JP2011068117A - Surfacing sheet and foaming resin-made thermal insulation board - Google Patents

Surfacing sheet and foaming resin-made thermal insulation board Download PDF

Info

Publication number
JP2011068117A
JP2011068117A JP2010038825A JP2010038825A JP2011068117A JP 2011068117 A JP2011068117 A JP 2011068117A JP 2010038825 A JP2010038825 A JP 2010038825A JP 2010038825 A JP2010038825 A JP 2010038825A JP 2011068117 A JP2011068117 A JP 2011068117A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
resin
sheet
layer
surface material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010038825A
Other languages
Japanese (ja)
Other versions
JP5280388B2 (en
Inventor
Tomoyuki Terao
知之 寺尾
Hiroyoshi Ueno
浩義 上野
Isao Ichioka
勇夫 市岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Specialty Paper Co Ltd
Original Assignee
Oji Specialty Paper Co Ltd
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Specialty Paper Co Ltd, Oji Paper Co Ltd filed Critical Oji Specialty Paper Co Ltd
Priority to JP2010038825A priority Critical patent/JP5280388B2/en
Publication of JP2011068117A publication Critical patent/JP2011068117A/en
Application granted granted Critical
Publication of JP5280388B2 publication Critical patent/JP5280388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surfacing sheet which neither causes resin leakage in a production process of an foaming resin-made thermal insulation board nor causes a failure even when used in a hot asphalt application method but which is suitable for obtaining the foaming resin-made thermal insulation board. <P>SOLUTION: The surfacing sheet of the foaming resin-made thermal insulation board is an inorganic fiber nonwoven fabric which is based on an inorganic fiber and a resin binder and has a surface layer portion on one surface thereof and a nonwoven fabric layer portion to be continued from the surface layer portion to the thickness direction thereof. The surface layer portion comprises such a nonwoven fabric-paint mixed layer that an inorganic pigment in the paint applied to the surface thereof and the resin binder are fixed in the nonwoven fabric in states penetrated into the surface layer portion. The nonwoven fabric layer portion comprises a sole layer of the nonwoven fabric having 30-500 μm average thickness. The surfacing sheet has 5-1,500 cc/min/cm<SP>2</SP>Coresta permeability (according to a measurement method based on the Coresta recommendation method No40 ISO2965) and 26-34 wetting index. The foaming resin-made thermal insulation board has the surfacing sheet as a surfacing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は発泡樹脂製断熱ボードの表面材に好適な無機繊維シートに関するものであり、
さらに詳しくは、熱アスファルト工法のような過酷な施工方法によっても不具合の生じる
ことのない発泡樹脂製断熱ボードを得るのに好適な無機繊維不織布製の表面材用シートと
該表面材用シートを表面材として有する発泡樹脂製断熱ボードに関するものである。
The present invention relates to an inorganic fiber sheet suitable for the surface material of a heat insulating board made of foam resin,
More specifically, the surface material sheet made of an inorganic fiber nonwoven fabric and the surface material sheet suitable for obtaining a heat-insulated board made of foamed resin that does not cause a problem even by a severe construction method such as a thermal asphalt method, and the surface material sheet The present invention relates to a foamed resin heat insulating board as a material.

建造物の屋上等には断熱、防水の目的から、コンクリート面に断熱ボード、防水シート
等を積層した断熱構造体が採用されている。この断熱構造体を構成するための工法として
は、例えば熱アスファルト工法を挙げることができる。熱アスファルト工法とは、まずコ
ンクリート表面に250〜300℃程度の溶融状態の熱アスファルトを塗布し、温度が低
下しないうちに断熱ボードを敷設する。一度に熱アスファルトを塗布する面積は通常断熱
ボード1枚分であり、これを繰り返すことで断熱ボードをコンクリートの全面に敷設する
。次に、この敷設された断熱ボードの上に熱アスファルトを塗布しながら巻取り状の防水
シートを転がして貼着する。
For the purpose of heat insulation and waterproofing, a heat insulating structure in which a heat insulating board, a waterproof sheet, etc. are laminated on a concrete surface is adopted on the roof of a building. As a construction method for constituting this heat insulation structure, for example, a thermal asphalt construction method can be mentioned. In the thermal asphalt method, first, a molten asphalt of about 250 to 300 ° C. is applied to the concrete surface, and a heat insulation board is laid before the temperature is lowered. The area to apply hot asphalt at a time is usually one heat insulation board, and by repeating this, the heat insulation board is laid on the entire surface of the concrete. Next, a rolled-up waterproof sheet is rolled and pasted on the heat insulating board laid while applying hot asphalt.

熱アスファルト工法に使用される断熱ボードとしては、両面に表面材を配した硬質発泡
ウレタンボードが一般的である。この硬質発泡ウレタンボードの製造工程の一例を図2に
示す。まず、表面材21(下面材)にポリオール/ポリイソシアネート混合液23を塗布
し、発泡開始後に別の表面材22(上面材)を貼着し、ダブルコンベアー24で厚さを保
持しながら硬化させ、切断して硬質発泡ウレタンボード26が得られる。該混合液23は
通常ポリオール、ポリイソシアネートの他に、発泡剤(例えばシクロペンタン)、整泡剤
(例えばシリコーン系整泡剤)を含む。ポリオールとポリイソシアネートは常温で反応し
てウレタン結合を生成し、ウレタン樹脂となる。この反応は発熱反応のため、発泡剤が気
化膨張することで発泡する。整泡剤は発泡系の表面張力を上げることで泡を安定化させる
とともに、混合時に各材料の相溶性を高める。
As a heat insulating board used in the thermal asphalt method, a hard foamed urethane board having surface materials on both sides is generally used. An example of the manufacturing process of this rigid foam urethane board is shown in FIG. First, the polyol / polyisocyanate mixed solution 23 is applied to the surface material 21 (lower surface material), another surface material 22 (upper surface material) is adhered after the start of foaming, and cured while maintaining the thickness with the double conveyor 24. The rigid foamed urethane board 26 is obtained by cutting. The mixed solution 23 usually contains a foaming agent (for example, cyclopentane) and a foam stabilizer (for example, a silicone-based foam stabilizer) in addition to polyol and polyisocyanate. The polyol and polyisocyanate react at room temperature to form a urethane bond, thereby forming a urethane resin. Since this reaction is an exothermic reaction, foaming occurs when the foaming agent evaporates and expands. The foam stabilizer stabilizes the foam by increasing the surface tension of the foaming system, and increases the compatibility of each material during mixing.

表面材は樹脂を保持するとともに、断熱材の機械的強度や寸法安定性付与の役割を果た
す。表面材としては、例えば炭酸カルシウム混抄紙、水酸化アルミニウム混抄紙等の、木
材パルプと無機顔料の混抄紙が挙げられるが、木材パルプは吸脱湿による寸法変化が大き
く、熱アスファルト工法では急激に加熱されることで木材パルプが乾燥収縮し、ボードの
反りや歪みが発生して施工時に不具合が生じやすいため不向きである。また、木材パルプ
は腐食するため、耐久性も懸念される。
The surface material holds the resin and plays a role of imparting mechanical strength and dimensional stability of the heat insulating material. Examples of the surface material include mixed paper of wood pulp and inorganic pigment, such as calcium carbonate mixed paper and aluminum hydroxide mixed paper. Wood pulp has a large dimensional change due to moisture absorption and desorption. Heating causes the wood pulp to dry and shrink, causing warpage and distortion of the board, which is not suitable because it tends to cause problems during construction. Moreover, since wood pulp corrodes, we are anxious also about durability.

そのため、ガラス繊維等の無機繊維を主体とする不織布が使用されるようになったが、
無機繊維を主体とする不織布は一般に空隙径が大きく、ポリオール/ポリイソシアネート
混合液(以後、「樹脂液」と記す)塗布時に樹脂液が裏抜けして工程を汚してしまう問題
(以後、「樹脂漏れ」と記す)がある。このため、木材パルプを混抄したり、アスファル
トを含浸したりして目止めしているのが現状であるが、前述したように木材パルプの使用
は問題が多く、またアスファルトを含浸したものはアスファルト中の成分が溶出してセル
荒れを引き起こし、断熱性能を低下させるといった問題がある。
Therefore, a nonwoven fabric mainly composed of inorganic fibers such as glass fibers has been used.
Nonwoven fabrics mainly composed of inorganic fibers generally have a large pore size, and the problem is that the resin solution gets through when the polyol / polyisocyanate mixed solution (hereinafter referred to as “resin solution”) is applied, thereby contaminating the process (hereinafter referred to as “resin”). Leakage ”). For this reason, the current situation is that wood pulp is mixed or impregnated with asphalt, but as mentioned above, the use of wood pulp is problematic, and asphalt is impregnated with asphalt. There is a problem in that the components contained therein are eluted, causing cell roughening and lowering the heat insulation performance.

このような状況から、無機充填材を混抄した無機質シートの片面または両面に、無機質
充填材と有機結合剤からなる塗工層を設けた無機質シートが提案されている(特許文献1
)。しかしながら、該文献の無機質シートは通気度が低く、熱アスファルト塗布時の加熱
による2次発泡ガスの圧力で無機質シートが剥離する恐れがある。このような剥離がある
と、例えば台風等の強風時に屋上床面を上に持ち上げる力が生じた場合、床面が剥がれて
しまう恐れがある。
したがって、表面材には2次発泡ガスを逃がすための通気性を有することも求められる
Under such circumstances, an inorganic sheet has been proposed in which a coating layer made of an inorganic filler and an organic binder is provided on one or both sides of an inorganic sheet mixed with an inorganic filler (Patent Document 1).
). However, the inorganic sheet of this document has a low air permeability, and the inorganic sheet may be peeled off by the pressure of the secondary foaming gas due to heating during application of hot asphalt. If there is such peeling, for example, when a force for lifting the rooftop is generated in a strong wind such as a typhoon, the floor may be peeled off.
Therefore, the surface material is also required to have air permeability for allowing the secondary foaming gas to escape.

これを解決する方法として、フッ素系撥水撥油剤を含有するシート(特許文献2)、ポ
リフルオロアルキル基含有化合物を含有するシート基材(特許文献3)等が提案されてい
る。これらは十分な通気性を有しながら、フッ素系化合物の撥水撥油性により樹脂の浸透
を防止したものであるが、その強力な撥水撥油性のためにアスファルトや発泡樹脂との接
着性に劣り、界面で剥離が生じやすい。さらに、フッ素系化合物は熱アスファルト塗布時
の加熱で健康や環境に有害な分解物を生成する恐れが高く、安易に採用することはできな
い。
As a method for solving this, a sheet containing a fluorine-based water / oil repellent (Patent Document 2), a sheet substrate containing a polyfluoroalkyl group-containing compound (Patent Document 3), and the like have been proposed. Although these have sufficient breathability, they prevent penetration of the resin due to the water and oil repellency of the fluorine-based compound, but due to their strong water and oil repellency, they have excellent adhesion to asphalt and foamed resin. Inferior and easy to peel at the interface. Furthermore, the fluorine-based compounds are likely to generate decomposition products that are harmful to health and the environment when heated during application of hot asphalt, and cannot be easily adopted.

特開平1-198336号公報JP-A-1-198336 特開平9−310284号公報JP-A-9-310284 特開昭57−106772号公報JP-A-57-107772

本発明の課題は、発泡樹脂ボードの製造工程における樹脂漏れがなく、熱アスファルト
工法に使用しても不具合を生じることのない発泡樹脂ボードを得るために好適な表面材用
シートを提供することにある。
An object of the present invention is to provide a sheet for a surface material that is suitable for obtaining a foamed resin board that is free from resin leakage in the manufacturing process of the foamed resin board and that does not cause any problems even when used in a thermal asphalt method. is there.

本発明者等は、上記課題を解決するために各種検討を行った結果、無機繊維不織布に顔
料塗工した表面材用シートにおいて、通気度と濡れ指数を特定の範囲とし、さらに特定厚
さの不織布単独層を設けることで樹脂漏れ、熱アスファルト塗布時の膨れが防止できるこ
とを見出し、本発明を完成させるに至った。
前記の問題を解決するための本発明は、以下の発明を包含する。
As a result of various investigations to solve the above problems, the inventors of the present invention have made the air permeability and the wetting index within a specific range in a sheet for a surface material coated with a pigment on an inorganic fiber nonwoven fabric, and have a specific thickness. It has been found that providing a single layer of nonwoven fabric can prevent resin leakage and swelling during application of hot asphalt, and the present invention has been completed.
The present invention for solving the above problems includes the following inventions.

(1)無機繊維と樹脂バインダーを主成分とする無機繊維不織布の片面の表層部分が、該
片面に塗工された塗料中の無機顔料と樹脂バインダーが該片面の表層部分に浸透した状態
で不織布内に固定されている不織布−塗料複合層よりなり、該不織布−塗料複合層からな
る表層部分から厚さ方向に連続する不織布層部分が平均厚さ30μm以上500μm以下
の不織布単独層よりなる無機繊維不織布であって、コレスタ通気度(コレスタ推奨法 No.40 ISO2965に準拠した測定法による)が5〜1500cc/min/cmで、塗工面の濡れ指数が26〜34であることを特徴とする、発泡樹脂製断熱ボードの
表面材用シート。
(1) A non-woven fabric in which a surface layer portion on one side of an inorganic fiber non-woven fabric mainly composed of an inorganic fiber and a resin binder is infiltrated into the surface layer portion on one side of the coating material coated on the one side. An inorganic fiber comprising a nonwoven fabric-coating composite layer fixed inside, and a nonwoven fabric layer portion having an average thickness of 30 μm or more and 500 μm or less, the nonwoven fabric layer portion continuing in the thickness direction from the surface layer portion comprising the nonwoven fabric-coating composite layer It is a non-woven fabric, characterized in that the Cholesta air permeability (according to a measurement method based on Cholesta recommended method No. 40 ISO 2965) is 5 to 1500 cc / min / cm 2 and the wetness index of the coated surface is 26 to 34. , Sheet for surface material of insulation board made of foam resin.

(2)前記「不織布−塗料複合層」よりなる表層部分の平均厚さが20μm以上であるこ
とを特徴とする、上記(1)項に記載の発泡樹脂製断熱ボードの表面材用シート。
(3)前記無機繊維不織布がガラス繊維不織布であることを特徴とする(1)項又は(2
)項に記載の発泡樹脂製断熱ボードの表面材用シート。
(4)前記塗料中の樹脂バインダーが樹脂エマルジョンの状態で使用されているポリオレ
フィン系樹脂であることを特徴とする、上記(1)項〜(3)項のいずれか1項に記載の
発泡樹脂製断熱ボードの表面材用シート。
(5)前記塗料中の無機顔料がエンジニアードカオリンであることを特徴とする、(1)
項〜(4)項のいずれかに記載の発泡樹脂製断熱ボードの表面材用シート。
(2) The sheet for a surface material of a heat insulating board made of foamed resin as described in (1) above, wherein the average thickness of the surface layer portion composed of the “nonwoven fabric-coating composite layer” is 20 μm or more.
(3) Item (1) or (2), wherein the inorganic fiber nonwoven fabric is a glass fiber nonwoven fabric.
The sheet for the surface material of the foamed resin heat insulating board as described in the item).
(4) The foamed resin according to any one of (1) to (3) above, wherein the resin binder in the paint is a polyolefin resin used in a resin emulsion state. Sheet for surface material of heat insulating board.
(5) The inorganic pigment in the paint is engineered kaolin, (1)
The sheet | seat for surface materials of the foaming resin heat insulation board in any one of claim | item (4).

(6)上記(1)項〜(5)項のいずれか1項に記載の表面材用シートを発泡樹脂層の少
なくとも片面側の表面材として有する発泡樹脂製断熱ボード。
(7)前記発泡樹脂層が硬質発泡ウレタン樹脂層である、(6)項に記載の発泡樹脂製断
熱ボード。
(6) A foamed resin heat insulating board having the surface material sheet according to any one of the above items (1) to (5) as a surface material on at least one side of the foamed resin layer.
(7) The foamed resin thermal insulation board according to item (6), wherein the foamed resin layer is a hard foamed urethane resin layer.

本発明の表面材用シートを使用することで工程を汚すことなく発泡樹脂ボードを製造す
ることができ、得られた発泡樹脂ボードは熱アスファルト工法においても不具合を生じる
ことなく使用することが出来る。
By using the sheet for a surface material of the present invention, a foamed resin board can be produced without contaminating the process, and the obtained foamed resin board can be used without causing any trouble even in the thermal asphalt method.

表面材用シート断面模式図Sheet cross-sectional schematic diagram for surface material 硬質発泡ウレタンボードの製造工程図Manufacturing process diagram of rigid foam urethane board 硬質発泡ウレタンボードの断面模式図Cross-sectional schematic diagram of rigid urethane foam board

本発明の発泡樹脂製断熱ボードの表面材用シートは、図1に例示されている断面模式図
に示されるような不織布層内部構造を有している。
本発明の表面材用シートは、無機繊維13を樹脂バインダーで結合して形成されている無
機繊維不織布を基材とし、発泡樹脂ボード形成時に溶融状態の発泡性樹脂層に圧接される
裏面側が塗料非塗工面で、反対の表面側が塗料塗工面となっている。
The sheet | seat for surface materials of the heat insulation board made from foamed resin of this invention has a nonwoven fabric layer internal structure as it is shown by the cross-sectional schematic diagram illustrated by FIG.
The sheet for a surface material of the present invention is based on an inorganic fiber nonwoven fabric formed by bonding inorganic fibers 13 with a resin binder, and the back side that is pressed against the foamed resin layer in a molten state when the foamed resin board is formed is a paint. On the non-coating surface, the opposite surface side is the coating surface.

塗料塗工面側の不織布の表層部分は、塗工された塗料中の無機顔料と樹脂バインダーが
表層部分に浸透した状態で不織布層内に固定されて「不織布−塗料複合層」12を形成し
ている。図示されているように、「不織布−塗料複合層」12においては、不織布層内の
無機繊維13間に形成されている空隙部が無機顔料と樹脂バインダーからなる塗料14に
よって埋められて空隙部分が小さくなった状態とされているが、発泡樹脂ボードの施工時
の熱で発生する2次発泡ガスを「不織布−塗料複合層」12を通して外部に逃すことがで
きる通気性は、前記した小さくなった空隙部が形成している貫通孔によって確保されてい
る。
The surface layer portion of the non-woven fabric on the paint coating surface side is fixed in the non-woven fabric layer with the inorganic pigment and resin binder in the coated paint penetrating into the surface layer portion to form a “non-woven fabric-paint composite layer” 12 Yes. As shown in the drawing, in the “nonwoven fabric-paint composite layer” 12, voids formed between the inorganic fibers 13 in the nonwoven fabric layer are filled with a coating 14 made of an inorganic pigment and a resin binder, and the voids are formed. Although it is in a reduced state, the air permeability that allows the secondary foaming gas generated by the heat during the construction of the foamed resin board to escape to the outside through the “nonwoven fabric-paint composite layer” 12 is reduced as described above. It is ensured by the through hole formed by the gap.

塗料塗工面側の不織布の表層部分は、実質的に塗料が不織布に浸透して不織布/塗料複
合層を形成している状態である。実質的に塗料が不織布に浸透している状態とは、表面材
用シートの塗工面を観察したときに、不織布を構成する無機繊維が露出、又はその形態が
観察できる状態を指す。塗料が不織布に十分浸透せず、不織布を構成する無機繊維の形態
が観察できないほど不織布表面に塗工層を形成していると、不織布/塗工層の界面破壊や
塗工層内部の凝集破壊による剥離が生じやすい。
The surface layer portion of the nonwoven fabric on the coating surface side is in a state where the coating material substantially penetrates into the nonwoven fabric to form a nonwoven fabric / paint composite layer. The state in which the coating material substantially penetrates into the nonwoven fabric refers to a state in which the inorganic fibers constituting the nonwoven fabric are exposed or the form can be observed when the coated surface of the surface material sheet is observed. If the coating layer is formed on the surface of the nonwoven fabric so that the coating does not sufficiently penetrate the nonwoven fabric and the form of the inorganic fibers that make up the nonwoven fabric is not observable, the interface failure of the nonwoven fabric / coating layer or the cohesive failure inside the coating layer Peeling easily occurs.

不織布の塗料非塗工面側の層は不織布単独層11であり、不織布特有の空隙部に富む層
であるので、優れた断熱性を備えた層であることに加えて、ボード形成時に溶融状態の発
泡性樹脂層に圧接された際に該溶融樹脂の一部が不織布の表層部に侵入した状態で硬化す
ることとなり、発泡樹脂層と表面基材との接合状態が極めて良好である発泡樹脂ボードが
形成されるという、アンカー機能を備えた表面を有する層となっている。
The layer on the non-coating surface side of the nonwoven fabric is the nonwoven fabric single layer 11 and is a layer rich in the voids unique to the nonwoven fabric. Therefore, in addition to being a layer having excellent heat insulation properties, A foamed resin board in which the molten resin layer is cured in a state where a part of the molten resin penetrates into the surface layer portion of the nonwoven fabric when pressed against the foamable resin layer, and the joined state between the foamed resin layer and the surface substrate is extremely good. Is a layer having a surface having an anchor function.

次に、本発明の表面材シートを両面の表面材として使用した場合の硬質発泡ウレタンボ
ードの製造工程を図2に例示する。図2において、下面側の表面材21及び上面側の表面
材22は非塗工面が発泡性樹脂層23と接するように繰り出される。下面側の表面材21
の非塗工面に発泡性樹脂液23を塗布し、溶融状態で発泡した樹脂層に上面側の表面材2
2の非塗工面を圧接貼着し、溶融ウレタン樹脂層を硬化させて発泡ウレタン樹脂層25の
両面に表面材21及び22が貼着されている硬質発泡ウレタンボード26が製造される。
なお、上面側の表面材22は本発明の表面材用シート以外のものを用いてもよいが、異種の表面材を使用するとボードの反りが発生しやすいため、上面側と下面側の表面材のいずれにも本発明の表面材用シートを用いることが好ましい。
Next, the manufacturing process of the rigid foaming urethane board at the time of using the surface material sheet of this invention as a surface material of both surfaces is illustrated in FIG. In FIG. 2, the surface material 21 on the lower surface side and the surface material 22 on the upper surface side are fed so that the non-coated surface is in contact with the foamable resin layer 23. Surface material 21 on the lower surface side
The foamable resin liquid 23 is applied to the non-coated surface, and the top surface material 2 is applied to the foamed resin layer.
The hard foamed urethane board 26 in which the surface materials 21 and 22 are adhered to both surfaces of the foamed urethane resin layer 25 is produced by pressure-bonding the uncoated surface 2 and curing the molten urethane resin layer.
In addition, although the surface material 22 on the upper surface side may use a material other than the sheet for the surface material of the present invention, if different surface materials are used, the warpage of the board is likely to occur. It is preferable to use the surface material sheet of the present invention for any of these.

得られた硬質発泡ウレタンボード(図2における符号26)の断面図を図3に例示する
。発泡ウレタン樹脂層は発泡ウレタン樹脂単独層部分31の両面側において、表面材の不
織布単独層内に発泡ウレタン樹脂部分が侵入した状態で硬化されている「不織布/発泡樹
脂複合層」32を形成して表面材と硬質発泡ウレタン層31が強固に接合一体化された硬
質発泡ウレタンボードを構成している。
FIG. 3 illustrates a cross-sectional view of the obtained rigid foamed urethane board (reference numeral 26 in FIG. 2). The foamed urethane resin layer forms a “nonwoven fabric / foamed resin composite layer” 32 that is cured in a state in which the foamed urethane resin portion has penetrated into the nonwoven fabric single layer of the surface material on both sides of the foamed urethane resin single layer portion 31. Thus, a hard foamed urethane board is constructed in which the surface material and the hard foamed urethane layer 31 are firmly joined and integrated.

本発明の表面材用シートにおける不織布/塗料複合層の平均厚さは、その厚さが厚い
ほど樹脂漏れが少なくなるため、該複合層の平均厚さは20μm以上であることが好まし
い。厚さの上限は特に設けないが、あまり厚くなりすぎると不織布のしなやかさが損なわ
れるし、通気性も不足することとなり、また重量が増加しコスト的にも不利になることか
ら、一般的には600μmを超えない厚さであることが好ましい。
The average thickness of the nonwoven fabric / coating composite layer in the sheet for a surface material of the present invention is preferably 20 μm or more because the resin leakage decreases as the thickness increases. The upper limit of the thickness is not particularly set, but if it is too thick, the flexibility of the nonwoven fabric is impaired, the air permeability is insufficient, the weight is increased, and the cost is disadvantageous. Preferably has a thickness not exceeding 600 μm.

本発明の表面材用シートは、不織布単独層の平均厚さが30μm以上である必要がある
。不織布単独層が30μm未満では表面材と硬質発泡樹脂層との接合強度が不十分で、表
面材の剥離が生じやすい。不織布単独層の厚さは500μm以下であることが好ましい。500μmより厚くなると不織布単独層中の空気の樹脂への混入が多くなり、硬質樹脂内にサイズや形状が不均一なセルが形成されることが多くなるためである。また、上面側の表面材として使用する場合、樹脂は発泡状態で不織布単独層に浸透することとなるが、発泡状態の樹脂は樹脂液よりも不織布単独層への浸透性が劣るため、不織布単独層部分の厚さが大きなり、不織布単独層部分で層間剥離が生起する原因となる場合があるので、不織布単独層のより好ましい厚さは300μm以下である。
In the surface material sheet of the present invention, the average thickness of the single layer of the nonwoven fabric needs to be 30 μm or more. When the nonwoven fabric single layer is less than 30 μm, the bonding strength between the surface material and the hard foamed resin layer is insufficient, and the surface material is easily peeled off. The thickness of the nonwoven fabric single layer is preferably 500 μm or less. This is because if the thickness is greater than 500 μm, air in the single layer of the nonwoven fabric is mixed into the resin, and cells having a non-uniform size and shape are often formed in the hard resin. In addition, when used as a surface material on the upper surface side, the resin will penetrate into the nonwoven fabric single layer in a foamed state, but the foamed resin is less permeable to the nonwoven fabric single layer than the resin liquid. Since the thickness of the layer portion may be large and delamination may occur in the nonwoven fabric single layer portion, the preferred thickness of the nonwoven fabric single layer is 300 μm or less.

本発明の表面材用シートは、コレスタ通気度が5〜1500cc/min/cm
ある必要がある。コレスタ通気度が低すぎると発泡性樹脂液塗布時に不織布単独層に含ま
れた空気が抜けにくく、樹脂液に混入することでセル荒れの原因になる。また、熱アスフ
ァルト塗布時の2次発泡ガスが抜けにくいために膨れを生じてしまう。一方、コレスタ通
気度が高すぎるとたとえ塗工面の濡れ指数が小さくても樹脂漏れが生じて工程を汚してし
まう。このためコレスタ通気度は5〜1500cc/min/cm、好ましくは
10〜1500cc/min/cm、更に好ましくは15〜1500cc/min/cmである。
The sheet for a surface material of the present invention needs to have a cholester air permeability of 5 to 1500 cc / min / cm 2 . If the Cholesta air permeability is too low, the air contained in the single layer of the nonwoven fabric is difficult to escape when the foamable resin solution is applied, and cell contamination is caused by mixing in the resin solution. Moreover, since the secondary foaming gas at the time of application of hot asphalt is difficult to escape, swelling occurs. On the other hand, if the cholesterol permeability is too high, even if the wetness index of the coated surface is small, resin leakage occurs and the process is fouled. For this reason, a Cholesta air permeability is 5 to 1500 cc / min / cm < 2 >, Preferably it is 10 to 1500 cc / min / cm < 2 >, More preferably, it is 15 to 1500 cc / min / cm < 2 >.

コレスタ通気度の測定は、以下のように行った。
ISO2965に準拠した通気度計Filtrona Instrument& Aut
omation Limited社製PPM−100を用いて、塗工面を空気の流入側に向け、2cmの面積に100mmHOの圧をかけたときの空気流量を測定し、1cm当たり1分間の流量に換算された数値を求めた。
Cholesta air permeability was measured as follows.
Permeability meter Filtrona Instrument & Out according to ISO 2965
Using the PPM-100 manufactured by operation limited, the coating surface is directed to the air inflow side, the air flow rate is measured when a pressure of 100 mmH 2 O is applied to a 2 cm 2 area, and the flow rate is 1 minute per 1 cm 2. The converted value was obtained.

本発明の表面材用シートに使用する無機繊維不織布としては、湿式不織布、乾式不織布
のいずれも使用可能であるが、湿式不織布の方が地合や空隙分布が緻密、かつ均一である
ため好ましい。
不織布中の無機繊維としては特に限定せず、ガラス繊維、ロックウール、セラミック繊
維、セピオライト等が使用できるが、安価で入手が容易なガラス繊維を使用することが好
ましい。
As the inorganic fiber nonwoven fabric used for the sheet for the surface material of the present invention, either a wet nonwoven fabric or a dry nonwoven fabric can be used. However, the wet nonwoven fabric is preferable because the formation and void distribution are dense and uniform.
The inorganic fiber in the nonwoven fabric is not particularly limited, and glass fiber, rock wool, ceramic fiber, sepiolite and the like can be used, but it is preferable to use glass fiber which is inexpensive and easily available.

ガラス繊維の種類は特に限定するものではなく、Eガラス、Cガラス、Dガラス等が使
用可能であるが、通常は国内で入手が容易なEガラスが使用される。ガラス繊維の繊維長
も特に限定されるものではないが、3〜18mmが好ましい。繊維長が短すぎると引き裂
き強度が低下し、繊維長が長すぎるとガラス繊維を均一に分散させることが難しくなる。
ガラス繊維の繊維径は特に限定するものではないが、通常9〜13μm程度のものが使用
される。一般的に、繊維径が太いと、塗料が染み込みやすくなるため、必要な通気度を得
るための塗工層厚さが厚くなるため、コスト的には不利であるし、また不織布のしなやかさが損ねられるため好ましくない。一方、繊維径が細いガラス繊維はコストが高く、また、3μm未満のガラス繊維は、発ガン性の危険性が指摘されているため、適切ではない。以上を鑑みると、ガラス繊維の繊維径は、6μm〜10μm程度が好ましい。
The kind of glass fiber is not particularly limited, and E glass, C glass, D glass, and the like can be used. Usually, E glass that is easily available in Japan is used. The fiber length of the glass fiber is not particularly limited, but is preferably 3 to 18 mm. If the fiber length is too short, the tear strength decreases, and if the fiber length is too long, it becomes difficult to uniformly disperse the glass fiber.
The fiber diameter of the glass fiber is not particularly limited, but a glass fiber having a diameter of about 9 to 13 μm is usually used. In general, when the fiber diameter is large, the paint is likely to penetrate, so the thickness of the coating layer to obtain the required air permeability is increased, which is disadvantageous in terms of cost and the flexibility of the nonwoven fabric. It is not preferable because it is damaged. On the other hand, glass fibers with a small fiber diameter are expensive, and glass fibers with a diameter of less than 3 μm are not appropriate because of the risk of carcinogenicity. In view of the above, the fiber diameter of the glass fiber is preferably about 6 μm to 10 μm.

不織布中のバインダーも特に限定せず、アクリル樹脂、エポキシ樹脂、酢酸ビニル樹脂
、ポリエステル樹脂、ウレタン樹脂、ポリビニルアルコール(PVA)、スチレン−ブタ
ジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)等の樹脂系バインダー、シ
リカゾル、チタニアゾル、アルミナゾル等の無機系バインダーが使用できる。樹脂系バイ
ンダーの形態も特に限定せず、エマルジョン、水溶液、粉末状、繊維状等のいずれを用い
てもよい。バインダー性能、耐候性、コスト等を考慮すると、アクリル樹脂エマルジョン
が好ましい。
バインダー含有率も特に限定するものではないが、バインダーが少なすぎると強度が不
足し、逆に多すぎると不織布のしなやかさがなくなるため、通常、5〜30質量%程度で
あることが好ましい。
The binder in the nonwoven fabric is not particularly limited, and resins such as acrylic resin, epoxy resin, vinyl acetate resin, polyester resin, urethane resin, polyvinyl alcohol (PVA), styrene-butadiene rubber (SBR), and nitrile-butadiene rubber (NBR) Inorganic binders such as system binder, silica sol, titania sol, and alumina sol can be used. The form of the resin binder is not particularly limited, and any of an emulsion, an aqueous solution, a powder form, a fiber form and the like may be used. In view of binder performance, weather resistance, cost, etc., an acrylic resin emulsion is preferred.
The binder content is not particularly limited, but if the binder is too small, the strength is insufficient. On the other hand, if the binder is too much, the nonwoven fabric is not flexible. Therefore, it is usually preferably about 5 to 30% by mass.

不織布に塗工する塗料中の無機顔料も特に限定せず、炭酸カルシウム、タルク、クレー
、カオリン、マイカ、水酸化アルミニウム、水酸化マグネシウム、シリカ等、公知の顔料
が広く使用できる。特に、形状が扁平でアスペクト比が高いデラミカオリンや、超微粒子
分を除去して粒度分布を調整し、且つアスペクト比も36以上に調整したエンジニアード
カオリンと称される顔料を含有する塗料を使用すると適正な通気度を有する不織布/塗料
複合層が形成される傾向があるので好ましい。
The inorganic pigment in the coating applied to the nonwoven fabric is not particularly limited, and known pigments such as calcium carbonate, talc, clay, kaolin, mica, aluminum hydroxide, magnesium hydroxide, and silica can be widely used. In particular, delamikaolin with a flat shape and high aspect ratio is used, and a paint containing a pigment called engineered kaolin with an adjusted particle size distribution by removing ultrafine particles and an aspect ratio of 36 or more is used. Then, since there exists a tendency for the nonwoven fabric / paint composite layer which has appropriate air permeability to be formed, it is preferable.

塗料中の有機バインダーも特に限定せず、アクリル樹脂、エポキシ樹脂、酢酸ビニル樹
脂、ポリエステル樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリビニルアルコール(P
VA)、スチレン−ブタジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)、
澱粉、カゼイン等が使用できるが、後述の理由により、ポリオレフィン系の樹脂を用いる
ことが好ましい。
The organic binder in the paint is not particularly limited, and acrylic resin, epoxy resin, vinyl acetate resin, polyester resin, urethane resin, polyolefin resin, polyvinyl alcohol (P
VA), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR),
Starch, casein, and the like can be used, but for the reasons described later, it is preferable to use a polyolefin-based resin.

無機顔料に対する有機バインダー比率も特に限定するものではなく、無機顔料100質
量部に対して5〜200質量部の広い範囲で調整可能である。塗料中には分散剤、増粘剤
、防腐剤、消泡剤、着色剤等の助剤を添加することも可能である。
しかし、ポリアルキルシロキサンと2酸化ケイ素の乳化物といった、いわゆるシリコン
系の消泡剤などをあまりに多量に添加すると、ポリオール、ポリイソシアネート等の発泡
層の均一な発泡を阻害し、局所的に大きな泡が発生する等の不具合を発生するため、注意
が必要である。
The organic binder ratio with respect to the inorganic pigment is not particularly limited, and can be adjusted in a wide range of 5 to 200 parts by mass with respect to 100 parts by mass of the inorganic pigment. It is also possible to add auxiliary agents such as dispersants, thickeners, preservatives, antifoaming agents, and coloring agents to the paint.
However, if too much of a so-called silicon-based antifoaming agent such as an emulsion of polyalkylsiloxane and silicon dioxide is added, uniform foaming of the foamed layer of polyol, polyisocyanate, etc. is inhibited, and locally large bubbles are generated. Careful attention is required because it causes problems such as

不織布に塗料を塗工する方法も特に限定するわけではなく、カーテン塗工、エアーナイ
フ塗工、バー塗工、ブレード塗工、スプレー塗工、グラビア塗工、キス塗工等の公知の方
法が広く採用できるが、塗料付与時や計量時に塗料が不必要に不織布へ浸透するのを防止
することを考慮すれば、極力面圧の掛からない塗工方式が好ましい。塗料付与方法として
は、例えば、バッキングロールに密着させた状態で塗料液中をくぐらせる、又はバッキングロールに密着させた状態で鉛直方向下方からファウンテン方式で付与することで不織布表面に塗料を付着させる方法等を好ましい塗工法として挙げることができる。また、付着した塗料を計量する方法としては、メイヤーバー、コンマバー等を軽く押し当てて掻き落す方法等を好ましい方法として挙げることができる。
The method of applying the paint to the nonwoven fabric is not particularly limited, and known methods such as curtain coating, air knife coating, bar coating, blade coating, spray coating, gravure coating, kiss coating, etc. Although it can be widely used, a coating method in which the surface pressure is not applied as much as possible is preferable in consideration of preventing the coating material from unnecessarily penetrating into the nonwoven fabric at the time of coating or weighing. As a coating method, for example, the coating liquid is adhered to the surface of the nonwoven fabric by passing through the coating liquid while being in close contact with the backing roll, or by applying by a fountain method from below in the vertical direction while being in close contact with the backing roll. The method etc. can be mentioned as a preferable coating method. Moreover, as a method for measuring the adhering paint, a preferable method is a method in which a Mayer bar, a comma bar or the like is pressed lightly and scraped off.

本発明の表面材用シートは、非塗工面の濡れ指数が36以上であることが好ましい。濡
れ指数が36未満の場合、不織布単独層への発泡性樹脂液の浸透が遅くなる。濡れ指数の
上限は特に設けないが、50以下が好ましい。後述のとおり、本発明の表面材用シートは
不織布単独部分を有する必要があるが、濡れ指数が大きすぎると不織布への塗料塗工時に
塗料が裏面まで浸透してしまうためである。
The surface material sheet of the present invention preferably has a wet index of 36 or more on the non-coated surface. When the wetting index is less than 36, the penetration of the foamable resin liquid into the single nonwoven fabric layer is delayed. The upper limit of the wetting index is not particularly set, but is preferably 50 or less. As will be described later, the sheet for a surface material of the present invention needs to have a non-woven fabric single part. However, if the wetting index is too large, the paint penetrates to the back surface when the paint is applied to the non-woven fabric.

本発明における濡れ指数とは、以下の方式で表した数値をいう。
JIS K6768に規定された濡れ張力試験用混合液を表面材用シートに滴下し、5
秒後の液滴の状態を観察する。5秒以上濡れ張力試験用混合液のシートへの浸み込みがな
く、液滴の状態を保っている場合は、表面張力が次に低い濡れ張力試験用混合液に進み、
また、逆に、5秒未満で液滴が浸み込んでしまう場合は、表面張力が次に高い濡れ張力試
験用混合液に進む。
この操作を繰り返し、5秒以上液滴の状態を保っている、最も低い濡れ張力試験用混合
液の表面張力をそのシートの濡れ指数の数値とする。
The wetting index in the present invention refers to a numerical value represented by the following method.
A liquid for wetting tension test specified in JIS K6768 is dropped on the sheet for surface material, and 5
Observe the state of the droplet after 2 seconds. If the wet tension test mixture does not penetrate into the sheet for more than 5 seconds and remains in the state of droplets, proceed to the wet tension test mixture with the next lowest surface tension,
On the other hand, if the liquid drops soak in less than 5 seconds, the process proceeds to a liquid mixture for wet tension test with the next highest surface tension.
This operation is repeated, and the surface tension of the lowest liquid mixture for wet tension test that keeps the droplet state for 5 seconds or more is set as the numerical value of the wet index of the sheet.

なお、JIS K6768は、濡れ張力試験用混合液が浸透しないフィルムを測定する
ために定められた測定方法であるため、ポーラスな不織布に塗工を施したものである本発
明の表面材用シートに適用すると濡れ張力試験用混合液がシートに浸み込みやすい。その
ため、JIS K6768に定められているように、濡れ張力試験用混合液を基材面に塗
り伸ばし、濡れ張力試験用混合液の皮膜の破れで濡れ性を評価することができない。以上
の理由から、本発明では、表面材用シートの濡れ指数を上記の測定方法に従って測定した
Since JIS K6768 is a measurement method defined for measuring a film that does not penetrate the liquid mixture for wet tension test, it is applied to the surface material sheet of the present invention in which a porous nonwoven fabric is coated. When applied, the wet tension test mixture tends to penetrate the sheet. Therefore, as defined in JIS K6768, the wettability test liquid mixture is spread on the substrate surface, and the wettability cannot be evaluated by the tearing of the film of the wet tension test liquid mixture. For the above reasons, in the present invention, the wetting index of the surface material sheet was measured according to the measurement method described above.

本発明の表面材用シートは塗工面の濡れ指数が26〜34である必要がある。濡れ指数
が34を超えると樹脂漏れが顕著となり、工程を汚してしまう。濡れ指数が小さいほど樹
脂漏れは少なくなるが、濡れ指数が26未満では塗工面とアスファルトとの接着性が低下
する。このため塗工面の濡れ指数は26〜34、より好ましくは30〜34である。
The surface material sheet of the present invention needs to have a coating surface wetting index of 26 to 34. If the wetting index exceeds 34, the resin leakage becomes remarkable, and the process becomes dirty. The smaller the wetting index, the less resin leakage, but if the wetting index is less than 26, the adhesiveness between the coated surface and the asphalt decreases. For this reason, the wetness index of a coating surface is 26-34, More preferably, it is 30-34.

このような濡れ指数の範囲である塗工層は、塗料中の有機バインダーに、ポリオレフィ
ン系の樹脂を使用することで実現される。樹脂の形態は特に限定しないが、これらの樹脂
をエマルジョン化したものが好適に使用される。ポリオレフィン系の樹脂は特に限定され
るものではなく、エチレン・酢ビ(EVA)、ポリエチレン、ポリプロピレン、及びこれ
らの変性物等が好適に使用されるが、特にエチレン酢ビ及びその変性物、ポリエチレン、
ポリプロピレン等が、濡れ性が低く好適である。エチレン・酢酸ビ等に、ポリエチレンワ
ックス等を添加し撥水性を高めた樹脂等は更に好ましい。これらの樹脂を塗料中の有機バ
インダーとして使用することで、従来のようにフッ素系撥水撥油剤を使用しなくても、十
分な通気性を維持しながら樹脂の浸透を防止することができる。
Such a coating layer having a wetness index range is realized by using a polyolefin-based resin as the organic binder in the paint. The form of the resin is not particularly limited, but those obtained by emulsifying these resins are preferably used. The polyolefin-based resin is not particularly limited, and ethylene vinyl acetate (EVA), polyethylene, polypropylene, and modified products thereof are preferably used. In particular, ethylene vinyl acetate and modified products thereof, polyethylene,
Polypropylene or the like is preferable because it has low wettability. A resin obtained by adding polyethylene wax or the like to ethylene / vinyl acetate to improve water repellency is more preferable. By using these resins as an organic binder in the paint, penetration of the resin can be prevented while maintaining sufficient air permeability without using a fluorine-based water and oil repellent agent as in the past.

本発明の発泡樹脂製断熱ボードの発泡樹脂層としては、本発明の表面材用シートの不織
布単独層に適度に浸透した状態で発泡・硬化することができる発泡性原料液から形成され
ている耐熱性発泡樹脂層であれば採用可能であり、ポリプロピレン樹脂等も採用可能と考
えられるが、現時点では、上記条件を満たす発泡樹脂層としては硬質ウレタン樹脂層が好
適である。
The foamed resin layer of the foamed resin heat insulating board of the present invention is a heat-resistant material formed from a foamable raw material liquid that can be foamed and cured in a state where it is appropriately permeated into the nonwoven fabric single layer of the sheet for surface material of the present invention. Any foamable resin layer can be used, and a polypropylene resin or the like can be used. At present, a hard urethane resin layer is suitable as the foamed resin layer that satisfies the above conditions.

以下に実施例を挙げて本発明をより具体的に説明するが、勿論、本発明はこれらによっ
て限定されるものではない。なお、実施例において%とあるのは、特に断わらない限り質
量%を表す。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In Examples,% means mass% unless otherwise specified.

実施例1〜7及び実施例9〜11
<不織布の作製>
繊維長13mm、繊維径10μmのEガラス繊維を水に分散し、湿式法でシート化し、
このシートにアクリル樹脂エマルジョンを乾燥後の不織布中での含有率が10%となるよ
うにスプレー法で添加し、加熱乾燥して表1に示す米坪の不織布を得た。
Examples 1-7 and Examples 9-11
<Production of non-woven fabric>
E glass fiber having a fiber length of 13 mm and a fiber diameter of 10 μm is dispersed in water and made into a sheet by a wet method.
The acrylic resin emulsion was added to this sheet by a spray method so that the content in the nonwoven fabric after drying was 10%, followed by heating and drying to obtain a nonwoven fabric of US basis weight shown in Table 1.

<塗料の調製>
無機顔料として、粒径2μm以下が97%、アスペクト比 約36のエンジニアードカ
オリン〔(株)イメリスミネラルズ・ジャパン社、「コンツアーエクストリーム」〕を、
水中に固形分濃度60質量%となるように投入し、分散剤(ポリアクリル酸ソーダ)をカオ
リン100質量部に対し0.2質量部、消泡剤としてポリアルキルシロキサン及び2酸化
ケイ素の乳化物(東芝シリコーン社製、「TSA−730」)をカオリン100質量部に
対して0.8質量部となるよう添加し、分散機で強攪拌し、顔料スラリーを得た。
得られた顔料スラリーに、バインダーとして変性エチレン系樹脂エマルジョン(住化ケムテックス社製、「N-3000」)を、顔料に対する固形分比率が表1に示すとおりとなるよう添加し、攪拌混合した。
得られたスラリーに増粘剤(ポリカルボン酸ナトリウム)を適宜添加し、さらに水を加え
て表1に示すとおりの濃度とした。得られた塗料の粘度をB型粘度計を用いて測定した。
塗料の粘度は表1に示すとおりであった。
<Preparation of paint>
As an inorganic pigment, engineered kaolin with a particle diameter of 2 μm or less of 97% and an aspect ratio of about 36 (Imeris Minerals Japan Co., Ltd., “Contour Extreme”),
An emulsion of polyalkylsiloxane and silicon dioxide as an antifoaming agent is added in water so that the solid content concentration is 60% by mass, and the dispersant (polysodium acrylate) is 0.2 parts by mass with respect to 100 parts by mass of kaolin. (Toshiba Silicone Co., Ltd., “TSA-730”) was added to 100 parts by mass of kaolin to 0.8 parts by mass, and the mixture was vigorously stirred with a disperser to obtain a pigment slurry.
A modified ethylene resin emulsion (manufactured by Sumika Chemtex Co., Ltd., “N-3000”) as a binder was added to the obtained pigment slurry so that the solid content ratio with respect to the pigment was as shown in Table 1, and the mixture was stirred and mixed.
A thickener (sodium polycarboxylate) was appropriately added to the obtained slurry, and water was further added to obtain a concentration as shown in Table 1. The viscosity of the obtained paint was measured using a B-type viscometer.
The viscosity of the paint was as shown in Table 1.

<表面材用シートの作成>
前記のように作成した不織布を、バッキングロールに密着させた状態で前記のように調
製した塗料にくぐらせ、メイヤーバーで余剰な塗料を掻き落とした後、熱風乾燥して表面
材用シートを得た。得られた表面材用シートの塗工前の米坪、塗工量、塗工面の濡れ指数
、通気度、不織布/塗料混合層の厚さを表1に示す。なお、塗工量の調整は、メイヤーバ
ーの番手を適宜変更することで行った。
<Creation of sheet for surface material>
The non-woven fabric prepared as described above is passed through the paint prepared as described above in close contact with the backing roll, scraped off excess paint with a Mayer bar, and then dried with hot air to obtain a sheet for surface material It was. Table 1 shows the weight of the surface sheet before coating, the coating amount, the wetness index of the coated surface, the air permeability, and the thickness of the nonwoven fabric / paint mixture layer. The coating amount was adjusted by appropriately changing the count of the Mayer bar.

<発泡ウレタンボードの作成>
得られた表面材用シートを、塗工面を下にしてダブルコンベア上の下側コンベア上に載
せて移動させながら、50℃に加温し、ポリオール/ポリイソシアネート混合液に発泡剤
としてシクロペンタンを加え、更にシリコーン系整泡剤を添加した混合液を表面材用シー
ト上に塗布し、発泡させた。発泡完了前に表面材用シートを、塗工面を上にして発泡ウレ
タンに貼着し、上側コンベアで押えながら発泡を完了させ、厚さ30mmの発泡ウレタン
ボードを得た。
<Creation of urethane foam board>
The obtained surface material sheet was heated to 50 ° C. while moving on the lower conveyor on the double conveyor with the coating surface down, and cyclopentane was added as a blowing agent to the polyol / polyisocyanate mixture. In addition, a mixed liquid further added with a silicone-based foam stabilizer was applied on the surface material sheet and foamed. Before completion of foaming, the surface material sheet was adhered to urethane foam with the coated surface facing up, and foaming was completed while being pressed by the upper conveyor, to obtain a urethane foam board having a thickness of 30 mm.

実施例8
塗料に使用するバインダーを、アクリル樹脂(昭和高分子社製、「AG-100」)に
変更し、シリコン系撥水剤(信越シリコーン社製、「POLON−MWS」)の添加量を
カオリン100質量部に対し1.0質量部添加した以外は実施例1〜7と同様にして塗料
を調製し、実施例1〜7及び実施例9〜11と同様にして表面材用シート及び発泡ウレタンボードを作成した。
Example 8
The binder used in the paint is changed to an acrylic resin (Showa Polymer Co., Ltd., “AG-100”), and the amount of silicone water repellent (Shin-Etsu Silicone Co., Ltd., “POLON-MWS”) added is 100 mass of kaolin. A coating material was prepared in the same manner as in Examples 1 to 7 except that 1.0 part by mass was added to the part, and a sheet for surface material and a urethane foam board were prepared in the same manner as in Examples 1 to 7 and Examples 9 to 11. Created.

比較例1、4、5、6
<不織布の作成>
実施例1〜5と同様の方法で湿式不織布を作成した。不織布の米坪を表2に示した。
<塗料の調製>
表2に示したとおりの濃度、バインダーの塗料に対する質量比率とした以外は実施例1
〜7と同様にして塗料を調製した。得られた塗料の粘度を表2に示した。
Comparative Examples 1, 4, 5, 6
<Creation of non-woven fabric>
A wet nonwoven fabric was prepared in the same manner as in Examples 1-5. Table 2 shows the weight of the nonwoven fabric.
<Preparation of paint>
Example 1 except that the concentration and the mass ratio of the binder to the paint were as shown in Table 2.
A paint was prepared in the same manner as above. The viscosity of the obtained paint is shown in Table 2.

<表面材用シートの作成>
表2に示した塗工量とした以外は、実施例1〜7と同様にして表面材用シートを得た。
<発泡ウレタンボードの作成>
実施例1〜6と同様にして発泡ウレタンボードを作成した。
<Creation of sheet for surface material>
Except having set it as the coating amount shown in Table 2, it carried out similarly to Examples 1-7, and obtained the sheet | seat for surface materials.
<Creation of urethane foam board>
A foamed urethane board was prepared in the same manner as in Examples 1-6.

比較例2
塗料中のバインダーをアクリルエマルジョン(昭和高分子社製、「AG−100」)と
した以外は、比較例1、4、5、6と同様にして表面材用シート、及び発泡ウレタンボー
ドを作成した。
Comparative Example 2
A surface material sheet and a urethane foam board were prepared in the same manner as in Comparative Examples 1, 4, 5, and 6 except that the binder in the paint was an acrylic emulsion ("AG-100" manufactured by Showa Polymer Co., Ltd.). .

比較例3
塗料中のバインダーをアクリルエマルジョン(昭和高分子社製、「AG-100」)と
し、アクリルエマルジョンの固形分100質量部に対し1.0質量部となるようフッ素系
撥水剤(丸菱油化社製、「オーペルFS」)を添加した以外は、比較例1、4、5、6
と同様にして表面材用シート、及び発泡ウレタンボードを作成した。
Comparative Example 3
The binder in the paint is an acrylic emulsion (“AG-100” manufactured by Showa Polymer Co., Ltd.), and a fluorine-based water repellent (Maruishi Oil Co., Ltd.) is added to 1.0 part by mass with respect to 100 parts by mass of the solid content of the acrylic emulsion. Comparative Examples 1, 4, 5, 6 except that “Opel FS”) was added.
In the same manner as above, a surface material sheet and a foamed urethane board were prepared.

<通気度の測定>
通気度の測定は、以下のように行った。
ISO2965に準拠した通気度計Filtrona Instrument& AutomationLimited社製PPM−100を用いて、塗工面を空気の流入側に向け、2cmの面積に100mmHOの圧をかけたときの空気流量を測定し、1cm当たり1分間の流量に換算された数値を求めた。測定は10箇所行い、その平均値を採用した。
<Measurement of air permeability>
The air permeability was measured as follows.
Using an air permeability meter Filtrona Instrument & Automation Limited manufactured by PPM-100 in accordance with ISO 2965, measure the air flow rate when applying a pressure of 100 mmH 2 O to an area of 2 cm 2 with the coated surface facing the air inflow side, A numerical value converted into a flow rate of 1 minute per 1 cm 2 was obtained. The measurement was performed at 10 locations, and the average value was adopted.

<複合層厚さ及び不織布単独層厚さの測定>
得られた表面材用シートの断面を片歯カミソリで切り出し、切断面をマイクロスコープ
(キーエンス社製)を使用して500倍に拡大し、複合層及び不織布単独層の厚さを測定
した。測定は、表面材用シートを幅方向から10箇所均等にサンプリングし、それぞれを
1cm角に切り出し、ひとつのピース当たり10箇所を測定し、その全平均を採用した。
<Measurement of composite layer thickness and single layer thickness of nonwoven fabric>
The cross section of the obtained sheet for surface material was cut out with a single-tooth razor, the cut surface was magnified 500 times using a microscope (manufactured by Keyence Corporation), and the thicknesses of the composite layer and the nonwoven fabric single layer were measured. In the measurement, the surface material sheets were sampled evenly at 10 locations from the width direction, each was cut into 1 cm square, 10 locations were measured per piece, and the total average was adopted.

<濡れ指数の測定>
濡れ試薬(和光純薬工業株式会社製「濡れ張力試験用混合液」)を表面材用シートに滴
下し、5秒以内に浸透が開始された濡れ試薬の表面張力を濡れ指数とした。測定は10箇
所行い、その平均値を採用した。
<Measurement of wetting index>
A wetting reagent (“mixed liquid for wetting tension test” manufactured by Wako Pure Chemical Industries, Ltd.) was dropped onto the surface material sheet, and the surface tension of the wetting reagent that had started to penetrate within 5 seconds was defined as the wetting index. The measurement was performed at 10 locations, and the average value was adopted.

(評価方法)
<発泡層均一性>
得られた発泡ウレタンボードの断面を目視で観察し、セルの均一性の良好なものを○、
若干大きさが不均一なセルが見受けられるが実用上問題のないものを△、セルの均一性が
劣り、実用上不具合の発生するものを×として評価した。
(Evaluation methods)
<Uniform foam layer>
Observe the cross section of the obtained foamed urethane board visually, the one with good cell uniformity ○,
A cell having a slightly non-uniform size was observed, but a cell having no problem in practical use was evaluated as Δ, and a cell having poor cell uniformity and causing a practical problem was evaluated as ×.

<アスファルト施工後の表面材の剥離>
コンクリート上に、250℃〜300℃に熱したアスファルトを塗布し、温度が下がらないうちに発泡ウレタンボードを敷設した。そして、敷設したウレタンボードの上に、250℃〜300℃に熱した熱アスファルトを塗布し、発泡ウレタンボードをコンクリート上に施工した。
尚、通常は敷設した発泡ウレタンボードの上には熱アスファルトを塗布しながら、防水
シートを貼り付けるが、今回は表面状態を観察しやすくするため、防水シートは貼り付け
なかった。
そして、アスファルト施工後に、表面に膨れが発生した部分の有無を観察し、膨れが発
生した部分があればそこを切り取って断面を観察し、膨れた部分が表面材の層内、若しく
は表面材とウレタンの断面であった場合に、アスファルト施工後の表面材の剥離が発生し
たと評価した。
表面材の剥離が発生しなかったものを○、僅かに発生したが実用上不具合の発生しない
ものを△、大きな剥離が発生し、実用上不具合を発生するものを×として評価した。
<Peeling of surface material after asphalt construction>
On the concrete, asphalt heated to 250 ° C. to 300 ° C. was applied, and the urethane foam board was laid before the temperature dropped. And the hot asphalt heated at 250 to 300 degreeC was apply | coated on the laid urethane board, and the foaming urethane board was constructed on concrete.
Normally, a waterproof sheet is affixed to the laid urethane foam board while applying hot asphalt, but this time, the waterproof sheet was not affixed to facilitate observation of the surface state.
And after asphalt construction, observe the presence or absence of the part where the swelling occurred on the surface, if there is a part where the swelling occurred, cut there and observe the cross section, the swollen part is in the surface material layer, or the surface material When the section was urethane, it was evaluated that peeling of the surface material after asphalt construction occurred.
The case where the peeling of the surface material did not occur was evaluated as “◯”, the case where the surface material was slightly generated but did not cause a problem in practice was evaluated as “Δ”, and the case where a large peeling occurred and a problem occurred in practice was evaluated as “X”.

<アスファルト施工後のアスファルト浮き>
コンクリート上に、250℃〜300℃に熱したアスファルトを塗布し、温度が下がら
ないうちに発泡ウレタンボードを敷設した。そして、敷設したウレタンボードの上に、2
50℃〜300℃に熱した熱アスファルトを塗布し、発泡ウレタンボードをコンクリート
上に施工した。
そして、アスファルト施工後に、表面に膨れが発生した部分の有無を観察し、膨れが発
生した部分があればそこを切り取って断面を観察し、膨れた部分がアスファルトと表面材
の界面であった場合にアスファルト浮きが発生したと評価した。
アスファルト浮きが発生しなかったものを○、僅かに発生したが実用上不具合の発生し
ないものを△、大きな剥離が発生し、実用上不具合を発生するものを×として評価した。
実施例及び比較例の各物性測定結果、及び評価結果を表1及び表2に示す。
<Asphalt floating after asphalt construction>
On the concrete, asphalt heated to 250 ° C. to 300 ° C. was applied, and the urethane foam board was laid before the temperature dropped. And on the laid urethane board, 2
Hot asphalt heated to 50 ° C. to 300 ° C. was applied, and a urethane foam board was constructed on the concrete.
And, after asphalt construction, observe the presence or absence of the part where the swelling occurred on the surface, if there is a part where the swelling occurred, cut it out and observe the cross section, if the swelling part was the interface between the asphalt and the surface material It was evaluated that asphalt float occurred.
The case where asphalt float did not occur was evaluated as ◯, the case where slight assemblage did not occur but the problem occurred practically, and the case where large peeling occurred and the problem occurred practically was evaluated as x.
Tables 1 and 2 show measurement results of physical properties and evaluation results of Examples and Comparative Examples.

Figure 2011068117
Figure 2011068117

Figure 2011068117
Figure 2011068117

表1に示すとおり、各実施例においては、いずれも問題なくウレタンボードを作成する
ことが可能であった。
また、得られたウレタンボードは、ウレタンと表面材の塗工層との密着性及びアスファ
ルトの表面材に対する密着性が良好であるため、熱アスファルト施工後においても、表面
層の剥離や、アスファルトの浮きが発生せず、また発泡層のセルの均一性も良好であった
As shown in Table 1, in each example, it was possible to produce a urethane board without any problem.
In addition, the obtained urethane board has good adhesion between the urethane and the coating material of the surface material and the adhesion of the asphalt to the surface material. No floating occurred, and the cell uniformity of the foam layer was good.

表2に示した比較例1では表面材の通気度が高すぎるため、ウレタン液が表面材を通過
して裏抜けし、コンベアを汚したため製造が不可能であった。
比較例2では、表面材の濡れ性が高すぎたため、同様にウレタン液の漏れが発生し、製
造が不可能であった。
比較例3では、塗工面の濡れ性が低すぎたため、アスファルトと表面材との接着性が悪
く、熱アスファルト施工時の発生ガスによって、アスファルトの浮きが発生した。
In Comparative Example 1 shown in Table 2, since the air permeability of the surface material was too high, the urethane liquid passed through the surface material and got through, and the conveyor was soiled, making it impossible to manufacture.
In Comparative Example 2, since the wettability of the surface material was too high, the urethane liquid leaked in the same manner, and the production was impossible.
In Comparative Example 3, since the wettability of the coated surface was too low, the adhesiveness between the asphalt and the surface material was poor, and the asphalt floated due to the gas generated during the thermal asphalt construction.

また、比較例4では、通気度が低すぎたため、発泡層内の空気が抜けず、セルの均一性
が劣り、さらに熱アスファルト施工時の発生ガスが抜けないため、アスファルト施工後に
表面材の剥がれが発生した。
比較例5では、不織布単独層の厚さが不足したため、ウレタンと表面材との接着力が不十分で、アスファルト施工後に表面材の剥離が発生した。
比較例6では、不織布単独層の厚さが厚すぎたため、発泡層均一性が劣るものとなった。
Further, in Comparative Example 4, the air permeability was too low so that the air in the foam layer could not escape, the uniformity of the cells was poor, and further, the gas generated during hot asphalt construction could not escape, so the surface material was peeled off after asphalt construction There has occurred.
In Comparative Example 5, since the thickness of the single layer of the nonwoven fabric was insufficient, the adhesive force between urethane and the surface material was insufficient, and the surface material peeled after asphalt construction.
In Comparative Example 6, since the thickness of the nonwoven fabric single layer was too thick, the uniformity of the foam layer was inferior.

本発明の表面材用シートは、発泡樹脂ボードの製造工程における樹脂漏れがなく、熱ア
スファルト工法に使用しても不具合を生じることのない発泡樹脂製断熱ボードを得るため
に好適な表面材用シートであり、該表面材用シートを用いて作成される発泡樹脂製断熱ボ
ードは、建造物の屋上等の断熱、防水のためにコンクリート面へ断熱ボードや、防水シー
ト等を積層した断熱構造体を提供するものであるので、これらの断熱ボードを使用した熱
アスファルト工法等の新たな適用分野の拡大を可能ならしめるものである。
The sheet for a surface material of the present invention is a sheet for a surface material that is suitable for obtaining a heat-insulated board made of a foamed resin that does not cause a resin leak in the manufacturing process of the foamed resin board and does not cause a problem even when used in a thermal asphalt method. The foamed resin heat insulation board created using the surface material sheet is a heat insulation structure in which a heat insulation board, a waterproof sheet, etc. are laminated on a concrete surface for heat insulation and waterproofing of a building. Therefore, it is possible to expand new application fields such as a thermal asphalt method using these heat insulating boards.

11:不織布単独層
12:不織布/塗料複合層
13:無機繊維
14:塗料
21:表面材(下面側)
22:表面材(上面側)
23:樹脂液
24:ダブルコンベア
25:硬質発泡ウレタン樹脂
26:硬質発泡ウレタンボード
31:硬質ウレタン樹脂
32:不織布/発泡樹脂複合層
33:不織布/塗料複合層













11: Non-woven fabric single layer 12: Non-woven fabric / paint composite layer 13: Inorganic fiber 14: Paint 21: Surface material (lower surface side)
22: Surface material (upper surface side)
23: Resin liquid 24: Double conveyor 25: Hard foamed urethane resin 26: Hard foamed urethane board 31: Hard urethane resin 32: Nonwoven fabric / foamed resin composite layer 33: Nonwoven fabric / paint composite layer













Claims (7)

無機繊維と樹脂バインダーを主成分とする無機繊維不織布の片面の表層部分が、該片面
に塗工された塗料中の無機顔料と樹脂バインダーが該片面の表層部分に浸透した状態で不
織布内に固定されている不織布−塗料複合層よりなり、該不織布−塗料複合層からなる表
層部分から厚さ方向に連続する不織布層部分が平均厚さ30μm以上500μm以下の不
織布単独層よりなる無機繊維不織布であって、コレスタ通気度(ISO2965に準拠し
た測定法による)が5〜1500cc/min/cmで、塗工面の濡れ指数が26〜
34であることを特徴とする、発泡樹脂製断熱ボードの表面材用シート。
The surface layer part on one side of the inorganic fiber nonwoven fabric mainly composed of inorganic fiber and resin binder is fixed in the nonwoven fabric in a state where the inorganic pigment and resin binder in the coating applied on the one side penetrated the surface layer part on one side. The nonwoven fabric layer is composed of a nonwoven fabric-paint composite layer, and the nonwoven fabric layer portion continuous in the thickness direction from the surface layer portion comprising the nonwoven fabric-paint composite layer is an inorganic fiber nonwoven fabric composed of a single nonwoven fabric layer having an average thickness of 30 μm to 500 μm. Cholesta air permeability (measured in accordance with ISO 2965) is 5 to 1500 cc / min / cm 2 and the coating surface has a wetting index of 26 to
A sheet for a surface material of a heat insulating board made of foamed resin, characterized by being 34.
前記「不織布−塗料複合層」よりなる表層部分の平均厚さが20μm以上であることを
特徴とする、請求項1に記載の発泡樹脂製断熱ボードの表面材用シート。
The sheet for a surface material of a heat insulating board made of foamed resin according to claim 1, wherein an average thickness of a surface layer portion made of the "nonwoven fabric-paint composite layer" is 20 µm or more.
前記無機繊維不織布がガラス繊維不織布であることを特徴とする、請求項1又は2に記
載の発泡樹脂製断熱ボードの表面材用シート。
The sheet for a surface material of a heat insulating board made of foamed resin according to claim 1 or 2, wherein the inorganic fiber nonwoven fabric is a glass fiber nonwoven fabric.
前記塗料中の樹脂バインダーが樹脂エマルジョンの状態で使用されているポリオレフィ
ン系樹脂であることを特徴とする、請求項1〜3のいずれか1項に記載の発泡樹脂製断熱
ボードの表面材用シート。
The sheet for a surface material of a foamed resin heat insulation board according to any one of claims 1 to 3, wherein the resin binder in the paint is a polyolefin resin used in a state of a resin emulsion. .
前記塗料中の無機顔料がエンジニアードカオリンであることを特徴とする、請求項1〜
4のいずれかに記載の発泡樹脂製断熱ボードの表面材用シート。
The inorganic pigment in the paint is engineered kaolin, characterized in that
The sheet | seat for surface materials of the foaming resin heat insulation board in any one of 4.
請求項1〜5のいずれか1項に記載の表面材用シートを発泡樹脂層の少なくとも片面側
の表面材として有する発泡樹脂製断熱ボード。
A foamed resin heat insulating board having the sheet for a surface material according to any one of claims 1 to 5 as a surface material on at least one side of the foamed resin layer.
前記発泡樹脂層が硬質発泡ウレタン樹脂層である、請求項6に記載の発泡樹脂製断熱ボ
ード。
The foamed resin heat insulating board according to claim 6, wherein the foamed resin layer is a hard foamed urethane resin layer.
JP2010038825A 2009-08-27 2010-02-24 Sheet for surface material and insulation board made of foamed resin Expired - Fee Related JP5280388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038825A JP5280388B2 (en) 2009-08-27 2010-02-24 Sheet for surface material and insulation board made of foamed resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009196473 2009-08-27
JP2009196473 2009-08-27
JP2010038825A JP5280388B2 (en) 2009-08-27 2010-02-24 Sheet for surface material and insulation board made of foamed resin

Publications (2)

Publication Number Publication Date
JP2011068117A true JP2011068117A (en) 2011-04-07
JP5280388B2 JP5280388B2 (en) 2013-09-04

Family

ID=44013875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038825A Expired - Fee Related JP5280388B2 (en) 2009-08-27 2010-02-24 Sheet for surface material and insulation board made of foamed resin

Country Status (1)

Country Link
JP (1) JP5280388B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073396A1 (en) * 2011-11-18 2013-05-23 三菱製紙株式会社 Base fabric face material for foamed plastic insulating material
KR101396870B1 (en) * 2011-12-23 2014-05-20 주식회사 태원엔앤드에프 Method for manufacturing the finishing sheet of urethane board
CN104390101A (en) * 2014-11-10 2015-03-04 大连天益玻璃制品有限公司 Composite multifunctional glass fiber heat preserving plate and preparation method thereof
KR20160031095A (en) * 2014-09-11 2016-03-22 (주)엘지하우시스 Skin material of insulating material for building and insulating material for building
CN109016112A (en) * 2018-08-06 2018-12-18 北京启顺京腾科技有限责任公司 A kind of the streamlined manufacturing device and method of fiber-loaded concrete foaming insulation board
US20210381259A1 (en) * 2020-06-05 2021-12-09 Johns Manville Non-wicking underlayment board
US20210381229A1 (en) * 2020-06-05 2021-12-09 Johns Manville Non-wicking underlayment board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272138A (en) * 1985-05-28 1986-12-02 鈴木 貞夫 Resin foam composite heat-insulating material
JPH01198336A (en) * 1988-02-03 1989-08-09 Honshu Paper Co Ltd Inorganic sheet for resin foamed heat insulating material
JPH06183303A (en) * 1992-06-11 1994-07-05 Nippon Tokushu Toryo Co Ltd Molded ceiling material for automobile
JPH09310284A (en) * 1996-05-17 1997-12-02 Oji Paper Co Ltd Nonwoven sheet for surface material
JPH1072881A (en) * 1996-08-29 1998-03-17 Nisshin Kogyo Kk Thermal insulating board for thermal insulation waterproof work
JP2008248463A (en) * 2007-03-02 2008-10-16 Oji Paper Co Ltd Backing material for cushion floor and cushion floor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272138A (en) * 1985-05-28 1986-12-02 鈴木 貞夫 Resin foam composite heat-insulating material
JPH01198336A (en) * 1988-02-03 1989-08-09 Honshu Paper Co Ltd Inorganic sheet for resin foamed heat insulating material
JPH06183303A (en) * 1992-06-11 1994-07-05 Nippon Tokushu Toryo Co Ltd Molded ceiling material for automobile
JPH09310284A (en) * 1996-05-17 1997-12-02 Oji Paper Co Ltd Nonwoven sheet for surface material
JPH1072881A (en) * 1996-08-29 1998-03-17 Nisshin Kogyo Kk Thermal insulating board for thermal insulation waterproof work
JP2008248463A (en) * 2007-03-02 2008-10-16 Oji Paper Co Ltd Backing material for cushion floor and cushion floor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073396A1 (en) * 2011-11-18 2013-05-23 三菱製紙株式会社 Base fabric face material for foamed plastic insulating material
KR101396870B1 (en) * 2011-12-23 2014-05-20 주식회사 태원엔앤드에프 Method for manufacturing the finishing sheet of urethane board
KR20160031095A (en) * 2014-09-11 2016-03-22 (주)엘지하우시스 Skin material of insulating material for building and insulating material for building
KR101987040B1 (en) * 2014-09-11 2019-06-11 (주)엘지하우시스 Skin material of insulating material for building and insulating material for building
CN104390101A (en) * 2014-11-10 2015-03-04 大连天益玻璃制品有限公司 Composite multifunctional glass fiber heat preserving plate and preparation method thereof
CN109016112A (en) * 2018-08-06 2018-12-18 北京启顺京腾科技有限责任公司 A kind of the streamlined manufacturing device and method of fiber-loaded concrete foaming insulation board
US20210381259A1 (en) * 2020-06-05 2021-12-09 Johns Manville Non-wicking underlayment board
US20210381229A1 (en) * 2020-06-05 2021-12-09 Johns Manville Non-wicking underlayment board
US11685140B2 (en) * 2020-06-05 2023-06-27 Johns Manville Non-wicking underlayment board
US11773586B2 (en) * 2020-06-05 2023-10-03 Johns Manville Non-wicking underlayment board

Also Published As

Publication number Publication date
JP5280388B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5280388B2 (en) Sheet for surface material and insulation board made of foamed resin
US10899107B2 (en) Building membrane with porous pressure sensitive adhesive
ES2773788T3 (en) Drywall suitable for wet or damp areas
JP6104170B2 (en) Adhesive tape and masker
US20210372120A9 (en) Vapor permeable, water resistive, air barrier polyester membrane having a polyacrylic coating with porous pressure sensitive adhesive added to the rear surface of the membrane
JP2007513816A (en) Gypsum board with one nonwoven liner and improved toughness
JP5408956B2 (en) Adhesive tape
EP3074466A1 (en) Modified cold applied asphalt emulsion
JP2012250422A (en) Laminated sheet with plaster layer
CA2887481C (en) Building membrane with porous pressure sensitive adhesive
KR200439881Y1 (en) Elastic adhesive tape having punched for joint of plaster board
JP2543390B2 (en) Inorganic sheet for resin foam insulation
CN103052747B (en) Surface-waterproofing base for mineral board using a mixed-use nonwoven fabric and a waterproofing coating layer, and a production method therefor
CA2460741A1 (en) Composite mat product for roofing construction
JP2011069053A (en) Waterproof sheet
JP2019098603A (en) Wall covering material
JP2005113678A (en) Roofing base material having adhesive surface
US20200407972A1 (en) Permeable water-resistive self adhesive underlayment/air barrier building membrane
JP3349904B2 (en) Backed laminated glass fiber nonwoven fabric and method for producing the same
JP2010089405A (en) Decorative sheet
JP2023109091A (en) Self-adsorptive laminate
US20230175264A1 (en) Permeable water resistive roof underlayment
WO2023199867A1 (en) Easy-peeling wallpaper, method for peeling same, and method for applying same
JP2010090601A (en) Ventilating buffer sheet for waterproof construction, and waterproof construction roof concrete structure
CA3076331A1 (en) Permeable water-resistive self adhesive underlayment/air barrier building membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees