JP2011074409A - Plated steel sheet for hot press forming, and method for manufacturing the same - Google Patents

Plated steel sheet for hot press forming, and method for manufacturing the same Download PDF

Info

Publication number
JP2011074409A
JP2011074409A JP2009224217A JP2009224217A JP2011074409A JP 2011074409 A JP2011074409 A JP 2011074409A JP 2009224217 A JP2009224217 A JP 2009224217A JP 2009224217 A JP2009224217 A JP 2009224217A JP 2011074409 A JP2011074409 A JP 2011074409A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide
acidic solution
plated steel
hot press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009224217A
Other languages
Japanese (ja)
Other versions
JP5446675B2 (en
Inventor
Hiroyuki Masuoka
弘之 増岡
Hiroki Nakamaru
裕樹 中丸
Toshihiko Oi
利彦 大居
Shinji Otsuka
真司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009224217A priority Critical patent/JP5446675B2/en
Publication of JP2011074409A publication Critical patent/JP2011074409A/en
Application granted granted Critical
Publication of JP5446675B2 publication Critical patent/JP5446675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel sheet for hot press forming having excellent oxidation resistance. <P>SOLUTION: A galvanized steel sheet is brought into contact with acid solution containing oxide colloidal particles and kept for 1-90 seconds after completing the contact treatment, and then, the steel sheet is subjected to water rinsing and drying to deposit an oxide layer having the mean thickness of ≥10 nm on the surface of the galvanized steel sheet. When the oxide colloidal particles are contained, the oxide colloidal particle containing one or more of Ti, Al, Si, Zr, Fe, Zn, Mn, Mo, Ni, Cr, Mg, and Cu are preferably contained in a range of 0.1-20% in terms of the mass concentration. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐酸化性に優れた熱間プレス成形用めっき鋼板およびその製造方法に関するものである。   The present invention relates to a plated steel sheet for hot press forming excellent in oxidation resistance and a method for producing the same.

近年、自動車車体の軽量化のため、鋼板の高強度化(例えば、780MPa級)を図り、使用する鋼板の厚みを減ずる努力が行われている。しかし、鋼板をプレス加工する場合、例えば、絞り加工を行う場合、鋼板の強度が高くなると、絞り加工時に金型との接触圧力が高まることに起因して、鋼板のかじりや破断が発生する。また、そのような問題を少しでも軽減するために、鋼板の絞り加工時の材料の金型内への流入を高めるためのブランク押さえ圧を下げた場合、成形後の形状がばらつく等の問題点がある。
また、形状安定性いわゆるスプリングバックの問題も発生する。これに対しては潤滑剤を使用することにより改善する方法があるが、780MPa級の高強度鋼板ではその効果は小さい。
In recent years, efforts have been made to increase the strength of steel sheets (for example, 780 MPa class) and reduce the thickness of the steel sheets used in order to reduce the weight of automobile bodies. However, when press-working a steel plate, for example, when drawing is performed, if the strength of the steel plate is increased, the contact pressure with the mold is increased during drawing, and the steel plate is galvanized or broken. In addition, in order to alleviate such problems as much as possible, when the blank pressing pressure for increasing the inflow of the material into the mold during drawing of the steel sheet is lowered, the shape after forming varies. There is.
In addition, the problem of shape stability, so-called spring back, also occurs. There is a method to solve this by using a lubricant, but the effect is small with a high strength steel plate of 780 MPa class.

このような現状に対して、780MPa以上の高強度鋼板のような難プレス成形材料をプレス成形する技術として、成形すべき材料を予め加熱して成形する方法が考えられる。いわゆる熱間プレス成形および温間プレス成形である(以下、熱間プレス成形および温間プレス成形をまとめて熱間プレス成形と称する)。   In view of such a current situation, as a technique for press-forming a difficult press-molding material such as a high-strength steel plate of 780 MPa or more, a method in which the material to be formed is pre-heated and formed can be considered. These are so-called hot press forming and warm press forming (hereinafter, hot press forming and warm press forming are collectively referred to as hot press forming).

しかしながら、熱間プレス成形は、加熱した鋼板を加工する成形方法であるため、表面酸化は避けられず、たとえ鋼板を非酸化性雰囲気中で加熱しても、例えば、加熱炉からプレス成形のために取り出すときに大気にふれると表面に鉄系酸化物が形成される。この鉄系酸化物はプレス時に脱落して金型に付着して生産性を低下させる。あるいは、プレス後の製品に残存して外観不良の原因となる。さらには、次工程で塗装する場合に鋼板と塗膜との密着性が劣ることになる。   However, since hot press forming is a forming method for processing a heated steel plate, surface oxidation is unavoidable. Even if the steel plate is heated in a non-oxidizing atmosphere, for example, for press forming from a heating furnace. When exposed to the atmosphere, iron oxide is formed on the surface. This iron-based oxide falls off at the time of pressing and adheres to the mold, reducing productivity. Or it remains in the product after pressing and causes the appearance defect. Furthermore, when it coats at the next process, the adhesiveness of a steel plate and a coating film will be inferior.

そこで、熱間プレス成形後は、ショットブラストを行ってそのような鉄系酸化物から成るスケールを除去することが必要になる。しかし、これはコスト増を免れない。   Therefore, after hot press molding, it is necessary to perform shot blasting to remove scales made of such iron-based oxides. However, this is subject to an increase in cost.

このような問題を解決するべく、特許文献1では熱間成形時に母材鋼板の耐酸化抵抗性を持たせるためにアルミニウムを被覆し、所定の組成および組織とした鋼板を提案している。しかしながら、このような鋼板は普通鋼と比較した場合、大幅なコスト増となる。   In order to solve such a problem, Patent Document 1 proposes a steel sheet having a predetermined composition and structure, which is coated with aluminum in order to provide the oxidation resistance of the base steel sheet during hot forming. However, such a steel sheet has a significant cost increase when compared with ordinary steel.

以上のように、熱間プレス成形においては大幅なコスト増を避けられないのが現状である。つまり、所定の鋼組成および鋼組織のアルミニウムを被覆した鋼板はコスト増となる。また、めっき層などの表面処理層を有しない高強度の鋼板に熱間プレス成形を行った場合、生成した鉄系酸化物を除去する工程が必要であり、大幅なコスト増なしに該酸化物を除去する工程を省略できないという問題がある。また、コスト増に甘んじ該酸化物を除去してもめっき層などの表面処理層を有しない鋼板では防錆性が劣るという問題が残る。そして、熱間プレス成形においては、加熱時生成した鉄系酸化物がプレス成形時にプレス金型内で剥離・脱落することで金型の手入れが必要となり生産時間ロスを招き、生産性低下が懸念される。   As described above, in hot press molding, a substantial increase in cost cannot be avoided. That is, a steel plate coated with aluminum having a predetermined steel composition and steel structure increases costs. In addition, when hot press forming is performed on a high-strength steel sheet that does not have a surface treatment layer such as a plating layer, a step for removing the generated iron-based oxide is necessary, and the oxide is not significantly increased. There is a problem in that the step of removing can not be omitted. Further, even if the oxide is removed due to an increase in cost, a problem remains in that the steel sheet having no surface treatment layer such as a plating layer has poor rust prevention. In hot press forming, iron-based oxides generated during heating are peeled off and removed from the press mold during press forming, necessitating maintenance of the mold, leading to loss of production time and concern about productivity reduction. Is done.

特開2000−38640号公報JP 2000-38640 A

本発明は、かかる事情に鑑み、優れた耐酸化性を有する熱間プレス成形用めっき鋼板およびその製造方法を大幅なコスト増を伴うことなく提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a hot press-formed plated steel sheet having excellent oxidation resistance and a method for producing the same without significantly increasing costs.

本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた。その結果、以下の知見を得た。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the following knowledge was obtained.

熱間プレス成形前に酸化物コロイド粒子を含む酸性溶液に鋼板(亜鉛系めっき層)を接触させ、めっき層の表面にZnおよび前記酸化物コロイド粒子由来の酸化物を必須成分として含む酸化物層を形成させることで、熱間プレス成形後に外観を損ねることなく、また大幅なコスト増を伴うことなく、耐酸化性に顕著な改善が見られることを見出した。   An oxide layer containing Zn and an oxide derived from the oxide colloid particles as an essential component on the surface of the plating layer by contacting a steel plate (zinc-based plating layer) with an acidic solution containing oxide colloid particles before hot press forming It has been found that the oxidation resistance can be remarkably improved without deteriorating the appearance after hot pressing and without significantly increasing the cost.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1] 亜鉛系めっき鋼板を酸性溶液に接触させ、接触処理終了後1〜90秒間保持した後、水洗及び乾燥を行うことにより前記めっき鋼板表面に平均厚さ10nm以上の酸化物層を形成するめっき鋼板の製造方法において、前記酸性溶液は、酸化物コロイド粒子を含有することを特徴とする熱間プレス成形用めっき鋼板の製造方法。
[2]前記[1]において、前記酸化物コロイド粒子は、Ti、Al、Si、Zr、Fe、Zn、Mn、Mo、Ni、Cr、Mg、Cuの1種もしくは2種以上を含む酸化物コロイド粒子であることを特徴とする熱間プレス成形用めっき鋼板の製造方法。
[3]前記[1]または[2]において、前記酸性溶液中に、前記酸化物コロイド粒子を質量濃度として0.1%〜20%の範囲で含有することを特徴とする熱間プレス成形用めっき鋼板の製造方法。
[4]前記[1]〜[3]のいずれかにおいて、前記酸性溶液は、pH緩衝作用を有し、かつ1リットルの該酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/l水酸化ナトリウム溶液の量(l)で定義するpH上昇度が0.05〜0.5の範囲にあることを特徴とする熱間プレス成形用めっき鋼板の製造方法。
[5]前記[1]〜[4]のいずれかにおいて、前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち少なくともを1種類以上を、前記成分含有量5〜50g/lの範囲で含有し、pHが0.5〜2.0、液温が20〜70℃の範囲にあることを特徴とする熱間プレス成形用めっき鋼板の製造方法。
[6]前記[1]〜[5]のいずれかにおいて、前記酸性溶液に接触させた後のめっき鋼板表面に形成する酸性溶液膜が20g/m2以下であり、かつ、前記酸性溶液膜がめっき鋼板表面に形成された状態での保持時間が1〜90秒の範囲であることを特徴とする熱間プレス成形用めっき鋼板の製造方法。
[7]前記[1]〜[5]のいずれかの熱間プレス成形用めっき鋼板の製造方法により製造され、Zn及び前記酸化物コロイド粒子由来の酸化物を含み平均厚さが10nm以上の酸化物層を有することを特徴とする熱間プレス成形用めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A zinc-based plated steel sheet is brought into contact with an acidic solution, held for 1 to 90 seconds after completion of the contact treatment, and then washed with water and dried to form an oxide layer having an average thickness of 10 nm or more on the surface of the plated steel sheet. In the manufacturing method of a plated steel plate, the said acidic solution contains an oxide colloid particle, The manufacturing method of the plated steel plate for hot press forming characterized by the above-mentioned.
[2] In the above [1], the oxide colloidal particle is an oxide containing one or more of Ti, Al, Si, Zr, Fe, Zn, Mn, Mo, Ni, Cr, Mg, and Cu. A method for producing a hot-press-formed plated steel sheet, characterized by being colloidal particles.
[3] In the above [1] or [2], the acidic colloidal particles contain the oxide colloidal particles in a mass concentration in the range of 0.1% to 20%. Manufacturing method.
[4] In any one of [1] to [3], the acidic solution has a pH buffering action, and 1.0 mol necessary to increase the pH of 1 liter of the acidic solution from 2.0 to 5.0. A method for producing a plated steel sheet for hot press forming, characterized in that the pH increase defined by the amount (l) of / l sodium hydroxide solution is in the range of 0.05 to 0.5.
[5] In any one of the above [1] to [4], the acidic solution includes acetate, phthalate, citrate, succinate, lactate, tartrate, borate, phosphate. For hot press molding, characterized in that at least one of them is contained in a range of 5 to 50 g / l of the component content, pH is 0.5 to 2.0, and liquid temperature is in the range of 20 to 70 ° C. Manufacturing method of plated steel sheet.
[6] In any one of [1] to [5], the acidic solution film formed on the surface of the plated steel sheet after contact with the acidic solution is 20 g / m 2 or less, and the acidic solution film is A method for producing a hot-press-formed plated steel sheet, wherein the holding time in a state of being formed on the surface of the plated steel sheet is in the range of 1 to 90 seconds.
[7] An oxide having a mean thickness of 10 nm or more, comprising Zn and an oxide derived from the oxide colloidal particles, produced by the method for producing a hot-pressed plated steel sheet according to any one of [1] to [5] A plated steel sheet for hot press forming, comprising a physical layer.

なお、本発明においては、Znを含有するめっき層を有する鋼板を総称して亜鉛系めっき鋼板と呼称する。したがって、めっき処理後に合金化処理を施す、施さないにかかわらず、Znを含有するめっき層を有していれば本発明の亜鉛系めっき鋼板である。すなわち、本発明における亜鉛系めっき鋼板とは、合金化処理を施していない溶融亜鉛めっき鋼板、合金化処理を施した合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、溶融亜鉛−アルミニウムめっき鋼板など、いずれも含むものである。   In the present invention, steel plates having a plated layer containing Zn are collectively referred to as zinc-based plated steel plates. Therefore, it is the zinc-based plated steel sheet of the present invention as long as it has a plating layer containing Zn regardless of whether or not the alloying treatment is performed after the plating treatment. That is, the galvanized steel sheet in the present invention is a hot dip galvanized steel sheet not subjected to alloying treatment, an alloyed hot dip galvanized steel sheet subjected to alloying treatment, an electrogalvanized steel sheet, a hot dip galvanized steel sheet, etc. Both are included.

本発明によれば、耐酸化性に優れた熱間プレス成形用めっき鋼板が得られる。そして、本発明の熱間プレス成形用めっき鋼板を用いて熱間プレス成形を行うことにより、鋼板のかじりや破断が発生することなく加工が可能となり、ショットブラストなどのスケール除去を行う必要がないためコスト低減が可能となる。   According to the present invention, a hot press-formed plated steel sheet having excellent oxidation resistance can be obtained. And, by performing hot press forming using the hot-press-formed plated steel sheet of the present invention, processing can be performed without causing galling or breakage of the steel sheet, and there is no need to remove scale such as shot blasting. Therefore, the cost can be reduced.

熱間プレス成形時には鋼板はA3変態点以上(約900℃以上)の加熱を受ける。この場合、Znの融点は418℃、沸点は907℃であることから、亜鉛系めっき鋼板の場合は、鋼板上のZnめっきが蒸発することが予想され、その結果、鋼板素地が酸化されることになる。このため、めっき鋼板の表面には硬質かつ高融点の物質が存在することが鋼板素地の酸化防止の点から非常に有効であると考えられる。   During hot press forming, the steel plate is heated above the A3 transformation point (about 900 ° C or higher). In this case, since the melting point of Zn is 418 ° C and the boiling point is 907 ° C, in the case of zinc-based plated steel sheet, it is expected that the Zn plating on the steel sheet will evaporate, and as a result, the steel sheet substrate will be oxidized become. For this reason, it is considered that the presence of a hard and high melting point substance on the surface of the plated steel sheet is very effective from the viewpoint of preventing oxidation of the steel sheet substrate.

そこで、硬質かつ高融点の物質をめっき表層に形成させる検討を進めた。その結果亜鉛系めっき鋼板表面に高融点で所定の厚さの酸化物層を形成させることが優れた耐酸化性を付与する手法として非常に有効であることを見出した。さらに、この酸化物層に高融点の酸化物コロイド粒子由来の酸化物を含有させることで、より高融点の酸化物層とすることでき、耐酸化性を飛躍的に向上させることが可能となることも見出した。   Therefore, studies were made to form a hard and high melting point material on the plating surface layer. As a result, it has been found that forming an oxide layer having a high melting point and a predetermined thickness on the surface of a galvanized steel sheet is very effective as a technique for imparting excellent oxidation resistance. Furthermore, by containing an oxide derived from high melting point oxide colloidal particles in this oxide layer, a higher melting point oxide layer can be obtained, and the oxidation resistance can be drastically improved. I also found out.

以上より、本発明においては、亜鉛系めっき鋼板表面には、Znおよび酸化物コロイド粒子由来の酸化物を含む酸化物層を有することとする。   From the above, in the present invention, the surface of the zinc-based plated steel sheet has an oxide layer containing Zn and an oxide derived from oxide colloidal particles.

そして、亜鉛系めっき鋼板表面に形成する酸化物層の平均厚さは10nm以上とする。10nm以上とすることにより、熱間プレス成形時の加熱温度(Ac3変態点以上の温度)においてもこの酸化物層がバリア層となり、スケールの発生を抑制することができる。一方、厚さを200nm以下とすると、熱間プレス成形性の効果が得られる上に、この厚さを有する酸化物層をめっき層表面に形成するためのライン長さをとくに考慮する必要がなく、設備上の問題も生じない。よって、上限は、好ましくは200nm以下である。   The average thickness of the oxide layer formed on the surface of the galvanized steel sheet is 10 nm or more. By setting the thickness to 10 nm or more, this oxide layer becomes a barrier layer even at the heating temperature (temperature above the Ac3 transformation point) during hot press molding, and scale generation can be suppressed. On the other hand, if the thickness is 200 nm or less, the effect of hot press formability can be obtained, and there is no need to consider the line length for forming an oxide layer having this thickness on the surface of the plating layer. There will be no problems with the equipment. Therefore, the upper limit is preferably 200 nm or less.

なお、本発明における酸化物層の平均厚さは、膜厚が既知のシリカ皮膜のO(酸素)のKα蛍光X線強度により作成した検量線を用いて求めたシリカ換算の膜厚である。   In addition, the average thickness of the oxide layer in this invention is the film thickness of the silica conversion calculated | required using the analytical curve created with the K (alpha) fluorescence X-ray intensity of O (oxygen) of a silica membrane | film | coat with a known film thickness.

以上から、本発明では、熱間プレス成形用の亜鉛系めっき鋼板表面に、Znおよび酸化物コロイド粒子由来の酸化物を含み、平均厚さが10nm以上の酸化物層を形成することとする。これらは本発明の特徴であり、このような酸化物層が鋼板表面に存在することで鋼板素地の酸化を防止し、優れた耐酸化性を有することになる。   From the above, in the present invention, an oxide layer having an average thickness of 10 nm or more is formed on the surface of a zinc-plated steel sheet for hot press forming, containing an oxide derived from Zn and colloidal oxide particles. These are the features of the present invention, and the presence of such an oxide layer on the surface of the steel sheet prevents oxidation of the steel sheet substrate and has excellent oxidation resistance.

亜鉛系めっき鋼板の表面に上記酸化物層を形成させる方法としては、めっき層の水溶液による反応を利用する方法が最も効果的である。つまり、亜鉛系めっき鋼板を酸化物コロイド粒子を含有する酸性溶液に接触させ、接触処理終了後1〜90秒間保持した後、水洗及び乾燥を行う本発明の熱間プレス成形用めっき鋼板の製造方法により上記酸化物層を形成することができる。   As a method of forming the oxide layer on the surface of the zinc-based plated steel sheet, a method using a reaction of the plating layer with an aqueous solution is the most effective. That is, the method for producing a hot-pressed plated steel sheet according to the present invention, in which the zinc-based plated steel sheet is brought into contact with an acidic solution containing colloidal oxide particles, held for 1 to 90 seconds after completion of the contact treatment, and then washed and dried. Thus, the oxide layer can be formed.

この酸化物層形成メカニズムについては明確ではないが、次のように考えることができる。亜鉛系めっき鋼板を酸性溶液に接触させると、鋼板側からはZnの溶解が生じる。このZnの溶解は、同時に水素発生を生じるため、Znの溶解が進行すると、酸性溶液中の水素イオン濃度が減少し、その結果、酸性溶液のpHが上昇し、酸化物(水酸化物)が安定となるpH領域に達すると、亜鉛系めっき鋼板表面にZnを含む酸化物層を形成すると考えられる。この際に酸化物コロイド粒子を含有する酸性溶液を使用すると、酸化物層中又は酸化物層表面に酸化物コロイド粒子が分散又は付着する。この酸化物層中又は酸化物層表面に分散又は付着した酸化物コロイド粒子は高融点であるため、耐酸化性を向上させる効果を得ることができると考えられる。
酸性溶液は、Ti、Al、Si、Zr、Fe、Zn、Mn、Mo、Ni、Cr、Mg、Cuの1種もしくは2種以上を含む酸化物コロイド粒子を含有することが好ましい。これら酸化物コロイド粒子由来の酸化物は高融点であるため、形成される酸化物層に分散または付着されていれば耐酸化性を向上させる効果が得られる。さらには、酸化物コロイド粒子の質量濃度が酸性溶液に対して0.1%〜20%であることが好ましい。酸化物コロイド粒子濃度を0.1%以上とすると、形成される酸化物層に分散または付着する酸化物コロイド粒子量が適量となり、耐酸化性を確保するために必要な分散量または付着量を得られる。一方、20%以下とすると、形成される酸化物層中の酸化物コロイド粒子由来の酸化物の量が多くなりすぎることがないので、亜鉛系めっき鋼板を対象に設計された接着剤との適合性を劣化させることもない。
また、使用する酸性溶液は、pH=0.5〜5.0の領域においてpH緩衝作用を有するものが好ましい。これは、前記pH範囲でpH緩衝作用を有する酸性溶液を使用すると、酸性溶液に接触後、所定時間保持することで、酸性溶液とめっき層の反応によりZnの溶解と酸化物層の形成反応が十分に生じ、鋼板表面に本発明の目的とする酸化物層を安定して得ることができるためである。
Although the oxide layer formation mechanism is not clear, it can be considered as follows. When the galvanized steel sheet is brought into contact with an acidic solution, Zn is dissolved from the steel sheet side. This dissolution of Zn causes hydrogen generation at the same time. As the dissolution of Zn proceeds, the hydrogen ion concentration in the acidic solution decreases, and as a result, the pH of the acidic solution rises and oxides (hydroxides) are formed. When reaching a stable pH region, it is considered that an oxide layer containing Zn is formed on the surface of the zinc-based plated steel sheet. At this time, when an acidic solution containing oxide colloidal particles is used, the oxide colloidal particles are dispersed or adhered in the oxide layer or on the surface of the oxide layer. Since the oxide colloidal particles dispersed or attached in the oxide layer or on the surface of the oxide layer have a high melting point, it is considered that the effect of improving the oxidation resistance can be obtained.
The acidic solution preferably contains colloidal oxide particles containing one or more of Ti, Al, Si, Zr, Fe, Zn, Mn, Mo, Ni, Cr, Mg, and Cu. Since the oxide derived from these oxide colloidal particles has a high melting point, the effect of improving the oxidation resistance can be obtained if it is dispersed or adhered to the oxide layer to be formed. Furthermore, the mass concentration of the oxide colloidal particles is preferably 0.1% to 20% with respect to the acidic solution. If the oxide colloid particle concentration is 0.1% or more, the amount of oxide colloid particles dispersed or adhered to the formed oxide layer becomes an appropriate amount, and the amount of dispersion or adhesion necessary to ensure oxidation resistance can be obtained. . On the other hand, if it is 20% or less, the amount of oxide derived from the oxide colloidal particles in the formed oxide layer will not increase too much, so it is compatible with adhesives designed for galvanized steel sheets. It does not deteriorate the sex.
The acidic solution used preferably has a pH buffering action in the region of pH = 0.5 to 5.0. This is because, when an acidic solution having a pH buffering action in the above pH range is used, the dissolution of Zn and the formation of an oxide layer are caused by the reaction between the acidic solution and the plating layer by holding the acidic solution for a predetermined time after contact. This is because it occurs sufficiently and the oxide layer targeted by the present invention can be stably obtained on the steel sheet surface.

また、このようなpH緩衝作用の指標として、1リットルの酸性溶液のpHを2.0〜5.0まで上昇させるのに要する1.0mol/l水酸化ナトリウム水溶液の量(l)で定義するpH上昇度で評価でき、この値が0.05〜0.5の範囲にあるとよい。pH上昇度を0.05以上とすると、pHの上昇が速やかに起こって酸化物層の形成に十分なZnの溶解が得られないことがないため、十分な酸化物層の形成が生じる。一方で、0.5以下とすると、Znの溶解が促進されすぎることがなく、酸化物層の形成に長時間を有することがないだけでなく、めっき層の損傷も激しくなく、本来のZnの鋼に対する犠牲防食の役割も失うことがないと考えられるためである。ここで、pHが2.0を超える酸性溶液のpH上昇度は、酸性溶液に硫酸などのpH=2.0〜5.0の範囲でほとんど緩衝性を有しない無機酸を添加してpHを一旦2.0に低下させて評価することとする。   In addition, as an index of such pH buffering action, evaluated by the degree of pH increase defined by the amount (l) of 1.0 mol / l sodium hydroxide aqueous solution required to raise the pH of a 1 liter acidic solution from 2.0 to 5.0 This value is preferably in the range of 0.05 to 0.5. If the degree of pH increase is 0.05 or more, the pH will rise rapidly and Zn dissolution sufficient for formation of the oxide layer will not be obtained, so that sufficient oxide layer formation will occur. On the other hand, if it is 0.5 or less, the dissolution of Zn is not promoted too much, not only does it have a long time to form the oxide layer, but also the plating layer is not severely damaged, compared to the original Zn steel It is because it is thought that the role of sacrificial protection will not be lost. Here, the pH increase degree of an acidic solution having a pH exceeding 2.0 is obtained by adding an inorganic acid having almost no buffering property in the pH range of 2.0 to 5.0 such as sulfuric acid to the acidic solution, and once reducing the pH to 2.0. We will evaluate it.

このようなpH緩衝性を有する酸性溶液としては、酢酸ナトリウム(CH3COONa)などの酢酸塩やフタル酸水素カリウム((KOOC)2C6H4)などのフタル酸塩、クエン酸ナトリウム(Na3C6H5O7)やクエン酸二水素カリウム(KH2C6H5O7)などのクエン酸塩、コハク酸ナトリウム(Na2C4H4O4)などのコハク酸塩、乳酸ナトリウム(NaCH3CHOHCO2)などの乳酸塩、酒石酸ナトリウム(Na2C4H4O6)などの酒石酸塩、ホウ酸塩、リン酸塩のうち少なくとも1種類以上を、前記各成分含有量を5〜50g/lの範囲で含有する水溶液を使用することができる。前記濃度を5g/l以上とすると、Znの溶解とともに溶液のpH上昇が比較的すばやく生じることがないため、耐酸化性の向上に十分な酸化物層を形成することができる。また、50g/l以下とすると、Znの溶解が促進されすぎることがなく、酸化物層の形成に長時間を有することがないだけでなく、めっき層の損傷も激しくなく、本来のZnの鋼に対する犠牲防食の役割も失うことがないと考えられるためである。 Acidic solutions with such pH buffering properties include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na Citrates such as 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), and lactic acid lactates such as sodium (NaCH 3 CHOHCO 2), tartrates such as sodium tartrate (Na 2 C 4 H 4 O 6), borate, at least one or more of phosphate, the respective ingredient content An aqueous solution containing 5 to 50 g / l can be used. When the concentration is 5 g / l or more, the pH of the solution does not increase relatively quickly with the dissolution of Zn, so that an oxide layer sufficient for improving the oxidation resistance can be formed. Further, if it is 50 g / l or less, the dissolution of Zn is not promoted too much, and not only does it take a long time to form the oxide layer, but also the plating layer is not severely damaged. It is because it is thought that the role of sacrificial protection against losing will not be lost.

さらに、酸性溶液のpHは0.5〜2.0の範囲にあることが望ましい。pHを2.0以下にすると、溶液中でZnの溶解が十分に生じ、酸化物層が十分に形成する。一方、pHを0.5以上とすると、Znの溶解が促進されすぎることがなく、めっき付着量の減少がないだけでなく、めっき層に亀裂が生じることがなく加工時に剥離が生じやすくならないので、望ましい。なお、酸性溶液のpHが0.5〜2.0の範囲より高い場合は硫酸等のpH緩衝性のない無機酸でpH調製することができる。   Furthermore, the pH of the acidic solution is desirably in the range of 0.5 to 2.0. When the pH is 2.0 or less, Zn is sufficiently dissolved in the solution, and the oxide layer is sufficiently formed. On the other hand, when the pH is 0.5 or more, dissolution of Zn is not promoted too much, and not only the amount of plating is not decreased, but also the plating layer is not cracked and is not easily peeled off during processing. . When the pH of the acidic solution is higher than the range of 0.5 to 2.0, the pH can be adjusted with an inorganic acid having no pH buffering property such as sulfuric acid.

また、酸性溶液の温度については、20〜70℃の範囲であることが好ましい。20℃以上とすると、酸化物層の生成反応に長時間を有することがなく、生産性の低下を招くことがない。一方、70℃以下とすると、鋼板表面に処理ムラを発生することがなく、反応を比較的すばやく進行させることができる。   Moreover, it is preferable that it is the range of 20-70 degreeC about the temperature of an acidic solution. If it is 20 ° C. or higher, the production reaction of the oxide layer does not take a long time, and the productivity is not lowered. On the other hand, when the temperature is 70 ° C. or lower, there is no processing unevenness on the surface of the steel sheet, and the reaction can proceed relatively quickly.

亜鉛系めっき鋼板を酸性溶液に接触させる方法には特に制限はなく、亜鉛系めっき鋼板を酸性溶液に浸漬する方法、亜鉛系めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液を亜鉛系めっき鋼板に塗布する方法等がある。   There is no particular limitation on the method of bringing the galvanized steel sheet into contact with the acidic solution. The method of immersing the galvanized steel sheet in the acidic solution, the method of spraying the acidic solution onto the galvanized steel sheet, and the acidic solution through the coating roll. There is a method of applying to a galvanized steel sheet.

亜鉛系めっき鋼板を以上からなる酸性溶液に接触させた後に、その溶液が薄い液膜状で鋼板表面に存在することが望ましい。これは、鋼板表面に存在する溶液の量が多すぎると、亜鉛の溶解が生じても溶液のpHが上昇しにくく、次々と亜鉛の溶解が生じるのみであり、目的とする酸化物層を形成するまでに長時間を有するためである。また、めっき層の損傷も激しく、本来の防錆鋼板としての役割を失うことも考えられるためである。この観点から、鋼板表面に形成する溶液膜量は、20 g/m2以下に調整することが好ましい。より好ましくは、液膜の乾燥を防ぐ目的で3g/m2以上の液膜量が適している。なお、溶液膜量の調整は、絞りロール、エアワイピング等で行うことができる。
また、酸性溶液に接触後、水洗までの時間(水洗までの保持時間)は、1〜90秒間であることが必要である。これは水洗までの時間が1秒未満であると、溶液のpHが上昇し酸化物層が形成される前に酸性溶液が洗い流されるために、耐酸化性の向上効果が得られない。一方、90秒を超えても、層の形成量に変化が見られないためである。
なお、酸性溶液に接触させる前に、表面活性化処理を施してもよい。表面活性化処理に用いる薬液はpH11以上であるアルカリ性溶液であることが好ましい。この処理の目的は、例えば、溶融亜鉛めっき鋼板の場合では、表面に形成したZn系酸化物を除去し、表面に新生面を露出させることにより、新生面が露出された部分で反応を活性化させ、新たな酸化物層の形成を容易にするためである。
After the galvanized steel sheet is brought into contact with the acidic solution composed of the above, it is desirable that the solution exists in the form of a thin liquid film on the steel sheet surface. This is because if the amount of the solution present on the steel plate surface is too large, the pH of the solution will hardly rise even if zinc dissolution occurs, and only zinc dissolution will occur one after another, forming the desired oxide layer. This is because it takes a long time to complete. In addition, the plating layer is severely damaged, and it may be possible to lose its original role as a rust-proof steel plate. From this viewpoint, the amount of the solution film formed on the steel plate surface is preferably adjusted to 20 g / m 2 or less. More preferably, a liquid film amount of 3 g / m 2 or more is suitable for the purpose of preventing the liquid film from drying. The amount of the solution film can be adjusted by a squeeze roll, air wiping or the like.
Moreover, after contacting an acidic solution, the time to water washing (holding time to water washing) needs to be 1 to 90 seconds. When the time until washing with water is less than 1 second, the acidic solution is washed away before the pH of the solution rises and the oxide layer is formed, so that the effect of improving oxidation resistance cannot be obtained. On the other hand, even if it exceeds 90 seconds, there is no change in the amount of layer formation.
In addition, you may give a surface activation process before making it contact with an acidic solution. The chemical solution used for the surface activation treatment is preferably an alkaline solution having a pH of 11 or more. The purpose of this treatment is, for example, in the case of a hot-dip galvanized steel sheet, removing the Zn-based oxide formed on the surface, exposing the new surface to the surface, and activating the reaction at the exposed part of the new surface, This is to facilitate the formation of a new oxide layer.

また、この表面活性化処理の前に調質圧延を行ってもよい。さらに、めっき処理後表面活性化処理を行い、調質圧延を行い、その後、酸性溶液に接触させるようにしてもよい。調質圧延の際に使用する調圧ロールなどにより、亜鉛系めっき鋼板表面に存在するZn系酸化物層の一部を破壊することもでき、表面活性化処理を組み合わせることによりZn系酸化物層を効果的に除去できる。   Moreover, you may perform temper rolling before this surface activation process. Furthermore, after the plating treatment, surface activation treatment may be performed, temper rolling may be performed, and then contacted with an acidic solution. Part of the Zn-based oxide layer present on the surface of the galvanized steel sheet can be destroyed by a pressure-control roll used during temper rolling, and the Zn-based oxide layer can be combined with a surface activation treatment. Can be effectively removed.

表面活性化処理に用いる水溶液はpHが11以上、温度を30℃以上とし、該液との接触時間を1〜30秒とすることが好ましい。1秒以下の場合はZn系酸化物を十分溶解できない為、その後に引き続く酸性溶液との反応性を高めることが出来ず、酸化物層が十分に形成しない。一方、30秒より多くても構わないが、長時間処理することは生産性を低下するため好ましくない。より好ましくはpH11以上、温度50℃以上である。上記範囲内のpHであれば溶液の種類に制限はなく、水酸化ナトリウムや水酸化ナトリウム系の脱脂剤などを用いることができる。
表面活性化処理は酸性溶液に接触する前に実施することが好ましく、必要に応じてめっき処理後に行われる調質圧延の前、後いずれで実施しても良い。ただし、調質圧延の後、表面活性化処理を施すと、圧延ロールにより押しつぶされ凸部となった部分でZn系酸化物が機械的に破壊されるため、凸部以外の凹部とZn系酸化物の除去量が異なる傾向がある。このため、表面活性化処理後のZn系酸化物量が、面内で不均一となり、引き続き行われる酸性溶液との反応が不均一となり十分な特性を得られない場合がある。このため、より好ましくはめっき処理後、表面活性化処理を施し、面内で均一にZn系酸化物を適正量除去した後、調質圧延を実施し、引き続き酸性溶液に接触させる処理するプロセスが好ましい。
表面活性化処理の方法については、特に限定しない。浸漬法、スプレー法、ロール塗布法などが挙げられる。
以上により、亜鉛系めっき鋼板表面には、平均厚さ10nm以上の酸化物層が形成される。
The aqueous solution used for the surface activation treatment preferably has a pH of 11 or more, a temperature of 30 ° C. or more, and a contact time with the solution of 1 to 30 seconds. In the case of less than 1 second, the Zn-based oxide cannot be sufficiently dissolved, so that the reactivity with the subsequent acidic solution cannot be increased, and the oxide layer is not sufficiently formed. On the other hand, it may be longer than 30 seconds, but it is not preferable to perform the treatment for a long time because the productivity is lowered. More preferably, the pH is 11 or more and the temperature is 50 ° C. or more. If it is pH within the said range, there will be no restriction | limiting in the kind of solution, Sodium hydroxide, a sodium hydroxide type | system | group degreasing agent, etc. can be used.
The surface activation treatment is preferably performed before contact with the acidic solution, and may be performed before or after temper rolling performed after the plating treatment, if necessary. However, if the surface activation treatment is performed after temper rolling, the Zn-based oxide is mechanically destroyed at the portion that has been crushed by the rolling roll to become a convex portion. There is a tendency that the amount of removal of objects differs. For this reason, the amount of the Zn-based oxide after the surface activation treatment becomes non-uniform in the surface, and the subsequent reaction with the acidic solution becomes non-uniform so that sufficient characteristics may not be obtained. For this reason, more preferably, after the plating treatment, the surface activation treatment is performed, and after removing an appropriate amount of the Zn-based oxide uniformly in the surface, the temper rolling is performed, and then the process of contacting with the acidic solution is performed. preferable.
The method for the surface activation treatment is not particularly limited. Examples of the method include a dipping method, a spray method, and a roll coating method.
As described above, an oxide layer having an average thickness of 10 nm or more is formed on the surface of the galvanized steel sheet.

なお、本発明における酸化物層とは、Znおよび酸化物コロイド粒子由来の酸化物を含む、酸化物及び/又は水酸化物などからなる層のことである。このようなZnおよび酸化物コロイド粒子由来の酸化物を含む酸化物層の平均厚さは10nm以上であることが必要である。酸化物層の平均厚さが調圧部および未調圧部において、10nm未満と薄くなると耐酸化性に対する効果が不十分となる。一方、Znおよび酸化物コロイド粒子由来の酸化物を含む酸化物層の平均厚さを200nm以下とすると熱間プレス成形中に皮膜が破壊することがないので摺動抵抗が上昇しない。また溶接性が低下することもないので好ましい。さらに、形成される酸化物が粗大とはならず、かつ量も多くないため、プレス金型等へ付着せず、生産性を低下させることがないので好ましい。   In addition, the oxide layer in this invention is a layer which consists of an oxide and / or a hydroxide containing the oxide derived from Zn and an oxide colloid particle. The average thickness of the oxide layer containing such an oxide derived from Zn and oxide colloidal particles needs to be 10 nm or more. If the average thickness of the oxide layer is reduced to less than 10 nm in the pressure-regulating part and the non-pressure-regulating part, the effect on the oxidation resistance becomes insufficient. On the other hand, if the average thickness of the oxide layer containing the oxide derived from Zn and colloidal oxide particles is 200 nm or less, the coating does not break during hot press molding, so the sliding resistance does not increase. Moreover, since weldability does not fall, it is preferable. Furthermore, since the formed oxide does not become coarse and does not have a large amount, it does not adhere to a press die or the like and productivity is not lowered, which is preferable.

なお、本発明では、使用する酸性溶液中に酸化物コロイド粒子を含有していれば、耐酸化性に優れた、つまり熱間プレス成形性に優れた酸化物層を安定して形成できるため、酸性溶液中にその他の金属イオンや無機化合物などを不純物として、あるいは故意に含有していてもよい。例えば、S、N、Pb、Cl、Na、Mn、Ca、Mg、Ba、Srなどが酸性溶液中に含有され、これらが酸化物層中に取り込まれていても本発明の効果が損なわれるものではない。また、特にZnイオンは、亜鉛系めっき鋼板と酸性溶液が接触する際に溶出するイオンであるため、操業中に酸性溶液中Zn濃度の増加が認められるが、このZnイオンの濃度の大小は本発明の効果には特に影響を及ぼさない。   In the present invention, if oxide colloid particles are contained in the acidic solution to be used, an oxide layer having excellent oxidation resistance, that is, excellent hot press formability can be stably formed. The acidic solution may contain other metal ions or inorganic compounds as impurities or intentionally. For example, S, N, Pb, Cl, Na, Mn, Ca, Mg, Ba, Sr, etc. are contained in the acidic solution, and even if these are incorporated in the oxide layer, the effect of the present invention is impaired. is not. In particular, Zn ions elute when the zinc-plated steel sheet and the acidic solution come into contact with each other, so an increase in the Zn concentration in the acidic solution is observed during the operation. The effect of the invention is not particularly affected.

また、本発明にかかる素地鋼材は、特に限定はしないが、めっき処理時のめっき濡れ性、めっき後のめっき密着性が良好となる鋼組成とすることが好ましい。また、熱間プレス成形を行う場合を考慮して、その特性として、熱間プレス成形後に急冷して高強度、高硬度となる焼入れ鋼、例えば高張力鋼板が実用上は特に好ましい。   Moreover, although the base steel material concerning this invention is not specifically limited, It is preferable to set it as the steel composition from which the plating wettability at the time of a plating process and the plating adhesiveness after plating become favorable. In consideration of the case where hot press forming is performed, a hardened steel, such as a high-tensile steel plate, which is rapidly cooled after hot press forming to become high strength and high hardness, such as a high-strength steel plate, is particularly preferable.

また、本発明において、めっき法に特に限定はないが、溶融めっき法がコストの点で好ましい。もちろん、所定のZnと酸化物コロイド粒子由来の酸化物を含有する酸化物層をめっき鋼板表面に得られるのであれば、例えば、電気めっき、溶射めっき、蒸着めっき等その他いずれの方法でめっき層を設けても良い。
めっき組成として純Znのほか、Zn-Fe、Zn-Al、Zn-Ni、Zn-Mgなどがある。しかし、本発明の実施においては、Znを主成分とする亜鉛系めっき鋼板であれば、Znの溶解が起こり、酸化物層を形成させることができるので、めっきの種類を限定するものではない。
In the present invention, the plating method is not particularly limited, but the hot dipping method is preferable in terms of cost. Of course, if an oxide layer containing a predetermined Zn and oxide derived from oxide colloidal particles can be obtained on the surface of the plated steel sheet, for example, the plating layer can be formed by any other method such as electroplating, thermal spray plating, vapor deposition plating, etc. It may be provided.
In addition to pure Zn, the plating composition includes Zn-Fe, Zn-Al, Zn-Ni, Zn-Mg, and the like. However, in the practice of the present invention, any zinc-based plated steel sheet containing Zn as a main component can dissolve Zn and form an oxide layer, so the type of plating is not limited.

また、熱間プレス成形の方法については特に限定しない。例えば、本発明の熱間プレス成形用亜鉛系めっき鋼板に対して、1〜100℃/秒の加熱速度にてAc3変態点以上に加熱し、5〜6000秒間の保持後、400〜800℃の温度域で熱間プレス成形することにより、本発明の耐酸化性の効果を最大限に得ることができる。
さらに、熱間プレス成形中に、ダイとパンチを用いて10〜200℃/sの冷却速度にて部材を冷却すること、または熱間プレス成形後に、熱間プレス成形した部材を金型より取り出し、液体または気体を用いて冷却することも可能である。
Moreover, it does not specifically limit about the method of hot press molding. For example, with respect to the zinc-based plated steel sheet for hot press forming of the present invention, it is heated to the Ac3 transformation point or more at a heating rate of 1 to 100 ° C./second, and after holding for 5 to 6000 seconds, 400 to 800 ° C. By performing hot press molding in the temperature range, the effect of oxidation resistance of the present invention can be maximized.
Furthermore, during hot press molding, the member is cooled at a cooling rate of 10 to 200 ° C / s using a die and punch, or after hot press molding, the hot press molded member is taken out from the mold. It is also possible to cool with liquid or gas.

次に、本発明を実施例により詳細に説明する。   Next, the present invention will be described in detail with reference to examples.

鋼成分として、C:0.23mass%、Si:0.12mass%、Mn:1.5mass%、Cr:0.50mass%、B:0.0020mass%を含有し、残部Feおよび不可避的不純物からなる鋼板に対して、合金化溶融亜鉛めっき処理、溶融亜鉛めっき処理、電気亜鉛めっき処理および溶融亜鉛−アルミニウムめっき処理を各々行い、板厚1.2mmの合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、および溶融亜鉛−アルミニウムめっき鋼板を作製した。なお、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板および溶融亜鉛−アルミニウムめっき鋼板のめっき付着量はいずれも片面当たり45g/m2である。 As a steel component, C: 0.23 mass%, Si: 0.12 mass%, Mn: 1.5 mass%, Cr: 0.50 mass%, B: 0.0020 mass%, with respect to the steel sheet consisting of the balance Fe and inevitable impurities, Alloying hot dip galvanizing treatment, hot dip galvanizing treatment, electro galvanizing treatment and hot dip galvanized aluminum plating treatment are performed, respectively, and alloyed hot dip galvanized steel sheet, hot dip galvanized steel sheet, electro galvanized steel sheet having a thickness of 1.2 mm, and A hot dip galvanized steel sheet was prepared. In addition, the coating adhesion amount of the hot dip galvanized steel sheet, the alloyed hot dip galvanized steel sheet, the electrogalvanized steel sheet, and the hot dip galvanized steel sheet is 45 g / m 2 per side.

次いで、合金化溶融亜鉛めっき鋼板(GA)、溶融亜鉛めっき鋼板(GI)、電気亜鉛めっき鋼板(EG)、および溶融亜鉛−アルミニウムめっき鋼板(GL)に対して、酸性溶液接触処理を行った。なお、酸性溶液処理は、緩衝性を持つ酢酸ナトリウム30g/lの酸性水溶液を作成し、次いで、pHを硫酸で調整した酸性溶液に3秒浸漬した。その後、ロール絞りを行い、液量を調整した後、1〜60秒間大気中、室温にて放置し、十分水洗を行った後、乾燥し、めっき鋼板表層に、Znおよび酸化物コロイド粒子由来の酸化物を含む酸化物層を形成した。なお、詳細な条件は、表1〜表4に示す。また、比較例として、上記酸性溶液処理を行わないものも作製した。   Next, an acid solution contact treatment was performed on the galvannealed steel sheet (GA), the hot dip galvanized steel sheet (GI), the electrogalvanized steel sheet (EG), and the hot dip galvanized steel sheet (GL). In the acidic solution treatment, an acidic aqueous solution of sodium acetate 30 g / l having buffering properties was prepared, and then immersed in an acidic solution whose pH was adjusted with sulfuric acid for 3 seconds. Then, after squeezing the roll and adjusting the amount of liquid, left in the atmosphere at room temperature for 1 to 60 seconds, washed thoroughly with water, dried, and the surface of the plated steel sheet derived from Zn and oxide colloidal particles An oxide layer containing an oxide was formed. Detailed conditions are shown in Tables 1 to 4. Moreover, what did not perform the said acidic solution process as a comparative example was also produced.

以上により作製した鋼板について、自動車用外板として十分な熱間プレス成形性(成形後の外観)を有するか判定するとともに、めっき表層の酸化物層の平均厚さ及び酸化物層における酸化物コロイド粒子由来の酸化物の粒径を測定した。熱間プレス成形性の評価方法、酸化物層厚さ及び酸化物層における酸化物コロイド粒子由来の酸化物の粒径の測定方法の詳細は以下の通りである。
・ 熱間プレス成形性(外観評価)
加熱炉内で、大気雰囲気下で加熱速度:15℃/sにて900℃まで加熱し、900℃で60秒間保持後加熱炉より取り出し、円筒絞りの熱間プレス成形を行った。熱間プレス成形は、絞り高さ:25mm、肩R:5mm、ブランク直径:90mm、パンチ直径:50mm、ダイ直径:53mmの条件の下で実施した。成形後の試験片のめっき層密着状態として、めっき層の剥離状況を観察して、熱間プレス成形性として3段階で評価した。
○:剥離面積率0%(剥離なし)、△:剥離面積率0%超〜3%未満(剥離なし)、×:剥離面積率3%以上
・ 酸化物層厚さ測定
膜厚が96nmの熱酸化SiO2膜が形成されたSiウエハを参照物質として用い、蛍光X線分析装置でO・Kα X線を測定することで、SiO2換算の酸化層の平均厚さを求めた。分析面積は30mmφである。
・ 酸化物層における酸化物コロイド粒子由来の酸化物の粒径測定
走査型電子顕微鏡(観察条件:加速電圧25kV、倍率×10000)にて、酸化物層の断面写真を撮影し、無作為に選んだ酸化物コロイド粒子由来の酸化物10個の粒子(各最大径)の平均値を求めた。
The steel sheet produced as described above is judged to have sufficient hot press formability (appearance after forming) as an automobile outer sheet, and the average thickness of the oxide layer on the plating surface layer and the oxide colloid in the oxide layer The particle size of the oxide derived from the particles was measured. Details of the hot press moldability evaluation method, the oxide layer thickness, and the measurement method of the oxide particle size derived from the oxide colloid particles in the oxide layer are as follows.
・ Hot press formability (appearance evaluation)
In a heating furnace, it was heated to 900 ° C. at a heating rate of 15 ° C./s in an air atmosphere, held at 900 ° C. for 60 seconds, taken out from the heating furnace, and subjected to hot press molding of a cylindrical drawing. Hot press molding was performed under the conditions of drawing height: 25 mm, shoulder R: 5 mm, blank diameter: 90 mm, punch diameter: 50 mm, and die diameter: 53 mm. As the plating layer adhesion state of the test piece after molding, the peeling state of the plating layer was observed, and the hot press formability was evaluated in three stages.
○: Peeling area ratio 0% (no peeling), △: Peeling area ratio more than 0% to less than 3% (no peeling), X: Peeling area ratio 3% or more ・ Oxide layer thickness measurement Heat with a film thickness of 96 nm The average thickness of the oxide layer in terms of SiO 2 was determined by measuring the O · Kα X-ray with a fluorescent X-ray analyzer using the Si wafer on which the oxidized SiO 2 film was formed as a reference substance. The analysis area is 30 mmφ.
・ Measurement of the particle size of oxide derived from oxide colloidal particles in the oxide layer Take a cross-sectional photograph of the oxide layer with a scanning electron microscope (observation conditions: acceleration voltage 25 kV, magnification x 10000) and select at random The average value of 10 oxide particles (each maximum diameter) derived from colloidal oxide particles was obtained.

以上により得られた結果を条件と併せて表1〜表4に示す。   The results obtained as described above are shown in Tables 1 to 4 together with the conditions.

Figure 2011074409
Figure 2011074409

Figure 2011074409
Figure 2011074409

Figure 2011074409
Figure 2011074409

Figure 2011074409
Figure 2011074409

表1に示すNo.1〜38は合金化溶融亜鉛めっき鋼板への処理を行った実施例である。   Nos. 1 to 38 shown in Table 1 are examples in which an alloyed hot-dip galvanized steel sheet was processed.

No.1は酸性溶液による処理を行っていない比較例である。熱間プレス成形後の外観においてめっき剥離が観察され、熱間プレス成形性が劣っていた。   No. 1 is a comparative example in which treatment with an acidic solution is not performed. Plating peeling was observed in the appearance after hot press forming, and the hot press formability was poor.

No.2〜6は、酸性溶液での処理を行っているものの酸化物コロイド粒子を含まない酸性溶液を用いた比較例である。この場合、Znを主体とする酸化物層であり、熱間プレス成形後の外観において、僅かにめっき剥離を抑制する傾向にあるが熱間プレス成形性は充分とは言えない。   Nos. 2 to 6 are comparative examples using an acidic solution which is treated with an acidic solution but does not contain oxide colloid particles. In this case, it is an oxide layer mainly composed of Zn, and the appearance after hot press forming tends to slightly suppress plating peeling, but the hot press formability is not sufficient.

No.7〜9、10〜12、13〜15、24〜26は、それぞれAlO3、TiO2、ZrO2、SiO2の酸化物コロイド粒子を1.0質量%含有した酸性溶液を用いた本発明例である。いずれの処理においても同じ水洗までの保持時間のNo.4〜6と比較して酸化物層の膜厚が厚くなっており、酸化物層の形成が促進されている。また、熱間プレス成形後の外観において、めっき剥離が抑制され、熱間プレス成形性が優れていた。 Nos. 7-9, 10-12, 13-15, 24-26 are books using acidic solutions containing 1.0% by mass of oxide colloidal particles of Al 2 O 3 , TiO 2 , ZrO 2 , and SiO 2 , respectively. It is an example of an invention. In any treatment, the film thickness of the oxide layer is increased compared with No. 4 to 6 of the holding time until the same water washing, and the formation of the oxide layer is promoted. Moreover, in the external appearance after hot press molding, plating peeling was suppressed and hot press formability was excellent.

No.16〜18、24〜26、36〜38は、含有するSiO2コロイド粒子の濃度のみを変化させて酸性溶液での処理を行った本発明例である。酸化物コロイド粒子を含有しない酸性処理液を用いた比較例No.4〜6と比較して酸化物層の形成が促進されている。また、酸化物層に酸化物コロイド粒子由来の酸化物を含有しているため、耐酸化性が向上し、熱間プレス成形後の外観においてめっき剥離が抑制され、熱間プレス成形性が優れていた。添加される酸化物コロイド粒子の濃度が高くなるほど、酸化物層膜厚が厚くなっており、熱間プレス成形性への効果は大きいと考えられる。 Nos. 16 to 18, 24 to 26, and 36 to 38 are examples of the present invention in which treatment with an acidic solution was performed by changing only the concentration of the contained SiO 2 colloidal particles. The formation of the oxide layer is promoted as compared with Comparative Examples Nos. 4 to 6 using an acidic treatment liquid that does not contain oxide colloid particles. In addition, since the oxide layer contains an oxide derived from colloidal oxide particles, oxidation resistance is improved, plating peeling is suppressed in the appearance after hot press forming, and hot press formability is excellent. It was. The higher the concentration of the added oxide colloidal particles, the thicker the oxide layer thickness, and the greater the effect on hot press formability.

No.19〜21、24〜26、33〜35は酸性溶液の温度のみを変化させた例である。いずれの温度においても本発明例では酸化物コロイド粒子の添加効果による、酸化物層の形成の促進が認められ、熱間プレス成形後の外観においてめっき剥離が抑制されており、熱間プレス成形性が優れていた。   Nos. 19-21, 24-26, 33-35 are examples in which only the temperature of the acidic solution was changed. At any temperature, in the present invention example, the formation of the oxide layer was promoted by the effect of the addition of the oxide colloidal particles, and the plating peeling was suppressed in the appearance after the hot press forming. Was excellent.

No.24〜32は鋼板と酸性溶液が接触した後にロール絞りによって、鋼板表面の液膜量を変化させた例である。いずれの場合も十分な酸化物層が形成され、熱間プレス成形後の外観においてめっき剥離が抑制されており、熱間プレス成形性が優れていた。   Nos. 24-32 are examples in which the amount of liquid film on the surface of the steel sheet was changed by roll drawing after the steel sheet and the acidic solution contacted each other. In any case, a sufficient oxide layer was formed, plating peeling was suppressed in the appearance after hot press forming, and hot press formability was excellent.

以上のように、本発明例では、熱間プレス成形時のめっきの蒸発抑制およびスケール発生防止により外観不良が抑制され、めっき層剥離は観察されず、耐酸化性に優れるため、熱間プレス成形性が良好であった。   As described above, in the present invention example, the appearance defect is suppressed by suppressing the evaporation of plating and the generation of scale during hot press forming, and the peeling of the plating layer is not observed, and the oxidation resistance is excellent. The property was good.

表2に示すNo.39〜43は溶融亜鉛めっき鋼板への処理を行った実施例である。   Nos. 39 to 43 shown in Table 2 are examples in which the hot dip galvanized steel sheet was processed.

No.39は酸性溶液による処理を行っていない比較例である。熱間プレス成形後の外観においてめっき剥離が観察され、熱間プレス成形性が劣っていた。   No. 39 is a comparative example in which treatment with an acidic solution is not performed. Plating peeling was observed in the appearance after hot press forming, and the hot press formability was poor.

No.40は、酸性溶液での処理を行っているものの酸化物コロイド粒子を含まない酸性溶液を用いた比較例である。この場合、Znを主体とする酸化物層であり、熱間プレス成形後の外観において、僅かにめっき剥離を抑制する傾向にあるが熱間プレス成形性は充分とは言えない。   No. 40 is a comparative example using an acidic solution that is treated with an acidic solution but does not contain colloidal oxide particles. In this case, it is an oxide layer mainly composed of Zn, and the appearance after hot press molding tends to slightly suppress plating peeling, but the hot press formability is not sufficient.

No.41〜43は、SiO2の酸化物コロイド粒子を1.0質量%含有した酸性溶液を用いた本発明例であり、水洗までの保持時間を変化させた例である。いずれの場合も十分な酸化物層が形成され、熱間プレス成形後の外観においてめっき剥離が抑制されており、熱間プレス成形性が優れていた。 Nos. 41 to 43 are examples of the present invention using an acidic solution containing 1.0% by mass of SiO 2 oxide colloidal particles, and are examples in which the holding time until water washing was changed. In any case, a sufficient oxide layer was formed, plating peeling was suppressed in the appearance after hot press forming, and hot press formability was excellent.

表3に示すNo.44〜48は電気亜鉛めっき鋼板への処理を行った実施例である。   Nos. 44 to 48 shown in Table 3 are examples in which the electrogalvanized steel sheet was processed.

No.44は酸性溶液による処理を行っていない比較例である。熱間プレス成形後の外観においてめっき剥離が観察され、熱間プレス成形性が劣っていた。   No. 44 is a comparative example in which treatment with an acidic solution is not performed. Plating peeling was observed in the appearance after hot press forming, and the hot press formability was poor.

No.45は、酸性溶液での処理を行っているものの酸化物コロイド粒子を含まない酸性溶液を用いた比較例である。この場合、Znを主体とする酸化物層であり、熱間プレス成形後の外観において、僅かにめっき剥離を抑制する傾向にあるが熱間プレス成形性は充分とは言えない。   No. 45 is a comparative example using an acidic solution that is treated with an acidic solution but does not contain colloidal oxide particles. In this case, it is an oxide layer mainly composed of Zn, and the appearance after hot press forming tends to slightly suppress plating peeling, but the hot press formability is not sufficient.

No.46〜48は、SiO2の酸化物コロイド粒子を1.0質量%含有した酸性溶液を用いた本発明例であり、水洗までの保持時間を変化させた例である。いずれの場合も十分な酸化物層が形成され、熱間プレス成形後の外観においてめっき剥離が抑制されており、熱間プレス成形性が優れていた。 Nos. 46 to 48 are examples of the present invention using an acidic solution containing 1.0% by mass of SiO 2 oxide colloidal particles, and are examples in which the holding time until water washing was changed. In any case, a sufficient oxide layer was formed, plating peeling was suppressed in the appearance after hot press forming, and hot press formability was excellent.

表4に示すNo.49〜86は溶融亜鉛−アルミニウムめっき鋼板への処理を行った実施例である。   Nos. 49 to 86 shown in Table 4 are examples in which the hot dip zinc-aluminum plated steel sheet was processed.

No.49は酸性溶液による処理を行っていない比較例である。熱間プレス成形後の外観においてめっき剥離が観察され、熱間プレス成形性が劣っていた。   No. 49 is a comparative example in which treatment with an acidic solution is not performed. Plating peeling was observed in the appearance after hot press forming, and the hot press formability was poor.

No.50〜54は、酸性溶液での処理を行っているものの酸化物コロイド粒子を含まない酸性溶液を用いた比較例である。この場合、Znを主体とする酸化物層であり、熱間プレス成形後の外観において、僅かにめっき剥離を抑制する傾向にあるが熱間プレス成形性は充分とは言えない。   Nos. 50 to 54 are comparative examples using an acidic solution which is treated with an acidic solution but does not contain oxide colloidal particles. In this case, it is an oxide layer mainly composed of Zn, and the appearance after hot press forming tends to slightly suppress plating peeling, but the hot press formability is not sufficient.

No.55〜57、58〜60、61〜63、72〜74は、それぞれAlO3、TiO2、ZrO2、SiO2の酸化物コロイド粒子を1.0質量%含有した酸性溶液を用いた本発明例である。いずれの処理においても同じ水洗までの保持時間のNo.52〜54と比較して酸化物層の膜厚が厚くなっており、酸化物層の形成が促進されている。また、熱間プレス成形後の外観において、めっき剥離が抑制され、熱間プレス成形性が優れていた。 This No.55~57,58~60,61~63,72~74 is using Al 2 O 3, TiO 2, ZrO 2, acidic solution of the oxide colloidal particles of SiO 2 contained 1.0 wt%, respectively It is an example of an invention. In any treatment, the film thickness of the oxide layer is increased compared with No. 52 to 54 having the same holding time until water washing, and the formation of the oxide layer is promoted. Moreover, in the external appearance after hot press molding, plating peeling was suppressed and hot press formability was excellent.

No.64〜66、72〜74、84〜86は、含有するSiO2コロイド粒子の濃度のみを変化させて酸性溶液での処理を行った本発明例である。酸化物コロイド粒子を含有しない酸性処理液を用いた比較例No.52〜54と比較して酸化物層の形成が促進されている。また、酸化物層に酸化物コロイド粒子由来の酸化物を含有しているため、耐酸化性が向上し、熱間プレス成形後の外観においてめっき剥離が抑制され、熱間プレス成形性が優れていた。添加される酸化物コロイド粒子の濃度が高くなるほど、酸化物層膜厚が厚くなっており、熱間プレス成形性への効果は大きいと考えられる。 Nos. 64 to 66, 72 to 74, and 84 to 86 are examples of the present invention in which treatment with an acidic solution was performed by changing only the concentration of the contained SiO 2 colloidal particles. The formation of the oxide layer is promoted as compared with Comparative Examples Nos. 52 to 54 using an acidic treatment liquid that does not contain oxide colloid particles. In addition, since the oxide layer contains an oxide derived from colloidal oxide particles, oxidation resistance is improved, plating peeling is suppressed in the appearance after hot press forming, and hot press formability is excellent. It was. The higher the concentration of the added oxide colloidal particles, the thicker the oxide layer thickness, and the greater the effect on hot press formability.

No.67〜69、72〜74、81〜83は酸性溶液の温度のみを変化させた例である。いずれの温度においても本発明例では酸化物コロイド粒子の添加効果による、酸化物層の形成の促進が認められ、熱間プレス成形後の外観においてめっき剥離が抑制されており、熱間プレス成形性が優れていた。   Nos. 67 to 69, 72 to 74, and 81 to 83 are examples in which only the temperature of the acidic solution was changed. At any temperature, in the present invention example, the formation of the oxide layer was promoted by the effect of the addition of the oxide colloidal particles, and the plating peeling was suppressed in the appearance after the hot press forming. Was excellent.

No.72〜80は鋼板と酸性溶液が接触した後にロール絞りによって、鋼板表面の液膜量を変化させた例である。いずれの場合も十分な酸化物層が形成され、熱間プレス成形後の外観においてめっき剥離が抑制されており、熱間プレス成形性が優れていた。   Nos. 72 to 80 are examples in which the amount of liquid film on the surface of the steel sheet was changed by roll drawing after the steel sheet and the acidic solution contacted each other. In any case, a sufficient oxide layer was formed, plating peeling was suppressed in the appearance after hot press forming, and hot press formability was excellent.

以上のように、本発明例では、熱間プレス成形時のめっきの蒸発抑制およびスケール発生防止により外観不良が抑制され、めっき層剥離は観察されず、耐酸化性に優れるため、熱間プレス成形性が良好であった。   As described above, in the present invention example, the appearance defect is suppressed by suppressing the evaporation of plating and the generation of scale during hot press forming, and the peeling of the plating layer is not observed, and the oxidation resistance is excellent. The property was good.

一方で、比較例では、本発明の酸化物層が形成されず、熱間プレス成形後にスケール発生に起因するめっき層剥離が観察された。   On the other hand, in the comparative example, the oxide layer of the present invention was not formed, and plating layer peeling due to scale generation was observed after hot press molding.

本発明の熱間プレス成形用めっき鋼板は、耐酸化性に優れることから、自動車用の足回り、シャーシ、補強部品などの自動車車体用途を中心に広範な分野で適用できる。   The plated steel sheet for hot press forming according to the present invention is excellent in oxidation resistance, and therefore can be applied in a wide range of fields mainly for automobile body applications such as automobile undercarriages, chassis and reinforcing parts.

Claims (7)

亜鉛系めっき鋼板を酸性溶液に接触させ、接触処理終了後1〜90秒間保持した後、水洗及び乾燥を行うことにより前記亜鉛系めっき鋼板表面に平均厚さ10nm以上の酸化物層を形成するめっき鋼板の製造方法において、前記酸性溶液は、酸化物コロイド粒子を含有することを特徴とする熱間プレス成形用めっき鋼板の製造方法。   Plating that forms an oxide layer having an average thickness of 10 nm or more on the surface of the zinc-based plated steel sheet by bringing the zinc-based plated steel sheet into contact with an acidic solution and holding the solution for 1 to 90 seconds after completion of the contact treatment, followed by washing with water and drying. In the manufacturing method of a steel plate, the said acidic solution contains an oxide colloid particle, The manufacturing method of the plated steel plate for hot press forming characterized by the above-mentioned. 前記酸化物コロイド粒子は、Ti、Al、Si、Zr、Fe、Zn、Mn、Mo、Ni、Cr、Mg、Cuの1種もしくは2種以上を含む酸化物コロイド粒子であることを特徴とする請求項1に記載の熱間プレス成形用めっき鋼板の製造方法。   The oxide colloidal particles are oxide colloidal particles containing one or more of Ti, Al, Si, Zr, Fe, Zn, Mn, Mo, Ni, Cr, Mg, and Cu. 2. A method for producing a hot-press formed plated steel sheet according to claim 1. 前記酸性溶液中に、前記酸化物コロイド粒子を質量濃度として0.1%〜20%の範囲で含有することを特徴とする請求項1または2に記載の熱間プレス成形用めっき鋼板の製造方法。   The method for producing a plated steel sheet for hot press forming according to claim 1 or 2, wherein the oxide colloidal particles are contained in the acidic solution in a mass concentration range of 0.1% to 20%. 前記酸性溶液は、pH緩衝作用を有し、かつ1リットルの該酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/l水酸化ナトリウム溶液の量(l)で定義するpH上昇度が0.05〜0.5の範囲にあることを特徴とする請求項1〜3のいずれか一項に記載の熱間プレス成形用めっき鋼板の製造方法。   The acidic solution has a pH buffering action and a pH increase defined by the amount (l) of 1.0 mol / l sodium hydroxide solution required to increase the pH of 1 liter of the acidic solution from 2.0 to 5.0 The method for producing a plated steel sheet for hot press forming according to any one of claims 1 to 3, wherein the degree is in a range of 0.05 to 0.5. 前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち少なくともを1種類以上を、前記成分含有量5〜50g/lの範囲で含有し、pHが0.5〜2.0、液温が20〜70℃の範囲にあることを特徴とする請求項1〜4のいずれか一項に記載の熱間プレス成形用めっき鋼板の製造方法。   The acidic solution is at least one of acetate, phthalate, citrate, succinate, lactate, tartrate, borate, phosphate, and the content of the components is 5 to 50 g / The hot-press-formed plated steel sheet according to any one of claims 1 to 4, wherein the hot-press formed steel sheet is contained in the range of l, the pH is in the range of 0.5 to 2.0, and the liquid temperature is in the range of 20 to 70 ° C. Production method. 前記酸性溶液に接触させた後のめっき鋼板表面に形成する酸性溶液膜が20g/m2以下であり、かつ、前記酸性溶液膜がめっき鋼板表面に形成された状態での保持時間が1〜90秒の範囲であることを特徴とする請求項1〜5のいずれか一項に記載の熱間プレス成形用めっき鋼板の製造方法。 The acidic solution film formed on the surface of the plated steel sheet after being contacted with the acidic solution is 20 g / m 2 or less, and the holding time in a state where the acidic solution film is formed on the surface of the plated steel sheet is 1 to 90. It is the range of second, The manufacturing method of the plated steel plate for hot press forming as described in any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6のいずれか一項に記載の熱間プレス成形用めっき鋼板の製造方法により製造され、Zn及び前記酸化物コロイド粒子由来の酸化物を含み平均厚さが10nm以上の酸化物層を有することを特徴とする熱間プレス成形用めっき鋼板。   An oxide layer produced by the method for producing a hot-pressed plated steel sheet according to any one of claims 1 to 6, comprising Zn and an oxide derived from the oxide colloidal particles and having an average thickness of 10 nm or more A plated steel sheet for hot press forming, characterized by comprising:
JP2009224217A 2009-09-29 2009-09-29 Plated steel sheet for hot press forming and manufacturing method thereof Expired - Fee Related JP5446675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224217A JP5446675B2 (en) 2009-09-29 2009-09-29 Plated steel sheet for hot press forming and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224217A JP5446675B2 (en) 2009-09-29 2009-09-29 Plated steel sheet for hot press forming and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011074409A true JP2011074409A (en) 2011-04-14
JP5446675B2 JP5446675B2 (en) 2014-03-19

Family

ID=44018697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224217A Expired - Fee Related JP5446675B2 (en) 2009-09-29 2009-09-29 Plated steel sheet for hot press forming and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5446675B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169389A1 (en) * 2011-06-07 2012-12-13 Jfeスチール株式会社 Steel sheet for hot pressing and method for producing hot pressed member using same
JP2012251232A (en) * 2011-06-07 2012-12-20 Jfe Steel Corp Steel sheet for hot pressing and method for producing hot pressed member using same
JP2012251230A (en) * 2011-06-07 2012-12-20 Jfe Steel Corp Steel sheet for hot pressing, and method for producing hot pressed member using same
JP2014514436A (en) * 2011-03-08 2014-06-19 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Steel plate product, steel plate product manufacturing method and component manufacturing method
US9023488B2 (en) 2010-08-04 2015-05-05 Jfe Steel Corporation Steel sheet for hot pressing and method of manufacturing hot-pressed part using steel sheet for hot pressing
WO2016159307A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Hot-dip galvanized steel sheet
WO2016159306A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Galvanized steel sheet
JP2016180162A (en) * 2015-03-25 2016-10-13 Jfeスチール株式会社 Galvanized steel sheet and production method thereof
JPWO2016159298A1 (en) * 2015-03-31 2018-02-15 新日鐵住金株式会社 Hot-dip galvanized steel sheet
JP2018053324A (en) * 2016-09-29 2018-04-05 新日鐵住金株式会社 Zn-BASED PLATED SHEET STEEL
JP2018115379A (en) * 2017-01-19 2018-07-26 新日鐵住金株式会社 Zn-Al PLATED STEEL PLATE EXCELLENT IN PHOSPHATE CHEMICAL PROCESSABILITY, AND PRODUCTION METHOD THEREOF
JP2020041177A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Steel plate for hot pressing

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023488B2 (en) 2010-08-04 2015-05-05 Jfe Steel Corporation Steel sheet for hot pressing and method of manufacturing hot-pressed part using steel sheet for hot pressing
JP2014514436A (en) * 2011-03-08 2014-06-19 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Steel plate product, steel plate product manufacturing method and component manufacturing method
JP2012251232A (en) * 2011-06-07 2012-12-20 Jfe Steel Corp Steel sheet for hot pressing and method for producing hot pressed member using same
JP2012251230A (en) * 2011-06-07 2012-12-20 Jfe Steel Corp Steel sheet for hot pressing, and method for producing hot pressed member using same
AU2012268278B2 (en) * 2011-06-07 2016-02-04 Jfe Steel Corporation Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
RU2591905C2 (en) * 2011-06-07 2016-07-20 ДжФЕ СТИЛ КОРПОРЕЙШН Steel sheet for hot forming and method of producing parts from steel sheet by hot forming
US10100381B2 (en) 2011-06-07 2018-10-16 Jfe Steel Corporation Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
WO2012169389A1 (en) * 2011-06-07 2012-12-13 Jfeスチール株式会社 Steel sheet for hot pressing and method for producing hot pressed member using same
JP2016180162A (en) * 2015-03-25 2016-10-13 Jfeスチール株式会社 Galvanized steel sheet and production method thereof
JPWO2016159307A1 (en) * 2015-03-31 2017-11-30 新日鐵住金株式会社 Hot-dip galvanized steel sheet
EP3260575A4 (en) * 2015-03-31 2018-11-07 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet
KR20170118844A (en) * 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Galvanized steel plate
CN107406986A (en) * 2015-03-31 2017-11-28 新日铁住金株式会社 Electrogalvanized steel plate
CN107406988A (en) * 2015-03-31 2017-11-28 新日铁住金株式会社 Hot dip galvanized steel plate
WO2016159306A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Galvanized steel sheet
JPWO2016159306A1 (en) * 2015-03-31 2017-11-30 新日鐵住金株式会社 Galvanized steel sheet
JPWO2016159298A1 (en) * 2015-03-31 2018-02-15 新日鐵住金株式会社 Hot-dip galvanized steel sheet
US10987695B2 (en) 2015-03-31 2021-04-27 Nippon Steel Corporation Hot-dip zinc-based plated steel sheet
US10851465B2 (en) 2015-03-31 2020-12-01 Nippon Steel Corporation Zinc-based plated steel sheet
WO2016159307A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Hot-dip galvanized steel sheet
KR20170118860A (en) * 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet
EP3272906A4 (en) * 2015-03-31 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
TWI655320B (en) * 2015-03-31 2019-04-01 日商新日鐵住金股份有限公司 Molten zinc-based plated steel sheet
KR102002238B1 (en) * 2015-03-31 2019-07-19 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet
KR102011207B1 (en) * 2015-03-31 2019-08-14 닛폰세이테츠 가부시키가이샤 Galvanized steel
CN107406986B (en) * 2015-03-31 2019-12-17 日本制铁株式会社 Zinc-based plated steel sheet for hot pressing
CN107406988B (en) * 2015-03-31 2019-12-17 日本制铁株式会社 Hot-dip galvanized steel sheet
US10549506B2 (en) 2015-03-31 2020-02-04 Nippon Steel Corporation Hot-dip zinc-based plated steel sheet
JP2018053324A (en) * 2016-09-29 2018-04-05 新日鐵住金株式会社 Zn-BASED PLATED SHEET STEEL
JP2018115379A (en) * 2017-01-19 2018-07-26 新日鐵住金株式会社 Zn-Al PLATED STEEL PLATE EXCELLENT IN PHOSPHATE CHEMICAL PROCESSABILITY, AND PRODUCTION METHOD THEREOF
JP2020041177A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Steel plate for hot pressing

Also Published As

Publication number Publication date
JP5446675B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5446675B2 (en) Plated steel sheet for hot press forming and manufacturing method thereof
JP5277852B2 (en) Plated steel sheet for hot press forming and manufacturing method thereof
JP5338243B2 (en) Plated steel sheet for hot press forming and manufacturing method thereof
KR102301116B1 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
JP3582504B2 (en) Hot-press plated steel sheet
JP5277851B2 (en) Plated steel sheet for hot press forming and manufacturing method thereof
JP3582511B2 (en) Surface-treated steel for hot press forming and its manufacturing method
KR101138042B1 (en) Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet
TWI485014B (en) A method for manufacturing warm press materials
CN110777319B (en) Plating solution for highly corrosion-resistant highly formable hot-formed steel, hot-formed steel sheet, hot-dip plating production process, hot-stamped part, and application
JP5338226B2 (en) Galvanized steel sheet for hot pressing
KR20190078438A (en) Plated steel for hot press forming, forming part by using the same and manufacturing method thereof
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
WO2013022118A1 (en) Molten zn-al alloy-plated steel sheet and manufacturing method thereof
JP2007297686A (en) Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
WO2018123831A1 (en) Plated steel sheet for hot pressing, method for manufacturing plated steel sheet for hot pressing, method for manufacturing hot-press-formed article, and method for manufacturing vehicle
JP2010077456A (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
JP5423215B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP4325442B2 (en) Method for producing hot dip galvanized steel
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP7453583B2 (en) Al-plated hot stamping steel material
TWI460306B (en) Fabrication method of hot dip galvanized steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP2006183073A (en) Method of manufacturing hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees