JP2011075861A - Method of manufacturing transmission type optical diffraction grating element - Google Patents

Method of manufacturing transmission type optical diffraction grating element Download PDF

Info

Publication number
JP2011075861A
JP2011075861A JP2009227734A JP2009227734A JP2011075861A JP 2011075861 A JP2011075861 A JP 2011075861A JP 2009227734 A JP2009227734 A JP 2009227734A JP 2009227734 A JP2009227734 A JP 2009227734A JP 2011075861 A JP2011075861 A JP 2011075861A
Authority
JP
Japan
Prior art keywords
complex
diffraction grating
grating element
optical diffraction
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009227734A
Other languages
Japanese (ja)
Inventor
Kiyotaka Murashima
清孝 村嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009227734A priority Critical patent/JP2011075861A/en
Publication of JP2011075861A publication Critical patent/JP2011075861A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily designing and manufacturing a transmission type optical diffraction grating element having a desired transmission spectrum. <P>SOLUTION: By the method of manufacturing the transmission type optical diffraction grating element, local complex transmittance t<SB>k</SB>and complex reflectance r<SB>k</SB>are determined at each position in a longitudinal direction divided in N on the basis of a desired transmission spectrum t(δ) (where δ=β-β<SB>B</SB>, β: wave number of light, β<SB>B</SB>: Bragg design wave number) or the like, local complex reflectance ρ<SB>k</SB>is determined at each position, local combination coefficient q<SB>k</SB>is determined at each position, refractive index n<SB>k</SB>is determined at each position along the advancing direction of light in the transmission type diffraction grating element to be manufactured, and the transmission type optical diffraction grating having the determined refractive index distribution is manufactured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、透過型光回折格子素子を製造する方法に関するものである。   The present invention relates to a method for manufacturing a transmissive optical diffraction grating element.

光のブラッグ回折を利用する光回折格子素子は、反射型光回折格子素子と透過型光回折格子素子とに大別される。反射型光回折格子素子は、入射光に対して波長に応じた反射率および遅延で反射した反射光を出力することができ、反射型の光フィルタや分散調整素子として用いられる。また、透過型光回折格子素子は、入射光に対して波長に応じた透過率で透過した透過光を出力することができ、透過型の光フィルタとして用いられる。反射型光回折格子素子および透過型光回折格子素子の何れも、光ファイバにおいて長手方向に沿ったコア領域の屈折率分布の周期的構造として実現され、光通信システム等において用いられる。反射型光回折格子素子は、非特許文献1,2に記載されたレイヤー・ピーリング方法により設計され製造される。   Optical diffraction grating elements using Bragg diffraction of light are roughly classified into reflection type optical diffraction grating elements and transmission type optical diffraction grating elements. The reflective optical diffraction grating element can output reflected light reflected with a reflectivity and delay corresponding to the wavelength of incident light, and is used as a reflective optical filter or dispersion adjusting element. Further, the transmissive optical diffraction grating element can output transmitted light having a transmittance corresponding to a wavelength with respect to incident light, and is used as a transmissive optical filter. Both the reflection type optical diffraction grating element and the transmission type optical diffraction grating element are realized as a periodic structure of the refractive index distribution of the core region along the longitudinal direction in the optical fiber, and are used in an optical communication system or the like. The reflection type optical diffraction grating element is designed and manufactured by the layer peeling method described in Non-Patent Documents 1 and 2.

Ricardo Feced, et al, "An Efficient Inverse ScatteringAlgorithm for the Design of Nonuniform Fiber Bragg Gratings," IEEE Journalof Quantum Electronics, Vol.35, No.8, pp.1105-1115 (1999).Ricardo Feced, et al, "An Efficient Inverse Scattering Algorithm for the Design of Nonuniform Fiber Bragg Gratings," IEEE Journalof Quantum Electronics, Vol.35, No.8, pp.1105-1115 (1999). Jan Kristoffer, et al, "Design of Grating-AssistedCodirectional Couplers with Discrete Inverse-Scattering Algorithm,"Journal of Lightwave Technology, Vol.21, No.1, pp.254-263 (2003).Jan Kristoffer, et al, "Design of Grating-Assisted Codirectional Couplers with Discrete Inverse-Scattering Algorithm," Journal of Lightwave Technology, Vol. 21, No. 1, pp. 254-263 (2003).

反射型光回折格子素子を光フィルタや分散調整素子として用いる場合、入射光と反射光とが同軸になるので、両光を分離するための光部品として例えば光サーキュレータが必要となる。それ故、反射型光回折格子素子を用いて光フィルタを実現するには高コストとなる。一方、透過型光回折格子素子は、他の光部品を必要とすることなく光フィルタとして機能し得るので、低コストである。したがって、コストの観点では、反射型光回折格子素子より、透過型光回折格子素子の方が好ましい。   When the reflection type optical diffraction grating element is used as an optical filter or a dispersion adjusting element, the incident light and the reflected light are coaxial, so that, for example, an optical circulator is required as an optical component for separating both lights. Therefore, it is expensive to implement an optical filter using a reflective optical diffraction grating element. On the other hand, the transmissive optical diffraction grating element can function as an optical filter without the need for other optical components, and thus is low in cost. Therefore, from the viewpoint of cost, the transmission type optical diffraction grating element is preferable to the reflection type optical diffraction grating element.

しかしながら、反射型光回折格子素子を設計し製造する方法は知られているものの、透過型光回折格子素子を設計し製造する方法は未だ知られていない。それ故、所望の透過スペクトルを有する透過型光回折格子素子を製造することは困難であった。   However, although a method for designing and manufacturing a reflective optical diffraction grating element is known, a method for designing and manufacturing a transmission optical diffraction grating element is not yet known. Therefore, it has been difficult to manufacture a transmissive optical diffraction grating element having a desired transmission spectrum.

本発明は、上記問題点を解消する為になされたものであり、所望の透過スペクトルを有する透過型光回折格子素子を容易に設計し製造する方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for easily designing and manufacturing a transmission type optical diffraction grating element having a desired transmission spectrum.

本発明に係る透過型光回折格子素子製造方法は、透過型光回折格子素子を製造する方法であって、(a) 製造されるべき透過型光回折格子素子における光の進行方向に沿った長さをLとし、当該回折格子長Lの範囲を等分割する際の分割数をNとして、分割長Δ(=L/N)を求め、これらのパラメータおよび所望の透過スペクトルt(δ)(ただし、δ=β−β、β:光の波数、β:ブラッグ設計波数)に基づいて、(1)式に従って、N分割位置のうちの各位置zにおける局所的な複素透過率tおよび複素反射率rを求める複素透過率・複素反射率算出ステップと、(b) 複素透過率・複素反射率算出ステップにおいて求められた各位置zにおける局所的な複素透過率tおよび複素反射率rに基づいて、(2)式に従って、各位置zにおける局所的な複素反射係数ρを求める複素反射係数算出ステップと、(c) 複素反射係数算出ステップにおいて求められた各位置zにおける局所的な複素反射係数ρに基づいて、(3)式に従って、各位置zにおける局所的な結合係数qを求める結合係数算出ステップと、(d) 結合係数算出ステップにおいて求められた各位置zにおける局所的な結合係数qに基づいて、(4)式に従って、各位置zにおける屈折率nを求める屈折率分布算出ステップと、(e) 屈折率分布算出ステップにおいて求められた屈折率分布を有する透過型光回折格子素子を製造する製造ステップと、を備えることを特徴とする。 A transmission type optical diffraction grating element manufacturing method according to the present invention is a method of manufacturing a transmission type optical diffraction grating element, and (a) a length along the traveling direction of light in the transmission type optical diffraction grating element to be manufactured. Where L is L, and the number of divisions when equally dividing the range of the diffraction grating length L is N, a division length Δ (= L / N) is obtained, and these parameters and a desired transmission spectrum t (δ) (however, , Δ = β−β B , β: wave number of light, β B : Bragg design wave number), and local complex transmittance t k at each position z k among the N divided positions according to the equation (1). and a complex transmission factor-complex reflectivity calculating step of obtaining a complex reflectance r k, (b) local complex transmittance t k and the complex at each position z k determined in the complex permeability, complex reflectivity calculating step based on the reflectance r k, in accordance with equation (2), Dear Based on the complex reflection coefficient calculation step for obtaining the local complex reflection coefficient ρ k at the position z k , and (c) the local complex reflection coefficient ρ k at each position z k obtained in the complex reflection coefficient calculation step, (3) A coupling coefficient calculation step for obtaining a local coupling coefficient q k at each position z k according to the equation (3), and (d) a local coupling coefficient q k at each position z k obtained in the coupling coefficient calculation step. Based on the equation (4), a refractive index distribution calculating step for obtaining a refractive index nk at each position z k , and (e) a transmissive optical diffraction grating element having a refractive index distribution obtained in the refractive index distribution calculating step And a manufacturing step for manufacturing.

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

本発明によれば、所望の透過スペクトルを有する透過型光回折格子素子を容易に設計し製造することができる。   According to the present invention, a transmission type optical diffraction grating element having a desired transmission spectrum can be easily designed and manufactured.

反射型光回折格子素子または透過型光回折格子素子を設計する際に用いられる各パラメータを説明する図である。It is a figure explaining each parameter used when designing a reflection type optical diffraction grating element or a transmission type optical diffraction grating element. 本実施形態に係る透過型光回折格子素子製造方法を説明するフローチャートである。It is a flowchart explaining the transmissive optical diffraction grating element manufacturing method which concerns on this embodiment.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

初めに、反射型光回折格子素子または透過型光回折格子素子(以下では双方を総称して「光回折格子素子」という。)を設計する際に用いられる各パラメータについて説明する。図1に示されるように、製造されるべき光回折格子素子に対して入射光が+z方向に入射するものとする。その光回折格子素子におけるz方向に沿った長さL、および、当該回折格子長Lの範囲を等分割する際の分割数Nから、分割長Δ(=L/N)が求められる。   First, parameters used in designing a reflection type optical diffraction grating element or a transmission type optical diffraction grating element (hereinafter collectively referred to as “optical diffraction grating element”) will be described. As shown in FIG. 1, it is assumed that incident light is incident on the optical diffraction grating element to be manufactured in the + z direction. The division length Δ (= L / N) is obtained from the length L along the z direction in the optical diffraction grating element and the division number N when equally dividing the range of the diffraction grating length L.

製造されるべき反射型光回折格子素子の所望の反射スペクトルをr(δ)とし、製造されるべき透過型光回折格子素子の所望の透過スペクトルをt(δ)とする。ただし、δ=β−β であり、βは光の波数であり、βはブラッグ設計波数である。N分割位置のうちの第kの位置z(k=1〜N)において、+z方向に進む光の振幅をu(δ)とし、−z方向に進む光の振幅をv(δ)とし、局所的な複素透過率をt(δ)とし、局所的な複素反射率をr(δ)とし、局所的な複素反射係数をρとし、局所的な結合係数をqとし、また、屈折率をnとする。 Let r (δ) be the desired reflection spectrum of the reflective optical diffraction grating element to be manufactured, and let t (δ) be the desired transmission spectrum of the transmission optical diffraction grating element to be manufactured. However, δ = β−β B , β is the wave number of light, and β B is the Bragg design wave number. At the k-th position z k (k = 1 to N) among the N divided positions, the amplitude of light traveling in the + z direction is represented by u k (δ), and the amplitude of light traveling in the −z direction is represented by v k (δ). , The local complex transmittance is t k (δ), the local complex reflectance is r k (δ), the local complex reflection coefficient is ρ k , and the local coupling coefficient is q k. In addition, the refractive index is nk .

次に、参考例として、反射型光回折格子素子を設計し製造する方法について説明する。この場合、位置zにおいて、+z方向に進む光の振幅uは入射光の振幅であり、−z方向に進む光の振幅vは反射光の振幅であるから、下記(5)式が成り立つ。位置zにおける複素反射率r(δ)は、所望の複素反射率r(δ)と等しくなる。 Next, as a reference example, a method for designing and manufacturing a reflective optical diffraction grating element will be described. In this case, at position z 1 , the amplitude u 1 of the light traveling in the + z direction is the amplitude of the incident light, and the amplitude v 1 of the light traveling in the −z direction is the amplitude of the reflected light. It holds. The complex reflectance r 1 (δ) at the position z 1 is equal to the desired complex reflectance r (δ).

Figure 2011075861
Figure 2011075861

インパルス応答の際の時刻t=0のときの複素反射率r(δ)の値は、位置zでの局所的な反射係数を表すと考えられる。したがって、位置zでの局所的な複素反射係数ρは下記(6)式で表される。 The value of the complex reflectance r 1 (δ) at time t = 0 during the impulse response is considered to represent the local reflection coefficient at the position z 1 . Therefore, the local complex reflection coefficient [rho 1 at the position z 1 is expressed by the following equation (6).

Figure 2011075861
Figure 2011075861

位置zでの局所的な複素反射率r(δ)は、位置zでの局所的な複素反射率r(δ)および複素反射係数ρを用いて、下記(7)式で表される。一般に、位置zでの局所的な複素反射率r(δ)は、下記(8)式で表される。位置zでの局所的な複素反射係数ρは、下記(9)式で表される。 Local complex reflectivity r 2 at the position z 2 ([delta]), using the local complex reflectivity r 1 ([delta]) and the complex reflection coefficient [rho 1 at the position z 1, the following equation (7) expressed. In general, the local complex reflectance r k (δ) at the position z k is expressed by the following equation (8). Local complex reflection coefficient [rho k at position z k is expressed by the following equation (9).

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

以上のようにして求められた各位置zでの局所的な複素反射係数ρに基づいて、各位置zでの局所的な結合係数qは、下記(10)式で求められる。さらに、各位置zでの局所的な結合係数qに基づいて、各位置zでの屈折率nは下記(11)式で求められる。nは平均屈折率であり、Δnは位置zでの屈折率変調分である。そして、以上のようにして求められた屈折率分布を有する反射型光回折格子素子が製造される。 Based on local complex reflection coefficient [rho k at each position z k determined as described above, local coupling coefficient q k at each position z k is determined by the following equation (10). Further, based on local coupling coefficient q k at each position z k, the refractive index n k at each position z k is determined by the following equation (11). n 0 is the average refractive index, and Δn k is the amount of refractive index modulation at position z k . Then, a reflection type optical diffraction grating element having the refractive index distribution obtained as described above is manufactured.

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

次に、本実施形態に係る透過型光回折格子素子製造方法について説明する。図2に示されるように、本実施形態に係る透過型光回折格子素子製造方法は、各位置zにおける局所的な複素透過率tおよび複素反射率rを求める複素透過率・複素反射率算出ステップS1、各位置zにおける局所的な複素反射係数ρを求める複素反射係数算出ステップS2、各位置zにおける局所的な結合係数qを求める結合係数算出ステップS3、各位置zにおける屈折率nを求める屈折率分布算出ステップS4、ならびに、屈折率分布算出ステップにおいて求められた屈折率分布を有する透過型光回折格子素子を製造する製造ステップS5を備える。 Next, a transmissive optical diffraction grating device manufacturing method according to this embodiment will be described. As shown in FIG. 2, the transmission type diffraction grating device manufacturing method according to the present embodiment, the complex transmittance, complex reflectivity for obtaining a local complex transmittance t k and the complex reflectance r k at each position z k rate calculation step S1, the complex reflection coefficient calculating step S2 for determining the local complex reflection coefficient [rho k at each position z k, coupling coefficient calculating step S3 to determine a local coupling coefficient q k at each position z k, each position z refractive index distribution calculating step S4 to determine the refractive index n k of k, and comprises a manufacturing step S5 of manufacturing a transmission type diffraction grating device having a refractive index distribution obtained at the refractive index distribution calculating step.

局所的な複素透過率tおよび複素反射率rを求める複素透過率・複素反射率算出ステップS1では、以下のような処理が行われる。 The complex transmittance, complex reflectivity calculation step S1 seek local complex transmittance t k and the complex reflectance r k, the following processing is performed.

位置zより+z側において、+z方向に進む光の振幅uN+1は透過光の振幅であり、−z方向に進む光の振幅vN+1は0であるから、下記(12)式が成り立つ。すなわち、位置zより+z側において、+z方向に進む光の振幅uN+1は、所望の複素透過率t(δ)と等しくなる。 In + z side than at z N, + amplitude u N + 1 of light z traveling in the direction is the amplitude of the transmitted light, since the amplitude v N + 1 of the light traveling in the -z direction is 0, the following equation (12) holds. That is, in the + z side than at z N, + z amplitude u N + 1 of the light traveling in the direction is equal to the desired complex transmittance t ([delta]).

Figure 2011075861
Figure 2011075861

位置zより−z側での順方向および逆方向それぞれの光の振幅(u,v)と、位置zより+z側での順方向および逆方向それぞれの光の振幅(uk+1,vk+1)と、の間の伝達行列Mを考えると、下記(13)〜(15)式が成り立つ。 Position z forward and reverse directions of the light amplitude at -z side of k (u k, v k) and forward and reverse amplitude of each of the light at the position z k + z side (u k + 1, v k + 1) and, given the transfer matrix M k between the following (13) to (15) below holds.

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

伝達行列Mは、下記(16)式で表される。伝達行列Mの逆行列Xは、下記(17)式で表される。ここで、伝達行列Mの逆行列Xの各成分を、下記(18)式のように表すことにする。 The transfer matrix M k is expressed by the following equation (16). The inverse matrix X k of the transfer matrix M k is expressed by the following equation (17). Here, each component of the inverse matrix X k of the transfer matrix M k is expressed as the following equation (18).

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

すると、位置zでの順方向および逆方向それぞれの光の振幅(u,v)は、下記(19)式で表される。これから、位置zでの局所的な複素透過率tは、下記(20)式で表される。 Then, the amplitudes (u k , v k ) of light in the forward direction and the backward direction at the position z k are expressed by the following equation (19). Now, local complex transmittance t k at position z k is expressed by the following equation (20).

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

この式から、下記(21)式が得られる。ここで、(17)式および(18)式から計算されるX11 (k)およびX12 (k)を用いた。 From this equation, the following equation (21) is obtained. Here, X 11 (k) and X 12 (k) calculated from the equations (17) and (18 ) were used.

Figure 2011075861
Figure 2011075861

また、上記(8)式から、位置zでの局所的な複素反射率r(δ)は、下記(22)式で表される。 Further, from the above equation (8), the local complex reflectance r k (δ) at the position z k is expressed by the following equation (22).

Figure 2011075861
Figure 2011075861

複素反射率rN+1については、下記(23)式のとおり値0である。この(23)式を用いると、上記(21)式においてk=Nの場合の複素透過率tは、下記(24)式で表される。また、この(23)式を用いると、上記(22)式においてk=Nの場合の複素反射率rは、下記(25)式で表される。 The complex reflectance r N + 1 is 0 as shown in the following equation (23). Using this equation (23), the complex transmittance t N when k = N in the above equation (21) is expressed by the following equation (24). Further, when this equation (23) is used, the complex reflectance r N when k = N in the above equation (22) is expressed by the following equation (25).

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

以降も同様にして、複素透過率tN−1は下記(26)式で表され、複素反射率rN−1は下記(27)式で表され、複素透過率tN−2は下記(28)式で表される。これ以降についても同様して複素反射率rおよび複素透過率tまで求められる。 Thereafter, similarly, the complex transmittance t N-1 is represented by the following equation (26), the complex reflectance r N-1 is represented by the following equation (27), and the complex transmittance t N-2 is represented by the following formula ( 28) From this point on, the complex reflectance r 1 and the complex transmittance t 1 are similarly obtained.

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

Figure 2011075861
Figure 2011075861

複素透過率・複素反射率算出ステップS1では、以上のようにして、各位置zにおける局所的な複素透過率tおよび複素反射率rが求められる。この複素透過率・複素反射率算出ステップS1に続く複素反射係数算出ステップS2では、各位置zにおける局所的な複素透過率tおよび複素反射率rに基づいて、位置zでの局所的な複素反射係数ρが下記(29)式で求められる。 The complex transmittance, complex reflectivity calculation step S1, as described above, the local complex transmittance t k and the complex reflectance r k at each position z k is determined. The complex reflection coefficient calculating step S2 following the complex transmittance, complex reflectivity calculation step S1, based on local complex transmittance t k and the complex reflectance r k at each position z k, topical at position z k A complex reflection coefficient ρ k is obtained by the following equation (29).

Figure 2011075861
Figure 2011075861

複素反射係数算出ステップS2に続く結合係数算出ステップS3では、複素反射係数算出ステップS2で求められた各位置zにおける局所的な複素反射係数ρに基づいて、各位置zにおける局所的な結合係数qが上記(10)式により求められる。 In a coupling coefficient calculation step S3 subsequent to the complex reflection coefficient calculation step S2, a local coefficient at each position z k is determined based on the local complex reflection coefficient ρ k at each position z k obtained in the complex reflection coefficient calculation step S2. The coupling coefficient q k is obtained by the above equation (10).

結合係数算出ステップS3に続く屈折率分布算出ステップS4では、結合係数算出ステップS3で求められた各位置zにおける局所的な結合係数qに基づいて、各位置zにおける屈折率nが上記(11)式により求められる。 In the refractive index distribution calculating step S4 following the coupling coefficient calculating step S3, the refractive index n k at each position z k is calculated based on the local coupling coefficient q k at each position z k obtained in the coupling coefficient calculating step S3. It is obtained by the above equation (11).

そして、屈折率分布算出ステップS4に続く製造ステップS5では、屈折率分布算出ステップS4で求められた屈折率分布を有する透過型光回折格子素子が製造される。例えば、透明平板の一方の主面に回折格子が形成された位相格子マスクが用いられ、GeO添加シリカガラスからなるコア領域を有する光ファイバの側面に位相格子マスクが配置され、コア領域の屈折率を変化させ得る波長のレーザ光(例えば波長248nmのKrFレーザ光)が位相格子マスクを介して光ファイバに照射されることで、透過型光回折格子素子(光ファイバグレーティング素子)が製造される。 In a manufacturing step S5 subsequent to the refractive index distribution calculating step S4, a transmission type optical diffraction grating element having the refractive index distribution obtained in the refractive index distribution calculating step S4 is manufactured. For example, a phase grating mask in which a diffraction grating is formed on one main surface of a transparent flat plate is used, and a phase grating mask is disposed on the side surface of an optical fiber having a core region made of GeO 2 -doped silica glass. A transmission type optical diffraction grating element (optical fiber grating element) is manufactured by irradiating an optical fiber with a laser beam having a wavelength capable of changing the rate (for example, KrF laser beam having a wavelength of 248 nm) through a phase grating mask. .

このときに用いられる位相格子マスクの主面に形成される回折格子の周期は、屈折率分布算出ステップS4で求められた屈折率分布の周期に応じたものとされ、また、光ファイバの長手方向の各位置におけるレーザ光照射量は、屈折率分布算出ステップS4で求められた屈折率分布における各位置での屈折率変調分Δnに応じたものとされる。 The period of the diffraction grating formed on the main surface of the phase grating mask used at this time corresponds to the period of the refractive index distribution obtained in the refractive index distribution calculating step S4, and is also the longitudinal direction of the optical fiber. laser light irradiation amount at each position is the one corresponding to the refractive index modulation amount [Delta] n k at each position in the refractive index distribution determined by the refractive index distribution calculating step S4.

以上のようにして、所望の透過スペクトルt(δ)を有する透過型光回折格子素子が製造される。このような透過型光回折格子素子は、他の光部品を必要とすることなく所望の特性を有する光フィルタとして機能し得るので、低コストである。
As described above, a transmissive optical diffraction grating element having a desired transmission spectrum t (δ) is manufactured. Such a transmission type optical diffraction grating element can function as an optical filter having desired characteristics without the need for other optical components, and thus is low in cost.

Claims (1)

透過型光回折格子素子を製造する方法であって、
製造されるべき前記透過型光回折格子素子における光の進行方向に沿った長さをLとし、当該回折格子長Lの範囲を等分割する際の分割数をNとして、分割長Δ(=L/N)を求め、これらのパラメータおよび所望の透過スペクトルt(δ)(ただし、δ=β−β、β:光の波数、β:ブラッグ設計波数)に基づいて、(1)式に従って、N分割位置のうちの各位置zにおける局所的な複素透過率tおよび複素反射率rを求める複素透過率・複素反射率算出ステップと、
Figure 2011075861

前記複素透過率・複素反射率算出ステップにおいて求められた各位置zにおける局所的な複素透過率tおよび複素反射率rに基づいて、(2)式に従って、各位置zにおける局所的な複素反射係数ρを求める複素反射係数算出ステップと、
Figure 2011075861

前記複素反射係数算出ステップにおいて求められた各位置zにおける局所的な複素反射係数ρに基づいて、(3)式に従って、各位置zにおける局所的な結合係数qを求める結合係数算出ステップと、
Figure 2011075861

前記結合係数算出ステップにおいて求められた各位置zにおける局所的な結合係数qに基づいて、(4)式に従って、各位置zにおける屈折率nを求める屈折率分布算出ステップと、
Figure 2011075861

前記屈折率分布算出ステップにおいて求められた屈折率分布を有する前記透過型光回折格子素子を製造する製造ステップと、
を備えることを特徴とする透過型光回折格子素子製造方法。
A method for manufacturing a transmissive optical diffraction grating element, comprising:
In the transmission type optical diffraction grating element to be manufactured, the length along the light traveling direction is L, and the division number when equally dividing the range of the diffraction grating length L is N, the division length Δ (= L / N), and based on these parameters and the desired transmission spectrum t (δ) (where δ = β−β B , β: wave number of light, β B : Bragg design wave number), according to equation (1) a local complex transmittance, complex reflectivity calculating step of calculating the complex transmittance t k and the complex reflectance r k at each position z k of the N split position,
Figure 2011075861

Based on local complex transmittance t k and the complex reflectance r k at each position z k determined in the complex permeability, complex reflectivity calculating step, according to equation (2), locally at each position z k A complex reflection coefficient calculating step for obtaining a complex reflection coefficient ρ k ,
Figure 2011075861

Based on the local complex reflection coefficient ρ k at each position z k obtained in the complex reflection coefficient calculation step, a coupling coefficient calculation for obtaining a local coupling coefficient q k at each position z k according to the equation (3). Steps,
Figure 2011075861

A refractive index distribution calculating step for obtaining a refractive index n k at each position z k according to the equation (4) based on the local coupling coefficient q k at each position z k obtained in the coupling coefficient calculating step;
Figure 2011075861

A manufacturing step of manufacturing the transmissive optical diffraction grating element having the refractive index distribution obtained in the refractive index distribution calculating step;
A transmissive optical diffraction grating element manufacturing method comprising:
JP2009227734A 2009-09-30 2009-09-30 Method of manufacturing transmission type optical diffraction grating element Pending JP2011075861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227734A JP2011075861A (en) 2009-09-30 2009-09-30 Method of manufacturing transmission type optical diffraction grating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227734A JP2011075861A (en) 2009-09-30 2009-09-30 Method of manufacturing transmission type optical diffraction grating element

Publications (1)

Publication Number Publication Date
JP2011075861A true JP2011075861A (en) 2011-04-14

Family

ID=44019913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227734A Pending JP2011075861A (en) 2009-09-30 2009-09-30 Method of manufacturing transmission type optical diffraction grating element

Country Status (1)

Country Link
JP (1) JP2011075861A (en)

Similar Documents

Publication Publication Date Title
Wang et al. Compact silicon waveguide mode converter employing dielectric metasurface structure
Gai et al. Progress in optical waveguides fabricated from chalcogenide glasses
CA2619385C (en) Interface device for performing mode transformation in optical waveguides
Giuntoni et al. Tunable Bragg reflectors on silicon-on-insulator rib waveguides
US20080193079A1 (en) Interface Device For Performing Mode Transformation in Optical Waveguides
Ma et al. Apodized spiral Bragg grating waveguides in silicon-on-insulator
JP2009288718A (en) Resonance grating coupler
JP2005043886A (en) Diffraction device using photonic crystal
JP2003329823A (en) Optical element using one-dimensional photonic crystal and spectroscopic system using the same
US20090190195A1 (en) Method of digitally processing optical waves and an integrated planar optical device based on digital planar holography
Sun et al. Integrated Bragg grating filters based on silicon-Sb 2 Se 3 with non-volatile bandgap engineering capability
Shahid et al. Junction-type photonic crystal waveguides for notch-and pass-band filtering
TW200305316A (en) Optical element and spectroscopic device
JP4691608B2 (en) Design method and manufacturing method of optical waveguide type chromatic dispersion compensation device
JP2011075861A (en) Method of manufacturing transmission type optical diffraction grating element
JP2007072133A (en) Waveguide type band rejection filter
US20080112670A1 (en) Wavelength filter
Palai et al. Highly efficient semiconductor grating structure for SOI optical circuits
WO2014174256A1 (en) Single fiber bragg grating as delay line interferometer
Ranacher et al. Design of a mid-infrared Bandpass Filter with large rejection bandwidth for Silicon Photonics
Kaur et al. RGB color filter based on triple layer high contrast grating in SOI waveguide
JP5193585B2 (en) Optical waveguide type chromatic dispersion compensation device and manufacturing method thereof
CA2578541C (en) Interface device for performing mode transformation in optical waveguides
Xu et al. Multi‐channel photonic crystal drop filter with cascaded stubs
JPH08286061A (en) Optical filter