JP2011075254A - Turbo refrigerator - Google Patents

Turbo refrigerator Download PDF

Info

Publication number
JP2011075254A
JP2011075254A JP2009229925A JP2009229925A JP2011075254A JP 2011075254 A JP2011075254 A JP 2011075254A JP 2009229925 A JP2009229925 A JP 2009229925A JP 2009229925 A JP2009229925 A JP 2009229925A JP 2011075254 A JP2011075254 A JP 2011075254A
Authority
JP
Japan
Prior art keywords
compressor
condenser
stage
turbo
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009229925A
Other languages
Japanese (ja)
Other versions
JP2011075254A5 (en
JP5491818B2 (en
Inventor
Naoto Sakai
直人 阪井
Hayato Sakamoto
隼人 坂本
Masashi Yamauchi
正史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2009229925A priority Critical patent/JP5491818B2/en
Publication of JP2011075254A publication Critical patent/JP2011075254A/en
Publication of JP2011075254A5 publication Critical patent/JP2011075254A5/ja
Application granted granted Critical
Publication of JP5491818B2 publication Critical patent/JP5491818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbo refrigerator including a centrifugal compressor suppressing deterioration of efficiency by eliminating pressure loss of a vapor refrigerant, reducing size by space saving, and smoothly guiding an evaporated refrigerant to a condenser by a simple configuration. <P>SOLUTION: In the turbo refrigerator, a refrigerant (R1) of a gaseous phase from an evaporator (1) is compressed by a turbo compressor (2), it is condensed by the condenser (4), an obtained refrigerant (R3) of a liquid phase is evaporated by the evaporator (1), and by this, a cooling object (W1) is cooled by heat of vaporization. The compressor (2) is an addorsed two-stage centrifugal type, and the condenser (4) is disposed in a position overlapping a compressor subsequent stage (2R) as seen from the axial direction (S) and the radial direction (R) in an outer side of the compressor subsequent stage (2R). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気相の冷媒をターボ圧縮機により圧縮したのちに凝縮器で凝縮し、得られた液相の冷媒を蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機に関するものである。   In the present invention, a gas phase refrigerant is compressed by a turbo compressor and then condensed by a condenser, and the obtained liquid phase refrigerant is evaporated by an evaporator, whereby a turbo object that cools an object to be cooled with its heat of vaporization. It relates to a refrigerator.

近年、この種のターボ冷凍機として、環境対策のために、フロンなどの温室効果ガスに代えて、水を冷媒として用いるものが提案されている。このようなターボ冷凍機では、フロンに比べて沸点の高い水を低圧下で蒸発させるために、冷媒の密度が下がり、体積流量が増加するので、圧縮機が大型化する。一方、水はフロンと比較すると熱伝導性が良いため、凝縮器、蒸発器などの熱交換器は、圧縮機ほどは大型化しない。そのため、装置が大型化するとはいえ、圧縮機、凝縮器および蒸発器が同じ比率で大型化するのではなく、圧縮機のみが、他の構成要素に比較して大きくなる。一般的な、フロンのターボ冷凍機の構造である圧縮機、熱交換器を別々の要素とし、その間を配管で接続する構造を水冷媒に適用した場合、圧縮機のみが大型化し、遠心式羽根車の周囲に大きなデッドスペースが発生する。また、装置の大型化を極力抑制するため配管類を可能な限り小さくするため、冷媒の流速が増加し、圧力損失が発生し、冷凍機の性能が低下する。   In recent years, a turbo chiller of this type has been proposed that uses water as a refrigerant instead of greenhouse gases such as chlorofluorocarbon for environmental measures. In such a turbo refrigerator, water having a higher boiling point than that of chlorofluorocarbon is evaporated under a low pressure, so that the density of the refrigerant decreases and the volume flow rate increases, so that the compressor becomes large. On the other hand, since water has better thermal conductivity than Freon, heat exchangers such as condensers and evaporators are not as large as compressors. Therefore, although the apparatus is enlarged, the compressor, the condenser and the evaporator are not enlarged at the same ratio, but only the compressor is larger than the other components. When a compressor, heat exchanger, which is a general structure of a Freon turbo chiller, is used as a separate element, and a structure in which pipes are connected to each other is applied to water refrigerant, only the compressor becomes larger and the centrifugal blade A large dead space is generated around the car. Moreover, in order to suppress the enlargement of the apparatus as much as possible, the piping is made as small as possible, so the flow rate of the refrigerant increases, pressure loss occurs, and the performance of the refrigerator decreases.

この対策として、2段の遠心式圧縮機の羽根車を背面合わせに配置し、放射状に流出する冷媒をスクロールで集めて蒸発器⇒凝縮器と配管で接続するのではなく、羽根車に続くディフーザダクトを複数本ずつ設けるとともに、第1段ディフューザダクトおよび第2段ディフューザダクトを周方向に交互に配置したものが提案されている(特許文献1参照)。   As a countermeasure, the diffuser duct that follows the impeller is not arranged by arranging the impellers of the two-stage centrifugal compressor back to back, collecting the refrigerant that flows out radially by the scroll, and connecting it to the evaporator ⇒ condenser. A plurality of the first-stage diffuser ducts and the second-stage diffuser ducts are alternately arranged in the circumferential direction (see Patent Document 1).

特許第4191477号公報Japanese Patent No. 4191477

しかしながら、特許文献1の圧縮機は、構成が極めて複雑になる。また、やはり遠心式羽根車の周囲に大きなデッドスペースが残る。   However, the compressor of Patent Document 1 has a very complicated configuration. Also, a large dead space remains around the centrifugal impeller.

本発明は、蒸気冷媒の接続配管による圧力損失を少なくして効率の低下を抑制できるとともに、省スペース化を図って小形化でき、簡単な構成で蒸発冷媒を凝縮器に円滑に導くことのできる遠心式の圧縮機を備えたターボ冷凍機を提供することを目的とする。   The present invention can reduce the pressure loss due to the connection pipe of the vapor refrigerant and suppress the decrease in efficiency, can be reduced in size to save space, and can smoothly guide the evaporative refrigerant to the condenser with a simple configuration. It is an object of the present invention to provide a turbo refrigerator equipped with a centrifugal compressor.

上記目的を達成するために、本発明の一構成に係るターボ冷凍機は、蒸発器からの気相の冷媒をターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、前記圧縮機は背面合せの2段遠心式であり、前記凝縮器は、前記圧縮機後段の外側で、前記圧縮機後段と軸方向および径方向から見て重合する位置に配置されている。ここで、「重合する」とは、少なくとも一部分が重なっている状態をいう。   In order to achieve the above object, a turbo refrigerator according to one configuration of the present invention compresses a gas-phase refrigerant from an evaporator with a turbo compressor, condenses it with a condenser, and converts the obtained liquid-phase refrigerant into A turbo chiller that cools an object to be cooled with its heat of vaporization by evaporating in the evaporator, wherein the compressor is a back-to-back two-stage centrifugal type, and the condenser is a rear stage of the compressor. Outside the compressor, it is disposed at a position where it overlaps with the rear stage of the compressor when viewed from the axial direction and the radial direction. Here, “polymerize” means a state in which at least a part of them overlap.

このターボ冷凍機によれば、凝縮器が、圧縮機後段の外側で、圧縮機後段と軸方向および径方向の両方から見てそれぞれ重合する位置、つまり圧縮機後段の周囲の近傍位置に配置されているから、圧縮機後段の羽根車から流出する蒸気冷媒が、スクロールおよび長い接続配管を介することなく、直接的に、円滑に凝縮器に供給されるので、既存のターボ冷凍機における圧縮機後段に設けられている、蒸発冷媒を集めるためのスクロールおよび集めた蒸気冷媒を凝縮器へ導く接続配管が共に不要となる。その結果、スクロールおよび接続配管で生じていた圧力損失がなくなるので、冷凍機の効率低下を抑制できる。また、従来において大きなデッドスペースとなっていた、圧縮機後段の周囲のスペースを利用して凝縮器を設けているので、省スペース化によって冷凍機全体の小形化を図ることができる。   According to this turbo chiller, the condenser is arranged outside the latter stage of the compressor at a position where it is superposed with the latter stage of the compressor when viewed from both the axial direction and the radial direction, that is, in the vicinity of the periphery of the latter stage of the compressor. Therefore, the vapor refrigerant flowing out from the impeller at the rear stage of the compressor is directly and smoothly supplied to the condenser without going through the scroll and the long connecting pipe, so that the latter stage of the compressor in the existing turbo refrigerator Both the scroll for collecting the evaporative refrigerant and the connecting pipe for guiding the collected vapor refrigerant to the condenser are not required. As a result, the pressure loss that has occurred in the scroll and the connecting piping is eliminated, so that a reduction in efficiency of the refrigerator can be suppressed. Further, since the condenser is provided using the space around the rear stage of the compressor, which has been a large dead space in the past, the entire refrigerator can be reduced in size by saving space.

本発明において、前記圧縮機前段から前記圧縮機後段に冷媒を導く中間通路と前記圧縮機後段との間に前記凝縮器が配置されていることが好ましい。この構成によれば、圧縮機後段から放射状に流出する蒸気冷媒を、中間通路を横切ることなく凝縮器に供給することができる。   In this invention, it is preferable that the said condenser is arrange | positioned between the intermediate path which guide | induces a refrigerant | coolant from the said front stage of a compressor to the said back stage of a compressor, and the said back stage of a compressor. According to this configuration, the vapor refrigerant flowing radially from the rear stage of the compressor can be supplied to the condenser without traversing the intermediate passage.

本発明において、前記圧縮機前段から前記圧縮機後段へ導かれる冷媒を冷却する中間冷却器が前記凝縮器の後方に配置されていることが好ましい。この構成によれば、圧縮機前段で圧縮されて温度が上昇した蒸気冷媒を、中間冷却器で冷却したのちに圧縮機後段に供給することで、圧縮機の圧縮効率が向上する。また、中間冷却器を圧縮機と同心状の形状にして、コンパクトに配置できる。   In this invention, it is preferable that the intermediate cooler which cools the refrigerant | coolant guide | induced to the said compressor back | latter stage from the said compressor front stage is arrange | positioned behind the said condenser. According to this structure, the compression efficiency of a compressor improves by supplying the vapor refrigerant | coolant which was compressed in the front stage of a compressor and the temperature rose to the back stage of a compressor after cooling with an intermediate cooler. Further, the intercooler can be arranged in a compact manner by concentric with the compressor.

本発明の他の構成に係るターボ冷凍機は、蒸発器からの気相の冷媒をターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、前記圧縮機は2段以上の多段遠心式であり、前記凝縮器は、圧縮機最後段の外側で、前記圧縮機最後段と軸方向および径方向から見て重合する位置に配置されている。このターボ冷凍機によってもやはり、蒸発冷媒を集めるためのスクロールおよび集めた蒸気冷媒を凝縮器へ導く接続配管が共に不要となる。その結果、冷凍機の効率低下を抑制できるとともに、圧縮機最後段の周囲のスペースを利用して凝縮器を設けているので、省スペース化によって冷凍機全体の小形化を図ることができる。   A turbo refrigerator according to another configuration of the present invention compresses a gas-phase refrigerant from an evaporator by a turbo compressor, condenses it by a condenser, and evaporates the obtained liquid-phase refrigerant by the evaporator. The centrifugal chiller cools the object to be cooled with the heat of vaporization, wherein the compressor is a multistage centrifugal type having two or more stages, and the condenser is located outside the last stage of the compressor and the last stage of the compressor. It arrange | positions in the position which overlaps seeing from a step and an axial direction and radial direction. This turbo refrigerator also eliminates the need for a scroll for collecting the evaporated refrigerant and a connecting pipe for guiding the collected vapor refrigerant to the condenser. As a result, a reduction in efficiency of the refrigerator can be suppressed, and the condenser is provided using the space around the last stage of the compressor, so that the entire refrigerator can be reduced in size by saving space.

本発明のさらに他の構成に係るターボ冷凍機は、蒸発器からの気相の冷媒をターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、前記圧縮機は単段遠心式であり、前記凝縮器は、前記圧縮機の外側で、前記圧縮機と軸方向および径方向から見て重合する位置に配置されている。このターボ冷凍機によってもやはり、蒸発冷媒を集めるためのスクロールおよび集めた蒸気冷媒を凝縮器へ導く接続配管が共に不要となる。その結果、冷凍機の効率低下を抑制できるとともに、圧縮機の周囲のスペースを利用して凝縮器を設けているので、省スペース化によって冷凍機全体の小形化を図ることができる。   A turbo chiller according to still another configuration of the present invention compresses a gas-phase refrigerant from an evaporator with a turbo compressor, condenses with a condenser, and evaporates the obtained liquid-phase refrigerant with the evaporator. Thus, a centrifugal chiller that cools an object to be cooled with its heat of vaporization, wherein the compressor is a single-stage centrifugal type, and the condenser is outside the compressor, and is axially connected to the compressor. It arrange | positions in the position superposed | polymerized seeing from radial direction. This turbo refrigerator also eliminates the need for a scroll for collecting the evaporated refrigerant and a connecting pipe for guiding the collected vapor refrigerant to the condenser. As a result, a reduction in efficiency of the refrigerator can be suppressed, and the condenser is provided using the space around the compressor, so that the entire refrigerator can be reduced in size by saving space.

本発明において、前記圧縮機を駆動する駆動機の外周側に前記蒸発器が配置された構成とすることができる。この構成によれば、駆動機を蒸発器で冷却できる利点がある。   In this invention, it can be set as the structure by which the said evaporator is arrange | positioned at the outer peripheral side of the drive device which drives the said compressor. According to this structure, there exists an advantage which can cool a drive machine with an evaporator.

本発明において、前記蒸発器が前記圧縮機の軸方向の一方に配置され、前記圧縮機を駆動する駆動機が他方に配置された構成とすることができる。この構成によれば、駆動機の発生熱によって蒸発器が熱せられる悪影響を防止することができる。   In the present invention, the evaporator may be arranged on one side in the axial direction of the compressor, and the drive unit that drives the compressor may be arranged on the other side. According to this configuration, it is possible to prevent the adverse effect that the evaporator is heated by the heat generated by the drive unit.

本発明において、少なくとも前記蒸発器、圧縮機および凝縮器がハウジング内に収納されていることが好ましい。本発明では、凝縮器を圧縮機の周囲の近傍箇所に配置しているから、圧縮機から流出する蒸気冷媒をスクロールで集めたのちに凝縮器へ導く接続配管が不要となるので、蒸発器、圧縮機および凝縮器をハウジング内に収納することが可能となり、コンパクトな構造となる。   In the present invention, it is preferable that at least the evaporator, the compressor, and the condenser are housed in a housing. In the present invention, since the condenser is arranged in the vicinity of the periphery of the compressor, the connection pipe for leading the vapor refrigerant flowing out from the compressor to the condenser after collecting the scroll by the scroll becomes unnecessary. The compressor and the condenser can be accommodated in the housing, resulting in a compact structure.

前記蒸発器、圧縮機および凝縮器がハウジング内に収納された構成において、前記凝縮器から前記蒸発器に液相の冷媒を戻す戻り通路が、前記ハウジング内に配置されていることが好ましい。体積流量の小さい液相の冷媒を流す戻り通路は、径の小さいもので済むことから、これをハウジングの内部に配置することによって、冷凍機を一層コンパクトな構造とすることができる。   In the configuration in which the evaporator, the compressor, and the condenser are housed in the housing, it is preferable that a return passage for returning the liquid phase refrigerant from the condenser to the evaporator is disposed in the housing. Since the return passage through which the liquid refrigerant having a small volume flow rate flows has a small diameter, the refrigerator can be made more compact by disposing the return passage inside the housing.

本発明のターボ冷凍機によれば、凝縮器が、圧縮機後段の外側で、圧縮機後段と軸方向および径方向の両方から見てそれぞれ重合する位置に配置されているから、圧縮機後段の羽根車から放射状に流出する蒸気冷媒が、スクロールや接続配管を介することなく、直接的に凝縮器に供給されるので、圧縮機と凝縮器との間のスクロールおよび接続配管が不要となって冷凍機の効率低下を抑制できる。また、圧縮機後段の周囲のスペースを有効利用して凝縮器を設けているので、省スペース化によって冷凍機全体の小形化を達成できる。   According to the turbo chiller of the present invention, the condenser is arranged outside the latter stage of the compressor at a position where the condenser is seen from both the latter stage and the axial direction and the radial direction. Since the vapor refrigerant that flows out radially from the impeller is directly supplied to the condenser without going through the scroll or connecting pipe, the scroll and connecting pipe between the compressor and the condenser are not required and the refrigeration is performed. Reduction in machine efficiency can be suppressed. Further, since the condenser is provided by effectively using the space around the rear stage of the compressor, the entire refrigerator can be reduced in size by saving space.

本発明の第1実施形態に係るターボ冷凍機の作動原理を示す概略構成図である。It is a schematic block diagram which shows the operating principle of the turbo refrigerator which concerns on 1st Embodiment of this invention. 同上のターボ冷凍機の縦断面図である。It is a longitudinal cross-sectional view of a turbo refrigerator same as the above. 図2のIII-III 線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図3のターボ冷凍機の変形例を示す断面図である。It is sectional drawing which shows the modification of the turbo refrigerator of FIG. 図3のターボ冷凍機のさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of the turbo refrigerator of FIG. 本発明の第2実施形態に係るターボ冷凍機を示す縦断面図である。It is a longitudinal section showing a turbo refrigerator concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係るターボ冷凍機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the turbo refrigerator based on 3rd Embodiment of this invention. 本発明の第4実施形態に係るターボ冷凍機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the turbo refrigerator based on 4th Embodiment of this invention.

以下、本発明の好ましい実施形態について図面を参照しながら詳細に説明する。
図1は本発明の第1実施形態に係るターボ冷凍機の概略構成図であり、この実施形態では、液状の冷媒として水を用いている。このターボ冷凍機は、蒸発器1内で液状の冷媒(水)R3を上方から伝熱管5上に散布しながら蒸発させて、その気化熱で、伝熱管5内を流れる冷却対象物(以下、冷水という)W1から熱を奪う。低圧となった蒸気冷媒R1は、電動モータのような駆動機3により回転駆動されるターボ圧縮機2に吸入されて圧縮されることにより、高圧の蒸気冷媒R2となって凝縮器4に送り込まれる。この蒸気冷媒R2は、凝縮器4内で冷却管6内を流れる廃熱対象物(以下、冷却水という)W2に対し熱放散を行って液状冷媒R3となったのち、蒸発器1に供給される。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a turbo refrigerator according to a first embodiment of the present invention. In this embodiment, water is used as a liquid refrigerant. The turbo chiller evaporates a liquid refrigerant (water) R3 in the evaporator 1 while being sprayed on the heat transfer tube 5 from above, and the cooling target (hereinafter referred to as the cooling target) flowing in the heat transfer tube 5 with the heat of vaporization. Takes heat from W1 (called cold water). The low-pressure vapor refrigerant R1 is sucked and compressed by a turbo compressor 2 that is rotationally driven by a drive unit 3 such as an electric motor, so that the high-pressure vapor refrigerant R2 is sent to the condenser 4 . The vapor refrigerant R2 is supplied to the evaporator 1 after being dissipated in the waste heat object (hereinafter referred to as cooling water) W2 flowing in the cooling pipe 6 in the condenser 4 to form a liquid refrigerant R3. The

このターボ冷凍機では、従来の一般的な冷媒であるフロンなどに比べて沸点の高い水を冷媒として用いているので、圧縮機2は、例えば、流入側を1/100気圧で、流出側を1/10気圧に設定して負圧作動される。したがって、冷媒の密度が下がり体積流量が増加するため、フロンなどを冷媒とする冷凍機に比べて大形化する。また、圧縮機2からは、蒸気冷媒R2が凝縮器4に供給される。伝熱管5内の冷水W1は、例えば、蒸発器1で12℃から7℃に冷却されて送出され、ビルディングなどの室内冷房などに用いられる。冷却管6内の冷却水W2は、例えば、凝縮器4で蒸気冷媒R2から熱を奪って32℃から37℃の温度となって冷却塔に送られる。   In this turbo chiller, water having a higher boiling point is used as a refrigerant compared with conventional refrigerant such as Freon, so the compressor 2 is, for example, 1/100 atm on the inflow side and the outflow side on the outflow side. Negative pressure operation is set at 1/10 atm. Therefore, since the density of the refrigerant decreases and the volume flow rate increases, the size of the refrigerant is increased as compared with a refrigerator using refrigerant such as Freon. Further, from the compressor 2, the vapor refrigerant R <b> 2 is supplied to the condenser 4. The chilled water W1 in the heat transfer tube 5 is, for example, cooled from 12 ° C. to 7 ° C. by the evaporator 1 and sent out, and is used for indoor cooling of a building or the like. The cooling water W2 in the cooling pipe 6 takes heat from the vapor refrigerant R2 in the condenser 4, for example, and is sent to the cooling tower at a temperature of 32 ° C. to 37 ° C.

前記ターボ冷凍機の縦断面図を示す図2において、外装体となるハウジング8は、有底円筒状のハウジング本体9の上方開口部がハウジング蓋体10で密閉された構成になっており、このハウジング8内に、前記蒸発器1、圧縮機2および凝縮器4を含む主要な構成要素が収納されている。ハウジング8と圧縮機2は同心状に配置されている。ハウジング8内の底部には、圧縮機2を駆動する電動モータ3が配置され、圧縮機2の回転軸11に直結されている。回転軸11の一端部(上端部)は、軸受12を介して、ハウジング蓋体10の後方端壁17に回転自在に支持され、他端部は軸受13を介してハウジング本体9の底板部9aに回転自在に支持されている。   In FIG. 2 showing a longitudinal sectional view of the turbo chiller, a housing 8 serving as an exterior body has a structure in which an upper opening of a bottomed cylindrical housing body 9 is sealed with a housing lid body 10. Main components including the evaporator 1, the compressor 2 and the condenser 4 are accommodated in a housing 8. The housing 8 and the compressor 2 are arranged concentrically. An electric motor 3 that drives the compressor 2 is disposed at the bottom of the housing 8 and is directly connected to the rotating shaft 11 of the compressor 2. One end portion (upper end portion) of the rotating shaft 11 is rotatably supported by the rear end wall 17 of the housing lid body 10 via the bearing 12, and the other end portion is supported by the bottom plate portion 9 a of the housing body 9 via the bearing 13. Is supported rotatably.

ハウジング本体9の底板部9aには、環状の蒸発器1がモータ3を囲む配置で設けられている。モータ3は、これに外嵌固定されたリング状の取付板18が、複数の放射状のステー19を介してハウジング本体9の周壁の内面に固定されることにより、ハウジング本体9に支持されている。圧縮機2のケーシング14の前段側入口部(下側)の外周とハウジング8との間は、前段区画壁15Aによって接続され、ケーシング14の後段側の入口部(上側)の外周とハウジング8との間は、後段区画壁15Bによって接続されている。蒸発器1からの蒸気冷媒R1は、圧縮機2により発生する吸引力を受けて、各ステー19の間から、取付板18と前段区画壁15Aとの間の通路を通って、圧縮機2に吸入される。   An annular evaporator 1 is provided on the bottom plate portion 9 a of the housing body 9 so as to surround the motor 3. The motor 3 is supported by the housing body 9 by fixing a ring-shaped mounting plate 18 fitted and fixed to the motor 3 to the inner surface of the peripheral wall of the housing body 9 via a plurality of radial stays 19. . The outer periphery of the front inlet side (lower side) of the casing 14 of the compressor 2 and the housing 8 are connected by a front partition wall 15A, and the outer periphery of the rear inlet side (upper side) of the casing 14 and the housing 8 are connected. Are connected by a rear partition wall 15B. The vapor refrigerant R1 from the evaporator 1 receives the suction force generated by the compressor 2 and passes from between the stays 19 to the compressor 2 through a passage between the mounting plate 18 and the front partition wall 15A. Inhaled.

圧縮機2は、下側の圧縮機前段2Fと上側の圧縮機後段2Rとが背面合わせに配置された2段遠心式であって、圧縮機前段2Fは、前段羽根車(インペラー)20と、その径方向外方の前段デフューザ21とにより構成され、圧縮機後段2Rも後段羽根車(インペラー)22と、その径方向Rの外方に同心状に配置された後段デフューザ23とにより構成されている。   The compressor 2 is a two-stage centrifugal type in which a lower compressor front stage 2F and an upper compressor rear stage 2R are arranged back to back, and the compressor front stage 2F includes a front impeller (impeller) 20, The compressor rear stage 2R is also constituted by a rear stage impeller (impeller) 22 and a rear stage diffuser 23 concentrically arranged on the outer side in the radial direction R. Yes.

前段羽根車20は、蒸発器1からの蒸気冷媒R1を入口部から回転軸11の軸方向Sに沿って上方に向け吸い込み、径方向Rの外側に向けて流動させ、外周の出口から径方向外方に流出させる。この前段羽根車20から流出した蒸気冷媒R21は、前段デフューザ21を通ってハウジング本体9の周壁に向けて流動する。前段デフューザ21を出た蒸気冷媒R21は、ドラム状の通路内壁16とハウジング本体9の周壁との間、および後段区画壁15Bとその後方の後方端壁17との間にわたって形成された中間通路24を通って、圧縮機後段2Rに向かって流れる。後方区画壁15Bと後方端壁17との間には、環状の熱交換器からなる中間冷却器28が配置されており、蒸気冷媒R21は、中間通路24を通る際に中間冷却器28により冷却される。中間冷却器28の冷媒として、例えば水が使用される。   The front stage impeller 20 sucks the vapor refrigerant R1 from the evaporator 1 upward along the axial direction S of the rotating shaft 11 from the inlet portion, causes the fluid to flow outward in the radial direction R, and radially from the outer peripheral outlet. Let it flow out. The vapor refrigerant R21 flowing out from the front stage impeller 20 flows toward the peripheral wall of the housing body 9 through the front stage diffuser 21. The vapor refrigerant R21 that exits the front diffuser 21 is formed between the drum-shaped passage inner wall 16 and the peripheral wall of the housing body 9, and between the rear partition wall 15B and the rear end wall 17 behind the intermediate passage 24. And flows toward the rear stage 2R of the compressor. An intermediate cooler 28 formed of an annular heat exchanger is disposed between the rear partition wall 15B and the rear end wall 17, and the vapor refrigerant R21 is cooled by the intermediate cooler 28 when passing through the intermediate passage 24. Is done. For example, water is used as the refrigerant of the intercooler 28.

中間冷却器28から流出した蒸気冷媒R22は、後段羽根車22の入口から回転軸11の軸方向Sに沿って下方に向け吸い込まれ、後段羽根車22の外周の出口から径方向外方に向けて流出する。この後段羽根車22から流出した蒸気冷媒R2は、後段デフューザ23を通ってハウジング本体9の周壁に向けて流動し、ケーシング14の内側に設けられた環状の出口29から流出する。後段デフューザ23と後段区画壁15Bとの間に設けられた環状の空間30に凝縮器4が配置されており、出口29を出た蒸気冷媒R2が凝縮器4に流入する。この凝縮器4で蒸気冷媒R2が液化される。液状となった冷媒R3は、図2に示す径の小さなパイプからなる戻り通路31を通って蒸発器1に戻る。戻り通路31はハウジング8内に配置され、前段デフューザ21および後段デフューザ23を軸方向Sに貫通している。戻り通路31はハウジング8の外側を通るように配置してもよい。   The vapor refrigerant R22 flowing out of the intercooler 28 is sucked downward along the axial direction S of the rotary shaft 11 from the inlet of the rear impeller 22, and is directed radially outward from the outlet on the outer periphery of the rear impeller 22. Leaked. The vapor refrigerant R2 flowing out from the rear stage impeller 22 flows toward the peripheral wall of the housing body 9 through the rear stage diffuser 23, and flows out from an annular outlet 29 provided inside the casing 14. The condenser 4 is disposed in an annular space 30 provided between the rear-stage diffuser 23 and the rear-stage partition wall 15B, and the vapor refrigerant R2 that has exited the outlet 29 flows into the condenser 4. In the condenser 4, the vapor refrigerant R2 is liquefied. The refrigerant R3 that has become liquid returns to the evaporator 1 through the return passage 31 formed of a pipe having a small diameter shown in FIG. The return passage 31 is disposed in the housing 8 and penetrates the front-stage diffuser 21 and the rear-stage diffuser 23 in the axial direction S. The return passage 31 may be disposed so as to pass outside the housing 8.

上記構成において、凝縮器4が、圧縮機後段2Rの外側で、圧縮機後段2Rと軸方向Sおよび径方向Rから見て重合する位置、つまり圧縮機後段2Rの後段羽根車22の径方向外側の近傍位置に配置されているので、圧縮機2の後段羽根車22から流出する蒸気冷媒R2を、後段デフューザ23を介して直接的に、円滑に凝縮器4に導くことができる。これにより、従来の2段遠心式の圧縮機の圧縮機後段から流出する冷媒R2を集めるためのスクロールおよび集めた蒸気冷媒を凝縮器へ導く長い接続配管が共に不要となる。その結果、スクロールおよび接続配管で生じていた圧力損失がなくなるので、冷凍機の効率低下を抑制できる。   In the above configuration, the condenser 4 is positioned outside the compressor rear stage 2R and overlaps with the compressor rear stage 2R when viewed from the axial direction S and the radial direction R, that is, radially outside the rear impeller 22 of the compressor rear stage 2R. Therefore, the vapor refrigerant R2 flowing out of the rear impeller 22 of the compressor 2 can be directly and smoothly guided to the condenser 4 via the rear diffuser 23. Thereby, both the scroll for collecting the refrigerant R2 flowing out from the latter stage of the compressor of the conventional two-stage centrifugal compressor and the long connecting pipe for guiding the collected vapor refrigerant to the condenser become unnecessary. As a result, the pressure loss that has occurred in the scroll and the connecting piping is eliminated, so that a reduction in efficiency of the refrigerator can be suppressed.

また、圧縮機後段2Rの後段羽根車22の径方向外側の近傍位置は、従来のターボ冷凍機において大きなデッドスペースとなっていたので、この場所を凝縮器4の設置箇所に活用することで、省スペース化により、冷凍機全体の小形化を図ることができる。特に、このターボ冷凍機は、冷媒として沸点の高い水を用いているので、低圧作動となり密度が小さくなるため、比較的直径の大きな羽根車20,22を持つ圧縮機2を用いる必要があるので、後段羽根車22と後段デフューザ23とからなる圧縮機後段2Rに対し、その軸方向Sおよび径方向Rから見て重合する外側に大きなスペースが存在するので、この大きなスペースに凝縮器4を容易に設置することができる。   In addition, since the position near the radially outer side of the rear impeller 22 in the rear stage 2R of the compressor is a large dead space in the conventional turbo refrigerator, by utilizing this place for the installation location of the condenser 4, By reducing the space, the entire refrigerator can be reduced in size. In particular, since this turbo chiller uses water with a high boiling point as a refrigerant and operates at a low pressure and the density is reduced, it is necessary to use the compressor 2 having the impellers 20 and 22 having a relatively large diameter. Since the rear stage 2R of the compressor composed of the rear stage impeller 22 and the rear stage diffuser 23 has a large space outside as viewed in the axial direction S and radial direction R, the condenser 4 can be easily placed in this large space. Can be installed.

なお、図2に明示するように、この実施形態では、後段羽根車2と後段デフューザ23からなる圧縮機後段2Rに対し凝縮器4の全体が重合する配置となっているが、圧縮機後段2Rに対し凝縮器4の一部、例えば凝縮器4の軸方向後部(図2の上部)を除いた他の部分が重合する配置としてもよい。なお、前段羽根車20と前段デフューザ21とからなる圧縮機前段2Fと軸方向Sおよび径方向Rから見て重合する箇所に存在する環状の空間32も、ここに蒸発器1の一部または全部を設置することにより有効利用することもできる。   As shown in FIG. 2, in this embodiment, the entire condenser 4 is superposed on the compressor rear stage 2R including the rear stage impeller 2 and the rear stage diffuser 23. On the other hand, it is good also as an arrangement | positioning with which other parts of the condenser 4 except the axial rear part (upper part of FIG. 2) of the condenser 4 superpose | polymerize. In addition, the compressor front stage 2F composed of the front stage impeller 20 and the front stage diffuser 21 and the annular space 32 existing at the position where the polymerization is seen when viewed from the axial direction S and the radial direction R are also part or all of the evaporator 1 here. It can also be used effectively by installing.

さらに、中間通路24と圧縮機後段2Rの後段羽根車22との間に凝縮器4が配置されているので、圧縮機後段2Rから軸方向後方に流出する蒸気冷媒R2を、圧縮機前段2Fから圧縮機後段2Rへ蒸気冷媒R21を導く中間通路24を横切ることなく凝縮器4に供給することができる。したがって、圧縮機後段2Rと凝縮器4とを接続する通路が短く、かつ簡単な形状となる。   Further, since the condenser 4 is disposed between the intermediate passage 24 and the rear impeller 22 of the compressor rear stage 2R, the vapor refrigerant R2 flowing out from the compressor rear stage 2R in the axial direction rearward is discharged from the compressor front stage 2F. The refrigerant can be supplied to the condenser 4 without crossing the intermediate passage 24 that guides the vapor refrigerant R21 to the rear stage 2R of the compressor. Therefore, the passage connecting the compressor rear stage 2R and the condenser 4 is short and has a simple shape.

また、圧縮機前段2Fで圧縮されて温度が上昇した蒸気冷媒R21を、中間冷却器28で冷却したのちに圧縮機後段2Rに供給しているので、圧縮機2の圧縮効率が向上する。さらに、前述のとおり、圧縮機後段2Rの下流のスクロールおよび接続配管が不要となるので、蒸発器1、圧縮機2および凝縮器4を含む主要な構成要素をハウジング8内に収納することが可能となり、コンパクトな構造となる。また、体積流量の小さい液状冷媒R3を凝縮器4から蒸発器1に戻すための戻り通路31として、径の小さなパイプをハウジング8の内部に配置することができ、これによっても一層コンパクトな構造となる。   In addition, since the vapor refrigerant R21, which has been compressed in the upstream stage 2F of the compressor and increased in temperature, is supplied to the downstream stage 2R of the compressor after being cooled by the intermediate cooler 28, the compression efficiency of the compressor 2 is improved. Furthermore, as described above, the scroll downstream of the rear stage 2R of the compressor and the connecting piping are not required, so that main components including the evaporator 1, the compressor 2 and the condenser 4 can be accommodated in the housing 8. It becomes a compact structure. Further, a pipe having a small diameter can be disposed inside the housing 8 as the return passage 31 for returning the liquid refrigerant R3 having a small volume flow rate from the condenser 4 to the evaporator 1, and this also allows a more compact structure. Become.

圧縮機2を駆動する駆動機3の外周側に蒸発器1が配置されているので、駆動機3からの放射熱を比較的低温の蒸発器1で吸収させることにより、駆動機3を冷却できる。   Since the evaporator 1 is arranged on the outer peripheral side of the driving machine 3 that drives the compressor 2, the driving machine 3 can be cooled by absorbing the radiant heat from the driving machine 3 by the relatively low temperature evaporator 1. .

凝縮器4は、図3に示す環状のものに限らず、図4に示すように、直方体形状または円弧状の二つの凝縮器4を、後段羽根車22の径方向において相対向する配置で設けてもよい。また、図5に示すように、立方体形状の四つの凝縮器4を、後段羽根車22の外側の同心円上に90°の角度間隔に配置して設けてもよい。   The condenser 4 is not limited to the annular shape shown in FIG. 3, and as shown in FIG. 4, two condensers 4 having a rectangular parallelepiped shape or an arc shape are provided in an arrangement opposite to each other in the radial direction of the rear impeller 22. May be. In addition, as shown in FIG. 5, four cube-shaped condensers 4 may be provided on the concentric circles outside the rear impeller 22 at an angular interval of 90 °.

図6は本発明の第2実施形態に係るターボ冷凍器を示す。このターボ冷凍機が第1実施形態のものと相違するのは、圧縮機2を駆動する電動モータ3が、圧縮機2の上方側に配置されて、蒸発器1と離間されている構成のみである。この実施形態では、電動モータ3の発生熱によって蒸発器1が熱せられる悪影響を防止できる利点がある。   FIG. 6 shows a turbo refrigerator according to a second embodiment of the present invention. The turbo chiller is different from that of the first embodiment only in the configuration in which the electric motor 3 that drives the compressor 2 is disposed above the compressor 2 and separated from the evaporator 1. is there. In this embodiment, there exists an advantage which can prevent the bad influence by which the evaporator 1 is heated by the heat generated by the electric motor 3.

図7は本発明の第3実施形態に係るターボ冷凍機を示す。このターボ冷凍機は、圧縮機前段2Fおよび圧縮後段2Rの各羽根車20,22が同じ向きとなる直列配置で設けられた2段遠心式の圧縮機33を備えている。蒸発器1は圧縮機33の上側に配置され、蒸発器1の径方向内側に電動モータ3が配置されている。前段羽根車20から前段デフューザ21を通った冷媒蒸気R21は、180°の角度で折り返すクロスオーバー形状の中間通路34を通って後段羽根車22の入口に導かれる。凝縮器4は、圧縮機後段2Rの後段羽根車22の径方向外側の近傍位置で、圧縮機後段2Rに対し軸方向Sおよび径方向Rから見て共に重合する位置に配置されている。   FIG. 7 shows a turbo refrigerator according to a third embodiment of the present invention. This turbo refrigerator includes a two-stage centrifugal compressor 33 provided in a series arrangement in which the impellers 20 and 22 of the compressor front stage 2F and the post-compression stage 2R are in the same direction. The evaporator 1 is disposed on the upper side of the compressor 33, and the electric motor 3 is disposed on the radially inner side of the evaporator 1. The refrigerant vapor R21 that has passed through the front-stage diffuser 21 from the front-stage impeller 20 is guided to the inlet of the rear-stage impeller 22 through a crossover-shaped intermediate passage 34 that turns back at an angle of 180 °. The condenser 4 is arranged in a position near the outside in the radial direction of the rear stage impeller 22 of the rear stage 2R of the compressor, and at a position where both are superposed with respect to the rear stage 2R of the compressor when viewed from the axial direction S and the radial direction R.

これにより、従来のこの種のターボ冷凍機に比べて、後段羽根車22から流出する蒸気冷媒R2を、スクロールおよび長い接続配管を介することなく直接的に、円滑に凝縮器4に供給できるので、スクロールおよび接続配管で生じていた圧力損失がなくなり、冷凍機の効率低下を抑制できる。また、後段羽根車22の周囲のスペースを有効利用して凝縮器4を設けることで、デッドスペースを無くして省スペース化を図ることができ、冷凍機全体の小形化を達成できる。   Thereby, compared with the conventional turbo refrigerator of this type, the vapor refrigerant R2 flowing out from the rear impeller 22 can be directly and smoothly supplied to the condenser 4 without going through the scroll and the long connection pipe. The pressure loss that has occurred in the scroll and the connecting piping is eliminated, and a reduction in efficiency of the refrigerator can be suppressed. Moreover, by providing the condenser 4 by effectively using the space around the rear impeller 22, it is possible to eliminate the dead space and save space, and to achieve downsizing of the entire refrigerator.

なお、この直列配置の圧縮機33では、圧縮機前段2Fと圧縮機後段2Rが共に前方を向いているから、圧縮機前段2Fと圧縮機後段2Rとを接続する中間通路34と、圧縮機後段2Rを凝縮器4に接続する通路とが交差するという、背面合わせの2段遠心圧縮機に存在する課題は、元来存在しない。   In this series-arranged compressor 33, since the compressor front stage 2F and the compressor rear stage 2R are both facing forward, the intermediate passage 34 connecting the compressor front stage 2F and the compressor rear stage 2R, and the compressor rear stage The problem existing in the back-to-back two-stage centrifugal compressor that the passage connecting the 2R to the condenser 4 does not exist originally.

図8は、本発明の第4実施形態に係るターボ冷凍機を示す。このターボ冷凍機は、単一の羽根車39とデフューザ40とを有するのみの単段遠心式の圧縮機38を備えたものである。凝縮器4は、圧縮機38の羽根車39の径方向外側で、圧縮機38に対し軸方向Sおよび径方向Rから見て共に重合する位置に配置されている。したがって、このターボ冷凍機においても、蒸気冷媒R2を、従来のスクロールおよび接続配管を介することなく直接的に円滑に凝縮器4に供給できるので、スクロールおよび接続配管で生じていた圧力損失がなくなり、冷凍機の効率低下を抑制できる。また、羽根車39の周囲のスペースを利用して凝縮器4を設けることで、デッドスペースを無くして省スペース化を図ることができ、冷凍機全体の小形化を達成できる。   FIG. 8 shows a turbo refrigerator according to a fourth embodiment of the present invention. This turbo refrigerator includes a single-stage centrifugal compressor 38 having only a single impeller 39 and a diffuser 40. The condenser 4 is disposed on the radially outer side of the impeller 39 of the compressor 38 at a position where the compressor 38 overlaps the compressor 38 when viewed in the axial direction S and the radial direction R. Therefore, also in this turbo chiller, the vapor refrigerant R2 can be directly and smoothly supplied to the condenser 4 without going through the conventional scroll and connection piping, so the pressure loss that has occurred in the scroll and connection piping is eliminated. Reduction in efficiency of the refrigerator can be suppressed. Further, by providing the condenser 4 using the space around the impeller 39, the dead space can be eliminated and the space can be saved, and the entire refrigerator can be reduced in size.

なお、前述の各実施形態では、圧縮機2,33,38の回転軸11が上下方向の向きとなる縦置きタイプを例示して説明したが、本発明は、圧縮機2,33,38の回転軸11が水平方向の向きとなる横置きタイプにも適用することができる。また、蒸発器1と電動モータ3を圧縮機2を挟んで反対側に配置した図6の構造は、図7の第3実施形態および図8の第4実施形態にも適用できる。さらに、圧縮機2,33,38を駆動する電動モータ3は、ハウジング8の外部に設けるようにしてもよい。電動モータ3と圧縮機2,33,38との間に増速機(ギヤ)を介設することもできる。   In each of the above-described embodiments, the vertical type in which the rotary shaft 11 of the compressors 2, 33, 38 is oriented in the vertical direction is described as an example. The present invention can also be applied to a horizontal type in which the rotation shaft 11 is oriented in the horizontal direction. Moreover, the structure of FIG. 6 which has arrange | positioned the evaporator 1 and the electric motor 3 on the opposite side on both sides of the compressor 2 is applicable also to 3rd Embodiment of FIG. 7, and 4th Embodiment of FIG. Furthermore, the electric motor 3 that drives the compressors 2, 33, and 38 may be provided outside the housing 8. A speed increaser (gear) may be interposed between the electric motor 3 and the compressors 2, 33 and 38.

また、本発明は、以上の実施形態で示した内容に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。   Further, the present invention is not limited to the contents shown in the above embodiment, and various additions, modifications, or deletions are possible within the scope not departing from the gist of the present invention. It is included within the scope of the present invention.

1 蒸発器
2,33,38 ターボ圧縮機
2F 圧縮機前段
2R 圧縮機後段
3 電動モータ(駆動機)
4 凝縮器
8 ハウジング
24,34 中間通路
28 中間冷却器
31 戻り通路
R1,R2 蒸気冷媒(気相の冷媒)
R3 液状冷媒(液相の冷媒)
W1 冷水(冷却対象物)
S 軸方向
R 径方向
1 Evaporator 2, 33, 38 Turbo compressor 2F Compressor front stage 2R Compressor rear stage 3 Electric motor (drive machine)
4 Condenser 8 Housings 24, 34 Intermediate passage 28 Intermediate cooler 31 Return passages R1, R2 Vapor refrigerant (vapor phase refrigerant)
R3 Liquid refrigerant (liquid phase refrigerant)
W1 Cold water (cooling object)
S Axial direction R Radial direction

Claims (9)

蒸発器からの気相の冷媒をターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、
前記圧縮機は背面合せの2段遠心式であり、
前記凝縮器は、前記圧縮機後段の外側で、前記圧縮機後段と軸方向および径方向から見て重合する位置に配置されているターボ冷凍機。
Turbo that cools the object to be cooled with the heat of vaporization by compressing the gas-phase refrigerant from the evaporator with a turbo compressor, condensing with the condenser, and evaporating the obtained liquid-phase refrigerant with the evaporator A freezer,
The compressor is a back-to-back two-stage centrifugal type,
The condenser is a turbo chiller disposed outside the latter stage of the compressor at a position where it is superposed with the latter stage of the compressor when viewed in the axial direction and the radial direction.
請求項1において、前記圧縮機前段から前記圧縮機後段に冷媒を導く中間通路と前記圧縮機後段との間に前記凝縮器が配置されているターボ冷凍機。   2. The turbo refrigerator according to claim 1, wherein the condenser is disposed between an intermediate passage for introducing a refrigerant from the front stage of the compressor to the rear stage of the compressor and the second stage of the compressor. 請求項1または2において、前記圧縮機前段から前記圧縮機後段へ導かれる冷媒を冷却する中間冷却器が前記凝縮器の後方に配置されているターボ冷凍機。   3. The turbo refrigerator according to claim 1, wherein an intermediate cooler that cools the refrigerant guided from the front stage of the compressor to the rear stage of the compressor is disposed behind the condenser. 4. 蒸発器からの気相の冷媒をターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、
前記圧縮機は2段以上の多段遠心式であり、
前記凝縮器は、圧縮機最後段の外側で、前記圧縮機最後段と軸方向および径方向から見て重合する位置に配置されているターボ冷凍機。
Turbo that cools the object to be cooled with the heat of vaporization by compressing the gas-phase refrigerant from the evaporator with a turbo compressor, condensing with the condenser, and evaporating the obtained liquid-phase refrigerant with the evaporator A freezer,
The compressor is a multi-stage centrifugal type having two or more stages,
The condenser is a turbo refrigerator disposed outside the last stage of the compressor and at a position where the condenser is superposed on the last stage of the compressor when viewed in the axial direction and the radial direction.
蒸発器からの気相の冷媒をターボ圧縮機により圧縮し、凝縮器により凝縮し、得られた液相の冷媒を前記蒸発器で蒸発させることにより、その気化熱で冷却対象物を冷却するターボ冷凍機であって、
前記圧縮機は単段遠心式であり、
前記凝縮器は、前記圧縮機の外側で、前記圧縮機と軸方向および径方向から見て重合する位置に配置されているターボ冷凍機。
Turbo that cools the object to be cooled with the heat of vaporization by compressing the gas-phase refrigerant from the evaporator with a turbo compressor, condensing with the condenser, and evaporating the obtained liquid-phase refrigerant with the evaporator A freezer,
The compressor is a single-stage centrifugal type,
The condenser is a turbo refrigerator disposed outside the compressor at a position where it is overlapped with the compressor when viewed in the axial direction and the radial direction.
請求項1から5のいずれか一項において、前記圧縮機を駆動する駆動機の外周側に前記蒸発器が配置されているターボ冷凍機。   The turbo chiller according to any one of claims 1 to 5, wherein the evaporator is disposed on an outer peripheral side of a drive unit that drives the compressor. 請求項1から5のいずれか一項において、前記蒸発器が前記圧縮機の軸方向の一方に配置され、前記圧縮機を駆動する駆動機が他方に配置されているターボ冷凍機。   The turbo refrigerator according to any one of claims 1 to 5, wherein the evaporator is disposed on one side in an axial direction of the compressor, and a drive unit that drives the compressor is disposed on the other side. 請求項1から5のいずれか一項において、少なくとも前記蒸発器、圧縮機および凝縮器がハウジング内に収納されているターボ冷凍機。   The turbo refrigerator according to any one of claims 1 to 5, wherein at least the evaporator, the compressor, and the condenser are housed in a housing. 請求項8において、前記凝縮器から前記蒸発器に液相の冷媒を戻す戻り通路が、前記ハウジング内に配置されているターボ冷凍機。   9. The turbo refrigerator according to claim 8, wherein a return passage for returning liquid phase refrigerant from the condenser to the evaporator is disposed in the housing.
JP2009229925A 2009-10-01 2009-10-01 Turbo refrigerator Expired - Fee Related JP5491818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229925A JP5491818B2 (en) 2009-10-01 2009-10-01 Turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229925A JP5491818B2 (en) 2009-10-01 2009-10-01 Turbo refrigerator

Publications (3)

Publication Number Publication Date
JP2011075254A true JP2011075254A (en) 2011-04-14
JP2011075254A5 JP2011075254A5 (en) 2012-10-25
JP5491818B2 JP5491818B2 (en) 2014-05-14

Family

ID=44019425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229925A Expired - Fee Related JP5491818B2 (en) 2009-10-01 2009-10-01 Turbo refrigerator

Country Status (1)

Country Link
JP (1) JP5491818B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125215A1 (en) * 2012-02-23 2013-08-29 川崎重工業株式会社 Refrigeration machine
KR101331012B1 (en) 2011-12-28 2013-11-19 한밭대학교 산학협력단 Steam power generation system using centrifugal compressor and method for steam power generation using the same
JP2015194151A (en) * 2014-03-19 2015-11-05 株式会社豊田自動織機 electric turbo compressor
JP2015212544A (en) * 2014-04-18 2015-11-26 パナソニックIpマネジメント株式会社 Turbomachine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803958A1 (en) * 1967-10-18 1969-06-19 Materiels Hispano Suiza Sa Soc Compression system with two compression stages and intermediate heat exchanger
JPS5135110A (en) * 1974-09-20 1976-03-25 Hitachi Ltd PATSUKEEJIGATATAABORYUTAIKIKAI
JPS521554A (en) * 1975-06-24 1977-01-07 Hitachi Ltd Heat exchanger for turbo fluid machine
JPS55122084U (en) * 1979-02-20 1980-08-29
JP2001165514A (en) * 1999-10-25 2001-06-22 Electricite De France Service National Heat pump device especially with cooling function
JP4191477B2 (en) * 2000-06-22 2008-12-03 アイ・デイー・イー・テクノロジーズ・リミテツド An arrangement for a multistage heat pump assembly.
JP2009204260A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Turbo refrigerating machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803958A1 (en) * 1967-10-18 1969-06-19 Materiels Hispano Suiza Sa Soc Compression system with two compression stages and intermediate heat exchanger
JPS5135110A (en) * 1974-09-20 1976-03-25 Hitachi Ltd PATSUKEEJIGATATAABORYUTAIKIKAI
JPS521554A (en) * 1975-06-24 1977-01-07 Hitachi Ltd Heat exchanger for turbo fluid machine
JPS55122084U (en) * 1979-02-20 1980-08-29
JP2001165514A (en) * 1999-10-25 2001-06-22 Electricite De France Service National Heat pump device especially with cooling function
JP4191477B2 (en) * 2000-06-22 2008-12-03 アイ・デイー・イー・テクノロジーズ・リミテツド An arrangement for a multistage heat pump assembly.
JP2009204260A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Turbo refrigerating machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331012B1 (en) 2011-12-28 2013-11-19 한밭대학교 산학협력단 Steam power generation system using centrifugal compressor and method for steam power generation using the same
WO2013125215A1 (en) * 2012-02-23 2013-08-29 川崎重工業株式会社 Refrigeration machine
JP2013170808A (en) * 2012-02-23 2013-09-02 Kawasaki Heavy Ind Ltd Refrigerator
JP2015194151A (en) * 2014-03-19 2015-11-05 株式会社豊田自動織機 electric turbo compressor
US9897091B2 (en) 2014-03-19 2018-02-20 Kabushiki Kaisha Toyota Jidoshokki Motor-driven turbo compressor
JP2015212544A (en) * 2014-04-18 2015-11-26 パナソニックIpマネジメント株式会社 Turbomachine

Also Published As

Publication number Publication date
JP5491818B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5262155B2 (en) Turbo compressor and refrigerator
US9657747B2 (en) Motor rotor and air gap cooling
US20020106278A1 (en) Turbo compressor and refrigerator with the compressor
WO2014034651A1 (en) Turbo compressor and turbo refrigerator
JP2010185406A (en) Injection pipe
CN101963161B (en) Turbo compressor and refrigerator
JP5491818B2 (en) Turbo refrigerator
WO2012131770A1 (en) Centrifugal chiller
JP2016027289A (en) Turbocompressor and refrigeration cycle device
WO2012144182A1 (en) Condensing device
US8756954B2 (en) Turbo compressor and turbo refrigerator
JP5136096B2 (en) Turbo compressor and refrigerator
JP5582713B2 (en) Heat pump equipment
JP6004004B2 (en) Turbo refrigerator
JP5941297B2 (en) refrigerator
JP5554054B2 (en) Turbo refrigerator
JP3943875B2 (en) Turbo refrigerator
WO2012131771A1 (en) Centrifugal chiller
JP6123889B2 (en) Turbo refrigerator
US11953015B2 (en) Centrifugal compressor with reverse overhung volute
JP2008298413A (en) Turbo freezer
JP2023013514A (en) Turbo compressor and freezer
JP2002155896A (en) Turbocompressor and refrigerating device provided with the same
JP2013242102A (en) Container refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees