JP2011074058A - Reverse vesicle made of biosurfactant - Google Patents

Reverse vesicle made of biosurfactant Download PDF

Info

Publication number
JP2011074058A
JP2011074058A JP2010067656A JP2010067656A JP2011074058A JP 2011074058 A JP2011074058 A JP 2011074058A JP 2010067656 A JP2010067656 A JP 2010067656A JP 2010067656 A JP2010067656 A JP 2010067656A JP 2011074058 A JP2011074058 A JP 2011074058A
Authority
JP
Japan
Prior art keywords
reverse
reverse vesicle
water
vesicles
oily substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010067656A
Other languages
Japanese (ja)
Other versions
JP5447967B2 (en
Inventor
Tokuma Fukuoka
徳馬 福岡
Tomotake Morita
友岳 森田
Tomohiro Imura
知弘 井村
Masaru Kitamoto
大 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010067656A priority Critical patent/JP5447967B2/en
Publication of JP2011074058A publication Critical patent/JP2011074058A/en
Application granted granted Critical
Publication of JP5447967B2 publication Critical patent/JP5447967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide new reverse vesicles that can be formed in oily substances of great many kinds by simple operation and are suitable to be blended into cosmetics, drugs or the like because of excellent transdermal absorption. <P>SOLUTION: A sugar-type biosurfactant compound is agitated in a liquid oily substance to form the reverse vesicles. The stability of the reverse vesicles is increased by adding water to the liquid oily substance, which enables use of various oily substances. The formed reverse vesicles can be used as a compounding agent for cosmetics or drugs having a wide range of functions, by adding an agent to the water, liquid oily substance or both of them. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、糖型バイオサーファクタントを主成分として形成された逆ベシクルに関するものである。   The present invention relates to an inverted vesicle formed with a sugar-type biosurfactant as a main component.

ヒトの角質層は、細胞間脂質が層状に積層して形成(ラメラ構造)され、バリア機能や保湿機能に重要な働きを示すことが知られている。クリームや乳液などの皮膚外用剤に対しては、このような機能を高め、肌の状態を改善することが優れた製剤として求められている。また、上記機能を高めるという観点から、肌のラメラ構造と同じラメラ構造を有した製剤を提供することが、浸透性、保湿効果の点で望ましい。
脂質、または分子内に親水基と疎水基を共に有する両親媒性物質が、連続相である水溶液中で、(連続相側)親水基―疎水基;疎水基―親水基(内側)の順に配向した二分子膜のラメラ構造からなる小胞体(カプセル)を「ベシクル」という。ベシクルを活用した製剤は、その構造が細胞構造に似ていることから、浸透性、保湿効果などにおいてもさらに高い機能を有するものと考えられる。また、ミセルやエマルションと比べ、二分子膜を介した界面(表面)積が大きく、物質移動・輸送に優れることから、ドラッグデリバリーシステム(DDS)担体等、医薬、食品分野への利用にも効果が大きい。
It is known that the human stratum corneum is formed by laminating intercellular lipids in layers (lamella structure), and exhibits an important function for a barrier function and a moisturizing function. For external preparations for skin such as creams and emulsions, it is required to improve such functions and improve the condition of the skin as an excellent preparation. From the viewpoint of enhancing the above functions, it is desirable in terms of permeability and moisturizing effect to provide a preparation having the same lamellar structure as that of the skin.
Lipids or amphiphiles that have both hydrophilic and hydrophobic groups in the molecule are oriented in the order of (continuous phase) hydrophilic group-hydrophobic group; hydrophobic group-hydrophilic group (inner side) in an aqueous solution that is a continuous phase. An endoplasmic reticulum (capsule) composed of a bilayer lamellar structure is called a “vesicle”. A preparation utilizing vesicles is considered to have a higher function in terms of permeability, moisturizing effect and the like because the structure is similar to the cell structure. Compared to micelles and emulsions, it has a large interfacial (surface) area through a bilayer membrane and is excellent in mass transfer and transport, so it is also effective for drug and food applications such as drug delivery system (DDS) carriers. Is big.

しかし、連続相が水ではなく、油(非極性溶媒)であるベシクル、すなわち「逆ベシクル(反転ベシクル)」((連続相側)疎水基―親水基;親水基―疎水基(内側)の順に配向した二分子膜により構成されたベシクル)の報告例はきわめて少なく、その応用例は皆無である。これは、そもそも逆ベシクルを形成可能な素材が限られていること、形成できる条件(油種、温度)が非常に狭く、製造方法が複雑であることによる。
逆ベシクルは、Kuniedaらによって1991年に初めて報告されているが(非特許文献1)、その後の報告例も限られており、親水基がポリオキシエチレン型の非イオン型合成界面活性剤による報告が中心である(非特許文献2〜4)。天然系の素材ではリン脂質(レシチン)を用いた系(非特許文献5、6)、糖脂質系では合成品であるショ糖脂肪酸モノエステルの系(非特許文献7〜9)も報告されているが、多くの場合、連続相となる油性物質の種類が限られており、また連続相以外の油性物質や別の界面活性剤など第三成分の添加を必要とする。最近、安定な逆ベシクルの製造を目指して、素材の選択と組み合わせ、混合方法を改良する報告がされているが(特許文献1、2)、その条件はごく限られたものである。幅広い油性物質中で、簡便に逆ベシクルを形成する方法の開発が実用上強く求められる。
However, vesicles in which the continuous phase is not water but oil (nonpolar solvent), that is, “reverse vesicles (inverted vesicles)” ((continuous phase side) hydrophobic group-hydrophilic group; hydrophilic group-hydrophobic group (inner side) in this order. There are very few reports on vesicles composed of oriented bilayers, and there are no examples of their application. This is because, in the first place, the materials that can form reverse vesicles are limited, the conditions (oil type, temperature) that can be formed are very narrow, and the manufacturing method is complicated.
Reverse vesicles were first reported in 1991 by Kunieda et al. (Non-Patent Document 1), but there were also limited reports after that, and reports were made with nonionic synthetic surfactants whose hydrophilic groups were polyoxyethylene type. (Non-Patent Documents 2 to 4). In the case of natural materials, phospholipid (lecithin) -based systems (Non-Patent Documents 5 and 6) and glycolipid-based sucrose fatty acid monoester systems (Non-Patent Documents 7 to 9) have also been reported. However, in many cases, the type of oily substance that becomes a continuous phase is limited, and the addition of a third component such as an oily substance other than the continuous phase or another surfactant is required. Recently, with the aim of producing stable reverse vesicles, reports have been made on selection and combination of raw materials and improvement of the mixing method (Patent Documents 1 and 2), but the conditions are very limited. Development of a method for easily forming reverse vesicles in a wide range of oily substances is strongly required in practice.

特開2009-62365号公報JP 2009-62365 A 特開2009-62386号公報JP 2009-62386

H. Kunieda et.al., J. Am. Chem. Soc., 113, 1051-1052 (1991)H. Kunieda et.al., J. Am. Chem. Soc., 113, 1051-1052 (1991) H. Kunieda et.al., Langmuir, 7, 1915-1919 (1991)H. Kunieda et.al., Langmuir, 7, 1915-1919 (1991) H. Kunieda et.al., J. Colloid Interfac. Sci., 150, 277-280 (1992)H. Kunieda et.al., J. Colloid Interfac. Sci., 150, 277-280 (1992) H. Kunieda et.al., Langmuir, 15, 3118-3122 (1999)H. Kunieda et.al., Langmuir, 15, 3118-3122 (1999) H. Kunieda et.al., Adv. Mater., 4, 291-293 (1992)H. Kunieda et.al., Adv. Mater., 4, 291-293 (1992) S-H. Tung et.al., J. Am. Chem. Soc., 130, 8813-8817 (2008)S-H. Tung et.al., J. Am. Chem. Soc., 130, 8813-8817 (2008) H. Kunieda et.al., J. Phys. Chem., 97, 9525-9531 (1993)H. Kunieda et.al., J. Phys. Chem., 97, 9525-9531 (1993) H. Kunieda et.al., J. Colloid Interfac. Sci., 156, 446-453 (1993)H. Kunieda et.al., J. Colloid Interfac. Sci., 156, 446-453 (1993) H. Mollee et.al., J. Pharm. Sci., 89, 930-939 (2000)H. Mollee et.al., J. Pharm. Sci., 89, 930-939 (2000)

本発明では、幅広い種類の油性物質中で、単一の成分を用いて簡便な操作で逆ベシクルを形成し、これを提供することを目的とする。   An object of the present invention is to provide a reverse vesicle by a simple operation using a single component in a wide variety of oily substances.

本発明者らは、その特異な分子構造に基づき、溶液中で自己組織化により容易に様々な分子集合体を形成するなど、優れた液晶形成能を有するバイオサーファクタント(微生物が生産する両親媒性物質)に注目し、これを利用することで幅広い液状油性物質中で簡便に逆ベシクルを形成できることを見出した。
すなわち、本発明は、以下のとおりである。
The present inventors have developed biosurfactants (amphiphiles produced by microorganisms) having excellent liquid crystal forming ability, such as easily forming various molecular aggregates by self-assembly in solution based on their unique molecular structure. We have found that reverse vesicles can be easily formed in a wide range of liquid oily substances by using this material.
That is, the present invention is as follows.

(1)糖型バイオサーファクタント化合物の自己組織化2分子膜からなる逆ベシクル。
(2)糖型バイオサーファクタント化合物が、下記一般式(1)で表されるマンノシルアルジトールリピッドであることを特徴とする上記(1)に記載の逆ベシクル。
〔ただし、上記式(1)中、Rは炭素数2〜24の直鎖あるいは分岐状の飽和または不飽和脂肪族アシル基を表し、Rは、水素またはアセチル基を表す。Rは水素または炭素数2〜24の直鎖あるいは分岐状の飽和または不飽和脂肪族アシル基を表す。2箇所あるR及びRは同一であっても異なっていてもよい。nは1〜4の整数である。〕
(3)上記一般式(1)で表される化合物が以下の式(2)に記載の構造を有するものであることを特徴とする上記(2)に記載の逆ベシクル。
(式中、Rは、同一でも異なっていてもよい炭素数4〜20の脂肪族アシル基を表す。)
(4)薬剤を含有することを特徴とする、上記(1)〜(3)のいずれかに記載の逆ベシクル。
(5)一般式(1)に記載の糖型バイオサーファクタント化合物を、水を添加した非極性の液状油性物質中で攪拌することを特徴とする、上記(1)に記載の逆ベシクル形成方法。
(6)水に水溶性薬剤を、及び/又は非極性の液状油性物質に油溶性の薬剤を含有させることを特徴とする,上記(5)に記載の逆ベシクルの製造方法。
(1) A reverse vesicle comprising a self-assembled bilayer membrane of a sugar-type biosurfactant compound.
(2) The reverse vesicle according to (1), wherein the sugar-type biosurfactant compound is mannosyl alditol lipid represented by the following general formula (1).
[In the above formula (1), R 1 represents a linear or branched saturated or unsaturated aliphatic acyl group having 2 to 24 carbon atoms, and R 2 represents hydrogen or an acetyl group. R 3 represents hydrogen or a linear or branched saturated or unsaturated aliphatic acyl group having 2 to 24 carbon atoms. Two R 2 and R 3 may be the same or different. n is an integer of 1-4. ]
(3) The reverse vesicle according to (2) above, wherein the compound represented by the general formula (1) has a structure described in the following formula (2).
(In the formula, R represents an aliphatic acyl group having 4 to 20 carbon atoms which may be the same or different.)
(4) The reverse vesicle according to any one of (1) to (3) above, which contains a drug.
(5) The method of forming a reverse vesicle according to (1) above, wherein the sugar-type biosurfactant compound described in the general formula (1) is stirred in a nonpolar liquid oily substance to which water has been added.
(6) The method for producing a reverse vesicle according to (5) above, wherein a water-soluble drug is contained in water and / or an oil-soluble drug is contained in a nonpolar liquid oily substance.

バイオサーファクタントは、微生物が各種バイオマスを原料として生産する両親媒性物質であり、環境や生体に対する適合性に優れるため、これを逆ベシクル化して化粧品や皮膚外用剤等の種々医薬品素材に利用することは、既存の合成界面活性剤の系と比べ安全性の面で非常に有用である。また、バイオサーファクタントは汎用の合成界面活性剤に比べて極めて低濃度で高い界面活性を示すほか、特異な自己組織化特性や様々な生理機能を有する。したがって、既存の化合物と比べて少量の使用で同等以上の効果が期待でき、さらに種々の生理活性を利用した生体機能性を逆ベシクルに付与できることから、これを基材として油系で利用する波及効果は極めて高いと期待される。
さらに本発明を用いれば、従来では得られなかった非常に幅広い種類の溶媒中で、単一の成分で逆ベシクルを形成できる。用途に応じて油の種類を選択でき、多種多様なクリームや乳液、軟膏などの製品の提供が可能となる。
Biosurfactant is an amphiphile produced by microorganisms using various types of biomass as raw materials, and has excellent compatibility with the environment and living organisms. Therefore, it should be converted into a reverse vesicle and used in various pharmaceutical materials such as cosmetics and topical skin preparations. Is very useful in terms of safety compared to existing synthetic surfactant systems. In addition, biosurfactant exhibits high surface activity at a very low concentration as compared with general-purpose synthetic surfactants, and also has unique self-organization characteristics and various physiological functions. Therefore, compared to existing compounds, the same or better effect can be expected when used in a small amount, and biofunctionality utilizing various physiological activities can be imparted to the reverse vesicles. The effect is expected to be extremely high.
Furthermore, by using the present invention, reverse vesicles can be formed with a single component in a very wide variety of solvents that have not been obtained in the past. The type of oil can be selected according to the application, and a wide variety of products such as creams, emulsions and ointments can be provided.

実施例1で調製した逆ベシクルの顕微鏡観察の結果を示した写真である。4 is a photograph showing the result of microscopic observation of the reverse vesicle prepared in Example 1. FIG. 実施例1で調製した逆ベシクルの小角X線散乱(SAXS)測定の結果を示した図である。FIG. 3 is a diagram showing the results of small-angle X-ray scattering (SAXS) measurement of an inverted vesicle prepared in Example 1. 実施例23で調製したカルセイン水溶液を内包する逆ベシクルの共焦点レーザー顕微鏡による蛍光観察の結果を示した写真である。It is the photograph which showed the result of the fluorescence observation by the confocal laser microscope of the reverse vesicle which includes the calcein aqueous solution prepared in Example 23.

〔バイオサーファクタント〕
現在、バイオサーファクタント(微生物が生産する界面活性物質)としては、糖脂質系、アシルペプタイド系、リン脂質系、脂肪酸系、及び高分子化合物系の5つに分類されている。中でも糖脂質系の界面活性剤については、生産性に優れ量産化が可能であること、糖鎖由来の高い生理活性が見込まれることなどから、最もよく研究され、細菌及び酵母による多くの種類の物質が報告されている。
シュードモナス アエルジノーサ(Pseudomonas aeruginosa)をはじめ、主にシュードモナス(Pseudomonas)属細菌が生産するラムノリピッド類、スターメレラ ボンビコーラ(Starmerella bombicola)をはじめ、主にキャンディダ(Candida)属酵母が生産するソホロリピッド類、コリネバクテリウム(Corynebacterium)属やロドコッカス(Rodococcus)属をはじめとする細菌が生産するトレハロースリピッド類、ウスチラゴ メイディス(Ustilago maydis)やクリプトコッカス フミコーラ(Cryptococcus humicola)などをはじめとする細菌が生産するセロビオースリピッド類、シュードザイマ(Pseudozyma)属などの酵母が生産するマンノシルアルジトールリピッド類、ツカムレラ(Tsukamurella)属酵母が生産するオリゴ糖リピッド類などが、代表的な糖脂質系のバイオサーファクタントである。
[Biosurfactant]
Currently, biosurfactants (surfactants produced by microorganisms) are classified into five groups: glycolipids, acyl peptides, phospholipids, fatty acids, and polymer compounds. Among them, glycolipid surfactants are most well studied because they are excellent in productivity and can be mass-produced, and are expected to have high physiological activity derived from sugar chains. Substances have been reported.
Including Pseudomonas aeruginosa (Pseudomonas aeruginosa), mainly rhamnolipid such that Pseudomonas (Pseudomonas) bacteria of the genus produce, sophorolipid acids including Sutamerera Bonbikora (Starmerella bombicola), which is mainly Candida (Candida) yeast of the genus production, Corynebacterium (Corynebacterium) or the genus Rhodococcus (Rodococcus) genus trehalose lipid compounds that bacteria production, including, Ustilago Meidisu (Ustilago maydis) and Cryptococcus Humicola (Cryptococcus humicola) cellobiose lipid acids to produce bacteria, including such as, Pseudozyma ( Pseudozyma) genus mannosyl alditol lipid acids that yeast to production, such as, such as oligosaccharides lipid compounds that Tsukamurella (Tsukamurella) genus yeast to production, Baiosa typical glycolipid system Is Fakutanto.

これらは二分子膜で構成される液晶の形成能力に優れており、ベシクル系の製剤に高い適正を有すると期待される。特に、マンノシルアルジトールリピッドは非常に幅広い濃度・温度領域で液晶を形成出来ることから、逆ベシクル形成に望ましい。
マンノシルアルジトールリピッドの化学構造は一般式(1)に示され、マンノシルアルジトールリピッド(以下、MALと呼ぶ)は、MAL生産微生物の培養によって得られ、4−O−β−D−マンノピラノシル−アルジトールをその基本構造とするものである。
〔ただし、上記式(1)中、Rは炭素数2〜24の脂肪族アシル基であり、直鎖あるいは分岐状の飽和または不飽和脂肪族アシル基を含む。Rは、水素またはアセチル基を表す。Rは水素または炭素数2〜24脂肪族アシル基であり、直鎖あるいは分岐状の飽和または不飽和脂肪族アシル基を含む。2箇所あるR及びRは同一であっても異なっていてもよい。nは1〜4の整数である。〕
These are excellent in the ability to form liquid crystals composed of bimolecular films, and are expected to have high suitability for vesicle-based preparations. In particular, mannosyl alditol lipid is desirable for forming reverse vesicles because it can form liquid crystals in a very wide range of concentrations and temperatures.
The chemical structure of mannosyl alditol lipid is represented by the general formula (1), and mannosyl alditol lipid (hereinafter referred to as MAL) is obtained by culturing MAL-producing microorganism, and 4-O-β-D-mannopyranosyl-alditol. Is the basic structure.
[In the above formula (1), R 1 is an aliphatic acyl group having 2 to 24 carbon atoms, and includes a linear or branched saturated or unsaturated aliphatic acyl group. R 2 represents hydrogen or an acetyl group. R 3 is hydrogen or a C2-C24 aliphatic acyl group, and includes a linear or branched saturated or unsaturated aliphatic acyl group. Two R 2 and R 3 may be the same or different. n is an integer of 1-4. ]

ここで、アルジトールとは直鎖状の糖質の両末端が還元された糖アルコールのことであり、炭素数3のグリセリン(n=1)、炭素数4のエリスリトール、トレイトール(n=2)、炭素数5のアラビニトール、キシリトール、リビトール(n=3)、炭素数6のアリトール、ソルビトール、マンニトール、イジトール、ガラクチトール、タリトール(n=4)などが例に挙げられる。   Here, alditol is a sugar alcohol in which both ends of a linear saccharide are reduced, and glycerin having 3 carbon atoms (n = 1), erythritol having 4 carbon atoms, and threitol (n = 2). Examples thereof include arabinitol having 5 carbon atoms, xylitol, ribitol (n = 3), allitol having 6 carbon atoms, sorbitol, mannitol, iditol, galactitol, and taritol (n = 4).

また、上記一般式(1)の置換基R及びRの脂肪族アシル基の種類及びその炭素数は、MAL生産培地に含有させる油脂類中の脂肪酸に基本的には依存するが、その炭素数は使用するMAL生産菌の脂肪酸の資化の程度により変化する。したがって、得られる各MALは、通常、置換基Rの脂肪酸残基部分が異なる化合物の混合物の形態である。 In addition, the type of the aliphatic acyl group of the substituents R 1 and R 3 of the general formula (1) and the number of carbons thereof basically depend on the fatty acid in the fats and oils contained in the MAL production medium. The number of carbons varies depending on the degree of assimilation of fatty acids of the MAL-producing bacteria used. Therefore, each MAL obtained is usually in the form of a mixture of compounds in which the fatty acid residue portion of the substituent R is different.

上記マンノシルアルジトールリピッドの中でも、上記式(1)中n=2で表されるマンノシルエリスリトールリピッドが最も生産性に優れるため、利用することが望ましい。
本発明に用いるマンノシルエリスリトールリピッド(以下、MELと呼ぶ)は、MEL生産微生物の培養によって得られ、上記式(1)中n=2で表される。MELの代表例としてMEL−A、MEL−B、MEL−C、MEL−D、一鎖型MEL及び三鎖型MEL−Aの化学構造を以下に示す。
Among the mannosyl alditol lipids, the mannosyl erythritol lipid represented by n = 2 in the formula (1) is most excellent in productivity, so that it is desirable to use it.
Mannosyl erythritol lipid (hereinafter referred to as MEL) used in the present invention is obtained by culturing a MEL-producing microorganism and is represented by n = 2 in the above formula (1). As typical examples of MEL, chemical structures of MEL-A, MEL-B, MEL-C, MEL-D, single-chain MEL, and three-chain MEL-A are shown below.

これら式中、Rは上記式(1)と同様の基であり、Acはアセチル基を表す。 In these formulas, R 1 is the same group as the above formula (1), and Ac represents an acetyl group.

これらの代表的な同族体は、生産微生物や原料の違いによってそれぞれ選択的に製造することが可能である。一例をあげると、シュードザイマ アンタクティカ(Pseudozyma antarctica)などがMEL−Aを、シュードザイマ ツクバエンシス(Pseudozyma tsukubaensis)などがMEL−Bを、シュードザイマ グラミニコーラ(Pseudozyma graminicola)などがMEL−Cを主生成物として生産することが知られており、これらを培養することで各同族体を選択的に取得できる。また、MEL−Dはこれらの同族体からアセチル基のみを加水分解することで製造可能である。さらに、一鎖型MELは、主原料を糖質などの親水性基質に限定することで得られ、三鎖型MELは、疎水性基質を大量に添加して培養時間を制御することで選択的に得られる。 These representative homologues can be selectively produced depending on the production microorganisms and the difference in raw materials. By way of example, the Pseudozyma Antakutika (Pseudozyma antarctica), etc. is MEL-A, the Pseudozyma tsukubaensis (Pseudozyma tsukubaensis) such that MEL-B, etc. Pseudozyma Guraminikora (Pseudozyma graminicola) to produce MEL-C as a main product It is known that each homologue can be selectively obtained by culturing them. Moreover, MEL-D can be manufactured by hydrolyzing only an acetyl group from these homologues. Furthermore, single-chain MEL is obtained by limiting the main raw material to hydrophilic substrates such as carbohydrates, and three-chain MEL is selectively added by adding a large amount of hydrophobic substrate to control the culture time. Is obtained.

これ以外に、エリスリトール部分が反転した光学異性体も存在する(式4)。
一般的なMEL生産微生物の多くは左の立体構造のMELを生産するが、シュードザイマ ツクバエンシス(Pseudozyma tsukubaensis)、シュードザイマ クラッサ(Pseudozyma crassa)が右の立体構造のMELを生産することが知られている。
以上の同族体はそれぞれ異なる物性を示すことが知られているが、これらはシリカゲルカラムクロマトグラフィーなど通常の分離精製工程で容易に単離できる。
In addition, there are optical isomers in which the erythritol moiety is inverted (Formula 4).
Many common MEL producing microorganism is producing MEL left conformation, Pseudozyma tsukubaensis (Pseudozyma tsukubaensis), Pseudozyma crassa (Pseudozyma crassa) are known to produce MEL right conformation .
The above homologues are known to exhibit different physical properties, but they can be easily isolated by a normal separation and purification process such as silica gel column chromatography.

〔逆ベシクルの形成、利用〕
逆ベシクルの形成は、通常水系でベシクルを形成させる方法を各種の液状油性物質中で行うことで可能である。
液状油性物質としては、非極性のものが望ましく、例えば、炭素数5以上の直鎖、不飽和及び環状炭化水素が挙げられるが、ジメチルシリコーンオイルあるいは環状ジメチルシリコーンオイル等の非極性シリコーンオイルでもよく、これら液状油性物質中で容易に逆ベシクルが形成されることが確認された。
本発明の逆ベシクルの形成において種々は公知法が用いられ得るが、一般的には薄膜法(バンガム法)を用いるのが好ましい。この方法においては、バイオサーファクタント試料をクロロホルム、アセトンなどの揮発性の溶媒に溶解させて容器内に秤取し、減圧乾燥によって溶媒を除去してバイオサーファクタントの薄膜を容器内面に形成させる。次に、連続相となる各種の非極性の液状油性物質を添加し、ボルテクスミキサーあるいは超音波等により、攪拌あるいは振盪させることで上記油性物質中にラメラ相が分散して、逆ベシクルが形成される。
[Formation and use of reverse vesicles]
Reverse vesicles can be formed by performing a method of forming vesicles in a normal aqueous system in various liquid oily substances.
The liquid oily substance is preferably nonpolar, and examples thereof include linear, unsaturated and cyclic hydrocarbons having 5 or more carbon atoms, but nonpolar silicone oils such as dimethylsilicone oil or cyclic dimethylsilicone oil may be used. It was confirmed that reverse vesicles were easily formed in these liquid oily substances.
Various known methods can be used in forming the reverse vesicle of the present invention, but it is generally preferable to use a thin film method (bangham method). In this method, a biosurfactant sample is dissolved in a volatile solvent such as chloroform or acetone and weighed in a container, and the solvent is removed by drying under reduced pressure to form a biosurfactant thin film on the inner surface of the container. Next, various non-polar liquid oily substances that become a continuous phase are added, and the lamella phase is dispersed in the oily substance by stirring or shaking with a vortex mixer or ultrasonic waves to form a reverse vesicle. The

この時、バイオサーファクタント試料の濃度は0.0001〜50質量%となるのが好ましく、0.001〜20%、さらには0.01〜10%となるのが好ましい。
また、この際、他成分の添加せずに逆ベシクルを形成することも可能であるが、水を添加するとさらに安定に逆ベシクルを形成できる。水を添加する場合は、全組成比で0.0001〜5質量%含有するのが好ましく、0.001〜3%、さらに0.01〜1%含有するのが好ましい。
さらに、上記液状油性物質と本発明の逆ベシクルとを、濾過、乾燥等により分離するために、より安定性が必要となる場合においては、上記逆ベシクル形成時、さらに、非イオン界面活性剤、あるいはコレステロール等の安定化剤の添加等のそれ自体公知の安定化手段を適用すればよい。
At this time, the concentration of the biosurfactant sample is preferably 0.0001 to 50% by mass, preferably 0.001 to 20%, and more preferably 0.01 to 10%.
Further, at this time, it is possible to form a reverse vesicle without adding other components, but when water is added, the reverse vesicle can be formed more stably. When adding water, it is preferable to contain 0.0001-5 mass% by a total composition ratio, and it is preferable to contain 0.001-3%, and also 0.01-1%.
Furthermore, in order to separate the liquid oily substance and the reverse vesicle of the present invention by filtration, drying, etc., when more stability is required, when forming the reverse vesicle, further, a nonionic surfactant, Alternatively, known stabilization means such as addition of a stabilizer such as cholesterol may be applied.

本発明の逆ベシクルを構成する膜は、ラメラ構造を有し、自己組織化2分子膜を構造単位として一層あるいはそれ以上積層した構造を有し、通常、これら積層状態の異なる混合物の状態で得られる。上記2分子膜は、単分子膜が2枚積層した構造を有し、バイオサーファクタントの疎水基(脂肪族アシル基)及び親水基(水酸基)が、外側から疎水基―親水基::親水基―疎水基が順に配向している。また、上記2分子膜が2層以上積層している場合は、2分子膜の疎水基同士が隣接配向して積層状態になっている。   The film constituting the inverted vesicle of the present invention has a lamellar structure, and has a structure in which one or more self-assembled bilayer films are stacked as a structural unit, and is usually obtained in a mixture of these stacked states. It is done. The bimolecular film has a structure in which two monomolecular films are laminated, and the hydrophobic group (aliphatic acyl group) and the hydrophilic group (hydroxyl group) of the biosurfactant are hydrophobic groups from the outside-hydrophilic group :: hydrophilic group- Hydrophobic groups are oriented in order. Further, when two or more bimolecular films are laminated, the hydrophobic groups of the bimolecular film are aligned adjacently to form a laminated state.

一方、上記逆ベシクルの内部は中空状であり、この中空空間には、上記逆ベシクル形成の際、連続相として用いた油性物質が内包されている。また、上記自己組織化2分子膜の親水基配向部分には、上記添加した水を含有させることができる。したがって、本発明の逆ベシクルに薬剤を含有させる場合には、上記逆ベシクル形成において用いた上記油性物質及び/又はあるいは水に、薬剤を含有させればよく、本発明の逆ベシクルには、油溶性薬剤、水溶性薬剤、あるいはその両者を含有させることができる。
すなわち、本発明の逆ベシクルに含有しうる薬剤には、特に制限はなく、例えば、抗炎症剤、殺菌剤、収斂剤、防腐剤、保湿剤、各種の脂溶性生理活性物質(ホルモン剤、ビタミン類、細胞活性因子など)など極めて多岐にわたる。
On the other hand, the inside of the inverted vesicle is hollow, and the hollow space contains an oily substance used as a continuous phase when forming the inverted vesicle. Moreover, the added water can be contained in the hydrophilic group orientation portion of the self-assembled bilayer film. Therefore, when the reverse vesicle of the present invention contains a drug, the oily substance and / or water used in the above-described reverse vesicle formation may contain the drug. The reverse vesicle of the present invention includes an oil A soluble drug, a water-soluble drug, or both can be included.
That is, the drug that can be contained in the reverse vesicle of the present invention is not particularly limited, and examples thereof include anti-inflammatory agents, bactericides, astringents, preservatives, moisturizers, various fat-soluble physiologically active substances (hormonal agents, vitamins). Etc., cell activators, etc.).

本発明の逆ベシクルは、それ自体あるいは上記液状油性物質中に存在する状態で、化粧品基材、あるいは医薬品基材中に配合できる。本願発明の逆ベシクルは、皮膚と同様のラメラ構造を有するため、皮膚との親和性がよく、経皮吸収性に優れる。   The reverse vesicle of the present invention can be blended in a cosmetic base material or a pharmaceutical base material itself or in a state of being present in the liquid oily substance. Since the reverse vesicle of the present invention has a lamellar structure similar to that of skin, it has good affinity with skin and excellent percutaneous absorption.

本発明において、逆ベシクルが形成されていることは、通常液晶を観察する方法に従い、偏光下で溶液の顕微鏡観察を行い、溶液中に形成された自己集合体が逆ミセルでないことを、ベシクル界面が異方性を有することにより確認される、構造の異方性パターンから確認することができる。より具体的には、マルテーゼクロスが見えることで確認できる。さらに詳細に解析するには、X線結晶構造解析により二分子膜構造(ラメラ構造)であることを確認するとともに、電子顕微鏡によって構造体がカプセル(中空)状であることを観察する。
以下に実施例を示し、本発明を更に具体的に説明するが、これらは単なる例示であり、本発明をここに限定するものではない。
In the present invention, the formation of reverse vesicles usually means that the solution is observed under a microscope under polarized light according to the method of observing liquid crystal, and the self-assembly formed in the solution is not a reverse micelle. Can be confirmed from the anisotropic pattern of the structure, which is confirmed by having anisotropy. More specifically, it can be confirmed by seeing the Maltese cloth. In order to analyze in more detail, the bilayer structure (lamella structure) is confirmed by X-ray crystal structure analysis, and the structure is observed in a capsule (hollow) shape by an electron microscope.
The present invention will be described more specifically with reference to the following examples. However, these are merely examples, and the present invention is not limited thereto.

[実施例1]
逆ベシクルの形成に用いるバイオサーファクタント試料として、マンノシルエリスリトールリピッド−D(以下、MEL−D)を選択した。下記化学式(5)に分子構造を記す。
ここで、式中、Rは、同一でも異なっていてもよい炭素数4〜20の脂肪族アシル基を表すが、今回用いた試料のRの組成比は表1の通りである。
[Example 1]
Mannosyl erythritol lipid-D (hereinafter, MEL-D) was selected as a biosurfactant sample used for the formation of reverse vesicles. The molecular structure is shown in the following chemical formula (5).
Here, in the formula, R represents an aliphatic acyl group having 4 to 20 carbon atoms which may be the same or different, and the composition ratio of R of the sample used this time is as shown in Table 1.

(逆ベシクル調製方法)
1%MEL−Dクロロホルム/メタノール(50/50vol)溶液を調製し、試験管に0.5mL秤取し、ロータリーエバポレーターを用いて減圧濃縮し、さらに減圧下乾燥することで溶媒を完全に除去し、管壁面にMEL−Dの薄膜を形成させた。次に、デカン6mL、水20μLを加え、ボルテクスミキサー、超音波振盪を用いて溶液を十分に撹拌することで、白濁溶液を得た。
(Reverse vesicle preparation method)
Prepare a 1% MEL-D chloroform / methanol (50/50 vol) solution, weigh 0.5 mL into a test tube, concentrate under reduced pressure using a rotary evaporator, and dry under reduced pressure to completely remove the solvent. A thin film of MEL-D was formed on the tube wall surface. Next, 6 mL of decane and 20 μL of water were added, and the solution was sufficiently stirred using a vortex mixer and ultrasonic shaking to obtain a cloudy solution.

(逆ベシクル形成の確認)
得られた溶液について顕微鏡観察を行い、微分干渉観察から球状の集合体が観察され、偏光観察によりこの集合体が直交ニコル下においてマルテーゼクロスとして観察されたことから、逆ベシクルの形成を確認した(図1)。さらに、時間経過後、逆ベシクルが沈降してできた下層部分(沈殿物)を採取し、小角X線散乱(SAXS)測定を行った結果(図2)、1:2:3の比でラメラ構造を示すピークが検出された。この結果からも、本バイオサーファクタントサンプルがデカン中でラメラ構造を形成することが確認され、これが分散して逆ベシクルが形成することが支持された。
(Confirmation of reverse vesicle formation)
The obtained solution was observed with a microscope, and a spherical assembly was observed by differential interference observation. This assembly was observed as a Maltese cross under crossed Nicols by polarization observation, confirming the formation of a reverse vesicle ( FIG. 1). Furthermore, after a lapse of time, a lower layer portion (precipitate) formed by sedimentation of the reverse vesicle was collected, and a result of small-angle X-ray scattering (SAXS) measurement (FIG. 2), a lamella at a ratio of 1: 2: 3. A peak indicating the structure was detected. This result also confirmed that the biosurfactant sample formed a lamellar structure in decane, which supported the formation of inverted vesicles by dispersion.

[実施例2〜14]
実施例1で連続相としてデカンの代わりに、ヘキサン、ヘプタン、オクタン、ドデカン、テトラデカン、ヘキサデカン、シクロヘキサン、1−オクタノール、オレイン酸、スクアラン、スクアレン、シリコーンオイルKF-96A-6cs(ジメチルシリコーンオイル)、KF-995(環状ジメチルシリコーンオイル)(共に、信越シリコーン社製)を用いて同様の実験を行った。結果をまとめて表2に示す。逆ベシクルの形成有無はマルターゼクロスの観察によって判別した。
アルコール(1−オクタノール)や脂肪酸(オレイン酸)のような極性官能基を有する溶媒中では逆ベシクルが形成されなかったが、それ以外の直状炭化水素系溶媒は天然油(スクアレン、スクアランを含めて逆ベシクルを形成した。さらには、シリコーンオイル中でも容易に逆ベシクルが形成されることが確認された。
[Examples 2 to 14]
Instead of decane as a continuous phase in Example 1, hexane, heptane, octane, dodecane, tetradecane, hexadecane, cyclohexane, 1-octanol, oleic acid, squalane, squalene, silicone oil KF-96A-6cs (dimethyl silicone oil), A similar experiment was conducted using KF-995 (cyclic dimethyl silicone oil) (both manufactured by Shin-Etsu Silicone). The results are summarized in Table 2. The presence or absence of reverse vesicles was determined by observation of maltase cross.
Reverse vesicles were not formed in solvents with polar functional groups such as alcohol (1-octanol) and fatty acids (oleic acid), but other straight hydrocarbon solvents include natural oils (squalene and squalane). In addition, it was confirmed that the reverse vesicle was easily formed even in the silicone oil.

[実施例15]
実施例2で、水を添加せずに同様の実験を行った(表2)。その結果、水を添加せず、連続相(ヘキサン)と活性剤(MEL−D)のみで逆ベシクルが形成されることが確認された。
[Example 15]
In Example 2, a similar experiment was performed without adding water (Table 2). As a result, it was confirmed that the reverse vesicle was formed only by the continuous phase (hexane) and the activator (MEL-D) without adding water.

[実施例16〜22]
実施例15で連続相としてヘキサンの代わりに、ヘキサデカン、1−オクタノール、オレイン酸、スクアラン、スクアレン、シリコーンオイルKF-96A-6cs(ジメチルシリコーンオイル)、KF-995(環状ジメチルシリコーンオイル)を用いて、同様の実験を行った(表2)。アルコール、脂肪酸、及び炭素数の大きい炭化水素中では逆ベシクルの形成が見られなかったが、それ以外では水非添加でも逆ベシクルの形成が確認された。
[Examples 16 to 22]
In Example 15, instead of hexane, hexadecane, 1-octanol, oleic acid, squalane, squalene, silicone oil KF-96A-6cs (dimethylsilicone oil), KF-995 (cyclic dimethylsilicone oil) were used as the continuous phase in Example 15. A similar experiment was conducted (Table 2). The formation of reverse vesicles was not observed in alcohols, fatty acids, and hydrocarbons having a large number of carbon atoms, but the formation of reverse vesicles was confirmed even when water was not added.

[実施例23](逆ベシクルの構造確認及び水溶性基質の脂質膜間への内包)
実施例1と同様の方法で、逆ベシクルを調製する際、水20μLの代わりに、水溶性蛍光指示薬であるカルセインの水溶液(1mM)を6μL添加し、カルセイン水溶液を膜間に内包する逆ベシクルを調製した。共焦点レーザー顕微鏡を用いた蛍光観察の結果、球状の集合体の外殻部分のみ緑の蛍光が観察され、内部は中空構造であることが確認された(図3)。
この結果より、本集合体は内部に水相を有するミセル構造ではなく、バイオサーファクタントの疎水基(脂肪族アシル基)及び親水基(水酸基)が、外側から疎水基―親水基::親水基―疎水基が順に配向した二分子膜構造で集合体の外殻が構築された逆ベシクルを形成していることが確認された。また、膜間の親水部領域にカルセインを局所的に内包できることが確認されたことから、分子レベルの極めて微小、かつ表面積の大きな領域に、特定の親水的な薬物を内包できることが示された。
[Example 23] (Confirmation of structure of reverse vesicle and inclusion of water-soluble substrate between lipid membranes)
When preparing a reverse vesicle in the same manner as in Example 1, instead of 20 μL of water, 6 μL of an aqueous solution (1 mM) of calcein, which is a water-soluble fluorescent indicator, was added, and a reverse vesicle encapsulating the aqueous solution of calcein between the membranes was added. Prepared. As a result of fluorescence observation using a confocal laser microscope, green fluorescence was observed only in the outer shell portion of the spherical assembly, and it was confirmed that the inside was a hollow structure (FIG. 3).
From this result, this aggregate is not a micelle structure having an aqueous phase inside, but the hydrophobic group (aliphatic acyl group) and the hydrophilic group (hydroxyl group) of the biosurfactant from the outside are hydrophobic groups—hydrophilic groups :: hydrophilic groups— It was confirmed that a reverse vesicle was formed in which the outer shell of the aggregate was constructed with a bilayer structure in which hydrophobic groups were oriented in order. In addition, it was confirmed that calcein can be locally encapsulated in the hydrophilic region between the membranes, indicating that a specific hydrophilic drug can be encapsulated in a region having a very small molecular level and a large surface area.

Claims (6)

糖型バイオサーファクタント化合物の自己組織化2分子膜からなる逆ベシクル。   A reverse vesicle composed of a self-assembled bilayer membrane of a sugar-type biosurfactant compound. 糖型バイオサーファクタント化合物が、下記一般式(1)で表されるマンノシルアルジトールリピッドであることを特徴とする請求項1に記載の逆ベシクル。
〔ただし、上記式(1)中、Rは炭素数2〜24の直鎖あるいは分岐状の飽和または不飽和脂肪族アシル基を表し、Rは、水素またはアセチル基を表す。Rは水素または炭素数2〜24の直鎖あるいは分岐状の飽和または不飽和脂肪族アシル基を表す。2箇所あるR及びRは同一であっても異なっていてもよい。nは1〜4の整数である。〕
The reverse vesicle according to claim 1, wherein the sugar-type biosurfactant compound is mannosyl alditol lipid represented by the following general formula (1).
[In the above formula (1), R 1 represents a linear or branched saturated or unsaturated aliphatic acyl group having 2 to 24 carbon atoms, and R 2 represents hydrogen or an acetyl group. R 3 represents hydrogen or a linear or branched saturated or unsaturated aliphatic acyl group having 2 to 24 carbon atoms. Two R 2 and R 3 may be the same or different. n is an integer of 1-4. ]
上記一般式(1)で表される化合物が以下の式(2)に記載の構造を有するものであることを特徴とする請求項2に記載の逆ベシクル。
(式中、Rは、同一でも異なっていてもよい炭素数4〜20の脂肪族アシル基を表す。)
The reverse vesicle according to claim 2, wherein the compound represented by the general formula (1) has a structure represented by the following formula (2).
(In the formula, R represents an aliphatic acyl group having 4 to 20 carbon atoms which may be the same or different.)
薬剤を含有することを特徴とする,請求項1〜3のいずれかに記載の逆ベシクル。   The reverse vesicle according to any one of claims 1 to 3, comprising a drug. 一般式(1)に記載の糖型バイオサーファクタント化合物を、水を添加した非極性の液状油性物質中で攪拌することを特徴とする、請求項1に記載の逆ベシクル形成方法。   The method for forming a reverse vesicle according to claim 1, wherein the sugar-type biosurfactant compound represented by the general formula (1) is stirred in a nonpolar liquid oily substance to which water has been added. 水に水溶性薬剤を、及び/又は非極性の液状油性物質に油溶性の薬剤を含有させることを特徴とする,請求項5に記載の逆ベシクルの製造方法。   The method for producing a reverse vesicle according to claim 5, wherein a water-soluble drug is contained in water and / or an oil-soluble drug is contained in a nonpolar liquid oily substance.
JP2010067656A 2009-09-04 2010-03-24 Reverse vesicle composed of biosurfactant Active JP5447967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067656A JP5447967B2 (en) 2009-09-04 2010-03-24 Reverse vesicle composed of biosurfactant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009204402 2009-09-04
JP2009204402 2009-09-04
JP2010067656A JP5447967B2 (en) 2009-09-04 2010-03-24 Reverse vesicle composed of biosurfactant

Publications (2)

Publication Number Publication Date
JP2011074058A true JP2011074058A (en) 2011-04-14
JP5447967B2 JP5447967B2 (en) 2014-03-19

Family

ID=44018413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067656A Active JP5447967B2 (en) 2009-09-04 2010-03-24 Reverse vesicle composed of biosurfactant

Country Status (1)

Country Link
JP (1) JP5447967B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515637A (en) * 2013-04-10 2016-05-30 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Cosmetic formulations containing copolymers and sulfosuccinates and / or biosurfactants
JP2018526331A (en) * 2015-06-30 2018-09-13 アモーレパシフィック コーポレーション Cosmetic composition having high dosage form stability
WO2022107622A1 (en) * 2020-11-20 2022-05-27 株式会社カネカ Reverse nanodisc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154121A (en) * 2007-12-27 2009-07-16 Toyobo Co Ltd Vesicle using mannosylerythritol lipid, emulsion composition and its utilization
JP2009167159A (en) * 2007-12-21 2009-07-30 Toyobo Co Ltd Cosmetic composition containing biosurfactant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167159A (en) * 2007-12-21 2009-07-30 Toyobo Co Ltd Cosmetic composition containing biosurfactant
JP2009154121A (en) * 2007-12-27 2009-07-16 Toyobo Co Ltd Vesicle using mannosylerythritol lipid, emulsion composition and its utilization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515637A (en) * 2013-04-10 2016-05-30 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Cosmetic formulations containing copolymers and sulfosuccinates and / or biosurfactants
JP2018526331A (en) * 2015-06-30 2018-09-13 アモーレパシフィック コーポレーション Cosmetic composition having high dosage form stability
US10792238B2 (en) 2015-06-30 2020-10-06 Amorepacific Corporation Cosmetic composition having high dosage form stability
WO2022107622A1 (en) * 2020-11-20 2022-05-27 株式会社カネカ Reverse nanodisc

Also Published As

Publication number Publication date
JP5447967B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5952410B2 (en) Water-in-oil emulsion and preparation method thereof
Milak et al. Glycerol monooleate liquid crystalline phases used in drug delivery systems
Baccile et al. pH-driven self-assembly of acidic microbial glycolipids
Baccile et al. Unusual, pH-induced, self-assembly of sophorolipid biosurfactants
Douliez et al. Self-assembly of bilayer vesicles made of saturated long chain fatty acids
Kunieda et al. Comparison between phase behavior of anionic dimeric (gemini-type) and monomeric surfactants in water and water− oil
Barauskas et al. “Sponge” nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80
US10857232B2 (en) Surfactant composition
Nilsson et al. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem
JPH059132B2 (en)
Imura et al. Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase
JP4452799B2 (en) Method for producing liposome using coacervate
JP5447967B2 (en) Reverse vesicle composed of biosurfactant
JP5246613B2 (en) Vesicle using mannosyl erythritol lipid, emulsion composition and use thereof
JP3187622B2 (en) Liposome
Yaghmur Nanoencapsulation of food ingredients by cubosomes and hexosomes
Saci et al. Lyotropic liquid-crystalline phases of sophorolipid biosurfactants
JP5791039B2 (en) Low molecular weight organogel containing cellobiose lipid
Drescher et al. Impact of headgroup asymmetry and protonation state on the aggregation behavior of a new type of glycerol diether bolalipid
Saulnier et al. Liquid crystals and emulsions in the formulation of drug carriers
Sabín et al. Characterization of phospholipid+ semifluorinated alkane vesicle system
Schenk et al. The preparation and characterization of lipid vesicles containing esters of sucrose and fatty acids
Sandoval-Altamirano et al. Curvophilic-curvophobic balance of monoalkyl-mannosides determines the magnitude of disturbance promoted in synthetic bilayers
RU2620250C1 (en) Composition based on lecithine
Gu et al. Effects of a bolaamphiphile on the structure of phosphatidylcholine liposomes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5447967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250