JP2011066005A - Charged particle beam device, and sample preparation method - Google Patents
Charged particle beam device, and sample preparation method Download PDFInfo
- Publication number
- JP2011066005A JP2011066005A JP2010249900A JP2010249900A JP2011066005A JP 2011066005 A JP2011066005 A JP 2011066005A JP 2010249900 A JP2010249900 A JP 2010249900A JP 2010249900 A JP2010249900 A JP 2010249900A JP 2011066005 A JP2011066005 A JP 2011066005A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electron
- irradiation
- image
- ion beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
本発明は、例えば半導体デバイスの基板から取り出した微細試料を微細加工しながら観察することのできる荷電粒子ビーム装置及びその荷電粒子ビーム装置を用いた試料作成方法に関する。 The present invention relates to a charged particle beam apparatus capable of observing, for example, a fine sample taken out from a substrate of a semiconductor device while being finely processed, and a sample preparation method using the charged particle beam apparatus.
集束イオンビーム(Focused Ion Beam:FIB)を利用した微細加工の技術は、例えば再公表特許WO99/05506に述べられている。FIBを試料に照射することによりスパッタリング現象を利用した微細加工ができるので、例えば半導体デバイスの基板から微細試料を掘り出すことができる。また、試料のFIB照射部近傍にデポジション用ガスを導入してそのガス雰囲気中でFIB照射すれば、イオンビームアシストデポジション現象によりデポジション膜が形成できる。この膜形成は一種の微細接着に利用できる。デポジション用ガス供給源を備えたFIB試料室内に微細試料を引き上げるためのプローブを設置することにより、FIB加工により掘り出した微細試料をFIBデポジション膜形成によりプローブに固定して試料基板から分離し、引き上げることができる。引き上げた微細試料は、同じ試料室内の試料基板近くに前もって置いてあった微細試料保持部に固定できる。この微細試料保持部は、操作性の観点から透過電子顕微鏡(Transmission Electron Microscope:TEM)や走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)の試料ホルダーへの装着が容易な形状となっている。 A microfabrication technique using a focused ion beam (FIB) is described in, for example, the republished patent WO99 / 05506. By irradiating the sample with FIB, microfabrication utilizing the sputtering phenomenon can be performed, so that a fine sample can be excavated from a substrate of a semiconductor device, for example. Further, if a deposition gas is introduced near the FIB irradiation portion of the sample and FIB irradiation is performed in the gas atmosphere, a deposition film can be formed by an ion beam assisted deposition phenomenon. This film formation can be used for a kind of fine adhesion. By installing a probe for pulling up a fine sample in the FIB sample chamber equipped with a deposition gas supply source, the fine sample dug by FIB processing is fixed to the probe by FIB deposition film formation and separated from the sample substrate. Can be raised. The pulled-up fine sample can be fixed to a fine sample holding part previously placed near the sample substrate in the same sample chamber. The fine sample holder has a shape that can be easily mounted on a sample holder of a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM) from the viewpoint of operability.
FIB装置とSTEMの組み合わせに関する技術は、特開2004−228076号公報および特開2002−29874号公報に開示されている。特開2004−228076号公報においては、FIB加工により作製されたSTEM観察用試料は、イオンビーム軸と電子ビーム軸の交点に置かれ、FIBによる追加工とSTEM観察ができることが示されている。STEM試料の薄膜面は、FIBによる追加工に対してはほぼ平行に、STEM観察に対してはほぼ直角に置く必要がある。しかし、この技術ではイオンビーム軸と電子ビーム軸は鋭角(図5では約45度)交差であり、FIB追加工とSTEM観察間でSTEM試料は両軸に垂直な回転軸周辺で回転させることが必要となる。また、特開2002−29874号公報においても、イオンビーム軸と電子ビーム軸は鋭角(図1では約50度)の交差例となっている。 Techniques relating to the combination of the FIB apparatus and the STEM are disclosed in Japanese Patent Application Laid-Open Nos. 2004-228076 and 2002-29874. Japanese Patent Application Laid-Open No. 2004-228076 discloses that a sample for STEM observation produced by FIB processing is placed at the intersection of an ion beam axis and an electron beam axis, so that additional processing by FIB and STEM observation can be performed. The thin film surface of the STEM sample needs to be placed almost parallel to the additional processing by FIB and almost perpendicular to the STEM observation. However, in this technique, the ion beam axis and the electron beam axis intersect at an acute angle (about 45 degrees in FIG. 5), and the STEM sample can be rotated around the rotation axis perpendicular to both axes between the FIB additional processing and the STEM observation. Necessary. Also in Japanese Patent Application Laid-Open No. 2002-29874, the ion beam axis and the electron beam axis are an example of an acute angle (about 50 degrees in FIG. 1).
一方、TEM試料作製に関する技術が、特開平6−231720号公報に開示されている。そこではFIBで薄膜加工するTEM試料の膜厚を調べるために、その試料断面と垂直な方向から電子ビームを照射し、電子ビーム照射強度と試料を透過した電子ビームとの強度比を検出している。ここでの透過電子ビームは、STEM信号である散乱角のきわめて小さい透過ビームと透過散乱した散乱ビームとを区別した検出は行っておらず、STEM観察観点からの試料膜厚モニターにはなっていない。同種の技術は、特開平8-5528号公報にも開示されている。また、特開平6−231719号公報においては、TEM装置の試料室にTEMの電子ビーム軸と直角方向にFIB照射系を配置し、FIB加工で作製したTEM試料を大気に取り出すことなく、そのままTEM観察できるのが特徴で、FIB追加工時などのスループットの悪さを解決する装置として開示されている。そこでは試料膜厚の制御としてTEM像モニターについても開示されている。 On the other hand, a technique related to TEM sample preparation is disclosed in Japanese Patent Laid-Open No. 6-231720. In order to investigate the film thickness of a TEM sample processed into a thin film by FIB, an electron beam is irradiated from a direction perpendicular to the cross section of the sample, and the intensity ratio between the electron beam irradiation intensity and the electron beam transmitted through the sample is detected. Yes. Here, the transmitted electron beam is not detected by distinguishing between a transmitted beam having a very small scattering angle as a STEM signal and a scattered beam that has been transmitted and scattered, and is not a sample film thickness monitor from the viewpoint of STEM observation. . The same kind of technique is also disclosed in Japanese Patent Laid-Open No. 8-5528. In JP-A-6-231719, an FIB irradiation system is arranged in a sample chamber of a TEM apparatus in a direction perpendicular to the electron beam axis of the TEM, and a TEM sample produced by FIB processing is not taken out into the atmosphere as it is. It is characterized by being observable, and is disclosed as an apparatus that solves poor throughput such as during FIB additional processing. There, a TEM image monitor is also disclosed as a sample film thickness control.
また、特開平7−92062号公報では、TEM装置の電子ビーム照射系軸に対しFIB照射系軸を斜め方向(<90度)に取り付け、FIB加工中試料のその場TEM観察例が開示されている。しかし、FIBは試料面に対し斜め入射となっているため、FIB入射軸とほぼ平行に加工作製する断面薄膜試料に比べ、ビーム損傷が深く形成されるという欠点がある。 JP-A-7-92062 discloses an example of in-situ TEM observation of a sample during FIB processing by attaching the FIB irradiation system axis in an oblique direction (<90 degrees) with respect to the electron beam irradiation system axis of the TEM apparatus. Yes. However, since the FIB is obliquely incident on the sample surface, there is a drawback in that the beam damage is deeply formed as compared to the cross-sectional thin film sample processed and fabricated almost parallel to the FIB incident axis.
一方、STEM単体装置については、例えば、特開2000−21346号公報に述べられている。試料からの透過電子および散乱電子を検出して輝度信号に用いたビーム走査像は、それぞれ明視野像および暗視野像と呼ばれる。明視野像のコントラスは、照射電子の試料での吸収、回折、および位相ずれが反映する。一方、暗視野像では回折した電子の特定角方向に反射したもののみを輝度信号とするもので結晶粒の大きさなどが明瞭に現れる特徴がある。明視野像と暗視野像のいずれの画像とも、試料を通過したビームで形成した画像(STEM画像)であり、薄膜内構造の解析に非常に有効である。 On the other hand, the STEM single device is described in, for example, Japanese Patent Application Laid-Open No. 2000-21346. The beam scanning images used for the luminance signal by detecting the transmitted electrons and scattered electrons from the sample are called a bright field image and a dark field image, respectively. The bright field image contrast reflects the absorption, diffraction, and phase shift of the irradiated electrons in the sample. On the other hand, the dark field image has a characteristic that only the diffracted electron reflected in a specific angular direction is used as a luminance signal, and the size of the crystal grains clearly appears. Both the bright-field image and the dark-field image are images (STEM images) formed by the beam that has passed through the sample, and are very effective for analyzing the structure in the thin film.
また、STEM装置の照射電子ビームのエネルギーは、従来はTEMと同じく200keV程度と高エネルギーであったが、最近では論文Journal Electron Microscopy 51(1):53-57(2002)に報告されているように、30keVと従来のSEMと同じエネルギー領域でSTEM観察が行われるようになった。電子ビームの照射エネルギーが低下すると薄膜試料の透過能力も低下するため、低エネルギーSTEM装置では一般的にFIB加工で作製する薄膜試料に高精度の膜厚管理が要求されている。 In addition, the energy of the irradiation electron beam of the STEM apparatus has been as high as about 200 keV as in the case of TEM, but recently it seems to have been reported in the paper Journal Electron Microscopy 51 (1): 53-57 (2002). In addition, STEM observation has been performed in the same energy region as that of a conventional SEM of 30 keV. When the irradiation energy of the electron beam is reduced, the transmission capability of the thin film sample is also reduced. Therefore, in a low energy STEM apparatus, a thin film sample manufactured by FIB processing is generally required to have high precision film thickness control.
しかし、FIB加工とSTEM観察はこれまでの多くは別々の装置で行っており、FIB装置で加工作製したSTEM用薄膜試料は、一旦、FIB装置から取り出した後に、STEM装置に入れて観察する必要があった。そのため、STEM観察とFIB追加工の繰り返しによって観察個所を更に特定しながらでの薄膜化加工のニーズにはスループットの観点から十分に応えられていなかった。最近、FIB加工とSTEM観察を一体化した装置も出されたが、FIB加工時とSTEM観察時とで試料を回転して、その試料薄膜面をそれぞれの方向に合わせる操作作業が残っていた。 However, many FIB processing and STEM observations have been performed with separate devices so far, and the thin film sample for STEM processed and manufactured with the FIB device must be taken out of the FIB device and then put into the STEM device for observation. was there. Therefore, the need for thin film processing while further specifying the observation location by repeating STEM observation and FIB additional processing has not been sufficiently met from the viewpoint of throughput. Recently, an apparatus in which FIB processing and STEM observation are integrated has also been put out, but there remains an operation for rotating the sample during FIB processing and STEM observation and aligning the sample thin film surface in each direction.
STEM像観察の観点からは、十分な像信号強度と高い像コントラストの確保が重要であるが、通常は両立していない(むしろ相反している)。特に暗視野像においては、試料材料(原子番号)、観察部位、および観察対象の試料界面における厚さ方向の一様性などにより最適試料厚さが異なるため、それを高精度に事前推定することが困難である。そのため、加工途中でSTEM像をモニターしながら試料を厚めの方向から最適厚さに少しずつ薄膜化していく作業となっている。 From the viewpoint of STEM image observation, it is important to ensure sufficient image signal intensity and high image contrast, but they are usually incompatible (rather, contradictory). Especially in dark field images, the optimum sample thickness differs depending on the sample material (atomic number), the observation site, and the uniformity in the thickness direction at the sample interface of the observation target. Is difficult. Therefore, the sample is gradually thinned from the thicker direction to the optimum thickness while monitoring the STEM image during the processing.
本発明が解決しようとする第一の課題は、FIB加工時とSTEM観察時との間での試料回転作業などの省略化(あるいは、最少化)、および加工途中のSTEM像モニターを利用した試料厚さの最適化作業の簡略化により、FIB加工からSTEM観察までを一つの試料室内で高スループットに実現できる装置を提供することにある。 The first problem to be solved by the present invention is the omission (or minimization) of the sample rotation operation between the FIB processing and the STEM observation, and the sample using the STEM image monitor during the processing. An object of the present invention is to provide an apparatus capable of realizing high throughput in one sample chamber from FIB processing to STEM observation by simplifying the thickness optimization operation.
一方、低エネルギー(30keV程度)のSTEM観察では、高エネルギー(200keV程度)観察に比べ、ビーム径が太くなる分だけ像分解能が低下する。そこで、作業操作の簡略性やスループットを多少犠牲にしてでもSTEM観察の像分解能を高めたいという装置ユーザも存在する。第二の課題は、このようなSTEM像分解能により重きをおいた装置の提供である。 On the other hand, in STEM observation with low energy (about 30 keV), the image resolution is lowered by the amount of the beam diameter becoming thicker compared with observation with high energy (about 200 keV). Thus, there are apparatus users who wish to increase the image resolution of STEM observation even at the expense of some simplicity of operation and throughput. A second problem is to provide an apparatus that emphasizes such STEM image resolution.
上記の第一の課題を解決するためには、FIB加工とSTEM観察の両方が試料をできるだけ動かさずにできるように、イオンビーム照射系、電子ビーム照射系、および透過・散乱ビーム検出手段を試料周辺に配置することである。つまり、FIB照射系の照射軸とSTEM観察用電子ビーム照射系の照射軸をほぼ直交させ、その交差位置に試料を配置して、試料のFIB断面加工面をSTEM観察用試料の薄膜面にとるのである。また、透過・散乱ビーム検出手段は、電子ビーム照射軸上で電子ビーム照射方向からみて試料の後方に配置するのである。この配置により、試料をほとんど動かさずにFIB加工とSTEM観察が実現できる。 In order to solve the first problem, the ion beam irradiation system, the electron beam irradiation system, and the transmitted / scattered beam detection means are provided in the sample so that both FIB processing and STEM observation can be performed without moving the sample as much as possible. It is to be placed around. That is, the irradiation axis of the FIB irradiation system and the irradiation axis of the electron beam irradiation system for STEM observation are almost orthogonal to each other, the sample is arranged at the intersection, and the processed surface of the FIB cross section of the sample is taken as the thin film surface of the sample for STEM observation. It is. Further, the transmitted / scattered beam detecting means is arranged behind the sample as viewed from the electron beam irradiation direction on the electron beam irradiation axis. With this arrangement, FIB processing and STEM observation can be realized with little movement of the sample.
次に、上記の第二の課題を解決するための手段について述べる。FIB加工時とSTEM観察時との間での試料回転作業などの作業省略化(あるいは、最少化)、および加工途中のSTEM像モニターを利用した試料厚さ最適化作業の簡略化である第一の観点からは、FIB照射系の照射軸とSTEM観察用電子ビーム照射系の照射軸はほぼ直交している。一方、FIB加工におけるビームの細束化(高加工速度および高加工位置精度化)およびSTEM観察の高像分解能化の観点からは、電子ビーム照射系やイオンビーム照射系の対物レンズが試料にできるだけ近い位置に配置されることが要求される。しかし、両照射系の対物レンズの空間的大きさから試料に近づけられる距離には制限がある。作業操作の簡略性やスループットを多少犠牲にしてでもSTEM観察の像分解能を高めるという条件下では、FIB照射系の照射軸とSTEM観察用電子ビーム照射系の照射軸を直角を越えた角度で交差させるのが有効である。この配置によると、FIB照射系の照射軸とSTEM観察用電子ビーム照射系の照射軸をほぼ直角に配置した場合より電子ビーム照射系の対物レンズを試料により近づけることができる。 Next, means for solving the second problem will be described. The first is the simplification of the work of omitting (or minimizing) the work of rotating the sample between FIB processing and STEM observation, and the work of optimizing the sample thickness using the STEM image monitor during processing. From this point of view, the irradiation axis of the FIB irradiation system and the irradiation axis of the electron beam irradiation system for STEM observation are almost orthogonal. On the other hand, from the viewpoints of beam bundles (high processing speed and high processing position accuracy) in FIB processing and high image resolution in STEM observation, an electron beam irradiation system or an ion beam irradiation system objective lens can be applied to the sample as much as possible. It is required to be placed in a close position. However, there is a limit to the distance that can be approached to the sample due to the spatial size of the objective lens of both irradiation systems. Crossing the irradiation axis of the FIB irradiation system and the irradiation axis of the electron beam irradiation system for STEM observation at an angle exceeding a right angle under the condition that the image resolution of STEM observation is increased even at the expense of some simplicity of operation and throughput. It is effective to make it. According to this arrangement, the objective lens of the electron beam irradiation system can be brought closer to the sample than when the irradiation axis of the FIB irradiation system and the irradiation axis of the electron beam irradiation system for STEM observation are arranged substantially at right angles.
電子ビーム照射系の対物レンズが磁界型レンズの場合、その磁界を試料側に漏洩させることにより、実効的に対物レンズを試料に近づけたことになる。これもSTEM観察の高性能化課題を解決するための一手段となる。この漏洩磁界は、FIBが同位体イオンから構成されている場合、磁界内でのイオンビーム軌道を分離するため、試料上でのビーム照射点に分離を起こす。この問題に対しては、分離したビームが試料上で再度、一点に集束するように補償磁場を形成すればよい。 When the objective lens of the electron beam irradiation system is a magnetic field type lens, the objective lens is effectively brought close to the sample by leaking the magnetic field to the sample side. This is also a means for solving the high performance problem of STEM observation. When the FIB is composed of isotope ions, the leakage magnetic field causes separation at the beam irradiation point on the sample in order to separate the ion beam trajectory in the magnetic field. To solve this problem, it is only necessary to form a compensation magnetic field so that the separated beam is again focused on one point on the sample.
本発明によれば、FIB加工においてはより高い微細加工能力を持たせて薄膜試料を作製し、一方、STEM観察においてはより高分解能のSTEM観察ができる。また、薄膜試料作製において高精度に膜厚管理することができ、FIB加工からSTEM観察までを時系列、あるいは、同時に、一つの試料室内で高スループットに実現できる。 According to the present invention, a thin film sample is produced with higher fine processing capability in FIB processing, while STEM observation with higher resolution can be performed in STEM observation. Further, the film thickness can be controlled with high accuracy in the preparation of a thin film sample, and the processing from FIB processing to STEM observation can be realized in a single sample chamber with high throughput in time series or simultaneously.
以下、図面を参照して本発明の実施の形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は本発明による荷電粒子ビーム装置の第1の実施例の概略構成を示す図、図2は図1のA−A’断面図である。 FIG. 1 is a diagram showing a schematic configuration of a charged particle beam apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG.
電子ビーム照射系5とイオンビーム照射系16は試料7を照射するように試料室筐体11に取り付けられている。電子ビーム照射系5は、電子銃1から放出させた電子を集束する集束レンズ2、電子ビーム偏向器3、および対物レンズ4からなり、試料7上に電子ビーム6として細く絞り、かつ走査させながら照射する機能を持つ。一方、イオンビーム照射系16は、イオン銃12から放出させたイオンを集束する集束レンズ13、イオンビーム偏向器14、および対物レンズ15からなり、試料7上に集束イオンビーム(FIB)17として細く絞り、かつ特定個所の特定範囲内を走査させながら照射する機能を持つ。図1の実施例では電子ビーム6とイオンビーム17の試料7への両照射軸がほぼ交差し、その交差角はほぼ直角(=90度±1度)である。試料はその交差点30におかれ、イオンビーム照射による薄膜加工と電子ビーム照射によるSTEM観察がほとんど試料を動かすことなく、操作性良く実施できる。 The electron beam irradiation system 5 and the ion beam irradiation system 16 are attached to the sample chamber casing 11 so as to irradiate the sample 7. The electron beam irradiation system 5 includes a focusing lens 2 for focusing electrons emitted from the electron gun 1, an electron beam deflector 3, and an objective lens 4. The electron beam irradiation system 5 is narrowed down and scanned as an electron beam 6 on a sample 7. Has a function to irradiate. On the other hand, the ion beam irradiation system 16 includes a focusing lens 13 that focuses ions emitted from the ion gun 12, an ion beam deflector 14, and an objective lens 15, and is narrowed as a focused ion beam (FIB) 17 on the sample 7. A diaphragm and a function of irradiating while scanning within a specific range at a specific location. In the embodiment of FIG. 1, the irradiation axes of the electron beam 6 and the ion beam 17 on the sample 7 substantially intersect, and the intersecting angle is substantially a right angle (= 90 degrees ± 1 degree). The sample is placed at the intersection 30 and thin film processing by ion beam irradiation and STEM observation by electron beam irradiation can be performed with good operability without moving the sample.
FIB加工で試料の一部を薄片化し、その薄片部7a上で電子ビーム6を照射・走査する。薄膜部7aを通過した透過ビーム8aおよび散乱ビーム8bは、それぞれ透過ビーム検出器9aおよび散乱ビーム検出器9bで検出される。その他の検出器としては、二次電子検出手段20と反射電子検出手段25がある。二次電子検出手段20は、FIB加工時に試料7から放出される二次電子19を検出するものである。図1において、二次電子検出手段20は、実際にはイオンビーム照射系16の後側にあって見えないため、便宜上、イオンビーム照射系16のすぐ上部に描いてある。実際は、図1のA−A’断面(電子ビーム6の照射軸に垂直でイオンビーム17の照射軸を含む面)を表す図2に示すように、二次電子検出手段20はこのA−A’断面内に配置される。 A part of the sample is thinned by FIB processing, and the electron beam 6 is irradiated and scanned on the thin piece portion 7a. The transmitted beam 8a and scattered beam 8b that have passed through the thin film portion 7a are detected by a transmitted beam detector 9a and a scattered beam detector 9b, respectively. Other detectors include secondary electron detection means 20 and backscattered electron detection means 25. The secondary electron detection means 20 detects the secondary electrons 19 emitted from the sample 7 during FIB processing. In FIG. 1, the secondary electron detection means 20 is actually located behind the ion beam irradiation system 16 and cannot be seen, and therefore is drawn just above the ion beam irradiation system 16 for convenience. Actually, as shown in FIG. 2 showing the AA ′ cross section (plane perpendicular to the irradiation axis of the electron beam 6 and including the irradiation axis of the ion beam 17) in FIG. 'Located in the cross section.
試料7から二次電子検出手段20に引いた直線を軸50とすると、この軸はA−A’断面内にある。図3は、軸50と電子ビーム6の照射軸を含む断面図である。二次電子検出手段20の二次電子入り口面21の中心は軸50上、つまり、二次電子入り口面21は軸50とイオンビーム17の照射軸とを含む面に対してほぼ面対称となる位置に配置されている。これにより、FIBによる薄膜試料面7aの表面および裏面の加工時にそのそれぞれ面から放出される二次電子19をほぼ同じ収率で収集し、検出することができる。その走査画像は走査イオン顕微鏡像(SIM像)と呼ばれる。試料ホルダー22は、そのホルダー軸23が電子ビームとイオンビームの両照射軸に垂直で、かつ両照射軸の交点30を通る軸上に取られている。試料ホルダー22は試料を傾斜も含めて微動するための試料ステージに26に保持されており、試料ステージに26は試料室筐体11に固定されている。 When a straight line drawn from the sample 7 to the secondary electron detection means 20 is an axis 50, this axis is in the A-A 'cross section. FIG. 3 is a cross-sectional view including the axis 50 and the irradiation axis of the electron beam 6. The center of the secondary electron entrance surface 21 of the secondary electron detection means 20 is on the axis 50, that is, the secondary electron entrance surface 21 is substantially plane symmetric with respect to the plane including the axis 50 and the irradiation axis of the ion beam 17. Placed in position. Thereby, the secondary electrons 19 emitted from the front and back surfaces of the thin film sample surface 7a by FIB can be collected and detected with substantially the same yield. The scanned image is called a scanning ion microscope image (SIM image). The sample holder 22 has a holder axis 23 that is perpendicular to both the electron beam and ion beam irradiation axes and passes through the intersection 30 of the both irradiation axes. The sample holder 22 is held by a sample stage 26 for finely moving the sample including an inclination, and the sample stage 26 is fixed to the sample chamber housing 11.
これまでは、二次電子検出面が1枚の場合について説明してきた。しかし、二次電子検出面の枚数は、二次電子収集効率をより高めるために、図3の破線矩形内の記号21aと21bで示すように2枚であっても良い。このような複数配置の場合にも、二次電子入り口面は上記と同様に軸50とイオンビーム17の照射軸とを含む面に対してほぼ面対称位置に配置することが大事である。また、この二次電子検出手段20は電子ビーム照射時に試料7から放出される二次電子19を検出する場合にも使用する。特に、二次電子入り口面21を図3の破線配置のごとくほぼ面対称に2個(あるいは複数)配置した場合は、試料薄膜の表面と裏面から発生する二次電子を分離して検出することも可能となる。電子ビーム照射時においては試料7から二次電子の他に、後方に反射される反射電子24も発生するため、反射電子24を検出するための反射電子検出手段25も備えてある(図1参照)。いずれの検出信号も、ビーム走査信号と同期して描く走査画像の輝度信号に使うことができる。 So far, the case where there is one secondary electron detection surface has been described. However, the number of secondary electron detection surfaces may be two as shown by the symbols 21a and 21b in the broken line rectangle of FIG. 3 in order to further increase the secondary electron collection efficiency. Even in such a plurality of arrangements, it is important that the secondary electron entrance surface is arranged at a plane symmetrical position with respect to the plane including the axis 50 and the irradiation axis of the ion beam 17 as described above. The secondary electron detection means 20 is also used when detecting secondary electrons 19 emitted from the sample 7 during electron beam irradiation. In particular, when two (or a plurality) of secondary electron entrance surfaces 21 are arranged almost symmetrically as shown by broken lines in FIG. 3, secondary electrons generated from the front and back surfaces of the sample thin film are separated and detected. Is also possible. When the electron beam is radiated, reflected electrons 24 reflected backward are generated from the sample 7 in addition to the secondary electrons. Therefore, a reflected electron detection means 25 for detecting the reflected electrons 24 is also provided (see FIG. 1). ). Any detection signal can be used as a luminance signal of a scanned image drawn in synchronization with the beam scanning signal.
図4は、本発明の荷電粒子ビーム装置のビーム照射系、ビーム制御部、および画像表示手段の全装置構成を説明する図である。図4において、全ての検出手段からの検出信号はビーム制御手段40に取り込まれ、また電子ビーム照射手段5とイオンビーム照射手段16のビーム制御はこのビーム制御手段40から行われる。ビーム制御手段40には、両ビーム照射手段に電圧印加や電流供給する電圧電流源ばかりでなく、計算機も含んでおり、そこでは電圧電流制御や各検出器からの信号処理などのソフト処理も行っている。また、これらの制御や処理用のパラメータ入出力表示、および種々の走査画像の表示などを目的とした画像表示手段41がビーム制御手段40と電気的につながっている。また、種々の走査画像に対しては、その画像平均輝度、コントラスト、信号ノイズ比(SN比)、および像分解能が数値評価されており、画像表示手段41の表示画面内に数値表示あるいはグラフ表示ができる。一般に、薄膜試料が薄くなるにつれ、透過電子ビーム量も増すため、輝度は増し、像分解能は高くなる(分解能数値は小さくなる)。 FIG. 4 is a diagram for explaining the overall configuration of the beam irradiation system, beam controller, and image display means of the charged particle beam apparatus of the present invention. In FIG. 4, detection signals from all the detection means are taken into the beam control means 40, and beam control of the electron beam irradiation means 5 and the ion beam irradiation means 16 is performed from this beam control means 40. The beam control means 40 includes not only a voltage current source for supplying and supplying current to both beam irradiation means, but also a computer, in which software processing such as voltage current control and signal processing from each detector is also performed. ing. In addition, an image display means 41 for the purpose of these control and processing parameter input / output displays and display of various scanned images is electrically connected to the beam control means 40. Further, for various scanned images, the image average brightness, contrast, signal noise ratio (S / N ratio), and image resolution are evaluated numerically, and numerical display or graph display is performed on the display screen of the image display means 41. Can do. In general, as the thin film sample becomes thinner, the amount of transmitted electron beams also increases, so that the brightness increases and the image resolution increases (the resolution numerical value decreases).
図5(a)は、STEMの明視野像における輝度とコントラストをFIBによる試料の仕上げ時の削り厚さ(任意単位)に対して表示したグラフの例である。また、図5(b)は、STEMの暗視野像における界面AおよびBを含む領域でのコントラストの削り厚さ(任意単位)に対して表示したグラフの例である。輝度とコントラストは、粗走査画像(512×512ピクセル)におけるそれぞれ平均輝度およびピクセル輝度ヒストグラムの10%-90%輝度範囲を平均輝度で割った値とした。輝度やコントラストは加工中に取得したSTEM画像から所定のタイミング毎にリアルタイムで計算され、結果が順次グラフに追加してプロットされる。 FIG. 5A is an example of a graph in which the brightness and contrast in a bright field image of STEM are displayed with respect to the shaving thickness (arbitrary unit) when the sample is finished by FIB. FIG. 5B is an example of a graph displayed with respect to the thickness of the contrast (arbitrary unit) in the region including the interfaces A and B in the dark field image of the STEM. The brightness and contrast were values obtained by dividing the average brightness and the 10% -90% brightness range of the pixel brightness histogram in the coarse scan image (512 × 512 pixels) by the average brightness, respectively. Luminance and contrast are calculated in real time at predetermined timings from STEM images acquired during processing, and the results are sequentially added to the graph and plotted.
明視野像において、試料の薄膜化を進めていくに従い、図5(a)に示すように輝度およびコントラストとも増大するが、コントラストは途中から飽和し、減少する傾向を示す。コントラストの途中からの飽和、減少傾向についてはその要因は良くわかっていない。図5(b)に示す暗視野像のコントラストにおいて、その最大コントラストをもたらす試料の削り量は、観察する界面領域AとBにより異なっていることがわかる。つまり、特定の界面領域を暗視野像の高コントラスト観察を行う場合、その最適試料厚さは、試料を透過する全ビーム強度をモニターしても判らず、試料の薄膜化を進めながら実際の暗視野像を取得してそのコントラストをモニターすることにより判定できるのである。最適試料厚さに達した後、目的の高精細STEM画像(1024×1024、2048×2048、4096×4096ピクセル)を取得した。 In the bright field image, as the sample is made thinner, both brightness and contrast increase as shown in FIG. 5 (a), but the contrast saturates halfway and tends to decrease. The reason for the tendency of saturation and decrease from the middle of contrast is not well understood. In the contrast of the dark field image shown in FIG. 5B, it can be seen that the amount of shaving of the sample that gives the maximum contrast differs depending on the interface regions A and B to be observed. In other words, when performing high-contrast observation of a dark field image in a specific interface region, the optimum sample thickness cannot be determined by monitoring the total beam intensity transmitted through the sample. This can be determined by acquiring a field image and monitoring its contrast. After reaching the optimal sample thickness, the desired high definition STEM images (1024 × 1024, 2048 × 2048, 4096 × 4096 pixels) were acquired.
走査画像の輝度やコントラストの他、SN比および像分解能のグラフ表示(あるいは数値表示)も可能である。表示グラフには、そのカーブの変化分を見やすくするために、削り量に対してその微分カーブも表示するモードが用意されている。前述の図5(a)および(b)には、輝度やコントラストを削り量に対するプロットの他に、その微分量(任意単位)も右の縦y軸表示でプロットしてある。微分プロットカーブのy=0のラインとの交差点は微分前の原プロットカーブの最大値に相当し、その最大値への到達状況の把握には、この微分プロットカーブが非常に有効となる。グラフプロット表示では、原プロットか原プロットと微分プロットの重畳かが選択できる。 In addition to the brightness and contrast of the scanned image, graph display (or numerical display) of the SN ratio and image resolution is also possible. In the display graph, in order to make it easy to see the change in the curve, a mode for displaying the differential curve with respect to the cutting amount is prepared. In FIGS. 5A and 5B, in addition to plotting the brightness and contrast against the shaving amount, the differential amount (arbitrary unit) is also plotted on the right vertical y-axis display. The intersection of the differential plot curve with the y = 0 line corresponds to the maximum value of the original plot curve before differentiation, and this differential plot curve is very effective in grasping the state of arrival of the maximum value. In the graph plot display, it is possible to select whether the original plot or the superimposition of the original plot and the differential plot.
以下、輝度、コントラスト、SN比および像分解能に関して、本実施例で用いた算出方法について説明する。画像からこれらを評価する方法は未だ確立されておらず、研究開発が進められている。先ず、輝度は、画像観察者が指定した画像内の特定領域の画素強度の平均値から原点(ビーム照射を止めた時の画素強度平均値)を差し引いた値である。コントラストは特定領域の画素強度のヒストグラムにおける最大90%と最小10%の強度差である。SN比と像分解能は、特開2003−142021号公報に開示されている像評価方法を用いた。つまり、画像の各ピクセル位置毎にその位置を中心とした局所xy領域3x3を切出し、そこでのピクセル強度をzとして、下記式で表される二次曲面をフィットさせる(これにより、係数a〜fが決まる。)。
z=ax2+by2+cxy+dx+ey+f (aからf:係数)
Hereinafter, the calculation method used in the present embodiment will be described with respect to luminance, contrast, SN ratio, and image resolution. A method for evaluating these from images has not yet been established, and research and development is ongoing. First, the luminance is a value obtained by subtracting the origin (the pixel intensity average value when the beam irradiation is stopped) from the average value of the pixel intensity in a specific area in the image designated by the image observer. The contrast is an intensity difference between a maximum of 90% and a minimum of 10% in the histogram of pixel intensity in a specific area. For the S / N ratio and the image resolution, the image evaluation method disclosed in Japanese Patent Laid-Open No. 2003-142021 was used. That is, for each pixel position in the image, a local xy region 3x3 centered on that position is cut out, and the quadratic curved surface expressed by the following equation is fitted by using the pixel intensity there as z (with the coefficients a to f Is determined.)
z = ax 2 + by 2 + cxy + dx + ey + f (from a to f: coefficient)
画像ノイズが多いとこのフィッティングずれが多くなる。このフィッティングずれの特定領域全体での平均をSN比のN、前述の輝度をSとして、このSとNとの比(=S/N)をSN比とした。像分解能は、前記の局所xy領域3x3に貼り付けた二次曲面の中心での勾配の逆数を局所像分解能の比例量とし、この比例量の特定領域全体での重み付き平均を像分解能(任意単位)とした。重みには勾配の絶対値を採用した。 When there is a lot of image noise, this fitting shift increases. The average of this fitting shift in the entire specific region was defined as N of the SN ratio, the luminance described above was defined as S, and the ratio of S to N (= S / N) was defined as the SN ratio. For the image resolution, the reciprocal of the gradient at the center of the quadratic surface pasted on the local xy region 3x3 is defined as a proportional amount of the local image resolution, and the weighted average of the proportional amount in the entire specific region is defined as the image resolution (arbitrary Unit). The absolute value of the gradient was adopted as the weight.
輝度、コントラスト、SN比および像分解能などのグラフ表示は、STEM像を実際に観察しながらのものであり、FIB加工の継続か中止の判断、あるいは追加工の必要性有無の総合的に、あるいは特に有る特定の像評価パラメータ(輝度、コントラスト、SN比および像分解能など)に注目して判断をするのに非常に有効であった。特に、自動加工の観点からは、薄膜試料をFIB粗加工で作製する場合、粗加工の終点検出信号として所望STEM画像の特質(輝度、コントラスト、SN比、および像分解能など)の閾値を予め登録しておくことにより、自動加工も可能になった。輝度、コントラスト、SN比又は像分解能の閾値を登録する機能や、STEM画像の特質が予め登録した閾値に達したか否かを判定する機能、STEM画像の特質が予め登録した閾値に達したと判定されたとき、イオンビームの照射を止めて粗加工を終了する機能等は、ビーム制御手段40に持たせることができる。 The graph display such as brightness, contrast, SN ratio and image resolution is while actually observing the STEM image, and it is determined whether or not the FIB processing is continued or stopped, or whether additional processing is necessary, or In particular, it was very effective to make a determination by paying attention to certain specific image evaluation parameters (such as luminance, contrast, SN ratio, and image resolution). In particular, from the viewpoint of automatic processing, when a thin film sample is manufactured by FIB rough processing, threshold values of desired STEM image characteristics (luminance, contrast, SN ratio, image resolution, etc.) are registered in advance as rough end point detection signals. By doing so, automatic processing became possible. A function for registering a threshold value for brightness, contrast, SN ratio, or image resolution, a function for determining whether or not the characteristics of the STEM image have reached a pre-registered threshold value, and the characteristics of the STEM image have reached a pre-registered threshold value When the determination is made, the beam control means 40 can have a function of stopping the ion beam irradiation and ending the rough machining.
図6は、画像表示手段41の表示画枠内に明視野像、暗視野像、SIM像および上記の表示グラフを表示する場合の配置例を示している。 FIG. 6 shows an arrangement example in which a bright field image, a dark field image, a SIM image, and the above display graph are displayed in the display image frame of the image display means 41.
以下、走査画像の使い方について、まとめておく。SIM像は、FIB加工位置の設定、加工中の加工モニター、加工終了の確認、加工断面の観察などに使用する。一方、電子ビーム照射で得られる信号には、二次電子、反射電子、透過電子、および散乱電子があり、それらの走査像は、それぞれ二次電子像、反射電子像、明視野像、および暗視野像と呼ばれ、前の2つの像がSEM像、残りの2つの像がSTEM像に分類される。STEM像は、試料を通過したビームで形成した画像であり、薄膜内構造の解析に非常に有効である。また、イオン照射軸と電子ビーム照射軸が90度で交差しているため、FIB加工中の試料を横方向からSEM像観察することができる。SEM断面加工で作製する薄膜試料では、そのトップ部がFIBのビーム裾でエッチング損傷を受けることがあるが、このSEM像はこのエッチング損傷のモニター観察に非常に有効である。また、FIB加工とSTEM観察で試料を動かす必要がない。SIM像、SEM像およびSTEM像の組み合わせ観察は、特に、その観察像を見ながら更なる詳細解析個所をFIB加工により追跡していく場合、操作性、スループット性、観察像の質の観点で非常に大きな効果があることを確認した。このSTEM像(あるいはSEM像)観察とFIB加工は、時系列でも、同時でも可能である。これにより、オペレータが走査画像をモニターしながら、FIB加工をいつでも中断、再開することが可能となり、試料の特定個所の高精度の加工と高分解能のSTEM観察が確実に、かつ高スループットに実現できる。 The usage of the scanned image will be summarized below. The SIM image is used for setting a FIB processing position, a processing monitor during processing, confirmation of processing end, observation of a processing cross section, and the like. On the other hand, the signals obtained by electron beam irradiation include secondary electrons, reflected electrons, transmitted electrons, and scattered electrons, and their scanned images are secondary electron images, reflected electron images, bright field images, and dark electrons, respectively. This is called a field image, and the previous two images are classified as SEM images, and the remaining two images are classified as STEM images. The STEM image is an image formed by the beam that has passed through the sample, and is very effective for analyzing the structure in the thin film. In addition, since the ion irradiation axis and the electron beam irradiation axis intersect at 90 degrees, it is possible to observe an SEM image of the sample during FIB processing from the lateral direction. In a thin film sample manufactured by SEM cross-section processing, the top portion may be damaged by etching at the FIB beam skirt. This SEM image is very effective for monitoring observation of the etching damage. Further, there is no need to move the sample by FIB processing and STEM observation. The combined observation of the SIM image, SEM image, and STEM image is very important from the viewpoint of operability, throughput, and quality of the observed image, particularly when further detailed analysis locations are tracked by FIB processing while viewing the observed image. It was confirmed that there is a big effect. This STEM image (or SEM image) observation and FIB processing can be performed in time series or simultaneously. This makes it possible for the operator to interrupt and resume the FIB processing at any time while monitoring the scanned image, so that high-precision processing of a specific part of the sample and high-resolution STEM observation can be realized reliably and with high throughput. .
図7は本発明による荷電粒子ビーム装置の第2の実施例の概略構成を示す図、図8は電子ビーム照射軸とイオンビーム照射軸との交差角を説明する図である。本実施例の荷電粒子ビーム装置は、電子ビームの照射軸とイオンビームの照射軸の交差角が90度を超えている例である。 FIG. 7 is a diagram showing a schematic configuration of a second embodiment of the charged particle beam apparatus according to the present invention, and FIG. 8 is a diagram for explaining the crossing angle between the electron beam irradiation axis and the ion beam irradiation axis. The charged particle beam apparatus of the present embodiment is an example in which the crossing angle between the electron beam irradiation axis and the ion beam irradiation axis exceeds 90 degrees.
本実施例では、電子ビーム6とイオンビーム17の試料7への両照射軸の交差角を110度に取ってある。これによりイオンビーム照射系16の対物レンズ15は、交差角90度の実施例1の場合より約3mm試料に近づけることができ、加工用ビーム性能が同じ電流値換算ではFIB径を約15%細くできた。これは、同じ加工速度条件下でのFIB加工位置精度が約15%改善されることに相当する。ただし、FIB加工とSTEM観察の間で試料7を試料傾斜角度差β(図8参照)分だけ傾斜角移動させる必要がある。FIB加工とSTEM観察間の試料移動が試料傾斜角差βの傾斜角のみの移動で済むように、試料ホルダー22は、図2と同様、そのホルダー軸23は、電子ビームとイオンビームの両照射軸に垂直で、かつ両照射軸の交点30を通る軸上に取られている。試料ホルダー22は試料を傾斜も含めて微動するための試料ステージに26に保持されており、試料ステージに26は試料室筐体11に固定されている。 In this embodiment, the crossing angle of the irradiation axes of the electron beam 6 and the ion beam 17 to the sample 7 is 110 degrees. As a result, the objective lens 15 of the ion beam irradiation system 16 can be brought closer to the sample by about 3 mm than in the case of Example 1 having an intersection angle of 90 degrees, and the FIB diameter is reduced by about 15% in terms of the current value with the same processing beam performance. did it. This corresponds to an approximately 15% improvement in FIB machining position accuracy under the same machining speed conditions. However, it is necessary to move the sample 7 by an inclination angle of the sample inclination angle difference β (see FIG. 8) between FIB processing and STEM observation. The sample holder 22 is irradiated with both an electron beam and an ion beam in the same manner as in FIG. 2 so that the sample movement between the FIB processing and the STEM observation can be performed only by the inclination angle of the sample inclination angle difference β. It is taken on an axis perpendicular to the axis and passing through the intersection 30 of the two irradiation axes. The sample holder 22 is held by a sample stage 26 for finely moving the sample including an inclination, and the sample stage 26 is fixed to the sample chamber housing 11.
電子ビーム照射系の対物レンズとイオンビーム照射系の対物レンズを試料に接近させたいという観点から、試料近傍の空間を最大に広くするには、両ビーム照射軸の交差角は180度に取るのが良い。しかし、電子ビーム照射軸から180度軸方向には透過・散乱ビーム検出手段9aと9bが配置されるので、180度には取れない。具体的には電子ビーム照射系5の対物レンズ端側の円錐角θebや照射系直径、イオンビーム照射系16の対物レンズ端側の円錐角θibや照射系直径、および透過・散乱ビーム検出手段の大きさなども考慮しながら、移動角度βの増加分とビーム性能改善分とをバランスさせ、両ビーム照射軸の交差角は90度から180度間で設定されるものである。 In order to make the objective lens of the electron beam irradiation system and the objective lens of the ion beam irradiation system closer to the sample, in order to maximize the space near the sample, the crossing angle of both beam irradiation axes should be 180 degrees. Is good. However, since the transmitted / scattered beam detecting means 9a and 9b are arranged in the direction of 180 degrees from the electron beam irradiation axis, they cannot be taken at 180 degrees. Specifically, the cone angle θeb and the irradiation system diameter on the objective lens end side of the electron beam irradiation system 5, the cone angle θib and the irradiation system diameter on the objective lens end side of the ion beam irradiation system 16, and the transmitted / scattered beam detection means The crossing angle of both beam irradiation axes is set between 90 degrees and 180 degrees by balancing the increase in the movement angle β and the beam performance improvement while considering the size and the like.
電子ビーム照射系の対物レンズが磁界型レンズの場合、その磁界を試料側に漏洩させることにより実効的に対物レンズを試料に近づけたことになり、STEM観察の高性能化が図られる。本実施例は、この漏洩磁界型対物レンズに関するもので、図9を用いて説明する。 When the objective lens of the electron beam irradiation system is a magnetic lens, the objective lens is effectively brought close to the sample by leaking the magnetic field to the sample side, so that the performance of STEM observation is improved. The present embodiment relates to this leakage magnetic field type objective lens and will be described with reference to FIG.
対物レンズ4は漏洩磁界型であり、磁極片4aと励磁コイル4bとからなる。磁界は試料側、つまり、電子ビーム6の照射軸とイオンビーム17の照射軸の交点30側に漏洩させ、電子ビーム6の照射軸上に磁束密度分布35を形成する。漏洩した磁界はイオンビーム17の照射軸上にも存在する。そのイオンビーム17の照射軸上での磁束分布例を図10に示す。FIB加工用イオンビームのイオン種には、通常、ガリウム(Ga)を使用する。Gaは同位体Ga69とGa71を持つため、イオンビーム17の照射軸上での磁束分布は試料上でのビーム・スポットを分離し、ビーム径を実効的に分離方向に大きくする。このビーム径の増加は、加工位置精度を劣化させるため、対策が必要となる。これに対しては以下の手段で対策した。 The objective lens 4 is a leakage magnetic field type and includes a magnetic pole piece 4a and an excitation coil 4b. The magnetic field is leaked to the sample side, that is, the intersection 30 side of the irradiation axis of the electron beam 6 and the irradiation axis of the ion beam 17 to form a magnetic flux density distribution 35 on the irradiation axis of the electron beam 6. The leaked magnetic field also exists on the irradiation axis of the ion beam 17. An example of the magnetic flux distribution on the irradiation axis of the ion beam 17 is shown in FIG. Gallium (Ga) is usually used as the ion species of the ion beam for FIB processing. Since Ga has isotopes Ga 69 and Ga 71 , the magnetic flux distribution on the irradiation axis of the ion beam 17 separates the beam spot on the sample and effectively increases the beam diameter in the separation direction. The increase in the beam diameter deteriorates the processing position accuracy, and thus countermeasures are required. The following measures were taken against this.
電子ビーム照射系における磁界型対物レンズの磁場分布を詳しく解析すると、電子ビーム照射軸近傍の狭い領域では例えば下向き(或いは上向き)の強い磁場が存在し、対物レンズの外側の広い領域には上向き(或いは下向き)の弱い磁場が存在している。イオンビーム照射軸はこの両者の向きの磁場空間を貫通していることになる。イオンビームスポットの分離課題を解決するためには、イオンビーム光軸上に光軸に垂直な磁場成分が互いに逆向きになる領域を存在させ、その結果として試料上のビーム・スポット位置を磁場が存在しない場合と一致するようにすれば、イオン銃から試料までのイオン光路は、同位体ごとに異なるけれども、試料上でのビーム・スポット位置は一致するという性質を利用した。具体的には、イオンビーム照射系の光軸上に補正磁場発生部を持ち込み、漏洩磁場とこの補正磁場とを合わせた結果として、試料上のビーム・スポット位置を磁場が存在しない場合と一致するように補正磁場を設定するのである。 When the magnetic field distribution of the magnetic field type objective lens in the electron beam irradiation system is analyzed in detail, for example, a strong magnetic field downward (or upward) exists in a narrow region near the electron beam irradiation axis, and upward ( There is a weak magnetic field (or downward). The ion beam irradiation axis penetrates the magnetic field space in both directions. In order to solve the ion beam spot separation problem, there is a region on the optical axis of the ion beam in which the magnetic field components perpendicular to the optical axis are opposite to each other. If the ion beam path from the ion gun to the sample is different for each isotope, the beam spot position on the sample is matched if the ion beam path does not exist. Specifically, as a result of bringing a correction magnetic field generation unit on the optical axis of the ion beam irradiation system and combining the leakage magnetic field and this correction magnetic field, the beam spot position on the sample coincides with the case where no magnetic field exists. Thus, the correction magnetic field is set.
図11に、光軸上に補正磁場発生部27を持ち込んだイオンビーム照射系の実施例を示す。図12は補正磁場発生部の概略図であり、図12(a)は断面図、図12(b)は上面図である。補正磁場発生部27は、一対の対向したコイル61とパーマロイ製の磁路62で構成されている。この磁路62はイオンビーム光軸上で補正磁場を効率よく発生すると同時に、コイル61から外部への漏れ磁場を抑制するための磁気遮蔽体の役割をしている。ここで磁路の材料はパーマロイに限ることなく、純鉄やパーメンダ等透磁率が大きく保磁力が小さい磁性体ならば何でもよい。透磁率が大きいほど外部への漏れ磁場を小さくすることができる。補正磁場発生部27は中心にビーム通路を有して、そのビーム通路をイオンビーム17の照射軸に一致させて配置されている。補正磁場発生部27のビーム通路は、集束レンズ13を通ったイオンビームを全て通す径を有する。 FIG. 11 shows an embodiment of an ion beam irradiation system in which a correction magnetic field generator 27 is brought on the optical axis. 12A and 12B are schematic views of the correction magnetic field generation unit, where FIG. 12A is a cross-sectional view, and FIG. 12B is a top view. The correction magnetic field generation unit 27 includes a pair of opposed coils 61 and a permalloy magnetic path 62. The magnetic path 62 serves as a magnetic shield for efficiently generating a correction magnetic field on the ion beam optical axis and at the same time suppressing a leakage magnetic field from the coil 61 to the outside. Here, the material of the magnetic path is not limited to permalloy, and any material may be used as long as it is a magnetic material having a large magnetic permeability and a small coercive force, such as pure iron or permender. As the permeability increases, the leakage magnetic field to the outside can be reduced. The correction magnetic field generator 27 has a beam path in the center, and the beam path is arranged so as to coincide with the irradiation axis of the ion beam 17. The beam path of the correction magnetic field generation unit 27 has a diameter through which all the ion beams that have passed through the focusing lens 13 pass.
本図ではイオンビーム光軸上に発生する補正磁場63の方向は紙面に平行であり、光軸に垂直である。このようにすると、イオン・ビームには紙面と光軸に垂直な方向にローレンツ力が作用するが、この方向はSEMの対物レンズ4からの磁場によるローレンツ力と平行であり、補正磁場の向きと大きさを適切に調整することにより、試料7上のイオンビームの照射スポット位置を、磁場が無い場合の位置に完全に一致させることができる。 In this figure, the direction of the correction magnetic field 63 generated on the ion beam optical axis is parallel to the paper surface and perpendicular to the optical axis. In this way, a Lorentz force acts on the ion beam in a direction perpendicular to the paper surface and the optical axis, and this direction is parallel to the Lorentz force generated by the magnetic field from the objective lens 4 of the SEM, and the direction of the correction magnetic field and By appropriately adjusting the size, the irradiation spot position of the ion beam on the sample 7 can be completely matched with the position in the absence of a magnetic field.
ここでビーム・スポットは必ずしも円形であることを意味しない、非点収差等の影響によりビーム断面が楕円形、或いは線状になっている場合でも、ここでの議論は等しく成り立つ。本発明でビーム・スポットと言うときはあらゆる形状を含んでいるのである。補正磁場発生部はイオンビーム光軸上のどこにあってもよいが、SEM対物レンズ4の磁場を乱さない程度に試料7から遠ざけるのがよい。また図11の補正磁場発生部27ではコイルが一対の場合を示したが、コイルは2対以上でもよい。2対以上の場合には補正磁場の大きさだけでなく方向も自由に設定することができて好都合である。 Here, the beam spot does not necessarily have a circular shape. Even when the beam cross section is elliptical or linear due to the influence of astigmatism or the like, the discussion here is equally valid. In the present invention, the term “beam spot” includes all shapes. The correction magnetic field generation unit may be located anywhere on the ion beam optical axis, but it is preferable to keep the correction magnetic field generation unit away from the sample 7 so as not to disturb the magnetic field of the SEM objective lens 4. Further, although the correction magnetic field generation unit 27 of FIG. 11 shows a case where a pair of coils is used, two or more pairs of coils may be used. In the case of two or more pairs, not only the magnitude of the correction magnetic field but also the direction can be freely set, which is convenient.
これにより、試料側に磁界を漏洩させる対物レンズを搭載した電子照射系の採用装置においても、Ga同位体イオンビームを分離することなく試料に照射できるようになり、FIB加工においては試料の特定個所のより高い微細加工能力と、STEM観察における高分解能化を一つの試料室内で両立させることができる。 As a result, even in an apparatus employing an electron irradiation system equipped with an objective lens that leaks a magnetic field on the sample side, it is possible to irradiate the sample without separating the Ga isotope ion beam. Therefore, it is possible to achieve both the higher fine processing capability and higher resolution in STEM observation in one sample chamber.
1:電子銃、2:集束レンズ、3:電子ビーム偏向器、4:対物レンズ、5:電子ビーム照射系、6:電子ビーム、7:試料、7a:試料の薄膜部、8a:透過電子ビーム、8b:散乱電子ビーム、9a:透過電子ビーム検出手段、9b:散乱電子ビーム検出手段、11:試料室筐体、12:イオン銃、13:集束レンズ、14:イオンビーム偏向器、15:対物レンズ、16:イオンビーム照射系、17:イオンビーム、18:排気系、19:二次電子、20:二次電子検出手段、21:二次電子手段の二次電子入り口面、22:試料ホルダー、23:試料ホルダー軸、24:反射電子、25:反射電子検出器、26:試料ステージ、27:補正磁場発生部、30:イオンビームと電子ビームの照射軸の交点、40:ビーム制御手段、41:画像表示手段、42:排気系制御手段、50:試料から二次電子検出面(1枚の場合)に引いた直線軸 1: electron gun, 2: focusing lens, 3: electron beam deflector, 4: objective lens, 5: electron beam irradiation system, 6: electron beam, 7: sample, 7a: thin film portion of sample, 8a: transmitted electron beam 8b: scattered electron beam, 9a: transmitted electron beam detection means, 9b: scattered electron beam detection means, 11: sample chamber housing, 12: ion gun, 13: focusing lens, 14: ion beam deflector, 15: objective Lens: 16: Ion beam irradiation system, 17: Ion beam, 18: Exhaust system, 19: Secondary electrons, 20: Secondary electron detection means, 21: Secondary electron entrance surface of secondary electron means, 22: Sample holder , 23: Sample holder axis, 24: Reflected electron, 25: Reflected electron detector, 26: Sample stage, 27: Correction magnetic field generator, 30: Intersection of irradiation axis of ion beam and electron beam, 40: Beam control means, 41: Image display means, 42: exhaust system control means, 50: linear axis drawn from the sample to the secondary electron detection surface (in the case of one sheet)
Claims (8)
試料を透過した低角散乱の電子ビームを検出する透過電子検出器と、
試料を透過した高角散乱の電子ビームを検出する散乱電子検出器と、
イオン銃から放出したイオンを集束イオンビームとして細く絞り、走査しながら前記試料上に照射して前記試料を加工するイオンビーム照射系と、
前記電子ビームと前記集束イオンビームの少なくとも一方のビーム照射により前記試料から放出された二次電子を検出する二次電子検出器と、
前記集束イオンビームによる試料加工中に前記透過電子検出器、前記散乱電子検出器、及び前記二次電子検出器の検出信号を用いて前記試料の走査透過電子顕微鏡(STEM)の明視野像もしくは暗視野像、または走査電子顕微鏡(SEM)の像の少なくとも一方を表示する画像表示手段と、
前記イオンビーム照射系により前記試料が加工されるときに前記試料を保持する試料ホルダーとを備え、
前記集束イオンビームの照射軸と前記電子ビームの照射軸はほぼ直角に交差し、その交差位置に前記試料ホルダーが配置されている荷電粒子ビーム装置であって、
前記透過電子検出器信号と前記散乱電子検出器信号のコントラストを計算し、前記コントラストの計算値が所定の閾値に達したときに、前記集束イオンビームの照射を止める制御手段を有する
ことを特徴とする荷電粒子ビーム装置。 An electron beam irradiation system for narrowing down the electrons emitted from the electron gun as an electron beam and irradiating the sample while scanning;
A transmission electron detector that detects a low-angle scattered electron beam transmitted through the sample;
A scattered electron detector for detecting a high-angle scattered electron beam transmitted through the sample;
Ion beam irradiation system that narrows the ions emitted from the ion gun as a focused ion beam, irradiates the sample while scanning, and processes the sample;
A secondary electron detector for detecting secondary electrons emitted from the sample by irradiation of at least one of the electron beam and the focused ion beam;
During processing of the sample by the focused ion beam, a bright field image or dark image of a scanning transmission electron microscope (STEM) of the sample using detection signals of the transmission electron detector, the scattered electron detector, and the secondary electron detector. Image display means for displaying at least one of a field image or a scanning electron microscope (SEM) image;
A sample holder for holding the sample when the sample is processed by the ion beam irradiation system;
The charged ion beam apparatus in which the irradiation axis of the focused ion beam and the irradiation axis of the electron beam intersect substantially at right angles, and the sample holder is disposed at the intersection position,
Control means for calculating a contrast between the transmitted electron detector signal and the scattered electron detector signal and stopping irradiation of the focused ion beam when the calculated contrast value reaches a predetermined threshold value. Charged particle beam device.
前記コントラストの閾値を登録する登録手段と、
前記イオンビームの照射を制御する制御手段とを備え、
前記制御部は、前記電子ビームによる試料走査画像のコントラストが前記登録手段によって登録された閾値に達したとき前記集束イオンビームの照射を停止することを特徴とする荷電粒子ビーム装置。
The charged particle beam device according to claim 7.
Registration means for registering the contrast threshold;
Control means for controlling the irradiation of the ion beam,
The charged particle beam apparatus, wherein the control unit stops irradiation of the focused ion beam when a contrast of a sample scanning image by the electron beam reaches a threshold value registered by the registration unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010249900A JP5228027B2 (en) | 2010-11-08 | 2010-11-08 | Charged particle beam apparatus and sample preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010249900A JP5228027B2 (en) | 2010-11-08 | 2010-11-08 | Charged particle beam apparatus and sample preparation method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004312703A Division JP4664041B2 (en) | 2004-10-27 | 2004-10-27 | Charged particle beam apparatus and sample preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011066005A true JP2011066005A (en) | 2011-03-31 |
JP5228027B2 JP5228027B2 (en) | 2013-07-03 |
Family
ID=43952013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010249900A Expired - Lifetime JP5228027B2 (en) | 2010-11-08 | 2010-11-08 | Charged particle beam apparatus and sample preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5228027B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013196972A (en) * | 2012-03-21 | 2013-09-30 | Hitachi High-Tech Science Corp | Specimen observation method, specimen preparation method and charged particle beam device |
JP2014032835A (en) * | 2012-08-03 | 2014-02-20 | Hitachi High-Technologies Corp | Scanning transmission electron microscope |
US9766190B2 (en) | 2013-09-25 | 2017-09-19 | Toyota Jidosha Kabushiki Kaisha | Method, system and apparatus for measuring comparatively thick materials |
US9835569B2 (en) | 2013-09-25 | 2017-12-05 | Toyota Jidosha Kabushiki Kaisha | Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6318763U (en) * | 1986-07-22 | 1988-02-06 | ||
JPH06231720A (en) * | 1993-02-05 | 1994-08-19 | Seiko Instr Inc | Converged charged beam device and working observing method |
JPH09283496A (en) * | 1996-04-18 | 1997-10-31 | Hitachi Ltd | Pattern formation by charged particle beam irradiation and its device |
JPH11329331A (en) * | 1998-05-19 | 1999-11-30 | Seiko Instruments Inc | Compound charged particle beam device |
JP2000036276A (en) * | 1998-07-21 | 2000-02-02 | Hitachi Ltd | Charged particle beam device |
JP2001084951A (en) * | 1999-09-17 | 2001-03-30 | Hitachi Ltd | Working observation device and sample working method |
JP2002298774A (en) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | Electron microscope |
-
2010
- 2010-11-08 JP JP2010249900A patent/JP5228027B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6318763U (en) * | 1986-07-22 | 1988-02-06 | ||
JPH06231720A (en) * | 1993-02-05 | 1994-08-19 | Seiko Instr Inc | Converged charged beam device and working observing method |
JPH09283496A (en) * | 1996-04-18 | 1997-10-31 | Hitachi Ltd | Pattern formation by charged particle beam irradiation and its device |
JPH11329331A (en) * | 1998-05-19 | 1999-11-30 | Seiko Instruments Inc | Compound charged particle beam device |
JP2000036276A (en) * | 1998-07-21 | 2000-02-02 | Hitachi Ltd | Charged particle beam device |
JP2001084951A (en) * | 1999-09-17 | 2001-03-30 | Hitachi Ltd | Working observation device and sample working method |
JP2002298774A (en) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | Electron microscope |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013196972A (en) * | 2012-03-21 | 2013-09-30 | Hitachi High-Tech Science Corp | Specimen observation method, specimen preparation method and charged particle beam device |
US9287087B2 (en) | 2012-03-21 | 2016-03-15 | Hitachi High-Tech Science Corporation | Sample observation method, sample preparation method, and charged particle beam apparatus |
JP2014032835A (en) * | 2012-08-03 | 2014-02-20 | Hitachi High-Technologies Corp | Scanning transmission electron microscope |
US9766190B2 (en) | 2013-09-25 | 2017-09-19 | Toyota Jidosha Kabushiki Kaisha | Method, system and apparatus for measuring comparatively thick materials |
US9835569B2 (en) | 2013-09-25 | 2017-12-05 | Toyota Jidosha Kabushiki Kaisha | Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials |
Also Published As
Publication number | Publication date |
---|---|
JP5228027B2 (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4664041B2 (en) | Charged particle beam apparatus and sample preparation method | |
US6531697B1 (en) | Method and apparatus for scanning transmission electron microscopy | |
JP5352335B2 (en) | Compound charged particle beam system | |
JP3951590B2 (en) | Charged particle beam equipment | |
CN105529235B (en) | Charged particle microscope with special hole plate | |
US8993961B2 (en) | Electric charged particle beam microscope and electric charged particle beam microscopy | |
JP5271491B2 (en) | Electron beam application apparatus and sample inspection method | |
US9991087B2 (en) | Spectroscopy in a transmission charged-particle microscope | |
JP2007207688A (en) | Mirror electron microscope, and inspection device using mirror electron microscope | |
US10446366B1 (en) | Imaging technique in scanning transmission charged particle microscopy | |
JP2009259444A (en) | Electron particle beam application apparatus permitting high-resolution and high-contrast observation | |
JP2006032107A (en) | Reflection image forming electron microscope and pattern defect inspection device using it | |
CN108538693A (en) | The aberration measurement of charged particle microscope | |
JP5228027B2 (en) | Charged particle beam apparatus and sample preparation method | |
EP3270404A1 (en) | Method of imaging a specimen using ptychography | |
US8772714B2 (en) | Transmission electron microscope and method of observing TEM images | |
US12080512B2 (en) | Charged particle microscope for examining a specimen, and method of determining an aberration of said charged particle microscope | |
EP3706155A1 (en) | Multi-beam scanning transmission charged particle microscope | |
JP2005032732A (en) | Scanning electron microscope | |
JP2012186177A (en) | Electron beam application device | |
CN113848220A (en) | Method for imaging a sample using a transmission charged particle microscope | |
JP2013138024A (en) | Charged particle beam device | |
KR102557373B1 (en) | Focused ion beam impurity identification | |
US10699875B2 (en) | Confocal imaging technique in a charged particle microscope | |
EP3965137A1 (en) | System and method for simultaneous phase contrast imaging and electron energy-loss spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5228027 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |