including an anode lead frame having a bent portion and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100773198B1 (en) Surface-mount capacitor and method of producing the same
JP4878103B2 (en) Manufacturing method of chip-type solid electrolytic capacitor
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
JP5879491B2 (en) Solid electrolytic capacitor
JP2017168621A (en) Solid electrolytic capacitor and method for manufacturing the same
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
CN102270536A (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP2017092237A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5721172B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
US7619876B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4817458B2 (en) Solid electrolytic capacitor
JP5131852B2 (en) Solid electrolytic capacitor
KR102127816B1 (en) Tantalum capacitor and method of preparing the same
JP2007043197A (en) Stacked capacitor
JP2011077079A (en) Chip-type solid electrolytic capacitor
JP2012038873A (en) Semiconductor device
JP5009122B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
KR20150049918A (en) Tantalum capacitor and method of preparing the same
JP2011014663A (en) Solid electrolytic capacitor
JP5201684B2 (en) Chip type solid electrolytic capacitor
WO2021193327A1 (en) Electrolytic capacitor
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP5698450B2 (en) Manufacturing method of solid electrolytic capacitor
KR20150053425A (en) Tantalum capacitor and method of preparing the same