JP2011075477A - Soil corrosion test method using simulated soil - Google Patents

Soil corrosion test method using simulated soil Download PDF

Info

Publication number
JP2011075477A
JP2011075477A JP2009229313A JP2009229313A JP2011075477A JP 2011075477 A JP2011075477 A JP 2011075477A JP 2009229313 A JP2009229313 A JP 2009229313A JP 2009229313 A JP2009229313 A JP 2009229313A JP 2011075477 A JP2011075477 A JP 2011075477A
Authority
JP
Japan
Prior art keywords
soil
corrosion
simulated
steel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009229313A
Other languages
Japanese (ja)
Inventor
Masahito Kaneko
雅仁 金子
Masaji Murase
正次 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009229313A priority Critical patent/JP2011075477A/en
Publication of JP2011075477A publication Critical patent/JP2011075477A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problems that a factor showing a clear correlation between a soil environment and a corrosion characteristic of a steel product is not found, and a corrosion evaluation method in a laboratory level such as an acceleration test is not established. <P>SOLUTION: In this soil corrosion test method of a steel product using simulated soil, the simulated soil is constituted of a granular material having properties of being insoluble to water, and hardly soluble to an acid and alkali, and a pF value is set at an optional value by adjusting a water content in the simulated soil. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は土壌環境中における鋼材の腐食特性を模擬土壌を用いて評価する方法に関するものである。   The present invention relates to a method for evaluating the corrosion characteristics of steel materials in a soil environment using simulated soil.

鋼材が土壌に埋設されて実際に使用される場合には、当該鋼材の開発改良等の観点で、土壌中での経年的な耐食性についての知見が必要である。これを簡便に評価できる試験方法があれば、鋼材の開発、設計に際して便利である。しかし、土壌中における鋼材の腐食試験方法は確立されておらず、そのため腐食因子も明確になっていないのが現状である。例えば、以下の先行技術文献は、いずれも実際の土壌中に長期間鋼材を埋設した状態で、鋼材の腐食性を評価している。非特許文献2では実験室にて土壌中の水分量をpF値として定義した腐食試験も実施しているが、実際の土壌を使用しているため、試験期間が長期間にわたる(例えば、特許文献1および非特許文献1では10年間)ばかりでなく、土壌環境が一定ではないためバラツキが大きく、他の土壌に変更したときに異なる結果になってしまうという問題点もある。   When steel materials are buried in soil and actually used, knowledge of the corrosion resistance over time in the soil is necessary from the viewpoint of development and improvement of the steel materials. If there is a test method that can easily evaluate this, it is convenient for the development and design of steel materials. However, a corrosion test method for steel materials in soil has not been established, and therefore, the corrosion factor has not been clarified. For example, all of the following prior art documents evaluate the corrosivity of steel materials in a state where steel materials are buried in actual soil for a long period of time. In Non-Patent Document 2, a corrosion test in which the amount of moisture in the soil is defined as a pF value in a laboratory is also carried out, but since the actual soil is used, the test period is long (for example, Patent Document 1 and Non-Patent Document 1 (for 10 years), there is also a problem that the soil environment is not constant, so the variation is large and the result is different when the soil is changed to another soil.

特開2000−336463号公報JP 2000-336463 A

「防錆・防食技術総覧」(株)産業技術センター、2000年5月17日発行"Rust / Corrosion Protection Technology Overview", Industrial Technology Center Co., Ltd., issued on May 17, 2000 「鋼製地中梁の利用技術の開発委員会」報告書、独立行政法人 建築研究所、社団法人 日本鉄鋼連盟、平成14年3月発行Report of “Development Committee for Utilization Technology of Steel Steel Beams”, National Institute for Building Science, Japan Iron and Steel Federation, published in March 2002 「土の試験実習書」(社)土質工学会、昭和55年8月20発行"Soil Examination Training Manual", Geotechnical Society of Japan, August 20, 1980

このように、土壌環境と鋼材の腐食特性の明確な相関を示す要因が見出されておらず、促進試験等、実験室レベルでの腐食評価方法が確立されていない。特に、従来は、腐食に最も大きな影響を与えると考えられる土壌中の水分量を単に含水率(または含水比)で評価しているため、土壌の種類によりバラツキが大きく、明確な相関が得られていない。   Thus, the factor which shows the clear correlation of soil environment and the corrosion characteristic of steel materials has not been found, and the corrosion evaluation method at the laboratory level, such as an accelerated test, has not been established. In particular, in the past, the amount of moisture in the soil, which is thought to have the greatest impact on corrosion, was evaluated simply by the moisture content (or moisture content ratio), so there were large variations depending on the type of soil, and a clear correlation was obtained. Not.

また、非特許文献2においては、従来の含水率に代えてpF値により水分量を定義した実験室レベルの試験が実施されているが、実際の土壌を使用しているため当該試験結果から他の鋼材の土壌腐食特性を推定し、種々の試験結果を比較検討することは困難である。   In Non-Patent Document 2, a laboratory-level test is performed in which the moisture content is defined by the pF value instead of the conventional moisture content. However, since actual soil is used, the test results indicate that It is difficult to estimate the soil corrosion characteristics of steel materials and compare various test results.

本発明者らは、土壌環境中における鋼材の腐食特性を鋭意研究し、特に土壌中の鋼材の腐食の程度は土壌中の水分量の内の自由水分量が大きく関係すること、およびこの自由水分量はpF値と関係が密接であることを見出し、種々の試験結果を比較検討するためには、単純化した態様の模擬土壌を使用することが有効であるとの知見を得、上記課題を解決した。このような課題を解決するための手段は以下の通りである。
1)模擬土壌を用いた鋼材の土壌腐食試験方法において、前記模擬土壌が水に対して不溶であり、酸およびアルカリに対しても難溶性である性質を有する粒状物から構成され、さらに前記模擬土壌中の水分含有量を調整してpF値を任意の値に設定することを特徴とする鋼材の土壌腐食試験方法。
2)前記粒状物は、JIS規格に従う二酸化珪素(石英型)であることを特徴とする1)記載の鋼材の土壌腐食試験方法。
The present inventors have intensively studied the corrosion characteristics of steel materials in a soil environment, and in particular, the degree of corrosion of steel materials in soil is largely related to the amount of free water in the amount of water in the soil, and this free moisture. The amount was found to be closely related to the pF value, and in order to compare various test results, the knowledge that it was effective to use a simulated soil in a simplified form was obtained, and the above problems were solved. Settled. Means for solving such problems are as follows.
1) In the soil corrosion test method for steel materials using simulated soil, the simulated soil is insoluble in water and is composed of granular materials having properties that are hardly soluble in acids and alkalis. A soil corrosion test method for steel, wherein the pF value is set to an arbitrary value by adjusting the water content in the soil.
2) The soil corrosion test method for steel according to 1), wherein the granular material is silicon dioxide (quartz type) according to JIS standards.

本発明によれば、鋼材の土壌腐食試験において、再現性の良い土中水分量と鋼材の腐食量に明確な相関があるデータを得ることができる。また、鋼材の土壌腐食試験の促進試験および実験室レベルでの腐食試験方法に適用でき、短期間で鋼材の土壌腐食性が評価することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the soil corrosion test of steel materials, the data with a clear correlation with the amount of moisture in the soil with good reproducibility and the corrosion amount of steel materials can be obtained. Further, the present invention can be applied to an acceleration test of a steel material soil corrosion test and a corrosion test method at a laboratory level, and the soil corrosion property of a steel material can be evaluated in a short period of time.

模擬土壌と実際の土壌による腐食試験結果の例。Example of corrosion test results using simulated soil and actual soil. 模擬土壌と実際の土壌の含水率とpF値の関係の一例を示す図。The figure which shows an example of the relationship between the moisture content of simulated soil and actual soil, and pF value. pF値2.3と2.4としたときの鋼材腐食量の経時的変化例。The example of a time-dependent change of the steel material corrosion amount when pF value is set to 2.3 and 2.4. pF値2.8としたときの鋼材腐食量の経時的変化例。The example of a time-dependent change of the steel material corrosion amount when pF value is set to 2.8.

以下、本発明を実施するための形態について、詳細に説明する。
本発明において使用する模擬土壌を構成する個々の粒子は、化学的に安定であれば特に限定されるものではない。全体として粒径分布が明確であれば、なお好ましい。このような状態であれば再現性ある模擬土壌を作成できるからである。ここで、化学的に安定とは特に水に対して不溶であり、酸およびアルカリに対しても難溶性である性質を有することを意味している。最も一般的に用いる代表的なものを明示すれば、二酸化珪素、酸化チタン、カオリン、ベントナイト、スメクタイト(モンモリロナイト)などの物質が挙げられる。これらの物質は単独でも2種以上を混合して使用できる。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
The individual particles constituting the simulated soil used in the present invention are not particularly limited as long as they are chemically stable. It is still preferable if the particle size distribution is clear as a whole. This is because reproducible simulated soil can be created in such a state. Here, the term “chemically stable” means that it is insoluble in water and hardly soluble in acids and alkalis. The typical ones used most commonly include substances such as silicon dioxide, titanium oxide, kaolin, bentonite, and smectite (montmorillonite). These substances can be used alone or in admixture of two or more.

また、これら粒子状物質は、特にJISで規定される特級、1級、2級試薬であれば特に制限されず、これらを使用することが、安価で純度が高く平均粒径が明確なので望ましいが、グレードが高いものであれば純度が高く、粒子の化学成分が明確であり、不純物の量が低いので試験の再現性の観点でさらに好ましい。また、JISに規定されない粒状物質でも、不純物量が低いものであれば使用することができる。   In addition, these particulate substances are not particularly limited as long as they are special grades, first grades, and second grade reagents stipulated by JIS. If the grade is high, the purity is high, the chemical composition of the particles is clear, and the amount of impurities is low, which is more preferable from the viewpoint of test reproducibility. In addition, even a granular material not defined in JIS can be used as long as the amount of impurities is low.

種々のpF値の模擬土壌は水分を添加して作成する。
まず、模擬土壌の水分の状態をpF値で表した理由を以下に述べる。
Simulated soils with various pF values are prepared by adding water.
First, the reason why the moisture state of the simulated soil is expressed by the pF value is described below.

図1に含水率を15mass%で調整した模擬土壌(二酸化珪素)および関東ロームを使用した場合の土壌腐食試験の結果を示す。   FIG. 1 shows the results of a soil corrosion test when using simulated soil (silicon dioxide) with a moisture content adjusted to 15 mass% and Kanto Loam.

この試験を行うには、以下の供試材を用いた。また、模擬土壌粒子としてJIS特級二酸化珪素(石英型)を用い、実際の土壌として、関東ロームを50℃にて7日間乾燥させ、団粒状に固まったものを粉砕し、小石、草の根などの異物を除去するため、目開き1mmのフルイを通過するものを使用した。さらに、イオン交換水を用いて含水率15mass%とし、容量2Lの密封できるポリ容器の底面に上記鋼材を試験面が上になるように設置し、鋼材面が土壌に接するように、その上から約500mLの土壌を入れた後密閉して、40℃にて一定期間保持した。鋼材腐食量(平均板厚減少量)は後述する土壌試験方法に拠った。   To perform this test, the following specimens were used. In addition, JIS special grade silicon dioxide (quartz type) is used as simulated soil particles. As actual soil, Kanto Loam is dried at 50 ° C. for 7 days, and then crushed into solid particles, and then foreign matter such as pebbles and grass roots. In order to remove water, a material passing through a sieve having an opening of 1 mm was used. Furthermore, the water content is set to 15 mass% using ion-exchanged water, and the steel material is installed on the bottom surface of a sealable plastic container having a capacity of 2 L so that the test surface is on top, and the steel material surface is in contact with the soil from above. After putting about 500 mL of soil, it was sealed and kept at 40 ° C. for a certain period. The steel corrosion amount (average plate thickness reduction amount) was based on the soil test method described later.

図1から、同一含水率であるにもかかわらず、鋼材腐食量は用いた土壌により差が生じていることがわかる。このように、土壌中の腐食に寄与する水分の量は、含水率(湿潤土壌中あたりの水分量)や含水比(乾燥土壌中あたりの水分量)とは必ずしも対応関係があるとはいえない。含水率や含水比から求めた水分量は、鋼材の腐食との関係で土壌粒子に強く拘束され鋼材の腐食には作用しないと考えられる水分(非自由水)量も含めてしまうことになるからである。つまり、これら含水率または含水比の値が同じであっても土壌が異なれば非自由水量が異なり、鋼材の腐食に作用する水分(自由水)量が異なる場合があり、含水率または含水比の値を土壌中腐食を評価するための要因として用いることは、適当ではない。そこで、前述の模擬土壌を用いて鋭意検討を行い以下の式で定義されるpF値が、腐食に関与する自由水量のみを客観的に評価するのに極めて適していることを見出した。
pF=log10
上記で示すpFは、土中水の負圧を示すパラメータとして一般に知られているものである(例えば非特許文献2)。土中水の負圧を、土から水を取り去るに要するエネルギーと考え、水柱高さh(cm)にて表し、pFはこの水柱高さhの常用対数にて表される。つまり、pF値が大きいと土壌中で腐食に関与すると考えられる自由水量が少ないことを示す。
It can be seen from FIG. 1 that the corrosion rate of the steel material varies depending on the soil used, even though the moisture content is the same. Thus, the amount of moisture that contributes to the corrosion in soil does not necessarily have a corresponding relationship with the moisture content (moisture content per wet soil) or the moisture content (moisture content per dry soil). . The amount of water obtained from the water content and water content ratio includes the amount of water (non-free water) that is strongly bound by soil particles and does not affect the corrosion of the steel material in relation to the corrosion of the steel material. It is. In other words, even if these moisture contents or moisture content values are the same, the non-free water amount differs if the soil is different, and the amount of moisture (free water) that acts on the corrosion of steel materials may differ. It is not appropriate to use the value as a factor for evaluating soil corrosion. Therefore, intensive studies were conducted using the aforementioned simulated soil, and the pF value defined by the following equation was found to be extremely suitable for objectively evaluating only the amount of free water involved in corrosion.
pF = log 10 h
The pF shown above is generally known as a parameter indicating the negative pressure of soil water (for example, Non-Patent Document 2). The negative pressure of soil water is considered as the energy required to remove water from the soil, and is represented by a water column height h (cm), and pF is represented by a common logarithm of this water column height h. That is, when the pF value is large, it indicates that the amount of free water considered to be involved in corrosion in the soil is small.

このpF値を用いると、実際に腐食に関与すると考えられる量の水分をpF値を用いて調整し添加することで、構成が明確な模擬土壌を作製して土壌腐食環境を実現できる。   When this pF value is used, an amount of water that is considered to be actually involved in corrosion is adjusted and added using the pF value, so that a simulated soil with a clear structure can be produced and a soil corrosive environment can be realized.

図2に模擬土壌(「二酸化珪素」;「SiO」と表記する場合もある)と関東ロームの場合の含水率とpF値の関係を示す。このpF値は同じ水分量であっても土壌を構成する粒子の種類によって異なることが確認できる。また、同一種類の土壌であれば実際の土壌(関東ローム)または模擬土壌(二酸化珪素)の区別によらず含水率とpF値には強い一次の相関が認められる。実際に腐食に関与すると考えられる量の水分をpF値を指標として用いて添加することで、模擬土壌を作製して土壌腐食環境を実現できる。したがって、実際の土壌のpF値を測定すれば、対象となる鋼材を埋設した際の腐食特性を比較推定することも可能となる。 FIG. 2 shows the relationship between the moisture content and the pF value in the case of simulated soil (sometimes referred to as “silicon dioxide”; “SiO 2 ”) and Kanto Loam. It can be confirmed that the pF value varies depending on the type of particles constituting the soil even if the water content is the same. In addition, a strong first-order correlation is recognized between the moisture content and the pF value regardless of the actual soil (Kanto loam) or simulated soil (silicon dioxide) if the soil is of the same type. By adding an amount of water that is considered to be actually involved in corrosion using the pF value as an index, simulated soil can be produced and a soil corrosive environment can be realized. Therefore, if the pF value of actual soil is measured, it is possible to comparatively estimate the corrosion characteristics when the target steel material is buried.

pF値の測定方法は、例えば非特許文献3に示されている吸引法、遠心法など、特に限定されるものではなく、多孔質セラミックスによる簡易型pFセンサーを用いることもできる。   The method for measuring the pF value is not particularly limited, for example, the suction method and the centrifugal method shown in Non-Patent Document 3, and a simple pF sensor made of porous ceramics can also be used.

また、模擬土壌に添加する水分は、蒸留水、イオン交換水、電解質を加えて電気伝導度を調整した水などを用いることが好ましいが、鋼材の腐食に影響を及ぼす量の不純物成分を添加することは好ましくない。   In addition, it is preferable to use distilled water, ion-exchanged water, water whose electric conductivity is adjusted by adding electrolyte, etc. as the water to be added to the simulated soil. However, an impurity component that affects the corrosion of the steel material is added. That is not preferable.

本発明において試験温度は特に限定されるものではなく、鋼材が実際に使用される温度条件で行うことが一般的ではあるが、加速促進試験を行う目的ではさらに高温で行うこともできる。本発明方法は、実験室でも簡易に実施できるので温度制御なども可能になるため、バラツキの少ない信頼性の高いデータが得られる。さらに、温度制御により腐食速度を制御できるため、促進試験が可能になり、短期間で鋼材の土壌腐食性が評価できる
また、評価対象の鋼材は炭素鋼、低合金鋼、ステンレス鋼など特に鋼種に限定されるものではない。
In the present invention, the test temperature is not particularly limited and is generally performed under a temperature condition in which the steel material is actually used, but may be performed at a higher temperature for the purpose of performing an acceleration acceleration test. Since the method of the present invention can be easily carried out even in a laboratory, temperature control and the like are possible, so that highly reliable data with little variation can be obtained. Furthermore, because the corrosion rate can be controlled by temperature control, accelerated tests can be performed, and the soil corrosivity of steel materials can be evaluated in a short period of time. Steel materials to be evaluated are particularly steel types such as carbon steel, low alloy steel, and stainless steel. It is not limited.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

JIS特級二酸化珪素(石英型)にイオン交換水を複数の任意の量を添加し、簡易型pFセンサー(PFC42、藤原製作所)によりpF値を測定した。その結果から、まず含水率とpF値との相関関係を求めた後、設定したpF値になるように模擬土壌を作製した。腐食試験に使用する鋼材は板厚6mmの普通鋼(JIS−SS400)を30mm×30mmサイズにファインカッターにて切断し、片面を十点平均粗さで50μm〜60μmにブラスト加工、トルエンにて脱脂した後、重量を測定した。その後、端面および裏面を腐食しないようにシールテープでシールし、その上からエポキシ樹脂(アラルダイト)で塗装した。容量2L(リットル)の密封できるポリ容器の底面に上記鋼材を試験面が上になるように設置し、鋼材面が模擬土壌に接するように、その上から約500mLの模擬土壌を入れた後密閉して、室温(23℃)にて一定期間保持した。一定期間経過後の試験片を取り出し、ナイロンブラシで大まかに錆を落とした後、除錆溶液(塩酸(塩化水素の35.0〜37.0%水溶液)500mL+イオン交換水500mL+ヘキサメチレンジアミン3.5g)に浸漬し、除錆した後、炭酸カルシウムの過飽和水溶液中に試験片を浸漬させて中和し、流水にて洗浄、乾燥後に重量を測定した。腐食試験前後の重量変化から平均腐食量(重量減少量g)を求め平均板厚減少量(μm)として以下の計算式に基づいて算出した。なお試験数はn=2とした。   A plurality of arbitrary amounts of ion-exchanged water were added to JIS special grade silicon dioxide (quartz type), and the pF value was measured with a simple pF sensor (PFC42, Fujiwara Seisakusho). From the results, first, after obtaining the correlation between the moisture content and the pF value, a simulated soil was prepared so as to have the set pF value. The steel used for the corrosion test is a 6 mm thick plain steel (JIS-SS400) cut to 30 mm x 30 mm size with a fine cutter, blasted to 50 to 60 μm with a 10-point average roughness, and degreased with toluene. After that, the weight was measured. Thereafter, the end surface and the back surface were sealed with a sealing tape so as not to corrode, and coated with an epoxy resin (Araldite) from above. Place the above steel material on the bottom of a plastic container with a capacity of 2L (liter) so that the test surface is on top, and put about 500mL of simulated soil from above so that the steel surface is in contact with the simulated soil, then seal And it hold | maintained for a fixed period at room temperature (23 degreeC). After removing a test piece after a certain period of time and removing rust roughly with a nylon brush, 500 mL of a rust removal solution (500 mL of hydrochloric acid (35.0 to 37.0% aqueous solution of hydrogen chloride) +500 mL of ion exchange water + hexamethylenediamine 5 g), and after removing the rust, the test piece was immersed in a supersaturated aqueous solution of calcium carbonate for neutralization, washed with running water, dried and then weighed. The average amount of corrosion (weight reduction amount g) was determined from the weight change before and after the corrosion test, and was calculated as the average plate thickness reduction amount (μm) based on the following formula. The number of tests was n = 2.

平均板厚減少量(μm)=重量減少量(g)/[サンプル試験面積(μm)×密度(g/μm)]
図3はpF値2.3(模擬土壌+イオン交換水)およびpF値2.4(関東ローム+イオン交換水)の場合の鋼材腐食量の経時変化を調査したものである。また、図4はpF値2.8とした場合の実際の土壌(関東ローム+イオン交換水)と模擬土壌(二酸化珪素+イオン交換水)の場合の鋼材腐食量の経時変化を調査したものである。これらの結果から、腐食速度のpF値依存性が認められた。また、pF値が同程度であれば模擬土壌と実際の土壌(関東ローム)とで鋼材の土壌腐食特性が同様となり、模擬土壌で実際の土壌を用いた場合を短期間で推定評価できることが確認できる。
Average thickness reduction (μm) = weight reduction (g) / [sample test area (μm 2 ) × density (g / μm 3 )]
FIG. 3 is a graph showing the change over time in the corrosion amount of steel materials when the pF value is 2.3 (simulated soil + ion exchange water) and the pF value is 2.4 (Kanto loam + ion exchange water). Fig. 4 shows the change over time in the amount of corrosion of steel in the case of actual soil (Kanto loam + ion-exchanged water) and simulated soil (silicon dioxide + ion-exchanged water) with a pF value of 2.8. is there. From these results, the dependence of the corrosion rate on the pF value was recognized. In addition, if the pF value is similar, the soil corrosion characteristics of steel materials will be the same in the simulated soil and the actual soil (Kanto Loam), and it is confirmed that the estimation can be performed in a short period of time when the actual soil is used in the simulated soil. it can.

Claims (2)

模擬土壌を用いた鋼材の土壌腐食試験方法において、前記模擬土壌が水に対して不溶であり、酸およびアルカリに対しても難溶性である性質を有する粒状物から構成され、さらに前記模擬土壌中の水分含有量を調整してpF値を任意の値に設定することを特徴とする鋼材の土壌腐食試験方法。   In the soil corrosion test method for steel materials using simulated soil, the simulated soil is insoluble in water and is composed of granular materials having properties that are hardly soluble in acids and alkalis. A soil corrosion test method for steel, characterized in that the pF value is set to an arbitrary value by adjusting the moisture content of the steel. 前記粒状物は、JIS規格に従う二酸化珪素(石英型)であることを特徴とする請求項1記載の鋼材の土壌腐食試験方法。   2. The soil corrosion test method for steel according to claim 1, wherein the granular material is silicon dioxide (quartz type) according to JIS standards.
JP2009229313A 2009-10-01 2009-10-01 Soil corrosion test method using simulated soil Withdrawn JP2011075477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229313A JP2011075477A (en) 2009-10-01 2009-10-01 Soil corrosion test method using simulated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229313A JP2011075477A (en) 2009-10-01 2009-10-01 Soil corrosion test method using simulated soil

Publications (1)

Publication Number Publication Date
JP2011075477A true JP2011075477A (en) 2011-04-14

Family

ID=44019606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229313A Withdrawn JP2011075477A (en) 2009-10-01 2009-10-01 Soil corrosion test method using simulated soil

Country Status (1)

Country Link
JP (1) JP2011075477A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076438A (en) * 2013-01-09 2013-05-01 浙江省电力公司电力科学研究院 Laboratory simulation method for studying soil corrosion property
CN103257105A (en) * 2013-05-31 2013-08-21 江西省电力科学研究院 Soil corrosivity accelerated test method and device
CN104502259A (en) * 2014-12-17 2015-04-08 榆林学院 Evaluation instrument of soil mass corrosion resistance under wind erosion, water erosion and coupling erosion
JP2016114564A (en) * 2014-12-17 2016-06-23 株式会社ベンチャー・アカデミア Soil corrosiveness evaluation method
JP2016224001A (en) * 2015-06-03 2016-12-28 日本電信電話株式会社 Testing device and method for testing
JP2017072592A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Test tank, test device and test method
JP2018091740A (en) * 2016-12-05 2018-06-14 日本電信電話株式会社 Corrosion amount estimation device and method thereof
JP2019203768A (en) * 2018-05-23 2019-11-28 日本電信電話株式会社 Corrosion amount estimation device and corrosion amount estimation method
JP2020051894A (en) * 2018-09-27 2020-04-02 日本電信電話株式会社 Device of corrosiveness evaluation and method thereof
WO2020100642A1 (en) * 2018-11-16 2020-05-22 日本電信電話株式会社 Electrode, corrosion analysis device, and corrosion analysis method
JPWO2021100117A1 (en) * 2019-11-19 2021-05-27
WO2023223413A1 (en) * 2022-05-17 2023-11-23 日本電信電話株式会社 Corrosion estimation device and method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076438A (en) * 2013-01-09 2013-05-01 浙江省电力公司电力科学研究院 Laboratory simulation method for studying soil corrosion property
CN103257105A (en) * 2013-05-31 2013-08-21 江西省电力科学研究院 Soil corrosivity accelerated test method and device
CN103257105B (en) * 2013-05-31 2016-08-10 江西省电力科学研究院 A kind of soil corrosivity acceleration test apparatus
CN104502259A (en) * 2014-12-17 2015-04-08 榆林学院 Evaluation instrument of soil mass corrosion resistance under wind erosion, water erosion and coupling erosion
JP2016114564A (en) * 2014-12-17 2016-06-23 株式会社ベンチャー・アカデミア Soil corrosiveness evaluation method
JP2016224001A (en) * 2015-06-03 2016-12-28 日本電信電話株式会社 Testing device and method for testing
JP2017072592A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Test tank, test device and test method
JP2018091740A (en) * 2016-12-05 2018-06-14 日本電信電話株式会社 Corrosion amount estimation device and method thereof
JP2019203768A (en) * 2018-05-23 2019-11-28 日本電信電話株式会社 Corrosion amount estimation device and corrosion amount estimation method
WO2019225664A1 (en) * 2018-05-23 2019-11-28 日本電信電話株式会社 Corrosion amount estimation device and corrosion amount estimation method
JP2020051894A (en) * 2018-09-27 2020-04-02 日本電信電話株式会社 Device of corrosiveness evaluation and method thereof
WO2020066715A1 (en) * 2018-09-27 2020-04-02 日本電信電話株式会社 Corrosivity evaluation device and method thereof
JP7104326B2 (en) 2018-09-27 2022-07-21 日本電信電話株式会社 Corrosion assessment device and its method
WO2020100642A1 (en) * 2018-11-16 2020-05-22 日本電信電話株式会社 Electrode, corrosion analysis device, and corrosion analysis method
JP2020085483A (en) * 2018-11-16 2020-06-04 日本電信電話株式会社 Electrode, corrosion analysis device, and corrosion analysis method
US20210381950A1 (en) * 2018-11-16 2021-12-09 Nippon Telegraph And Telephone Corporation Electrode, Corrosion Analysis Device, and Corrosion Analysis Method
US11821817B2 (en) * 2018-11-16 2023-11-21 Nippon Telegraph And Telephone Corporation Electrode, corrosion analysis device, and corrosion analysis method
JPWO2021100117A1 (en) * 2019-11-19 2021-05-27
WO2021100117A1 (en) * 2019-11-19 2021-05-27 日本電信電話株式会社 Corrosion amount estimation device and corrosion amount estimation method
JP7343809B2 (en) 2019-11-19 2023-09-13 日本電信電話株式会社 Corrosion amount estimation device and corrosion amount estimation method
WO2023223413A1 (en) * 2022-05-17 2023-11-23 日本電信電話株式会社 Corrosion estimation device and method

Similar Documents

Publication Publication Date Title
JP2011075477A (en) Soil corrosion test method using simulated soil
Pan et al. Atmospheric corrosion of copper exposed in a simulated coastal-industrial atmosphere
Tang et al. The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: Inhibitive action in 0.5 M sulfuric acid
Toghill et al. Electroanalytical determination of cadmium (II) and lead (II) using an antimony nanoparticle modified boron‐doped diamond electrode
Mu et al. Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid
Ibrahim et al. Corrosion inhibition of mild steel using fig leaves extract in hydrochloric acid solution
Raja et al. Natural corrosion inhibitors for steel reinforcement in concrete—a review
Morad et al. Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions polluted with Cl−, F− and Fe3+ ions–behaviour near and at the corrosion potential
CN106841027A (en) The detection of simulation accelerated metal material acidic atmosphere environmental corrosion and evaluation method
Bouyanzer et al. Testing natural fenugreek as an ecofriendly inhibitor for steel corrosion in 1 M HCl
Eyu et al. Effect of green inhibitor on the corrosion behaviour of reinforced carbon steel in concrete
Jones et al. Barium-polyethoxylate complexes as potentiometric sensors and their application to the determination of non-ionic surfactants
Ikechukwu et al. Studies on corrosion characteristics of carbon steel exposed to Na2CO3, Na2SO4 and NaCl solutions of different concentrations
JP7149242B2 (en) Hydrogen permeation test device
Wang et al. Atmospheric corrosion comparison of antirust aluminum exposed to industrial and coastal atmospheres
Abdallah et al. Corrosion inhibition of nickel in sulfuric acid using tween surfactants
Tang et al. Synergistic effect between 4-(2-pyridylazo) resorcin and chloride ion on the corrosion of cold rolled steel in 0.5 M sulfuric acid
Havlík et al. Electrochemical, chemical and barrier action of zinc dust/anticorrosive pigments containing coatings
Choi et al. Strategies for corrosion inhibition of carbon steel pipelines under supercritical CO2/H2S environments
Song et al. Analysis of corrosion resistance behavior of inhibitors in concrete using electrochemical techniques
Sun et al. Electrochemical determination of lead (II) using a montmorillonite calcium-modified carbon paste electrode
Gautam et al. Study on the soil corrosivity towards the buried-structures in soil environment of Tanglaphant-Tribhuvan University Campus-Balkhu areas of Kirtipur
Ikechukwu et al. Correlation between soil properties and external corrosion growth rate of carbon steel
Bhandari et al. The corrosivity of soils collected from Araniko Highway and Sanothimi areas of Bhaktapur, Nepal
Cui et al. Atmospheric corrosion behavior of 2A12 aluminum alloy in a tropical marine environment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204