JP2011075348A - Method for manufacturing test piece - Google Patents

Method for manufacturing test piece Download PDF

Info

Publication number
JP2011075348A
JP2011075348A JP2009225823A JP2009225823A JP2011075348A JP 2011075348 A JP2011075348 A JP 2011075348A JP 2009225823 A JP2009225823 A JP 2009225823A JP 2009225823 A JP2009225823 A JP 2009225823A JP 2011075348 A JP2011075348 A JP 2011075348A
Authority
JP
Japan
Prior art keywords
test piece
substrate
noble metal
thickness
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009225823A
Other languages
Japanese (ja)
Inventor
Shigeki Oka
茂樹 岡
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2009225823A priority Critical patent/JP2011075348A/en
Publication of JP2011075348A publication Critical patent/JP2011075348A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a test piece which can effectively perform analysis with good measuring sensitivity. <P>SOLUTION: The method for manufacturing the test piece having a nano-structure surface wherein a large number of minute columnar bodies are formed has the first step being the step of vapor-depositing a transparent metal oxide or metal fluoride on a substrate from an oblique direction and forming a large number of column parts having anisotropy on the substrate by reversing a vapor deposition direction at each predetermined membrane thickness obtained by vapor deposition and a second step of vapor-depositing a noble metal on the apex parts of the formed column parts in a thickness of 20-40 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液体試料を分析するための光学的センサとなるナノ構造表面を持つ該試験片を製造する方法に関する。   The present invention relates to a method for producing the test strip with a nanostructured surface that serves as an optical sensor for analyzing a liquid sample.

従来、表面増強ラマン散乱(SERS)法、表面増強赤外吸収分光(SEIRA)法、表面プラズモン共鳴(SPR)法、及び局在表面プラズモン共鳴(LPR)法など、光を用いて分子計測を行う方法が知られている。このような分子計測を行う場合、分析を行う溶液を光学的センサ(試験片)表面に滴下し、測定光を各測定方法に沿った条件で照射して光学的センサからの反射や散乱光を受光して解析することにより溶液に含まれる物質を同定することができる。このような光学的センサにおいては、センサの感度をより高めるためにセンサ表面に貴金属のナノ構造体を形成した光学的センサが知られている(特許文献1参照)。   Conventionally, molecular measurement using light such as surface enhanced Raman scattering (SERS) method, surface enhanced infrared absorption spectroscopy (SEIRA) method, surface plasmon resonance (SPR) method, and localized surface plasmon resonance (LPR) method The method is known. When performing such molecular measurements, the solution to be analyzed is dropped on the surface of the optical sensor (test piece), and the measurement light is irradiated under conditions according to each measurement method to reflect or scattered light from the optical sensor. The substance contained in the solution can be identified by receiving and analyzing the light. In such an optical sensor, an optical sensor in which a noble metal nanostructure is formed on the sensor surface in order to further increase the sensitivity of the sensor is known (see Patent Document 1).

国際公開2006/073117号International Publication No. 2006/073117

このような、メゾスコピックな構造を有し、そのうえナノサイズの構造が活性部となる光学的センサは、貴金属のナノ構造体同士が近接しているため、電界の増強効果が大きく、従来の光学的センサよりも測定感度(測定強度)が向上する。しかしながら、このような光学センサ(試験片)においても、より測定感度がよく性能を十分に発揮させ効果的に分析を行うことのできる試験片が求められる。   Such an optical sensor having a mesoscopic structure and having a nano-sized structure as an active part has a large electric field enhancement effect because the nanostructures of noble metals are close to each other. Measurement sensitivity (measurement intensity) is improved as compared with the sensor. However, even in such an optical sensor (test piece), there is a need for a test piece that has higher measurement sensitivity and exhibits sufficient performance for effective analysis.

上記従来技術の問題点に鑑み、測定感度が良く効果的に分析を行うことのできる該試験片の製造方法を提供することを技術課題とする。     In view of the above-described problems of the prior art, it is an object of the present invention to provide a method for manufacturing the test piece that can be analyzed effectively with high measurement sensitivity.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
(1) 微小柱状体が多数形成されたナノ構造表面を有する試験片の製造方法において、基板上に斜め方向から透明な金属酸化物または金属フッ化物を蒸着するステップであって,該蒸着によって得られる所定の膜厚毎に前記蒸着方向を反転させることにより異方性を有した柱部を基板上に多数形成する第1ステップと、形成された前記柱部の頂部に貴金属を厚さ20nm以上40nm以下にて蒸着する第2ステップと、を有することを特徴する。
(2) (1)の試験片の製造方法において、前記柱部は100nm以上1000nm以下であることを特徴とする。
(3) (2)の試験片の製造方法において、前記貴金属部はAuからなり、前記柱部はSiO2からなることを特徴とする。
In order to solve the above problems, the present invention is characterized by having the following configuration.
(1) In a method of manufacturing a test piece having a nanostructure surface on which a large number of microcolumnar bodies are formed, a step of depositing a transparent metal oxide or metal fluoride on a substrate from an oblique direction, obtained by the deposition. A first step of forming a large number of pillars having anisotropy on the substrate by reversing the deposition direction for each predetermined film thickness, and a noble metal having a thickness of 20 nm or more on the top of the pillars formed. And a second step of vapor deposition at 40 nm or less.
(2) In the method for manufacturing a test piece according to (1), the column part is 100 nm or more and 1000 nm or less.
(3) In the method for manufacturing a test piece according to (2), the noble metal portion is made of Au and the column portion is made of SiO 2 .

本発明によれば、試験片の性能を十分に発揮でき、測定感度が良く効果的に分析を行うことができる。   According to the present invention, the performance of the test piece can be sufficiently exhibited, and the analysis can be performed effectively with good measurement sensitivity.

本発明の実施形態を以下に説明する。初めに本実施形態に用いる試験片(光学的センサ)の構成、及び製造方法を説明する。   Embodiments of the present invention will be described below. First, the configuration of the test piece (optical sensor) used in the present embodiment and the manufacturing method will be described.

図1は本実施形態の試験片におけるナノロッド構造を持つ表面2の詳細を示した概略図である。一例を挙げると、基板1上に形成されるナノロッド構造は、基板1上に所定間隔を有して形成される多数の微小柱状体3からなる。基板1は、各種のガラス材料、透明樹脂、半導体、金属等の光学的センサの基板として使用可能な材料を用いることができる。微小柱状体3は、柱部3aとその頂部に形成される貴金属部3bにより構成される。柱部3aは、試料分析に用いられる測定光(プローブ光)の波長に対して透明であり、プラズモン共鳴が生じるような材料であればよく、例えばSiO2、TiO2等の金属酸化物やLiF等の金属フッ化物などが好適に用いられる。また、柱部3aは自己組織的に異方性を有した表面凹凸形状が形成されている。このような異方性を有した表面凹凸形状は、例えば真空蒸着法を用いて柱部3aを形成するための材料を基板1に対して斜め蒸着させ、所定の膜厚毎に基板面を反転させることにより形成させることができる。 FIG. 1 is a schematic view showing details of a surface 2 having a nanorod structure in the test piece of the present embodiment. For example, the nanorod structure formed on the substrate 1 includes a large number of micro-columnar bodies 3 formed on the substrate 1 with a predetermined interval. For the substrate 1, materials that can be used as substrates for optical sensors such as various glass materials, transparent resins, semiconductors, and metals can be used. The minute columnar body 3 includes a column portion 3a and a noble metal portion 3b formed on the top of the column portion 3a. The column part 3a may be any material that is transparent to the wavelength of the measurement light (probe light) used for sample analysis and causes plasmon resonance. For example, a metal oxide such as SiO 2 or TiO 2 or LiF A metal fluoride such as is preferably used. Further, the columnar portion 3a is formed with a surface irregularity shape having self-organized anisotropy. The surface irregularity having such anisotropy is formed by, for example, depositing a material for forming the column portion 3a obliquely on the substrate 1 using a vacuum deposition method, and inverting the substrate surface every predetermined film thickness. Can be formed.

また、貴金属部3bの形成材料には、高感度の光学的センサを得るために必要な貴金属が用いられ、好ましくは、Au、Ag、Cu等が用いられる。なお、試験片は通常長期間保管されることがあるため、貴金属部3bの形成材料としては、酸化されにくいAuを用いることが特に好ましい。また、本発明者らが鋭意研究した結果、このような基板1上に微小柱状体3を持つ試験片において、柱部3aの頂部に形成される貴金属部3bの厚みは厚いほど測定時に得られる測定強度(測定感度)が向上するものではなく、貴金属部3bの厚さに応じて測定強度が大きく異なることが判った。このような貴金属部3bの厚さ範囲は、最も高い測定強度が得られる条件に対して約30%程度までの測定強度低下までを許容するならば、約20nm以上約40nm以下程度である。また、最も高い測定強度が得られる条件に対して約15%程度の測定強度低下までを許容するならば、貴金属部3bの厚さ範囲は、約25nm以上約35nm以下程度である。   The noble metal portion 3b is made of a noble metal necessary for obtaining a highly sensitive optical sensor, preferably Au, Ag, Cu, or the like. In addition, since a test piece may be normally stored for a long period of time, it is especially preferable to use Au which is not easily oxidized as a material for forming the noble metal portion 3b. Further, as a result of intensive studies by the present inventors, in such a test piece having the minute columnar body 3 on the substrate 1, the thickness of the noble metal portion 3b formed on the top of the column portion 3a is obtained at the time of measurement. It has been found that the measurement strength (measurement sensitivity) does not improve, and the measurement strength varies greatly depending on the thickness of the noble metal portion 3b. The thickness range of the noble metal portion 3b is about 20 nm or more and about 40 nm or less if the measurement intensity is reduced to about 30% with respect to the condition that the highest measurement intensity can be obtained. In addition, if a reduction in measurement intensity of about 15% is allowed with respect to the condition for obtaining the highest measurement intensity, the thickness range of the noble metal portion 3b is about 25 nm or more and about 35 nm or less.

また一方で、試験片が持つ測定強度は、柱部3aの厚さ(高さ)が増すほど上昇する傾向にあるが、その分生産効率は悪くなる。したがって、柱部3aの厚さ(高さ)は好ましくは100nm以上1000nm以下、より好ましくは、300nm以上900nm以下である。   On the other hand, the measured strength of the test piece tends to increase as the thickness (height) of the column portion 3a increases, but the production efficiency is reduced accordingly. Therefore, the thickness (height) of the column part 3a is preferably 100 nm or more and 1000 nm or less, and more preferably 300 nm or more and 900 nm or less.

次に本実施形態の試験片の製造例を図2を用いて以下に示す。
基板1を洗浄後、基板1と蒸着用材料を真空蒸着装置にセットする。図示するように、真空蒸着装置20は、装置本体21,装置内を真空状態にするための排気部22,蒸着材料を置くための台23,電子ビーム発生部24,台23の上方に設けられ基板を取り付けるための基板保持部25,蒸着時の膜厚を検出するための検出部26,を有している。なお、これらの構成部材は図示なき制御部に接続されており、制御部からの信号により駆動制御されている。また、基板保持部25は、基板1を保持するとともに基板1における蒸着角α(蒸着流の入射方向と基板中央における法線とがなす角度)を適宜変更することができ、斜め蒸着が可能となっている。なお、蒸着角αは45°〜88°であることが好ましい。また、基板保持部24は、基板1を所定角度に保持した状態で180°反転させることができる。また、検出部26としては、水晶振動式膜厚計等の既存の膜厚を検出する機構を用いることができる。
Next, the manufacture example of the test piece of this embodiment is shown below using FIG.
After cleaning the substrate 1, the substrate 1 and the vapor deposition material are set in a vacuum vapor deposition apparatus. As shown in the figure, the vacuum vapor deposition apparatus 20 is provided above the apparatus main body 21, the exhaust part 22 for making the inside of the apparatus a vacuum state, the base 23 for placing the vapor deposition material, the electron beam generating part 24, and the base 23. A substrate holding unit 25 for attaching the substrate and a detection unit 26 for detecting the film thickness during vapor deposition are provided. These components are connected to a control unit (not shown) and are driven and controlled by signals from the control unit. Further, the substrate holding unit 25 can hold the substrate 1 and can appropriately change the vapor deposition angle α (an angle formed between the incident direction of the vapor deposition flow and the normal line at the center of the substrate) on the substrate 1, thereby enabling oblique vapor deposition. It has become. The vapor deposition angle α is preferably 45 ° to 88 °. Further, the substrate holding unit 24 can be turned 180 ° while holding the substrate 1 at a predetermined angle. Moreover, as the detection part 26, the mechanism which detects the existing film thickness, such as a crystal vibration type film thickness meter, can be used.

基板保持部25,台23上に基板1,蒸着材料26を各々セットし、装置内を排気部22を用いて真空状態にする。装置内が真空状態になったことを確認後、電子ビーム発生部24から電子ビームを蒸着材料26に向けて照射し、蒸発材料を蒸発させ基板1の面に斜め蒸着させる。検出部26にて検出される膜厚を基板1上に形成される膜厚とし、適当な膜厚が得られたら基板保持部25によって基板1の面内角を180度反転させる。基板1の反転後、前述同様に適当な膜厚となるまで蒸着作業を続け、再度基板1を反転させる。反転させる周期(タイミング)は、膜厚5nm以上100nm以下で各反転時ともに同程度の膜厚が得られた時点で行うことが好ましい。このような蒸着、反転、蒸着、反転・・・を繰り返し行うことにより、基板1上に異方的な形状となる微小柱状体(図1における柱部3a)が基板1上に多数形成されることとなる。なお、柱部3aは分析で使用する測定光の波長に対して好適な感度が得られる高さとなるように形成される。必要な高さが得られた柱部3aの頂部にさらに貴金属を蒸着させ、図1に示すような貴金属部3bを形成させる。蒸着作業は蒸着材料を換えて前述同様の手法にて行えばよい。なお、貴金属部3bを蒸着する場合には、柱部3aを形成するのと同じ、または同程度の斜め蒸着の角度であることが好ましい。   The substrate 1 and the vapor deposition material 26 are set on the substrate holding unit 25 and the base 23, respectively, and the inside of the apparatus is evacuated using the exhaust unit 22. After confirming that the inside of the apparatus is in a vacuum state, the electron beam generator 24 irradiates an electron beam toward the vapor deposition material 26, evaporates the evaporation material, and obliquely deposits on the surface of the substrate 1. The film thickness detected by the detection unit 26 is set to a film thickness formed on the substrate 1, and when an appropriate film thickness is obtained, the in-plane angle of the substrate 1 is reversed by 180 degrees by the substrate holding unit 25. After the substrate 1 is inverted, the vapor deposition operation is continued until an appropriate film thickness is obtained as described above, and the substrate 1 is inverted again. The inversion cycle (timing) is preferably performed when the film thickness is 5 nm to 100 nm and the same film thickness is obtained at each inversion. By repeating such vapor deposition, reversal, vapor deposition, reversal,..., Many micro-columnar bodies (column portions 3a in FIG. 1) having an anisotropic shape are formed on the substrate 1. It will be. In addition, the column part 3a is formed so that it may have a height with which a suitable sensitivity can be obtained with respect to the wavelength of the measurement light used in the analysis. Further, a noble metal is vapor-deposited on the top of the column portion 3a having the required height to form a noble metal portion 3b as shown in FIG. The vapor deposition operation may be performed by the same method as described above by changing the vapor deposition material. In the case of depositing the noble metal portion 3b, it is preferable that the angle of the oblique deposition is the same as or similar to that for forming the column portion 3a.

装置内に大気を導入した後、表面にナノロッド構造(微小柱状体3)が形成された基板1を取り出し、光学的センサとして使用に適したサイズにカットする。
上述の方法により得られた試験片は、表面増強ラマン散乱(SERS)法、表面増強赤外吸収分光(SEIRA)法、表面プラズモン共鳴(SPR)法、及び局在表面プラズモン共鳴(LPR)法など、光を用いて分子計測を行う測定装置における光学的センサとして用いられる。
After introducing air into the apparatus, the substrate 1 having a nanorod structure (microcolumnar body 3) formed on the surface is taken out and cut into a size suitable for use as an optical sensor.
Test specimens obtained by the above method include surface enhanced Raman scattering (SERS) method, surface enhanced infrared absorption spectroscopy (SEIRA) method, surface plasmon resonance (SPR) method, and localized surface plasmon resonance (LPR) method. , And used as an optical sensor in a measuring apparatus that performs molecular measurement using light.

次により具体的な実験例を以下に示す。
<実験例1>
実験例1では、試験片に形成される微小柱状体の貴金属部の膜厚を一定(60nm)とし、柱部の高さを変える(300nm,450nm,600nm,900nm)ことによる測定強度(感度)への影響を求めた。前述した真空蒸着装置に蒸着材料としてキヤノンオプトロン(株)製SiO2ペレットをセットし、基板としてガラス板(57mm×57mm 厚さ0.25mm)をセットし、装置内を1.33×10-4Pa(1.00×10-6Torr)程度の真空状態として、電子ビームを蒸着材料に照射し、蒸着角αを82°として蒸着を行った。検出部の測定によりSiO2膜が50nmの厚さになったところで、基板面内角を180°反転させ、同様に厚さが25nmとなるまで蒸着を行った。成膜検出に用いられる検出部には、インフィコン(株)製、XTC/2を使用した。
A more specific experimental example is shown below.
<Experimental example 1>
In Experimental Example 1, the measurement intensity (sensitivity) by changing the height of the column part (300 nm, 450 nm, 600 nm, 900 nm) while keeping the film thickness of the noble metal part of the micro-columnar body formed on the test piece constant (60 nm). Sought the impact on. A SiO 2 pellet made by Canon Optron Co., Ltd. is set as a deposition material in the vacuum deposition apparatus described above, a glass plate (57 mm × 57 mm, thickness 0.25 mm) is set as a substrate, and the inside of the apparatus is 1.33 × 10 −4 Pa. In a vacuum state of about (1.00 × 10 −6 Torr), the deposition material was irradiated with an electron beam, and the deposition angle α was set to 82 °. When the SiO 2 film had a thickness of 50 nm as measured by the detection unit, the substrate in-plane angle was inverted by 180 °, and vapor deposition was similarly performed until the thickness became 25 nm. XTC / 2 manufactured by INFICON Co., Ltd. was used as a detection unit used for film formation detection.

この蒸着作業を複数回行い、最終的にSiO2の厚さ(高さ)が、300nmとなるまで繰り返し行った。目的とする柱部の高さが得られた後、蒸着材料をAu線に換えて、柱部の頂部にAu(金)を蒸着角72°にて蒸着させることにより、ナノロッド先端に金が蒸着した基板を得た。頂部へのAuの蒸着は、検出部にて膜厚60nmが得られるまで行った。このような蒸着により表面に微小柱状体が形成された基板を装置から取り出し、5mm×7mmにカットすることにより、試験片を得た。また、同様の製造方法により、柱部の高さが450nm,600nm,900nmとなる試験片(貴金属部の膜厚は全て60nm)を得た。
上述の方法にて得られた柱部の高さが異なる4種類の試験片に対して4,4’−ビピリジン水溶液10μMを15μL滴下して風乾後、測定光として波長785nmのレーザーを備えた顕微ラマン分光器 ラムダビジョン製MicroRAM-200を用いて顕微ラマン分析を行った。測定条件は、露光時間1秒、積算回数1回、パワー20mW、倍率10倍、回折格子600Gr/750nm、焦点距離200mmとした。
4,4’−ビピリジン水溶液の分析では、1600cm-1(カイザー)付近に最も高いピークが現れるため、各試験片における1600cm-1のピーク値(測定強度)を測定点として、プロット(プロット点:ひし形)したものを図3に示す。
This vapor deposition operation was performed a plurality of times, and repeated until the thickness (height) of SiO 2 finally reached 300 nm. After the desired column height is obtained, the deposition material is changed to Au wire, and Au (gold) is deposited on the top of the column at a deposition angle of 72 °, thereby depositing gold on the tip of the nanorod. The obtained substrate was obtained. The deposition of Au on the top was performed until a film thickness of 60 nm was obtained at the detection part. A test piece was obtained by taking out the substrate having a micro-columnar body formed on the surface by such vapor deposition from the apparatus and cutting it to 5 mm × 7 mm. Moreover, the test piece (all the film thickness of a noble metal part is 60 nm) from which the height of a pillar part is set to 450 nm, 600 nm, and 900 nm was obtained by the same manufacturing method.
A microscope equipped with a laser having a wavelength of 785 nm as measurement light after 15 μL of 10 μM of 4,4′-bipyridine aqueous solution was dropped on four types of test pieces having different column heights obtained by the above-described method and air-dried. Raman spectrometer Microscopic Raman analysis was performed using MicroRAM-200 manufactured by Lambda Vision. Measurement conditions were as follows: exposure time 1 second, number of integrations 1 time, power 20 mW, magnification 10 times, diffraction grating 600 Gr / 750 nm, focal length 200 mm.
Analysis of 4,4'-bipyridine solution, to appear the highest peak near 1600 cm -1 (Kayser), the peak value of 1600 cm -1 (measured intensity) as a measurement point in each specimen, plotting (plot point: A diamond is shown in FIG.

<実験例2>
貴金属部の厚さを30mmとした以外は、実験例1と同様の条件にて柱部の高さが異なる4種類(300nm,450nm,600nm,900nm)の試験片を得た。実験例1と同様に各試験片に対して4,4’−ビピリジン水溶液10μMを15μL滴下して風乾後、顕微ラマン分析を行った。各試験片における1600cm-1のピーク値(測定強度)をプロット(プロット点:四角)したものを図3に示す。
<Experimental example 2>
Four types of test pieces (300 nm, 450 nm, 600 nm, 900 nm) having different column heights were obtained under the same conditions as in Experimental Example 1, except that the thickness of the noble metal portion was 30 mm. Similarly to Experimental Example 1, 15 μL of 10 μM of 4,4′-bipyridine aqueous solution was dropped on each test piece, air-dried, and microscopic Raman analysis was performed. FIG. 3 shows a plot (plot point: square) of a peak value (measured intensity) of 1600 cm −1 in each test piece.

<結果1>
図3に示すように、柱部(SiO2)の高さが高くなるに従って、得られる測定強度が増加する傾向である。柱部の高さの違いに伴う測定強度の変化は、柱部の高さが300nm〜900nmの範囲では緩やかであることから、柱部の高さは100nm〜1000nm程度であればよいと考えられる。また、貴金属部(Au)の厚さの違いによって、測定強度が大きく異なることが判った。
<Result 1>
As shown in FIG. 3, the measured strength obtained tends to increase as the height of the pillar (SiO 2 ) increases. The change in the measurement intensity due to the difference in the height of the column part is moderate when the column part height is in the range of 300 nm to 900 nm. Therefore, the height of the column part may be about 100 nm to 1000 nm. . Further, it was found that the measurement strength greatly differs depending on the thickness of the noble metal part (Au).

<実験例3>
次に、柱部の高さは一定にし、貴金属部の厚さを変えることによる測定強度(感度)への影響を求めた。
試験片を製造する方法は実験例1と同様にて、柱部(SiO2)の高さは一律600nmとし、貴金属部(Au)の厚さは、7.5nm,15nm,20nm,30nm,40nm,50nm,60nm,120nmの計8種類の試験片を用いて実験例1と同様の条件(4,4’−ビピリジン水溶液10μMを15μL滴下)にて顕微ラマン分析を行った。各試験片における1600cm-1のピーク値(測定強度)をプロット(プロット点:丸形)したものを図4に示す。
<Experimental example 3>
Next, the influence on the measurement intensity (sensitivity) by changing the thickness of the noble metal part while keeping the height of the column part constant was obtained.
The method for producing the test piece is the same as in Experimental Example 1, the height of the column part (SiO2) is uniformly 600 nm, and the thickness of the noble metal part (Au) is 7.5 nm, 15 nm, 20 nm, 30 nm, 40 nm, Microscopic Raman analysis was performed under the same conditions as in Experimental Example 1 (15 μL of 10 μM of 4,4′-bipyridine aqueous solution was dropped) using a total of 8 types of test pieces of 50 nm, 60 nm, and 120 nm. FIG. 4 shows a plot (plot point: round shape) of the peak value (measured intensity) of 1600 cm −1 in each test piece.

<結果2>
図4に示すように、貴金属の厚さが30nm付近のときに最も強い測定強度が得られる結果となった。したがって、最も高い測定強度が得られる条件に対して約30%程度の測定強度低下までを許容するならば、貴金属部の厚さは約20nm以上約40nm以下程度である。また、最も高い測定強度が得られる条件に対して約15%程度の測定強度低下までを許容するならば、貴金属部の厚さ範囲は、約25nm以上約35nm以下程度である。また、図3に示すように、柱部の高さの違いによる測定強度の変化の傾向は、貴金属部の厚さに寄らず同じ傾向であることから、SiO2からなる柱部の高さが600nm以外の高さであっても、図4に示す傾向が得られると考えられる。また、本実験例では、柱部としてSiO2を用い、貴金属部としてAuを用いるものとしているが、上述した他の使用可能な材料においても同様の傾向が得られると考えられる。
<Result 2>
As shown in FIG. 4, the strongest measurement intensity was obtained when the thickness of the noble metal was around 30 nm. Therefore, the thickness of the noble metal portion is about 20 nm or more and about 40 nm or less if a decrease in measurement intensity of about 30% is allowed with respect to the condition that the highest measurement intensity can be obtained. In addition, if a reduction in measurement intensity of about 15% is allowed with respect to the condition for obtaining the highest measurement intensity, the thickness range of the noble metal portion is about 25 nm or more and about 35 nm or less. Further, as shown in FIG. 3, the tendency of change in the measured intensity due to the difference in height of the column section, since it is the same tendency regardless of the thickness of the noble metal portion, the height of the column portion made of SiO 2 It is considered that the tendency shown in FIG. 4 can be obtained even when the height is other than 600 nm. Further, in this experimental example, SiO 2 is used as the column part and Au is used as the noble metal part, but it is considered that the same tendency can be obtained also in the other usable materials described above.

本実施形態における試験片の概略構成を示した図である。It is the figure which showed schematic structure of the test piece in this embodiment. 試験片を製造するために用いられる真空蒸着装置の概要を示した図である。It is the figure which showed the outline | summary of the vacuum evaporation system used in order to manufacture a test piece. 貴金属部の厚さを一定とし柱部の高さを変えたときの測定感度変化を示した図である。It is the figure which showed the measurement sensitivity change when the thickness of a noble metal part is fixed and the height of a pillar part is changed. 柱部の高さを一定とし貴金属部の厚さを変えたときの測定感度変化を示した図である。It is the figure which showed the measurement sensitivity change when the height of a pillar part is made constant and the thickness of a noble metal part is changed.

1 基板
3 微小柱状体
3a 柱部
3b 貴金属部
20 真空蒸着装置
DESCRIPTION OF SYMBOLS 1 Substrate 3 Micro columnar body 3a Column part 3b Precious metal part 20 Vacuum deposition apparatus

Claims (3)

微小柱状体が多数形成されたナノ構造表面を有する試験片の製造方法において、基板上に斜め方向から透明な金属酸化物または金属フッ化物を蒸着するステップであって,該蒸着によって得られる所定の膜厚毎に前記蒸着方向を反転させることにより異方性を有した柱部を基板上に多数形成する第1ステップと、形成された前記柱部の頂部に貴金属を厚さ20nm以上40nm以下にて蒸着する第2ステップと、を有することを特徴する試験片の製造方法。 In a method of manufacturing a test piece having a nanostructure surface on which a large number of microcolumnar bodies are formed, a step of depositing a transparent metal oxide or metal fluoride on a substrate from an oblique direction, the predetermined obtained by the deposition A first step of forming a large number of anisotropic pillars on the substrate by reversing the deposition direction for each film thickness, and a noble metal having a thickness of 20 nm to 40 nm on the top of the pillars formed. And a second step of vapor deposition. 請求項1の試験片の製造方法において、前記柱部は100nm以上1000nm以下であることを特徴とする試験片の製造方法。 2. The method of manufacturing a test piece according to claim 1, wherein the column part is 100 nm or more and 1000 nm or less. 請求項2の試験片において、前記貴金属部はAuからなり、前記柱部はSiO2からなることを特徴とする試験片の製造方法。 The test piece according to claim 2, wherein the noble metal portion is made of Au and the column portion is made of SiO 2 .
JP2009225823A 2009-09-30 2009-09-30 Method for manufacturing test piece Pending JP2011075348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225823A JP2011075348A (en) 2009-09-30 2009-09-30 Method for manufacturing test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225823A JP2011075348A (en) 2009-09-30 2009-09-30 Method for manufacturing test piece

Publications (1)

Publication Number Publication Date
JP2011075348A true JP2011075348A (en) 2011-04-14

Family

ID=44019506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225823A Pending JP2011075348A (en) 2009-09-30 2009-09-30 Method for manufacturing test piece

Country Status (1)

Country Link
JP (1) JP2011075348A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175821A (en) * 2011-12-22 2013-06-26 福州高意光学有限公司 Manufacture method of raman spectrum test piece and raman spectrum test method
WO2014025026A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Manufacturing method for surface-enhanced raman scattering element
JP2015514991A (en) * 2012-04-20 2015-05-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Integrated sensor
US9588049B2 (en) 2012-08-10 2017-03-07 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit, and method for using same
US9612201B2 (en) 2012-08-10 2017-04-04 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9726608B2 (en) 2012-08-10 2017-08-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9846123B2 (en) 2012-08-10 2017-12-19 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9851305B2 (en) 2013-03-29 2017-12-26 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit and Raman spectroscopic analysis method
US9857306B2 (en) 2012-08-10 2018-01-02 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9863884B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for producing same
US9863883B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9874523B2 (en) 2012-08-10 2018-01-23 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element including a conductor layer having a base part and a plurality of protusions
US9952158B2 (en) 2013-03-29 2018-04-24 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9964492B2 (en) 2013-03-29 2018-05-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9976961B2 (en) 2012-08-10 2018-05-22 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element including a conductor layer having a base part and a plurality of protusions
US10132755B2 (en) 2012-08-10 2018-11-20 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element
US10408761B2 (en) 2012-08-10 2019-09-10 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US10551322B2 (en) 2012-08-10 2020-02-04 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit including integrally formed handling board
EP3551999A4 (en) * 2017-01-31 2020-07-08 Hewlett-Packard Development Company, L.P. Surface enhanced infrared absorption stage

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175821A (en) * 2011-12-22 2013-06-26 福州高意光学有限公司 Manufacture method of raman spectrum test piece and raman spectrum test method
JP2015514991A (en) * 2012-04-20 2015-05-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Integrated sensor
US9863883B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
DE112013004001B4 (en) 2012-08-10 2021-11-18 Hamamatsu Photonics K.K. Element for surface-enhanced Raman scattering
WO2014025026A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Manufacturing method for surface-enhanced raman scattering element
US9612201B2 (en) 2012-08-10 2017-04-04 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9658166B2 (en) 2012-08-10 2017-05-23 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit, and method for using same
US9696202B2 (en) 2012-08-10 2017-07-04 Hamamatsu Photonics K.K. Method for making surface enhanced Raman scattering device
US9726608B2 (en) 2012-08-10 2017-08-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
JP2017138328A (en) * 2012-08-10 2017-08-10 浜松ホトニクス株式会社 Surface-enhanced raman scattering unit
US9846123B2 (en) 2012-08-10 2017-12-19 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9874523B2 (en) 2012-08-10 2018-01-23 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element including a conductor layer having a base part and a plurality of protusions
US9857306B2 (en) 2012-08-10 2018-01-02 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9863884B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for producing same
US9588049B2 (en) 2012-08-10 2017-03-07 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit, and method for using same
US9267894B2 (en) 2012-08-10 2016-02-23 Hamamatsu Photonics K.K. Method for making surface enhanced Raman scattering device
US10184895B2 (en) 2012-08-10 2019-01-22 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit, and method for using same
US10551322B2 (en) 2012-08-10 2020-02-04 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit including integrally formed handling board
US10408761B2 (en) 2012-08-10 2019-09-10 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9976961B2 (en) 2012-08-10 2018-05-22 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element including a conductor layer having a base part and a plurality of protusions
JP6328868B1 (en) * 2012-08-10 2018-05-23 浜松ホトニクス株式会社 Surface-enhanced Raman scattering unit
JP2018141789A (en) * 2012-08-10 2018-09-13 浜松ホトニクス株式会社 Surface Enhanced Raman Scattering Unit
US10132755B2 (en) 2012-08-10 2018-11-20 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element
JP2018059954A (en) * 2012-08-10 2018-04-12 浜松ホトニクス株式会社 Surface-enhanced raman scattering unit
US10281404B2 (en) 2013-03-29 2019-05-07 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9964492B2 (en) 2013-03-29 2018-05-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9952158B2 (en) 2013-03-29 2018-04-24 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9851305B2 (en) 2013-03-29 2017-12-26 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit and Raman spectroscopic analysis method
EP3551999A4 (en) * 2017-01-31 2020-07-08 Hewlett-Packard Development Company, L.P. Surface enhanced infrared absorption stage

Similar Documents

Publication Publication Date Title
JP2011075348A (en) Method for manufacturing test piece
TWI490474B (en) Metal nanopillars for surface-enhanced raman spectroscopy (sers) substrate and method for preparing same
JP5500571B2 (en) Test piece, method for producing the test piece
Kamińska et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications
Zhu et al. Development of silver nanorod array based fiber optic probes for SERS detection
Yan et al. New type high-index dielectric nanosensors based on the scattering intensity shift
CN103443601A (en) Surface-enhanced Raman scattering apparatus and methods
JP4783907B2 (en) Optical sensor and manufacturing method thereof
WO2012035716A1 (en) Optical-electric-field enhancement device
Badshah et al. Enhancing the sensitivity of DNA microarrays by metal-enhanced fluorescence using vertical nanorod structures
CN108169209B (en) In-situ surface enhanced Raman detection method
Suresh et al. Flexible, transparent and robust SERS tapes through a two-step block copolymer self-assembly process
Yan et al. Fabrication of arrayed triangular micro-cavities for SERS substrates using the force modulated indention process
Zhang et al. Plasmonic structure with nanocavity cavities for SERS detection of pesticide thiram
Chen et al. Improved SERS Intensity from Silver‐Coated Black Silicon by Tuning Surface Plasmons
Bechelany et al. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection
CN104280376A (en) Surface enhanced Raman spectroscopy (SERS) sensing substrate and manufacturing method thereof
WO2024066955A1 (en) Reusable sers molecular test device, and method using same
Chen et al. Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy
Islam et al. Shape-and orientation-dependent scattering of isolated gold nanostructures using polarized dark-field microscopy
Canpean et al. Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays
JP6337127B2 (en) Photoelectric field enhancement device and method for producing photoelectric field enhancement device
Hwang et al. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates
Liu et al. Preparation of surface-enhanced Raman scattering (SERS)-active optical fiber sensor by laser-induced Ag deposition and its application in bioidentification of biotin/avidin
JP2012052848A (en) Scattering near-field optical probe and near-field optical microscope including the same