JP2011075913A - Method of controlling bias of optical modulator - Google Patents
Method of controlling bias of optical modulator Download PDFInfo
- Publication number
- JP2011075913A JP2011075913A JP2009228418A JP2009228418A JP2011075913A JP 2011075913 A JP2011075913 A JP 2011075913A JP 2009228418 A JP2009228418 A JP 2009228418A JP 2009228418 A JP2009228418 A JP 2009228418A JP 2011075913 A JP2011075913 A JP 2011075913A
- Authority
- JP
- Japan
- Prior art keywords
- mach
- sub
- waveguide
- bias control
- zehnder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
本発明は、光変調器のバイアス制御方法に関し、特に、1つの主マッハツェンダー型導波路の2つの分岐導波路に、2つの副マッハツェンダー型導波路を1つずつ組み込んだネスト型導波路を有し、全てのマッハツェンダー型導波路に変調部を備えた光変調器のバイアス制御方法に関する。 The present invention relates to a bias control method for an optical modulator, and more particularly to a nested waveguide in which two sub Mach-Zehnder waveguides are incorporated in two branch waveguides of one main Mach-Zehnder waveguide. The present invention relates to a bias control method for an optical modulator having a modulation section in all Mach-Zehnder type waveguides.
光通信分野におけるDQPSK変調(Differential Quadrature Phase Shift keying,差動四相位相偏移変調)、光信号を無線信号(変調された搬送波)で強度変調して光ファイバで伝送するROF(Radio Over Fiber)システムに利用される光SSB変調装置、さらに、光計測分野に利用される光周波数シフタには、ネスト構造の光導波路(ネスト型導波路)を備えた光変調器が利用されている。 DQPSK modulation (Differential Quadrature Phase Shift keying) in the optical communication field, ROF (Radio Over Fiber) that modulates the intensity of an optical signal with a radio signal (modulated carrier wave) and transmits it over an optical fiber An optical modulator including a nested optical waveguide (nested waveguide) is used for an optical SSB modulation device used in the system and an optical frequency shifter used in the optical measurement field.
ネスト型導波路とは、1つの主マッハツェンダー型導波路の2つの分岐導波路に、2つの副マッハツェンダー型導波路を1つずつ組み込んだ、入れ子型の光導波路を意味している。ネスト型導波路を有する光変調器では、主マッハツェンダー型導波路と、2つの副マッハツェンダー型導波路の各々に、光導波路を伝播する光波を変調するための変調電極を備えた変調部が設けられる。 The nested waveguide means a nested optical waveguide in which two sub Mach-Zehnder waveguides are incorporated one by one in two branch waveguides of one main Mach-Zehnder waveguide. In an optical modulator having a nested waveguide, a modulation unit having a modulation electrode for modulating a light wave propagating in the optical waveguide is provided in each of the main Mach-Zehnder waveguide and the two sub-Mach-Zehnder waveguides. Provided.
光変調器は、ニオブ酸リチウムなどの電気光学効果を有する基板に形成されており、光変調器を駆動する変調信号のバイアス点が、光変調器の温度変化や駆動に伴う焦電効果などの影響でシフトする温度ドリフト現象や、印加した電圧に応じて経時的にシフトするDCドリフト現象が発生する。これらを補償するには、各変調部において、バイアス制御を行う必要がある。 The optical modulator is formed on a substrate having an electro-optic effect, such as lithium niobate, and the bias point of the modulation signal that drives the optical modulator is affected by the temperature change of the optical modulator and the pyroelectric effect accompanying the driving. A temperature drift phenomenon that shifts due to an influence and a DC drift phenomenon that shifts with time according to the applied voltage occur. In order to compensate for these, it is necessary to perform bias control in each modulation section.
ネスト型導波路を有する光変調器のバイアス制御方法としては、特許文献1乃至3のように、複数の周波数信号を個々の変調部に入力してバイアス制御を行う方法や、特許文献4のように、主マッハツェンダー型導波路からの出力光より、RF(Radio Frequency)成分のスペクトルを検出してバイアス制御を行う方法などがある。
As a bias control method of an optical modulator having a nested waveguide, as in
しかしながら、複数の周波数信号を用いたバイアス制御方法では、制御自体に複数の周波数に対応した制御信号が必要となり、制御系の構成が複雑化する。しかも、場合によっては、複数の周波数の信号が混在しているため、制御用の検出信号から各周波数成分を精度良く分離することが困難である。さらに、各周波数の間隔を十分確保して制御を行う場合には、制御信号のために要する周波数帯域が広くなり過ぎるという問題を生じていた。 However, in the bias control method using a plurality of frequency signals, control signals corresponding to a plurality of frequencies are required for the control itself, and the configuration of the control system is complicated. Moreover, since signals of a plurality of frequencies are mixed in some cases, it is difficult to accurately separate each frequency component from the detection signal for control. Furthermore, when the control is performed with a sufficient interval between the frequencies, the frequency band required for the control signal becomes too wide.
また、RF成分を検出して行うバイアス制御方法では、RF成分のスペクトルを検出するための使用部品が高価であり、一般的な低周波信号を利用する場合と比較し、RF信号のためのプリント基板設計などが難しくなるなどの問題を生じる。 In addition, in the bias control method performed by detecting the RF component, the components used for detecting the spectrum of the RF component are expensive, and compared with the case of using a general low-frequency signal, printing for the RF signal is performed. This causes problems such as difficulty in board design.
本発明が解決しようとする課題は、上述したような問題を解決し、ネスト型導波路を有する光変調器、特に、DQPSK変調を行う光変調器のバイアス制御を、簡単な構成で実現することが可能な光変調器のバイアス制御方法を提供することである。 The problem to be solved by the present invention is to solve the above-mentioned problems and realize bias control of an optical modulator having a nested waveguide, particularly an optical modulator that performs DQPSK modulation, with a simple configuration. It is an object to provide a bias control method for an optical modulator capable of satisfying the requirements.
上記課題を解決するため、請求項1に係る発明は、1つの主マッハツェンダー型導波路の2つの分岐導波路に、2つの副マッハツェンダー型導波路を1つずつ組み込んだネスト型導波路を有し、全てのマッハツェンダー型導波路に変調部を備えた光変調器のバイアス制御方法において、該副マッハツェンダー型導波路の変調部の各々に、同じ周波数fで互いに90度位相の異なる低周波信号を印加しながら、最初に、各副マッハツェンダー型導波路において、該副マッハツェンダー型導波路から出力される光波の一部を検出して、該検出値に基づき当該副マッハツェンダー型導波路の変調部のバイアス制御を行い、次に、該主マッハツェンダー型導波路から出力される光波の一部を検出して、該検出値に基づき該主マッハツェンダー型導波路の変調部のバイアス制御を行うことを特徴とする。
In order to solve the above-mentioned problem, the invention according to
請求項2に係る発明は、請求項1に記載の光変調器のバイアス制御方法において、該光変調器は、DQPSK変調を行う光変調器であり、該副マッハツェンダー型導波路の変調部のバイアス制御は、当該検出値の周波数f成分が最小値又は周波数2f成分が最大値となるようにバイアス制御を行い、該主マッハツェンダー型導波路の変調部のバイアス制御は、当該検出値の周波数2f成分が最大値となるようにバイアス制御を行うことを特徴とする。
According to a second aspect of the present invention, in the bias control method for an optical modulator according to the first aspect, the optical modulator is an optical modulator that performs DQPSK modulation, and the modulation unit of the sub-Mach-Zehnder waveguide The bias control performs bias control so that the frequency f component of the detected value is the minimum value or the
請求項1に係る発明により、1つの主マッハツェンダー型導波路の2つの分岐導波路に、2つの副マッハツェンダー型導波路を1つずつ組み込んだネスト型導波路を有し、全てのマッハツェンダー型導波路に変調部を備えた光変調器のバイアス制御方法において、該副マッハツェンダー型導波路の変調部の各々に、同じ周波数fで互いに90度位相の異なる低周波信号を印加しながら、最初に、各副マッハツェンダー型導波路において、該副マッハツェンダー型導波路から出力される光波の一部を検出して、該検出値に基づき当該副マッハツェンダー型導波路の変調部のバイアス制御を行い、次に、該主マッハツェンダー型導波路から出力される光波の一部を検出して、該検出値に基づき該主マッハツェンダー型導波路の変調部のバイアス制御を行うため、単一の周波数を有する低周波信号でバイアス制御が可能であるため、低周波信号の発生に必要な構成を簡素化できると共に、制御系の構成も複雑化しない。さらに、低周波信号は、副マッハツェンダー型導波路の変調部のみに印加されるため、主マッハツェンダー型導波路の変調部へ低周波信号を印加することが省略でき、さらに構成を簡素化することが可能となる。 According to the first aspect of the present invention, there is provided a nested waveguide in which two sub-Mach-Zehnder waveguides are incorporated one by one in two branching waveguides of one main Mach-Zehnder-type waveguide. In the bias control method for an optical modulator having a modulation unit in a type waveguide, while applying low frequency signals having a phase difference of 90 degrees at the same frequency f to each of the modulation units of the sub Mach-Zehnder type waveguide, First, in each sub-Mach-Zehnder type waveguide, a part of the light wave output from the sub-Mach-Zehnder type waveguide is detected, and bias control of the modulation unit of the sub-Mach-Zehnder type waveguide is performed based on the detected value Next, a part of the light wave output from the main Mach-Zehnder type waveguide is detected, and the bias control of the modulation unit of the main Mach-Zehnder type waveguide is performed based on the detected value. For performing, since it is possible to bias control in the low-frequency signal having a single frequency, it is possible to simplify the configuration required in the generation of low frequency signal, no complicated configuration of the control system. Furthermore, since the low-frequency signal is applied only to the modulation unit of the sub-Mach-Zehnder type waveguide, it is possible to omit applying the low-frequency signal to the modulation unit of the main Mach-Zehnder type waveguide, and further simplify the configuration. It becomes possible.
請求項2に係る発明により、光変調器は、DQPSK変調を行う光変調器であり、副マッハツェンダー型導波路の変調部のバイアス制御は、当該検出値の周波数f成分が最小値又は周波数2f成分が最大値となるようにバイアス制御を行い、主マッハツェンダー型導波路の変調部のバイアス制御は、当該検出値の周波数2f成分が最大値となるようにバイアス制御を行うため、DQPSK変調においても、簡単な構成で、各変調部のバイアスを最適に制御することが可能となる。
According to the second aspect of the present invention, the optical modulator is an optical modulator that performs DQPSK modulation, and the bias control of the modulation unit of the sub Mach-Zehnder waveguide has a minimum frequency or a frequency of 2f. The bias control is performed so that the component becomes the maximum value, and the bias control of the modulation unit of the main Mach-Zehnder type waveguide performs the bias control so that the
以下、本発明の光変調器のバイアス制御方法について、以下に詳細に説明する。
本発明は、図1に示すように、1つの主マッハツェンダー型導波路(MMZ)の2つの分岐導波路に、2つの副マッハツェンダー型導波路(SMZ1,SMZ2)を1つずつ組み込んだネスト型導波路を有し、全てのマッハツェンダー型導波路に変調部(ME1〜ME3)を備えた光変調器のバイアス制御方法において、該副マッハツェンダー型導波路の変調部の各々に、同じ周波数fで互いに90度位相の異なる低周波信号(AC1,AC2)を印加しながら、最初に、各副マッハツェンダー型導波路において、該副マッハツェンダー型導波路から出力される光波(A,B)の一部を検出して、該検出値に基づき当該副マッハツェンダー型導波路の変調部のバイアス制御(BC1,BC2)を行い、次に、該主マッハツェンダー型導波路から出力される光波(C)の一部を検出して、該検出値に基づき該主マッハツェンダー型導波路の変調部のバイアス制御(BC3)を行うことを特徴とする。
The optical modulator bias control method of the present invention will be described in detail below.
As shown in FIG. 1, the present invention is a nest in which two sub Mach-Zehnder waveguides (SMZ1, SMZ2) are incorporated one by one in two branch waveguides of one main Mach-Zehnder waveguide (MMZ). In the bias control method of an optical modulator having a type waveguide, and including all the Mach-Zehnder type waveguides with modulation units (ME1 to ME3), each modulation unit of the sub-Mach-Zehnder type waveguide has the same frequency. First, in each sub Mach-Zehnder type waveguide, light waves (A, B) output from the sub-Mach-Zehnder type waveguide while applying low-frequency signals (AC1, AC2) having a phase difference of 90 degrees at f. And a bias control (BC1, BC2) of the modulation section of the sub-Mach-Zehnder type waveguide is performed based on the detected value, and then the main Mach-Zehnder-type waveguide is controlled. Detecting a portion of the outputted optical wave (C), and performs bias control of the modulation of the main Mach-Zehnder type waveguide on the basis of the detection value (BC3).
本発明の光変調器のバイアス制御方法では、変調部に印加する低周波信号には、単一の周波数を利用しているため、低周波信号の発生に必要な構成を簡素化できると共に、制御系の構成も複雑化しない。しかも、低周波信号は、副マッハツェンダー型導波路の変調部のみに印加されるため、主マッハツェンダー型導波路の変調部へ低周波信号を印加することが省略でき、さらに構成を簡素化することが可能となる。 In the optical modulator bias control method of the present invention, since a single frequency is used for the low frequency signal applied to the modulation section, the configuration necessary for generating the low frequency signal can be simplified and controlled. The system configuration is not complicated. In addition, since the low-frequency signal is applied only to the modulation unit of the sub-Mach-Zehnder type waveguide, it is possible to omit application of the low-frequency signal to the modulation unit of the main Mach-Zehnder type waveguide, and further simplify the configuration. It becomes possible.
次に、光変調器として、DQPSK変調を行う光変調器を例に、本発明のバイアス制御方法を説明する。
図1に示すように、副マッハツェンダー型導波路(SMZ1)の変調部(ME1)には、バイアス制御回路BC1から出力されるDCバイアスに、低周波信号(周波数f,位相0°)(AC1)を重畳して変調部を構成する変調電極に印加する。重畳する際には、バイアスT回路(BT1)などを利用することができる。
Next, the bias control method of the present invention will be described by taking an optical modulator that performs DQPSK modulation as an optical modulator.
As shown in FIG. 1, the modulation unit (ME1) of the sub Mach-Zehnder type waveguide (SMZ1) has a low frequency signal (frequency f,
変調部は、副マッハツェンダー型導波路の分岐導波路に沿って配置される変調電極で構成される。変調電極は、信号電極及び接地電極から構成され、単一の信号電極を利用する場合や2つの分岐導波路に対応して2つの信号電極を利用する場合がある。 The modulation unit is configured by a modulation electrode arranged along the branch waveguide of the sub Mach-Zehnder type waveguide. The modulation electrode includes a signal electrode and a ground electrode, and may use a single signal electrode or two signal electrodes corresponding to two branch waveguides.
また、変調部では、送信する光信号に対応する変調信号を入力する変調電極と、DCバイアスを印加するバイアス電極とを別々に設けることも可能であり、この場合には、変調電極に低周波信号を、バイアス電極にDCバイアスを印加し、図1に示すように、低周波信号とDCバイアスとを重畳する必要はない。 In addition, in the modulation unit, it is possible to separately provide a modulation electrode for inputting a modulation signal corresponding to an optical signal to be transmitted and a bias electrode for applying a DC bias. It is not necessary to apply a DC bias to the bias electrode and superimpose the low frequency signal and the DC bias as shown in FIG.
副マッハツェンダー型導波路(SMZ1)から出力される光波の一部を検出し、該検出値に係る信号をバイアス制御回路(BC1)に入力する。検出する光波としては、図1のように副マッハツェンダー型導波路(SMZ1)の出力導波路から直接検出する方法や、タップ部を経由して検知する方法などにより、出力光と同相成分の光波が検出できる。また、合波部の放射光を検知する方法や合波部をカプラで構成する検知方法により、出力光と逆相成分の光波を検出することも可能である。 A part of the light wave output from the sub Mach-Zehnder type waveguide (SMZ1) is detected, and a signal related to the detected value is input to the bias control circuit (BC1). As a light wave to be detected, a light wave having an in-phase component with the output light can be obtained by a method of directly detecting from the output waveguide of the sub-Mach-Zehnder type waveguide (SMZ1) as shown in FIG. Can be detected. Further, it is possible to detect a light wave having a component opposite in phase to the output light by a method of detecting the radiated light of the multiplexing unit or a detection method of configuring the multiplexing unit with a coupler.
バイアス制御回路(BC1)では、検出した検出値に基づき変調部(ME1)に印加するDCバイアスを制御する。具体的には、受光素子などの検出器が出力する検出信号から、バンドパスフィルタなど利用して周波数f成分のみを抽出し、抽出した検出値が最小となるように当該DCバイアスを制御する。 The bias control circuit (BC1) controls the DC bias applied to the modulation unit (ME1) based on the detected value detected. Specifically, only the frequency f component is extracted from a detection signal output by a detector such as a light receiving element using a bandpass filter or the like, and the DC bias is controlled so that the extracted detection value is minimized.
あるいは、該検出信号から周波数2f成分のみを抽出し、抽出した検出値が最大となるように当該DCバイアスを制御することも可能である。副マッハツェンダー型導波路の変調部におけるバイアス制御方法は、1つのマッハツェンダー型導波路を有する光変調器におけるバイアス制御方法と同様であるため、従来の種々のバイアス制御方法が適用可能である。
Alternatively, only the
一方、もう一つの副マッハツェンダー型導波路(SMZ2)の変調部(ME2)のバイアス制御方法は、変調部(ME2)に印加する低周波信号(周波数f,位相90°)が、他方の副マッハツェンダー型導波路(SMZ1)と、位相が90°(図1では、+90°であるが−90°であっても良い)異なる以外は、全く同様のバイアス制御方法が利用可能である。 On the other hand, the bias control method of the modulation unit (ME2) of the other sub Mach-Zehnder type waveguide (SMZ2) is such that the low frequency signal (frequency f, phase 90 °) applied to the modulation unit (ME2) is Exactly the same bias control method can be used except that the phase differs from the Mach-Zehnder type waveguide (SMZ1) by 90 ° (in FIG. 1, it is + 90 ° but may be −90 °).
次に、主マッハツェンダー型導波路(MMZ)の変調部(ME3)のバイアス制御方法について説明する。主マッハツェンダー型導波路の変調部のバイアス制御を行うまでには、2つの副マッハツェンダー型導波路(SMZ1,SMZ2)の変調部(ME1,ME2)のDCバイアスは、上述したバイアス制御方法により最適化されている。 Next, a bias control method for the modulation unit (ME3) of the main Mach-Zehnder waveguide (MMZ) will be described. Until the bias control of the modulation unit of the main Mach-Zehnder type waveguide is performed, the DC bias of the modulation unit (ME1, ME2) of the two sub Mach-Zehnder type waveguides (SMZ1, SMZ2) is determined by the bias control method described above. Optimized.
主マッハツェンダー型導波路(MMZ)の変調部(ME3)のバイアス制御においては、変調部に低周波信号は印加せず、2つの副マッハツェンダー型導波路から出力される光波を合波した出力光に基づき、変調部(ME3)に印加するDCバイアスを制御する。 In bias control of the modulation unit (ME3) of the main Mach-Zehnder type waveguide (MMZ), an output obtained by combining the light waves output from the two sub-Mach-Zehnder type waveguides without applying a low frequency signal to the modulation unit Based on the light, the DC bias applied to the modulation unit (ME3) is controlled.
主マッハツェンダー型導波路(MMZ)から出力される光波の一部を検出する方法としては、副マッハツェンダー型導波路と同様に、出力光と同相成分又は逆相成分のいずれでも検出可能である。 As a method for detecting a part of the light wave output from the main Mach-Zehnder type waveguide (MMZ), it is possible to detect either the in-phase component or the anti-phase component of the output light as in the case of the sub Mach-Zehnder type waveguide. .
バイアス制御回路(BC3)では、検出した検出値に基づき変調部(ME3)に印加するDCバイアスを制御する。具体的には、受光素子などの検出器が出力する検出信号から、バンドパスフィルタなど利用して、該検出信号から周波数2f成分のみを抽出し、抽出した検出値が最大となるように当該DCバイアスを制御する。
The bias control circuit (BC3) controls the DC bias applied to the modulation unit (ME3) based on the detected value detected. Specifically, only the
この主マッハツェンダー型導波路(MMZ)の変調部(ME3)に係るバイアス制御方法について、より詳細に説明する。 A bias control method related to the modulation unit (ME3) of the main Mach-Zehnder type waveguide (MMZ) will be described in more detail.
2つの副マッハツェンダー型導波路から出力される光波は、低周波信号f(fをディザ周波数ともいう)で変調されており、このディザ周波数による変調成分のみに着目すると、各副マッハツェンダー型導波路の出力光(変調成分)は、SMZ1は式(1)、SMZ2は式(2)によって表現される。ただし、mはディザによる変調度、wはディザ変調角周波数を示す。また副マッハツェンダー型導波路のバイアスは位相差πに適切に設定されていると仮定し、偶数次の変調成分が存在しないとする。 The light waves output from the two sub-Mach-Zehnder type waveguides are modulated by a low-frequency signal f (f is also referred to as a dither frequency). The output light (modulation component) of the waveguide is expressed by Equation (1) for SMZ1 and Equation (2) for SMZ2. Here, m represents the degree of modulation by dither, and w represents the dither modulation angular frequency. Further, it is assumed that the bias of the sub-Mach-Zehnder type waveguide is appropriately set to the phase difference π and there is no even-order modulation component.
式(1)及び式(2)は、副マッハツェンダー型導波路の変調部で変調された光波が周波数±f成分、±3f成分の光スペクトルを有することを意味しており、実際は、±3f成分より高次成分も存在するが、ディザによる変調は浅い(印加する低周波信号の強度が弱い)ため、より高次成分の強度は無視できる程度に小さくなる。 Expressions (1) and (2) mean that the light wave modulated by the modulation unit of the sub-Mach-Zehnder type waveguide has an optical spectrum of frequency ± f component and ± 3f component. Although higher-order components exist than the components, the dither modulation is shallow (the intensity of the low-frequency signal to be applied is weak), so the intensity of the higher-order components becomes small enough to be ignored.
各副マッハツェンダー型導波路から出力される光波の光スペクトルは、図1の符号A(又はB)における光スペクトルは、図2(a)(又は図2(b))に示すような状態となる。これは、副マッハツェンダー型導波路の変調部に印加するDCバイアスを、上述の周波数f成分において検出値が最小値となるように制御(あるいは、周波数2f成分のみを抽出し、抽出した検出値が最大値となるように制御)された結果の状態である。
The optical spectrum of the light wave output from each sub-Mach-Zehnder type waveguide is as shown in FIG. 2 (a) (or FIG. 2 (b)). Become. This is to control the DC bias applied to the modulation section of the sub-Mach-Zehnder type waveguide so that the detection value becomes the minimum value in the above-described frequency f component (or extract only the
次に、副マッハツェンダー型導波路から出た2つの光波は、変調部ME3に印加されるバイアス電圧により角θの関係で合波される。 Next, the two light waves emitted from the sub Mach-Zehnder type waveguide are combined in a relationship of angle θ by a bias voltage applied to the modulation unit ME3.
合波された光波の状態を図3に示す。図3(a)は、周波数−3f成分又は+f成分における合波状態を示すものであり、副マッハツェンダー型導波路(SMZ1)からの出力光のベクトルをs1とし、他方の副マッハツェンダー型導波路(SMZ2)からの出力光のベクトルをs2とし、合成された合成ベクトルをs3で表示している。 The state of the combined light wave is shown in FIG. FIG. 3A shows a state of multiplexing in the frequency −3f component or + f component, where the vector of the output light from the sub-Mach-Zehnder waveguide (SMZ1) is s 1 and the other sub-Mach-Zehnder type is shown. the vector of the output light from the waveguide (SMZ2) and s 2, and the combined resultant vector displayed in s 3.
図3(a)における合成ベクトルの振幅値及び位相は、式(3)及び式(4)で表現される。 The amplitude value and phase of the combined vector in FIG. 3A are expressed by Expression (3) and Expression (4).
また、図3(b)は、周波数−f成分又は+3成分における合波状態を示すものであり、副マッハツェンダー型導波路(SMZ1)からの出力光のベクトルをt1とし、他方の副マッハツェンダー型導波路(SMZ2)からの出力光のベクトルをt2とし、合成された合成ベクトルをt3で表示している。 FIG. 3B shows a state of multiplexing in the frequency −f component or +3 component, where t 1 is the vector of the output light from the sub Mach-Zehnder type waveguide (SMZ1), and the other sub Mach. the vector of the output light from Zehnder type waveguide (SMZ2) and t 2, and the combined resultant vector displayed in t 3.
図3(b)における合成ベクトルの振幅値及び位相は、式(5)及び式(6)で表現される。 The amplitude value and phase of the combined vector in FIG. 3B are expressed by Expression (5) and Expression (6).
副マッハツェンダー型導波路から出力される光波を合成した状態は、上記の式(1)乃至(6)を利用して、式(7)で表現される。 A state in which light waves output from the sub-Mach-Zehnder waveguide are synthesized is expressed by Expression (7) using Expressions (1) to (6) above.
図1の符号Cで示される合波した光波の光スペクトルの状態は、図2(c)のように表示される。そして、合成光の受光素子による出力(検出値)Iは、I=E・E*であり、これを計算・整理すると、ディザ変調周波数の2倍周波数項(2f成分)の係数は、式(8)で表現される式に比例するものとなる。 The state of the optical spectrum of the combined light wave indicated by symbol C in FIG. 1 is displayed as shown in FIG. The output (detection value) I of the combined light from the light receiving element is I = E · E * . When this is calculated and arranged, the coefficient of the double frequency term (2f component) of the dither modulation frequency is expressed by the equation ( It is proportional to the expression expressed in 8).
式(8)は、図2(c)の光スペクトルの検出出力は、二乗検波した際に生じる2f成分であり、これは、−3f成分と−f成分との積,−f成分とf成分との積,及びf成分と3f成分との積の合成値となる。 In Expression (8), the detection output of the optical spectrum in FIG. 2C is a 2f component generated when square detection is performed, which is the product of the −3f component and the −f component, the −f component and the f component. And a composite value of the product of the f component and the 3f component.
式(8)の結果から、ディザの変調の深さ(低周波信号の強度)に関係なく、主マッハツェンダー型導波路(MMZ)の変調部(ME3)に印加するDCバイアスに応じて、位相θが変化し、2倍周波数成分の光強度はsinθの絶対値に比例して変化する。このため、主マッハツェンダー型導波路の出力光の一部を検出することで、変調部(ME3)のDCバイアスを最適値に制御することが可能であることが理解される。 From the result of the equation (8), the phase depends on the DC bias applied to the modulation unit (ME3) of the main Mach-Zehnder type waveguide (MMZ) regardless of the depth of modulation of the dither (low frequency signal intensity). As θ changes, the light intensity of the double frequency component changes in proportion to the absolute value of sin θ. For this reason, it is understood that the DC bias of the modulation unit (ME3) can be controlled to an optimum value by detecting a part of the output light of the main Mach-Zehnder type waveguide.
式(8)で表現される2f成分のモニタレベル(検出値)のバイアス点(位相θ)に対する変化は、図4に示される。そして、DQPSK変調では、θ=π/2に設定すれば良いため、図4の設定バイアス点で示したように、2倍周波のモニタ信号が最大となるように、バイアス制御を行う必要がある。 The change of the monitor level (detection value) of the 2f component expressed by the equation (8) with respect to the bias point (phase θ) is shown in FIG. In DQPSK modulation, it is only necessary to set θ = π / 2. Therefore, as shown by the set bias point in FIG. 4, it is necessary to perform bias control so that the double frequency monitor signal is maximized. .
以上説明したように、本発明によれば、ネスト型導波路を有する光変調器、特に、DQPSK変調を行う光変調器のバイアス制御を、簡単な構成で実現することが可能な光変調器のバイアス制御方法を提供することができる。 As described above, according to the present invention, an optical modulator that can realize bias control of an optical modulator having a nested waveguide, particularly an optical modulator that performs DQPSK modulation, with a simple configuration. A bias control method can be provided.
AC1,AC2 低周波信号
BC1〜BC3 バイアス制御回路
BT1,BT2 バイアスT回路
ME1〜ME3 変調部
MMZ 主マッハツェンダー型導波路
SMZ1,SMZ2 副マッハツェンダー型導波路
AC1, AC2 Low frequency signal BC1 to BC3 Bias control circuit BT1, BT2 Bias T circuit ME1 to ME3 Modulator MMZ Main Mach-Zehnder type waveguide SMZ1, SMZ2 Sub-Mach-Zehnder type waveguide
Claims (2)
該副マッハツェンダー型導波路の変調部の各々に、同じ周波数fで互いに90度位相の異なる低周波信号を印加しながら、
最初に、各副マッハツェンダー型導波路において、該副マッハツェンダー型導波路から出力される光波の一部を検出して、該検出値に基づき当該副マッハツェンダー型導波路の変調部のバイアス制御を行い、
次に、該主マッハツェンダー型導波路から出力される光波の一部を検出して、該検出値に基づき該主マッハツェンダー型導波路の変調部のバイアス制御を行うことを特徴とする光変調器のバイアス制御方法。 The two branch waveguides of one main Mach-Zehnder type waveguide have a nested waveguide in which two sub-Mach-Zehnder type waveguides are incorporated one by one, and all the Mach-Zehnder type waveguides have a modulation section. In an optical modulator bias control method,
While applying low frequency signals having the same frequency f and different phases by 90 degrees to each of the modulation sections of the sub-Mach-Zehnder type waveguide,
First, in each sub-Mach-Zehnder type waveguide, a part of the light wave output from the sub-Mach-Zehnder type waveguide is detected, and bias control of the modulation unit of the sub-Mach-Zehnder type waveguide is performed based on the detected value And
Next, a part of the light wave output from the main Mach-Zehnder type waveguide is detected, and bias control of the modulation unit of the main Mach-Zehnder type waveguide is performed based on the detected value. Bias control method.
該光変調器は、DQPSK変調を行う光変調器であり、
該副マッハツェンダー型導波路の変調部のバイアス制御は、当該検出値の周波数f成分が最小値又は周波数2f成分が最大値となるようにバイアス制御を行い、
該主マッハツェンダー型導波路の変調部のバイアス制御は、当該検出値の周波数2f成分が最大値となるようにバイアス制御を行うことを特徴とする光変調器のバイアス制御方法。 The bias control method for an optical modulator according to claim 1,
The optical modulator is an optical modulator that performs DQPSK modulation,
The bias control of the modulation unit of the sub-Mach-Zehnder waveguide performs bias control so that the frequency f component of the detected value is the minimum value or the frequency 2f component is the maximum value,
A bias control method for an optical modulator, wherein the bias control of the modulation section of the main Mach-Zehnder type waveguide is performed so that the frequency 2f component of the detected value becomes a maximum value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228418A JP2011075913A (en) | 2009-09-30 | 2009-09-30 | Method of controlling bias of optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228418A JP2011075913A (en) | 2009-09-30 | 2009-09-30 | Method of controlling bias of optical modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011075913A true JP2011075913A (en) | 2011-04-14 |
Family
ID=44019954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009228418A Pending JP2011075913A (en) | 2009-09-30 | 2009-09-30 | Method of controlling bias of optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011075913A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018054907A (en) * | 2016-09-29 | 2018-04-05 | 富士通オプティカルコンポーネンツ株式会社 | Optical module and method of controlling bias of optical modulator |
EP3447565A1 (en) * | 2017-08-24 | 2019-02-27 | Lumentum Operations LLC | Closed loop quadrature bias control for an iq phase modulator |
CN109861645A (en) * | 2019-01-04 | 2019-06-07 | 武汉邮电科学研究院有限公司 | A kind of frequency multiplier for microwave broadband communication |
US10498457B2 (en) | 2011-09-30 | 2019-12-03 | Sumitomo Osaka Cement Co., Ltd. | Optical carrier-suppressed signal generator |
CN111200460A (en) * | 2018-11-19 | 2020-05-26 | 富士通株式会社 | Modulation depth monitoring device and method of jitter signal and optical transmitter |
US10823987B2 (en) | 2017-08-24 | 2020-11-03 | Lumentum Operations Llc | Closed loop bias control for an IQ phase modulator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007043638A (en) * | 2005-05-23 | 2007-02-15 | Fujitsu Ltd | Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them |
JP2007057785A (en) * | 2005-08-24 | 2007-03-08 | National Institute Of Information & Communication Technology | Automatically adjusting system of frequency shift keying modulator |
JP2007082094A (en) * | 2005-09-16 | 2007-03-29 | Fujitsu Ltd | Optical transmitter and optical communication system |
JP2007086207A (en) * | 2005-09-20 | 2007-04-05 | National Institute Of Information & Communication Technology | Phase control optical fsk modulator |
JP2008197639A (en) * | 2007-01-15 | 2008-08-28 | Fujitsu Ltd | Optical transmitter and its control method |
JP2010002850A (en) * | 2008-06-23 | 2010-01-07 | Ngk Insulators Ltd | Bias control method of optical modulator, and optical modulator |
-
2009
- 2009-09-30 JP JP2009228418A patent/JP2011075913A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007043638A (en) * | 2005-05-23 | 2007-02-15 | Fujitsu Ltd | Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them |
JP2007057785A (en) * | 2005-08-24 | 2007-03-08 | National Institute Of Information & Communication Technology | Automatically adjusting system of frequency shift keying modulator |
JP2007082094A (en) * | 2005-09-16 | 2007-03-29 | Fujitsu Ltd | Optical transmitter and optical communication system |
JP2007086207A (en) * | 2005-09-20 | 2007-04-05 | National Institute Of Information & Communication Technology | Phase control optical fsk modulator |
JP2008197639A (en) * | 2007-01-15 | 2008-08-28 | Fujitsu Ltd | Optical transmitter and its control method |
JP2010002850A (en) * | 2008-06-23 | 2010-01-07 | Ngk Insulators Ltd | Bias control method of optical modulator, and optical modulator |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10498457B2 (en) | 2011-09-30 | 2019-12-03 | Sumitomo Osaka Cement Co., Ltd. | Optical carrier-suppressed signal generator |
JP2018054907A (en) * | 2016-09-29 | 2018-04-05 | 富士通オプティカルコンポーネンツ株式会社 | Optical module and method of controlling bias of optical modulator |
EP3447565A1 (en) * | 2017-08-24 | 2019-02-27 | Lumentum Operations LLC | Closed loop quadrature bias control for an iq phase modulator |
US10254570B2 (en) | 2017-08-24 | 2019-04-09 | Lumentum Operations Llc | Closed loop quadrature bias control for an IQ phase modulator |
US10823987B2 (en) | 2017-08-24 | 2020-11-03 | Lumentum Operations Llc | Closed loop bias control for an IQ phase modulator |
CN111200460A (en) * | 2018-11-19 | 2020-05-26 | 富士通株式会社 | Modulation depth monitoring device and method of jitter signal and optical transmitter |
CN109861645A (en) * | 2019-01-04 | 2019-06-07 | 武汉邮电科学研究院有限公司 | A kind of frequency multiplier for microwave broadband communication |
CN109861645B (en) * | 2019-01-04 | 2024-02-13 | 武汉邮电科学研究院有限公司 | Frequency multiplier for microwave broadband communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4083657B2 (en) | Bias control method and apparatus for optical modulator | |
JP2010028741A (en) | Optical transmitter | |
US10498457B2 (en) | Optical carrier-suppressed signal generator | |
EP2624484A1 (en) | Optical transmitter and method for controlling bias for optical modulator | |
JP2011075913A (en) | Method of controlling bias of optical modulator | |
WO2009008370A1 (en) | Optical modulation circuit and optical transmission system | |
JP4494347B2 (en) | Light modulator | |
JP4527993B2 (en) | Light modulation apparatus and light modulation method | |
JP2018146736A (en) | Optical 90-degree phase shifter, ssb modulator, and optical heterodyne quadrature detection laser radar | |
JP5768020B2 (en) | Optical modulator and drift control method thereof | |
JP2007286547A (en) | Optical modulation device | |
JP2009246578A (en) | Optical transmission device, and optical test device | |
Wang et al. | Suppression of backscattering-induced noise in a resonator optic gyro by the dual-frequency modulation method | |
US20050180761A1 (en) | Optical wavelength multiplexing FSK modulation method | |
JP2009246579A (en) | Optical transmission device, and optical test device | |
US20130022153A1 (en) | Method and apparatus for controlling phase delay offset point of modulator | |
KR100713408B1 (en) | Single side band modulator module and single side band modulator device using the same | |
JP5353428B2 (en) | Light modulator | |
US20040005154A1 (en) | Optical transmitter | |
JP2000122015A (en) | Optical modulator | |
JP2010002850A (en) | Bias control method of optical modulator, and optical modulator | |
JP5354528B2 (en) | Optical modulator and switch having bias point adjustment function | |
Jin et al. | Silicon photonic integrated interrogator for fiber-optic distributed acoustic sensing | |
JP2013183214A (en) | Optical signal inspection device and optical signal inspection method | |
JP4028332B2 (en) | Light intensity modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120228 |
|
A977 | Report on retrieval |
Effective date: 20121115 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130730 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20130930 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20140225 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20140428 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140916 |