JP2011074145A - Temperature-indicating material - Google Patents

Temperature-indicating material Download PDF

Info

Publication number
JP2011074145A
JP2011074145A JP2009224991A JP2009224991A JP2011074145A JP 2011074145 A JP2011074145 A JP 2011074145A JP 2009224991 A JP2009224991 A JP 2009224991A JP 2009224991 A JP2009224991 A JP 2009224991A JP 2011074145 A JP2011074145 A JP 2011074145A
Authority
JP
Japan
Prior art keywords
temperature
indicating material
added
phosphor
sis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009224991A
Other languages
Japanese (ja)
Other versions
JP5457121B2 (en
Inventor
Yuji Takatsuka
裕二 高塚
Satoko Tetsuka
聡子 手束
Valery Petrykin
ペトリキン・ヴァレリー
Masato Kakihana
眞人 垣花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2009224991A priority Critical patent/JP5457121B2/en
Publication of JP2011074145A publication Critical patent/JP2011074145A/en
Application granted granted Critical
Publication of JP5457121B2 publication Critical patent/JP5457121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple temperature-indicating material containing a temperature-indicating material, which is free from mercury, which is a harmful metal, and is composed of a compound showing a hue according to temperature. <P>SOLUTION: The temperature-indicating material includes a visible light responsive europium-doped Ba<SB>2</SB>SiS<SB>4</SB>fluorescent material in which the fluorescent brightness depends on temperature and is changed by temperature, and a transparent resin such as a silicone resin or an epoxy resin. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温度が上昇又は下降する際に、特定の温度範囲で可逆的に色相が変化することにより、温度領域を示す示温性材料に関するものである。   The present invention relates to a temperature indicating material that exhibits a temperature range by reversibly changing the hue in a specific temperature range when the temperature rises or falls.

温度測定装置や温度計を使用せずに、物体の温度を表示するものとして温度表示ラベルや温度に応じて色相が可逆的に変化する示温性材料が知られている。このような示温性材料やそれを用いたインジケータは、色相の変化を観察することで簡便に温度を知ることができる。特に温度によって可逆的色相が変化するインジケータは、簡単に表面温度を知ることができるため、温度管理を行う機械設備、器具や商品、火傷を防止する器具や道具に付けられて使用される。   As a display for displaying the temperature of an object without using a temperature measuring device or a thermometer, a temperature display label or a temperature-indicating material whose hue changes reversibly according to the temperature is known. Such a temperature-indicating material and an indicator using it can easily know the temperature by observing a change in hue. In particular, an indicator whose reversible hue changes depending on the temperature can easily know the surface temperature. Therefore, the indicator is used by being attached to machinery, equipment and products for temperature management, and equipment and tools for preventing burns.

このような示温性材料の中で、特定の温度で表面側の層が溶融することで色相が履歴温度によって非可逆的に変化するインジケータは広く使われているが、色相が履歴温度によって非可逆的に変化するため、現在の温度が分からない。
そこで、可逆的な示温性材料の検討が行われ、水銀含有ハロゲン化錯体化合物が開発された。しかし、この化合物は水銀を含んでおり、人体への安全性及び環境への配慮の観点から非水銀系の材料が望まれた。
Among such temperature indicating materials, an indicator in which the hue changes irreversibly with the history temperature by melting the surface layer at a specific temperature is widely used, but the hue is irreversible with the history temperature. The current temperature is unknown.
Therefore, reversible temperature indicating materials were studied, and mercury-containing halogenated complex compounds were developed. However, this compound contains mercury, and a non-mercury material was desired from the viewpoint of safety to the human body and consideration for the environment.

そこで、水銀非含有の可逆的な示温性材料として、例えば、特許文献1には電子供与性呈色性有機化合物とフェノール性水酸基含有化合物とアルコール性水酸基含有化合物とを成分とする示温性材料、特許文献2では溶融性物質とロイコ染料と4−ヒドロキシクマリン誘導体とを含有する示温性材料、そして特許文献3には電子供与性呈色性有機化合物と電子受容性有機化合物とをマイクロカプセルに内包させた示温性材料が開示されている。   Therefore, as a reversible temperature-indicating material that does not contain mercury, for example, Patent Document 1 discloses a temperature-indicating material comprising an electron-donating color-forming organic compound, a phenolic hydroxyl group-containing compound, and an alcoholic hydroxyl group-containing compound, Patent Document 2 discloses a temperature indicating material containing a fusible substance, a leuco dye and a 4-hydroxycoumarin derivative, and Patent Document 3 includes an electron-donating color-forming organic compound and an electron-accepting organic compound in microcapsules. Disclosed is a temperature indicating material.

さらに、特許文献4では高分子ゲルのサーモクロミズムを用いた示温性材料、特許文献5には銅のような遷移金属の錯塩化合物であるサーモクロミズム性物質を含有する示温性材料も提案されている。
また、最近では特許文献6にアルキルアンモニウム塩化合物由来の両親媒性カチオンと、金属錯体化合物とのラメラ状態の混合物からなる示温性材料が提案されてきている。
Further, Patent Document 4 proposes a temperature indicating material using thermochromism of a polymer gel, and Patent Document 5 proposes a temperature indicating material containing a thermochromic substance that is a complex salt compound of a transition metal such as copper. .
Recently, Patent Document 6 has proposed a temperature indicating material composed of a mixture of an amphiphilic cation derived from an alkyl ammonium salt compound and a metal complex compound in a lamellar state.

ところで蛍光体は、蛍光灯などの発光装置やテレビ、PDPやFED等の表示装置に広く使われているが、紫外線や電子線で励起するものが多い。最近、白色LEDの進展に伴って近紫外から可視光、特に青色で励起可能な蛍光体が注目されている。
非特許文献1、2では、発光波長390〜405nmにおける発光効率が高い青緑蛍光体として、BaSiSが報告され、その発光特性が開示されている。
By the way, phosphors are widely used in light-emitting devices such as fluorescent lamps and display devices such as televisions, PDPs and FEDs, but many are excited by ultraviolet rays or electron beams. Recently, with the progress of white LEDs, attention has been focused on phosphors that can be excited from near ultraviolet to visible light, particularly blue.
In Non-Patent Documents 1 and 2, Ba 2 SiS 4 is reported as a blue-green phosphor with high emission efficiency at an emission wavelength of 390 to 405 nm, and its emission characteristics are disclosed.

特公昭51−44706号公報Japanese Patent Publication No. 51-44706 特公平2−19155号公報Japanese Patent Publication No. 2-19155 特開平5−32045号公報Japanese Patent Laid-Open No. 5-32045 特開平5−70770号公報JP-A-5-70770 特開2007−169215号公報JP 2007-169215 A 特開2009−036520号公報JP 2009-036520 A

大観光徳、大橋剛、“白色LED用青色蛍光体Ba2SiS4:CeにおけるAl添加による発光特性の改善”、第321回蛍光体同学会予稿Taisho Toku, Tsuyoshi Ohashi, “Blue phosphor Ba2SiS4 for white LED: Improvement of light emission characteristics by adding Al in Ce”, 321st phosphor symposium 大橋剛、大観光徳、小林洋志、“青色蛍光体材料Ba2SiS4:Ceにおける発光特性の改善”、電子情報通信学会技術研究報告、Vol,106、No.499、p.25−28Takeshi Ohashi, Hironori Otsuka, Hiroshi Kobayashi, “Improvement of Luminescent Properties in Blue Phosphor Material Ba2SiS4: Ce”, IEICE Technical Report, Vol. 499, p. 25-28

しかしながら、一般に上記に示したような有機系染料や有機系顔料等の有機化合物を用いた示温性材料は、有機化合物の耐久性が悪いため、長期安定性に欠けるという問題がある。一方、金属錯塩化合物を用いた示温性材料は、金属錯塩化合物の耐久性が良く、固有な特定の温度でのみ変色させることができるが、金属錯体、例えば臭化コバルト6水和物は水に溶けやすく耐湿性に問題がある。またアルキルアンモニウム塩、例えばヘキサデシルトリメチルアンモニウムブロミドでは融点、沸点が低いため200〜300℃を超える温度では使用できないという問題点がある。   However, in general, a temperature indicating material using an organic compound such as an organic dye or an organic pigment as described above has a problem that it lacks long-term stability because the durability of the organic compound is poor. On the other hand, a temperature-indicating material using a metal complex compound has good durability of the metal complex compound and can be discolored only at a specific specific temperature. However, a metal complex such as cobalt bromide hexahydrate in water. It is easy to melt and has a problem with moisture resistance. In addition, alkylammonium salts such as hexadecyltrimethylammonium bromide have a problem that they cannot be used at temperatures exceeding 200 to 300 ° C. because of their low melting point and boiling point.

さらに、非特許文献1、2ではBaSiS:Ce3+に関する報告が主であり、ユーロピウム添加BaSiS(BaSiS:Eu2+)の蛍光強度の温度依存性に関してはほとんど開示されていない。また、BaSiS:Ce3+の蛍光強度の温度依存性が小さいことが示されている。 Furthermore, Non-Patent Documents 1 and 2 mainly report on Ba 2 SiS 4 : Ce 3+ , and the temperature dependence of the fluorescence intensity of europium-added Ba 2 SiS 4 (Ba 2 SiS 4 : Eu 2+ ) is almost disclosed. Not. It is also shown that the temperature dependence of the fluorescence intensity of Ba 2 SiS 4 : Ce 3+ is small.

そこで本発明は、これらの課題を解決するためになされたもので、有害金属の水銀を含まず、温度に応じて色相を示す化合物からなる示温性材料を含む簡便な示温性材料を提供するものである。   Therefore, the present invention has been made to solve these problems, and provides a simple temperature-indicating material including a temperature-indicating material composed of a compound that does not contain mercury as a harmful metal and exhibits a hue according to temperature. It is.

本発明に係る示温性材料は、温度によって蛍光輝度が変わる可視光応答型蛍光体と透明な樹脂を含む示温性材料、又は、温度によって蛍光輝度が変わる可視光応答型蛍光体および透明な樹脂との混練体である示温性材料であって、その蛍光体がユーロピウム添加BaSiSであり、Si源に水溶性珪素化合物を用いて形成されることを特徴とし、さらに透明な樹脂が熱硬化性を有するとともに常温で流動性を有するシリコーン樹脂、又はエポキシ樹脂であることを特徴とするものである。 The thermoluminescent material according to the present invention includes a thermoluminescent material containing a visible light responsive phosphor and a transparent resin whose fluorescence luminance changes with temperature, or a visible light responsive phosphor and a transparent resin whose fluorescence luminance changes with temperature. A temperature-indicating material that is a kneaded body of the above, wherein the phosphor is europium-added Ba 2 SiS 4 and is formed by using a water-soluble silicon compound as a Si source, and a transparent resin is thermoset. It is a silicone resin or an epoxy resin that has fluidity and fluidity at room temperature.

本発明に係る示温性材料は、温度によって蛍光輝度が変わる可視光応答型蛍光体と、熱硬化性を有すると共に常温で流動性を有する透明な樹脂とからなるもので、温度によって蛍光輝度が変わる可視光応答型蛍光体にユーロピウム添加BaSiSを用い、熱硬化性を有すると共に常温で流動性を有する透明な樹脂にシリコーン樹脂、2液硬化型のエポキシ樹脂から選ばれる樹脂とインキ用溶剤を用い、耐久性及び耐湿性の優れた示温性材料を提供する。 The temperature indicating material according to the present invention is composed of a visible light responsive phosphor whose fluorescence luminance changes with temperature and a transparent resin which has thermosetting properties and fluidity at room temperature, and the fluorescence luminance changes with temperature. Europium-added Ba 2 SiS 4 as a visible light responsive phosphor, a thermosetting and fluid resin at room temperature, a silicone resin, a resin selected from a two-component curable epoxy resin, and an ink solvent To provide a temperature indicating material having excellent durability and moisture resistance.

本発明の実施例1におけるArガスに二硫化炭素(CS)を含ませる方法を示す図である。The Ar gas in Embodiment 1 of the present invention is a diagram showing a method to include carbon disulfide (CS 2). 本発明の方法による実施例1の噴霧乾燥後の乾燥物、それを800℃で焼成した焼成物、還元硫化後硫化物粉末のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the dried material after the spray-drying of Example 1 by the method of this invention, the baked product which baked it at 800 degreeC, and the sulfide powder after reductive sulfidation. 本発明の実施例1におけるEu添加BaSiS蛍光体の蛍光スペクトルを示す図である。Shows the fluorescence spectrum of Eu added Ba 2 SiS 4 phosphor in Example 1 of the present invention. 本発明の実施例1におけるEu添加BaSiS蛍光体の蛍光スペクトルの温度依存性測定結果を示す図である。Is a diagram showing temperature dependence measurement results of fluorescence spectra of Eu added Ba 2 SiS 4 phosphor in Example 1 of the present invention.

以下、本発明の実施形態について詳細に説明するが、本発明の示温性材料はこれらの形態に限定されるものではない。   Hereinafter, although the embodiment of the present invention is described in detail, the temperature indicating material of the present invention is not limited to these forms.

[示温性材料となる蛍光体]
発明者らは温度によって蛍光輝度が変わる可視光応答型蛍光体として鋭意探索した結果、ユーロピウム添加BaSiSは図3に示すように、可視光で励起可能であり、青緑色の蛍光を発光し、且つ図4に示すように発光する蛍光強度が常温の25℃のときの蛍光強度を100とした場合、50℃で約65%、75℃で35%、100℃で20%、150℃では10%未満に低下し、さらに温度依存性も認められ、その色相が青緑色から白色に変化することを見出した。すなわち、この蛍光体を印刷可能な透明な樹脂材料と組み合わせる、例えば混合し、練込み、その後温度測定対象物に塗布することにより、可逆的な示温性材料として使用することができることを見出し、本発明の完成に至ったものである。
[Phosphor as temperature indicating material]
As a result of intensive search as a visible light responsive phosphor whose fluorescence luminance changes with temperature, the inventors have shown that europium-doped Ba 2 SiS 4 can be excited by visible light and emits blue-green fluorescence. As shown in FIG. 4, when the fluorescence intensity when the emitted fluorescence intensity is 25 ° C. at room temperature is 100, about 65% at 50 ° C., 35% at 75 ° C., 20% at 100 ° C., 150 ° C. , The temperature decreased to less than 10%, and temperature dependence was also found, and the hue was found to change from blue-green to white. That is, this phosphor is combined with a transparent resin material that can be printed, for example, mixed, kneaded, and then applied to a temperature measurement object. The invention has been completed.

本発明に係る示温性材料は、その励起特性から可視光でも使用可能であるが、図3の励起スペクトルからわかるように、励起波長340nmと420nm、特に340nmの光を含む照明の下で使用することが特に有効である。   The temperature indicating material according to the present invention can be used with visible light due to its excitation characteristics, but as shown in the excitation spectrum of FIG. 3, it is used under illumination including light with excitation wavelengths of 340 nm and 420 nm, particularly 340 nm. Is particularly effective.

[示温性材料を構成する蛍光体(Eu添加BaSiO)の製造方法]
本発明に係る示温性材料料を構成する蛍光体は、以下の工程により製造する。
[Method for producing phosphor (Eu-added Ba 2 SiO 4 ) constituting the temperature indicating material]
The phosphor constituting the temperature indicating material material according to the present invention is manufactured by the following steps.

(第1工程:希土類元素のEuが均一に分散したEu添加BaSiOの合成)
先ず、Eu添加BaSiOを合成するには、添加するSi源として水溶性珪素化合物を用いるのが好ましい。
なお、水溶性珪素化合物は、以下に示す方法で製造することができる。原料にはテトラエトキシシラン(TEOS)とプロピレングリコールを同容量秤量し、80℃で48時間混合し、さらに塩酸を少量(混合液の0.2体積%程度)加えて1時間攪拌して混合液を調製する。その後、濃度が1Mの珪素濃度となるようにこの混合液に蒸留水を加え、濃度が1Mの水溶性珪素化合物水溶液を作製する。
また、水溶性珪素化合物のほかにSi源としては、その粒径が5〜10nm程度のフュームド(fumed)SiOを用いても良い。
(First step: synthesis of Eu-added Ba 2 SiO 4 in which Eu of a rare earth element is uniformly dispersed)
First, in order to synthesize Eu-added Ba 2 SiO 4 , it is preferable to use a water-soluble silicon compound as the Si source to be added.
In addition, a water-soluble silicon compound can be manufactured by the method shown below. As raw materials, tetraethoxysilane (TEOS) and propylene glycol are weighed in the same volume, mixed at 80 ° C. for 48 hours, further added with a small amount of hydrochloric acid (about 0.2% by volume of the mixed solution), and stirred for 1 hour to form a mixed solution To prepare. Thereafter, distilled water is added to the mixed solution so that the concentration becomes 1M silicon concentration, and a 1M aqueous water-soluble silicon compound solution is prepared.
In addition to the water-soluble silicon compound, fumed SiO 2 having a particle size of about 5 to 10 nm may be used as the Si source.

次に、その作製したSi源、硝酸バリウムおよび酢酸ユーロピウムを、Si源のSiと(Ba+Eu)のモル比が1:2になるように水に溶解する。その溶解液を室温で攪拌してEu添加BaSiO前駆体を含む水溶液を作製する。ここで、続く工程の水溶液の乾燥に噴霧乾燥を用いる場合は、Si濃度が0.02〜0.4mol/Lの水溶液が好ましく、凍結乾燥を用いるときはSi濃度が0.2〜0.4mol/Lの水溶液が好ましい。なお、加えるBa源としては、上記硝酸バリウムのほかに酢酸バリウムなどの水溶性のバリウム塩、ユーロピウム源には水溶性のユーロピウム塩など、水溶性の塩であれば用いることができる。 Next, the produced Si source, barium nitrate and europium acetate are dissolved in water so that the molar ratio of Si of the Si source to (Ba + Eu) is 1: 2. The solution is stirred at room temperature to prepare an aqueous solution containing the Eu-added Ba 2 SiO 4 precursor. Here, when spray drying is used for drying the aqueous solution in the subsequent step, an aqueous solution having an Si concentration of 0.02 to 0.4 mol / L is preferable, and when lyophilization is used, the Si concentration is 0.2 to 0.4 mol. / L aqueous solution is preferred. As the Ba source to be added, water-soluble barium salts such as barium acetate in addition to the barium nitrate described above, and water-soluble salts such as water-soluble europium salts as the europium source can be used.

次いで、このEu添加BaSiO前駆体を含む水溶液を乾燥させて乾燥物を得て、Eu添加BaSiO前駆体を作製する。その水溶液の乾燥は、前述の通り噴霧乾燥法或いは凍結乾燥法を用いて行うことができる。 Next, the aqueous solution containing this Eu-added Ba 2 SiO 4 precursor is dried to obtain a dried product, and an Eu-added Ba 2 SiO 4 precursor is produced. The aqueous solution can be dried using a spray drying method or a freeze drying method as described above.

先ず、噴霧乾燥機を用いて乾燥させる場合には、水溶液を20〜40分攪拌し、その液をポンプで噴霧乾燥機に送って乾燥させる。その乾燥条件は乾燥機入り口温度を200℃、加圧空気圧を0.1MPaの条件が好ましい。   First, in the case of drying using a spray dryer, the aqueous solution is stirred for 20 to 40 minutes, and the solution is sent to the spray dryer by a pump and dried. The drying conditions are preferably a dryer inlet temperature of 200 ° C. and a pressurized air pressure of 0.1 MPa.

凍結乾燥を行う場合には、水溶液を10分攪拌して、Euを均一に含んだゲルを作製し、このゲルを凍結乾燥機で−30℃、1時間保持の条件で凍結し、真空ポンプで排気して0.00603気圧以下にする。その後−25℃、3時間保持、−20℃、5時間保持、−15℃、8時間保持、30℃、5時間保持と条件を変化させて乾燥させるとEu添加BaSiO前駆体を得ることができる。 When lyophilization is performed, the aqueous solution is stirred for 10 minutes to prepare a gel containing Eu uniformly. The gel is frozen with a lyophilizer at −30 ° C. for 1 hour and then with a vacuum pump. Exhaust to 0.00603 atmospheres or less. Thereafter, Eu-added Ba 2 SiO 4 precursor is obtained by drying under conditions of −25 ° C., 3 hours, −20 ° C., 5 hours, −15 ° C., 8 hours, 30 ° C., 5 hours. be able to.

続いて、この乾燥物の前駆体を、700〜1100℃、より好ましくは750〜1000℃の温度に1〜3時間保持する熱処理を施すことで、Euが均一に分散したEu添加BaSiOを得ることができる。なお、このEu添加BaSiO前駆体のTG−DTAの分析から、200℃から水の脱離が開始し、400℃以上で残留有機物、600℃で硝酸が脱離し、700℃以上で重量が一定になることがわかる。従って700℃以上の温度で焼成することでEu添加BaSiOを得ることができる。 Subsequently, the precursor of the dried product, 700 to 1100 ° C., more preferably by heat treatment of holding for 1-3 hours at a temperature of 750 to 1000 ° C., Eu added Ba 2 SiO 4 which Eu is uniformly dispersed Can be obtained. From the analysis of TG-DTA of this Eu-added Ba 2 SiO 4 precursor, desorption of water started from 200 ° C., residual organic substances were desorbed at 400 ° C. or higher, nitric acid was desorbed at 600 ° C., and weight was exceeded at 700 ° C. or higher. Is constant. Accordingly, Eu-added Ba 2 SiO 4 can be obtained by baking at a temperature of 700 ° C. or higher.

なお、水溶性珪素化合物を用いた場合の噴霧乾燥後の乾燥物のX線回折測定からは、硝酸バリウムのピークしか検出されないが、その乾燥物を800℃で焼成するとBaSiOの回折パターンが得られることがわかる。また、フュームドSiOを用いた場合の噴霧乾燥後の乾燥物を800℃で焼成すると、BaSiOと炭酸バリウムの混合物の回折パターンが得られることがわかる。 In addition, from the X-ray diffraction measurement of the dried product after spray drying in the case of using a water-soluble silicon compound, only the barium nitrate peak is detected, but when the dried product is baked at 800 ° C., the diffraction pattern of Ba 2 SiO 4 It can be seen that Furthermore, when firing the dried product after spray drying in the case of using the fumed SiO 2 at 800 ° C., it can be seen that the diffraction pattern of the Ba 2 SiO 4 and mixtures barium carbonate is obtained.

ここで、乾燥物の焼成温度の上限は、1100℃以下とするが、1000℃を超えるとこの後のCS還元硫化反応がスムーズに進み難くなるので1000℃以下がより好ましい。 Here, the upper limit of the calcination temperature of the dried product is 1100 ° C. or less. However, if it exceeds 1000 ° C., the subsequent CS 2 reduction-sulfurization reaction does not proceed smoothly, so 1000 ° C. or less is more preferable.

次に、フュームドSiOをSi源とする場合の作製手順を示す。
まず、硝酸ユーロピウムを水に溶解し、オキシカルボン酸、グリコール又は水、炭酸バリウム、フュームドSiOを順次加え、更に120〜250℃に加熱してゲルを得た後に、このゲルを400〜500℃で熱処理して炭酸塩前駆体を作製し、得られた炭酸塩前駆体を700〜1090℃で熱処理してEuが均一に分散したEu添加BaSiOを作製することも可能である。
Next, a manufacturing procedure in the case where fumed SiO 2 is used as a Si source will be described.
First, europium nitrate is dissolved in water, oxycarboxylic acid, glycol or water, barium carbonate, and fumed SiO 2 are sequentially added, and further heated to 120 to 250 ° C. to obtain a gel. It is also possible to produce a carbonate precursor by heat-treating, and heat-treat the obtained carbonate precursor at 700 to 1090 ° C. to produce Eu-added Ba 2 SiO 4 in which Eu is uniformly dispersed.

また、炭酸バリウム、Eu粉末およびSiO粉末を混合し、大気中または還元雰囲気中で、700から1000℃で焼成することでEu添加BaSiOの作製、またはEu添加BaCOとSiO粉末の混合粉末を作製することもできる。 Further, by mixing barium carbonate, Eu 2 O 3 powder and SiO 2 powder and firing at 700 to 1000 ° C. in the air or in a reducing atmosphere, production of Eu-added Ba 2 SiO 4 , or Eu-added BaCO 3 and A mixed powder of SiO 2 powder can also be produced.

(第2工程:Eu添加BaSiOを二硫化炭素(CS)を含む不活性ガス中で熱処理し、還元硫化してEu添加BaSiS蛍光体を製造する工程)
この工程では、第1工程で作製したEu添加BaSiO粉末を、二硫化炭素(CS)を含む不活性ガス中で、900〜1090℃、2〜8時間の熱処理を施し、還元硫化によりEu添加BaSiS蛍光体粉末の焼成物を得る。
(Second step: a process of producing Eu-added Ba 2 SiS 4 phosphor by heat-treating Eu-added Ba 2 SiO 4 in an inert gas containing carbon disulfide (CS 2 ) and reducing and sulfidizing it)
In this step, the Eu-added Ba 2 SiO 4 powder prepared in the first step is subjected to heat treatment at 900 to 1090 ° C. for 2 to 8 hours in an inert gas containing carbon disulfide (CS 2 ), and reduced sulfide Thus, a fired product of Eu-added Ba 2 SiS 4 phosphor powder is obtained.

この熱処理温度は、900〜1090℃であることが好ましく、900℃未満では還元硫化が不充分となるため好ましくなく、硫化珪素の融点である1090℃を超えると、部分的な融解が発生する可能性があり、融解した液体が移動することによって焼成物が不均一になるため好ましくない。一般に高温では硫黄蒸気圧が高くなり硫化物表面から硫黄が揮発すると言われており低温で合成することが好ましい。
なお、合成に使用する容器は、グラファイト、ジルコニア、アルミナ等の酸化物やBN等の耐熱容器を用いることが出来るが、高温ではアルミナが還元され、不純物が多くなるのでグラファイトやジルコニアが好ましい。
The heat treatment temperature is preferably 900 to 1090 ° C., and is preferably not less than 900 ° C. because the reduction sulfidation is insufficient. If the temperature exceeds 1090 ° C. which is the melting point of silicon sulfide, partial melting may occur. This is not preferable because the fired product becomes non-uniform when the molten liquid moves. In general, it is said that sulfur vapor pressure becomes high at high temperatures, and sulfur is volatilized from the sulfide surface.
As the container used for the synthesis, an oxide such as graphite, zirconia, or alumina, or a heat-resistant container such as BN can be used, but graphite and zirconia are preferable because alumina is reduced at a high temperature and impurities are increased.

ここで用いる不活性ガスとしては、アルゴンガス等の不活性ガスが好ましい。
この不活性ガス中に二硫化炭素(CS)を含ませる方法としては、図1に示すような、不活性ガスを液体の二硫化炭素中に通す方法が好適に利用できる。
As the inert gas used here, an inert gas such as argon gas is preferable.
As a method of including carbon disulfide (CS 2 ) in the inert gas, a method of passing the inert gas through liquid carbon disulfide as shown in FIG. 1 can be preferably used.

使用する二硫化炭素や不活性ガスの温度は、15℃以上46℃未満、特に20℃〜25℃が好ましい。
すなわち、15℃未満では不活性ガスに含まれる二硫化炭素の濃度が低くなり、還元硫化が進まないため好ましくなく、46℃以上では二硫化炭素の沸点以上となって蒸発量の制御が難しく、均一な還元硫化が難しくなるため好ましくない。なお、不活性ガスとしてはアルゴンガスのほか窒素を用いることもできる。ただし、高温で窒素を用いることは、窒化物が形成されることがあるため好ましくない。
The temperature of the carbon disulfide and inert gas used is preferably 15 ° C. or higher and lower than 46 ° C., particularly preferably 20 ° C. to 25 ° C.
That is, if it is less than 15 ° C., the concentration of carbon disulfide contained in the inert gas is low, and reductive sulfidation does not proceed. It is not preferable because uniform reduction sulfurization becomes difficult. In addition to argon gas, nitrogen can also be used as the inert gas. However, using nitrogen at a high temperature is not preferable because nitride may be formed.

上記第1および第2工程により作製したEu添加BaSiS蛍光体粉末の焼成物について、X線回折による組成の同定を行い以下の知見を得た。
Si源として水溶性珪素化合物を用いて噴霧乾燥を行った酸化物を、1010℃で還元硫化したものは、X線回折からはBaSiS単相であった。第1工程の焼成物に炭酸塩を含んでいるものや第2工程の還元硫化の熱処理温度が低い場合は、BaSと思われる少量の異相を含むX線回折パターンが観察されるが、還元硫化の温度を1000℃〜1090℃とすることでBaSiS単相が得られる。
For the Eu added Ba 2 SiS 4 fired product of the phosphor powder produced by the first and second steps, the following findings were obtained performs identification of the composition by X-ray diffraction.
The oxide obtained by spray drying using a water-soluble silicon compound as the Si source and reduced and sulfided at 1010 ° C. was a Ba 2 SiS 4 single phase from X-ray diffraction. In the case where the baked product of the first step contains carbonate or the heat treatment temperature of the reductive sulfidation of the second step is low, an X-ray diffraction pattern including a small amount of heterogeneous phase considered to be BaS is observed. Ba 2 SiS 4 single phase is obtained the temperature by the 1000 ℃ ~1090 ℃.

また、上記工程で得られたEu添加BaSiS蛍光体粉末が凝集している場合は、乾式、あるいは湿式ボールミルなどで解砕することが好ましい。しかしながら、強く解砕すると蛍光体に欠陥が生じて、かえって蛍光輝度が低下するため適度に粉砕圧を調整する必要がある。蛍光体粒子の粒径は0.1〜30μmが好ましく、0.5〜10μmが更に好ましい。0.1μm未満では粒径が小さいことにより流動性や、分散性が悪いため、透明な樹脂と均一に混合することは難しい。30μmを超える粒径では樹脂に混ぜたときに沈降して樹脂と均一に混合しないため好ましくない。また塗布後に凹凸が大きく表面の平坦性がなくなり、発光が不均一となるため好ましくない。 In addition, when the Eu-added Ba 2 SiS 4 phosphor powder obtained in the above step is agglomerated, it is preferably crushed by a dry method or a wet ball mill. However, if the powder is crushed strongly, defects will occur in the phosphor, and the fluorescence brightness will be lowered. Therefore, it is necessary to adjust the crushing pressure appropriately. The particle diameter of the phosphor particles is preferably from 0.1 to 30 μm, more preferably from 0.5 to 10 μm. If the particle diameter is less than 0.1 μm, the fluidity and dispersibility are poor due to the small particle size, and it is difficult to uniformly mix with a transparent resin. A particle size exceeding 30 μm is not preferable because it settles when mixed with the resin and does not uniformly mix with the resin. Further, it is not preferable because the unevenness is large after coating and the surface flatness is lost and the light emission becomes uneven.

また、BaSiS蛍光体粒子の耐環境性や樹脂との相溶性を改善するため、金属酸化物皮膜の形成やカップリング剤の添加などの表面処理を施しても良い。 In order to improve the environmental resistance of the Ba 2 SiS 4 phosphor particles and the compatibility with the resin, a surface treatment such as formation of a metal oxide film or addition of a coupling agent may be performed.

本発明の示温性材料は、蛍光体を透明な樹脂に練り込むことにより樹脂組成物を調製し、それを温度測定対象物である基材へ印刷して吸着、吸収、又は塗布させることによって、その基材の温度を表示する示温性材料として使用するものであり、蛍光体を含有する樹脂組成物は、熱硬化性を有するとともに常温で流動性を有するシリコーン樹脂、2液硬化型のエポキシ樹脂から選ばれる透明な樹脂に練り込んで使用する。さらに、インキ用樹脂とインキ用溶剤に混合して、インクとして塗布しても良い。   The temperature indicating material of the present invention is prepared by preparing a resin composition by kneading a phosphor into a transparent resin, printing it on a substrate that is a temperature measurement object, and adsorbing, absorbing, or applying it. The resin composition used as a temperature indicating material for indicating the temperature of the base material is a silicone resin having a thermosetting property and a fluidity at room temperature, and a two-component curable epoxy resin. Kneaded into a transparent resin selected from Furthermore, it may be mixed with an ink resin and an ink solvent and applied as an ink.

用いるシリコーン樹脂には、LEDなどで使われる2液エストラマタイプの半導体用シリコーン樹脂が使用できる。
また、エポキシ樹脂には、LEDなどで使われている(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートなどの脂環式エポキシ樹脂などが好適である。
As the silicone resin to be used, a two-part elastomer type silicone resin for semiconductors used in LEDs and the like can be used.
As the epoxy resin, an alicyclic epoxy resin such as (3 ′, 4′-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate used in LEDs or the like is suitable.

また、本発明にかかる可視光応答型のユーロピウム添加BaSiS蛍光体を、インク組成物として使用することも可能である。このインク組成物は、蛍光体に、インキ用樹脂とインキ用溶媒とからなるビヒクルや、添加剤を添加して調製したものである。ビヒクルや添加剤の構成成分やその量は、印刷方法や、インキ組成物の物性を考慮して、適宜調整して使用することができる。
本発明の示温性材料に添加物として、温度に応じた示温性材料の色調の変化を際立たせたり、目視し易い色調に整えたりする調整顔料等を適宜添加しても良い。
The visible light responsive europium-added Ba 2 SiS 4 phosphor according to the present invention can also be used as an ink composition. This ink composition is prepared by adding a vehicle composed of an ink resin and an ink solvent and an additive to a phosphor. The components and amounts of the vehicle and additives can be appropriately adjusted and used in consideration of the printing method and the physical properties of the ink composition.
As the additive of the temperature indicating material of the present invention, an adjustment pigment or the like that makes the change in the color tone of the temperature indicating material according to the temperature stand out or adjusts the color tone to be easily visible may be added as appropriate.

ここで、実施例を示して更に本発明を詳細に説明する。   Now, the present invention will be described in more detail with reference to examples.

[第1工程の酸化物前駆体(Eu添加BaSiO)作製]
水溶性珪素化合物を次のように作製した。
テトラエトキシシラン:TEOS(関東化学株式会社製)とプロピレングリコール(関東化学株式会社製99%)を22.4ml秤量し、80℃で48時間混合した。さらにその混合液に塩酸を100μl加えて室温で1時間攪拌した。この攪拌液に蒸留水を加えて100mlに定溶して1Mの水溶性珪素を作製した。
この水溶性珪素15mmol、硝酸Ba28.5mmol及び酢酸ユーロピウム(フルウチ化学株式会社製)1.5mmolを純水に加えて500mlに定溶し、この水溶液を室温で30分間攪拌した。
[Production of oxide precursor (Eu-added Ba 2 SiO 4 ) in the first step]
A water-soluble silicon compound was prepared as follows.
Tetraethoxysilane: 22.4 ml of TEOS (manufactured by Kanto Chemical Co., Ltd.) and propylene glycol (99% manufactured by Kanto Chemical Co., Ltd.) were weighed and mixed at 80 ° C. for 48 hours. Further, 100 μl of hydrochloric acid was added to the mixture and stirred at room temperature for 1 hour. Distilled water was added to this stirring solution and dissolved in 100 ml to prepare 1M water-soluble silicon.
15 mmol of this water-soluble silicon, 28.5 mmol of Ba nitrate and 1.5 mmol of europium acetate (manufactured by Furuuchi Chemical Co., Ltd.) were added to pure water and dissolved in 500 ml, and this aqueous solution was stirred at room temperature for 30 minutes.

次に、水溶液を噴霧乾燥機(YAMATO製ADL310)に入れて噴霧乾燥を行い、乾燥物を作製した。その乾燥条件は、入り口温度200℃、風量を0.55m/min、ポンプ速度5ml/min、加圧空気圧力0.1MPaとした。
乾燥物は直ちにアルミナの容器に入れて、ボックス炉で水分を除去するため100℃で予備加熱し、800℃2時間焼成を行った。
Next, the aqueous solution was put into a spray dryer (ADL310 manufactured by YAMATO) and spray-dried to prepare a dried product. The drying conditions were an inlet temperature of 200 ° C., an air volume of 0.55 m 3 / min, a pump speed of 5 ml / min, and a pressurized air pressure of 0.1 MPa.
The dried product was immediately put in an alumina container, preheated at 100 ° C. to remove moisture in a box furnace, and calcined at 800 ° C. for 2 hours.

[第2工程の還元硫化によるBaSiS合成]
その後、焼成物をアルミナのボートに入れて図1に示す方法で液体の二硫化炭素(和光製99%)中を通したAr流通下で1010℃、2時間熱処理し、還元硫化を行い、Eu添加BaSiSを作製した。Ar流量は50ml/minで、その流量の制御はデジタルフローメータ(Kofloc製Model8300)を用いで行った。
[Ba 2 SiS 4 synthesis by reductive sulfidation in the second step]
Thereafter, the fired product is put into an alumina boat and heat treated at 1010 ° C. for 2 hours under an Ar flow through a liquid carbon disulfide (99% manufactured by Wako) by the method shown in FIG. Added Ba 2 SiS 4 was produced. The Ar flow rate was 50 ml / min, and the flow rate was controlled using a digital flow meter (Model 8300 manufactured by Kofloc).

以上の工程により得られた噴霧乾燥後の乾燥物、それを800℃で焼成した焼成物、および還元硫化後の硫化物におけるX線回折パターンの測定結果を図2に示す。
図2(a)は噴霧乾燥後の乾燥物、(b)は800℃で焼成した焼成物、(c)は還元硫化後の硫化物のX線回折パターンである。
図2(a)からは、その乾燥物が硝酸Baであること、図2(b)からは、800℃で焼成した焼成物がBaSiOであること、図2(c)からは、還元硫化によってBaSiSが合成されていることがわかる。
FIG. 2 shows the measurement results of the X-ray diffraction pattern of the dried product obtained after the above-described steps, the dried product obtained by spray drying, the calcined product obtained by calcining it at 800 ° C., and the sulfide obtained after reduction sulfurization.
2A is an X-ray diffraction pattern of a dried product after spray drying, FIG. 2B is a calcined product calcined at 800 ° C., and FIG.
From FIG. 2 (a), the dried product is Ba nitrate, from FIG. 2 (b), the fired product fired at 800 ° C. is Ba 2 SiO 4 , from FIG. 2 (c), It can be seen that Ba 2 SiS 4 is synthesized by reductive sulfidation.

[示温性材料の作製および評価]
上記手順により作製されたBaSiS蛍光体を120℃の真空乾燥機にて1時間処理し、混錬機(「泡取り錬太郎」;シンキー社製AR−250)を用いて熱硬化性を有すると共に、常温で流動性を有する透明な樹脂(東レ・ダウコーニング株式会社製、商品名:JCR6175)50重量部に該蛍光体50重量部加え、攪拌4分、脱泡2.5分行って、塗布用樹脂Aを得た。
[Production and evaluation of temperature-indicating materials]
The Ba 2 SiS 4 phosphor produced by the above procedure was treated in a vacuum dryer at 120 ° C. for 1 hour, and thermosetting using a kneading machine (“Rubbing Foam”; AR-250 manufactured by Sinky Corporation). In addition, 50 parts by weight of the phosphor is added to 50 parts by weight of a transparent resin having a fluidity at room temperature (trade name: JCR6175, manufactured by Toray Dow Corning Co., Ltd.), followed by stirring for 4 minutes and defoaming for 2.5 minutes. Thus, a coating resin A was obtained.

次に、作製したBaSiS蛍光体を、120℃の真空乾燥機にて1時間処理し、混錬機(「泡取り錬太郎」:シンキー社製AR−250)を用いてエポキシ樹脂100重量部(日本ペルノックス製、商品名:ME-562)に酸無水物系硬化剤60重量部(日本ペルノックス製、商品名:HV-562)と該蛍光体80重量部を加え、攪拌4分、脱泡2.5分行って、塗布用樹脂Bを得た。 Next, the produced Ba 2 SiS 4 phosphor was treated in a vacuum dryer at 120 ° C. for 1 hour, and the epoxy resin 100 was used using a kneading machine (“Rubbing Foam”: AR-250 manufactured by Sinky Corporation). Add 60 parts by weight of acid anhydride curing agent (trade name: HV-562, manufactured by Nihon Pernox, product name: HV-562) and 80 parts by weight of the phosphor to parts by weight (manufactured by Nihon Pernox, product name: ME-562), and stir for 4 minutes. Defoaming was performed for 2.5 minutes to obtain a coating resin B.

この示温性材料を含んだ塗布用樹脂AをAl基板に塗布し、熱風乾燥機で150℃の温度で2時間加熱して硬化接着させた。
塗布用樹脂BをAl基板に塗布し、熱風乾燥機で150℃の温度で16時間加熱して硬化接着させた。
The coating resin A containing the temperature indicating material was applied to an Al substrate, and was cured and adhered by heating at a temperature of 150 ° C. for 2 hours with a hot air dryer.
The coating resin B was applied to an Al substrate, and was cured and adhered by heating at a temperature of 150 ° C. for 16 hours with a hot air dryer.

硬化後の蛍光特性に変化は無く、温度特性も蛍光体粒子の場合と同じであった。
効果を確認するため、本発明の示温性材料を含んだ樹脂を塗布したAl基板を加熱し、色の変化を見たところ、蛍光灯の下では75℃以上、発光波長400nmの近紫外LEDを照射した場合は50℃以上で青緑色から白色への色相の変化が視認できた。
There was no change in the fluorescence characteristics after curing, and the temperature characteristics were the same as in the case of the phosphor particles.
In order to confirm the effect, the Al substrate coated with the resin containing the temperature indicating material of the present invention was heated and the color change was observed. Under a fluorescent lamp, a near-ultraviolet LED having a light emission wavelength of 400 nm was 75 ° C. or higher. When irradiated, a change in hue from blue-green to white was visible at 50 ° C. or higher.

本発明の方法によれば、励起光が400nm程度の波長においては、実用的に十分な輝度を有しているため、波長400nm近傍の近紫外LEDで青緑色発光する蛍光体として利用可能である。   According to the method of the present invention, the excitation light has a practically sufficient luminance at a wavelength of about 400 nm, so that it can be used as a phosphor emitting blue-green light by a near-ultraviolet LED near the wavelength of 400 nm. .

Claims (4)

蛍光輝度の温度依存性を有する温度によって蛍光輝度が変わる可視光応答型のユーロピウム添加BaSiS蛍光体と、透明な樹脂とを含むことを特徴とする示温性材料。 A temperature-indicating material comprising: a visible-light-responsive europium-added Ba 2 SiS 4 phosphor whose fluorescence brightness varies depending on a temperature having temperature dependence of fluorescence brightness; and a transparent resin. 蛍光輝度の温度依存性を有する温度によって蛍光輝度が変わる可視光応答型のユーロピウム添加BaSiS蛍光体および透明な樹脂との混練体であることを特徴とする示温度性材料。 A temperature-indicating material which is a kneaded body of a visible light responsive europium-added Ba 2 SiS 4 phosphor and a transparent resin, the fluorescence luminance of which varies depending on the temperature having the temperature dependence of the fluorescence luminance. 前記可視光応答型のユーロピウム添加BaSiS蛍光体が、Si源に水溶性珪素化合物を用いて形成されることを特徴とする請求項1または2に記載の示温性材料。 3. The temperature indicating material according to claim 1, wherein the visible light responsive europium-added Ba 2 SiS 4 phosphor is formed using a water-soluble silicon compound as a Si source. 前記透明な樹脂が、熱硬化性を有し、かつ常温で流動性を有するシリコーン樹脂又はエポキシ樹脂から選ばれる透明な樹脂であることを特徴とする請求項1から3のいずれか1項に記載の示温性材料。   The said transparent resin is a transparent resin chosen from the silicone resin which has thermosetting property, and has fluidity | liquidity at normal temperature, or an epoxy resin, The any one of Claim 1 to 3 characterized by the above-mentioned. Temperature indicating material.
JP2009224991A 2009-09-29 2009-09-29 Temperature indicating material Expired - Fee Related JP5457121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224991A JP5457121B2 (en) 2009-09-29 2009-09-29 Temperature indicating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224991A JP5457121B2 (en) 2009-09-29 2009-09-29 Temperature indicating material

Publications (2)

Publication Number Publication Date
JP2011074145A true JP2011074145A (en) 2011-04-14
JP5457121B2 JP5457121B2 (en) 2014-04-02

Family

ID=44018476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224991A Expired - Fee Related JP5457121B2 (en) 2009-09-29 2009-09-29 Temperature indicating material

Country Status (1)

Country Link
JP (1) JP5457121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195708A (en) * 2010-03-19 2011-10-06 Sumitomo Metal Mining Co Ltd Temperature-indicating material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129593A1 (en) * 2005-06-03 2006-12-07 Kabushiki Kaisha Toshiba Phosphor for display and field emission display
JP2009526089A (en) * 2005-12-01 2009-07-16 サーノフ コーポレーション Moisture protection phosphor and LED lighting device
JP2010215728A (en) * 2009-03-13 2010-09-30 Sumitomo Metal Mining Co Ltd Orange phosphor and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129593A1 (en) * 2005-06-03 2006-12-07 Kabushiki Kaisha Toshiba Phosphor for display and field emission display
JP2006335967A (en) * 2005-06-03 2006-12-14 Toshiba Corp Phosphor for displaying device and electric field-emission type displaying device
JP2009526089A (en) * 2005-12-01 2009-07-16 サーノフ コーポレーション Moisture protection phosphor and LED lighting device
JP2010215728A (en) * 2009-03-13 2010-09-30 Sumitomo Metal Mining Co Ltd Orange phosphor and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195708A (en) * 2010-03-19 2011-10-06 Sumitomo Metal Mining Co Ltd Temperature-indicating material

Also Published As

Publication number Publication date
JP5457121B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP2013529244A (en) Luminescent substance
JP5770192B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP2017088719A (en) Red phosphor
JP5483898B2 (en) Method for producing oxide phosphor
JP5457121B2 (en) Temperature indicating material
JP5767145B2 (en) Visible light responsive phosphor, method for producing the same, and temperature indicating material including the same
JP5419765B2 (en) Temperature indicating material
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
JP5971620B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
KR102473675B1 (en) Phosphor and Method of Preparing Same
JP2010215728A (en) Orange phosphor and manufacturing method of the same
JP5912895B2 (en) Phosphor, manufacturing method thereof, and light emitting device using the same
JP5484381B2 (en) Temperature indicating material
US9011718B2 (en) Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor
JP5506215B2 (en) Method for manufacturing phosphor
JP6350123B2 (en) Method for producing sulfide phosphor
CN104321407B (en) Fluorophor and light-emitting device
JP2013231118A (en) Visible light-responsive phosphor, method for producing the same, and temperature-indicating material containing the same
JP2011032416A (en) Phosphor, and method for producing the same
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JPWO2016111200A1 (en) Phosphor, light emitting device, and method of manufacturing phosphor
KR20160133548A (en) Europium or samarium-doped terbium molybdates
KR100393130B1 (en) YAG yellow luminescence comprising lithium for white LED and manufacturing method thereof
US9938460B2 (en) Phosphor, light emitting apparatus and method of forming phosphor
JP5702569B2 (en) Phosphor manufacturing method and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Ref document number: 5457121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees