JP2011065794A - Secondary battery module - Google Patents

Secondary battery module Download PDF

Info

Publication number
JP2011065794A
JP2011065794A JP2009213998A JP2009213998A JP2011065794A JP 2011065794 A JP2011065794 A JP 2011065794A JP 2009213998 A JP2009213998 A JP 2009213998A JP 2009213998 A JP2009213998 A JP 2009213998A JP 2011065794 A JP2011065794 A JP 2011065794A
Authority
JP
Japan
Prior art keywords
cell
terminal
cell terminal
inter
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213998A
Other languages
Japanese (ja)
Inventor
Nobumitsu Tada
伸光 田多
Yoshifumi Nakahama
敬文 中濱
Masashi Shudo
正志 首藤
Takeya Kurokawa
健也 黒川
Takeo Kakuchi
武夫 覚地
Yasuhei Koyama
泰平 小山
Norihito Togashi
法仁 冨樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009213998A priority Critical patent/JP2011065794A/en
Publication of JP2011065794A publication Critical patent/JP2011065794A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery module having a small loss, good efficiency, and high reliability, by equalizing currents flowing between serially-connected battery cells. <P>SOLUTION: The secondary battery module, formed by serially-connecting a plurality of parallel-connected battery groups obtained by parallel-connecting a plurality of battery cells, includes: a first connecting conductor between cell terminals to electrically connect between positive electrode terminals of the battery cells of the parallel connected battery groups; a second connecting conductor between cell terminals to electrically connect between negative electrode terminals of the parallel-connected battery groups; and a third connecting conductor between cell terminals to electrically connect the connecting conductors between the cell terminals of the parallel-connected battery groups each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の電池セルを並列接続してなる並列接続電池群を複数直列接続してなる二次電池モジュールに関する。   The present invention relates to a secondary battery module formed by connecting a plurality of parallel connection battery groups formed by connecting a plurality of battery cells in parallel.

ハイブリッド電気自動車、電気自動車などの車両で使われる電池装置は、高出力でかつ頻繁な出力変化に対応する必要がある。このような電池装置は、一般的に、必要な出力や容量に応じて、電池セルを複数個電気的に直並列接続しかつ機械的にも一体化した電池モジュールを組み込んで構成されることが多い。   A battery device used in a vehicle such as a hybrid electric vehicle or an electric vehicle needs to have high output and cope with frequent output changes. Such a battery device is generally configured by incorporating a battery module in which a plurality of battery cells are electrically connected in series and in parallel and mechanically integrated according to a required output and capacity. Many.

電池モジュールを複数個の電池セルを直並列接続して構成する場合、電池モジュールは、並列接続された電池セルには電流が均等に分担されアンバランスがないこと、各並列セル群の電圧の監視値が並列セル群相互間でアンバランスがないこと、さらにセル端子を直並列接続する配線部材による発生損失が小さいことが要求される。 When the battery module is configured by connecting a plurality of battery cells in series and parallel, the battery module is configured to monitor the voltage of each parallel cell group that the current is equally distributed to the battery cells connected in parallel and there is no imbalance. It is required that the value has no imbalance between the parallel cell groups and that the loss generated by the wiring member that connects the cell terminals in series and parallel is small.

従来の電池モジュールの構成を図9、図10、図11、図12に示す。図9及び図10は電池モジュールの機械的な構成を示す立体図、図11は電池モジュール内の電気的接続状態を示す回路図である。   The configuration of a conventional battery module is shown in FIGS. 9, 10, 11, and 12. 9 and 10 are three-dimensional views showing the mechanical configuration of the battery module, and FIG. 11 is a circuit diagram showing an electrical connection state in the battery module.

図9に示されるように、電池モジュールは、電池セルC1、C2、C3を並列接続したもの、電池セルC4、C5、C6を並列接続したもの、電池セルC7、C8、C9を並列接続したものを直列接続することにより構成される。   As shown in FIG. 9, the battery module includes battery cells C1, C2, and C3 connected in parallel, battery cells C4, C5, and C6 connected in parallel, and battery cells C7, C8, and C9 connected in parallel. Are connected in series.

各電池セル(C1乃至C9)は、箱型の外形を有し、上部にセル端子T1乃至T18が設けられている。 Each of the battery cells (C1 to C9) has a box-shaped outer shape, and cell terminals T1 to T18 are provided on the upper part.

各隣り合う電池セルの端子相互間は、図9に示すようにセル端子間並列接続導体L1、L2もしくはセル端子間直並列接続導体L3、L4により並列もしくは直列に接続されている。セル端子間並列接続導体L1、L2及びセル端子間直並列接続導体L3、L4は、例えばアルミニウムなどの電気の良導体材料で形成されており、同種の材料で形成されているセル端子T1乃至T18に溶接工法などで接合されている。 The terminals of adjacent battery cells are connected in parallel or in series by inter-cell terminal parallel connection conductors L1 and L2 or inter-cell terminal serial / parallel connection conductors L3 and L4 as shown in FIG. The inter-cell terminal parallel connection conductors L1 and L2 and the inter-cell terminal serial / parallel connection conductors L3 and L4 are made of, for example, a good electrical conductor material such as aluminum, and are connected to the cell terminals T1 to T18 made of the same kind of material. Joined by welding method.

さらに、セル端子間並列接続導体L1、L2の端部には、電池モジュールが外部と接続するためのモジュール端子部TP、TNが夫々設けられている。 Furthermore, module terminal portions TP and TN for connecting the battery module to the outside are provided at the ends of the inter-cell terminal parallel connection conductors L1 and L2, respectively.

また、セル端子間並列接続導体L1、L2並びにセル端子間直並列接続導体L3、L4には、電圧検出用の電圧検出端子D1、D2、D3、D4が設けられている。図12に示されるように、電池モジュールの上部には、セル端子間並列接続導体L1、L2並びにセル端子間直並列接続導体L3、L4を覆う形で、電圧監視基板DBが設けれ、電圧検出端子D1、D2、D3、D4が電圧監視基板DB上の電気回路に接続している。   The cell terminal parallel connection conductors L1 and L2 and the cell terminal serial / parallel connection conductors L3 and L4 are provided with voltage detection terminals D1, D2, D3, and D4 for voltage detection. As shown in FIG. 12, a voltage monitoring board DB is provided on the upper part of the battery module so as to cover the inter-cell terminal parallel connection conductors L1 and L2 and the inter-cell terminal serial / parallel connection conductors L3 and L4. Terminals D1, D2, D3, and D4 are connected to an electric circuit on the voltage monitoring board DB.

上述したように構成された電池モジュールにおいては、次のような課題を有する。 The battery module configured as described above has the following problems.

並列接続された電池セル間の電流分担が不均等が生じしやすいことである。 The current sharing between the battery cells connected in parallel is likely to be uneven.

図11は、図9に示される電池モジュールの等価回路を示した図でもある。図11において、電池モジュールに充電電流が流れる場合を考えると、モジュール端子部TPからセル端子間並列接続導体L1やセル端子間直並列接続導体L4、L3を経由して、各電池セルに充電電流が流れ、もう一つのモジュール端子部TNに至る。 FIG. 11 is also a diagram showing an equivalent circuit of the battery module shown in FIG. In FIG. 11, considering the case where the charging current flows through the battery module, the charging current is supplied to each battery cell from the module terminal portion TP via the inter-cell terminal parallel connection conductor L1 and the inter-cell terminal serial / parallel connection conductors L4 and L3. Flows to another module terminal TN.

セル端子間並列接続導体L1においては、モジュール端子部TPとセル端子T1との間に等価抵抗r1、セル端子T1とセル端子T2との間に等価抵抗r2、セル端子T2とセル端子T3との間に等価抵抗r3が存在する。同様に、セル端子間並列接続導体L2においては、モジュール端子部TNとセル端子T18との間に等価抵抗r4、セル端子T18とセル端子T17との間に等価抵抗r5、セル端子T17とセル端子T16との間に等価抵抗r6が存在する。   In the inter-cell terminal parallel connection conductor L1, an equivalent resistance r1 is provided between the module terminal portion TP and the cell terminal T1, an equivalent resistance r2 is provided between the cell terminal T1 and the cell terminal T2, and the cell terminal T2 and the cell terminal T3. An equivalent resistance r3 exists between them. Similarly, in the inter-cell terminal parallel connection conductor L2, an equivalent resistance r4 is provided between the module terminal portion TN and the cell terminal T18, an equivalent resistance r5 is provided between the cell terminal T18 and the cell terminal T17, and the cell terminal T17 and the cell terminal. An equivalent resistance r6 exists between T16.

セル端子間直並列接続導体L4においては、セル端子T4とセル端子T7との間に等価抵抗r11、セル端子T4とセル端子T8との間に等価抵抗r12、セル端子T4とセル端子T9との間に等価抵抗r13、セル端子T5とセル端子T7との間に等価抵抗r14、セル端子T5とセル端子T8との間に等価抵抗r15、セル端子T5とセル端子T9との間に等価抵抗r16、セル端子T6とセル端子T7との間に等価抵抗r17、セル端子T6とセル端子T8との間に等価抵抗r18、セル端子T6とセル端子T9との間に等価抵抗r19が存在する。 In the serial-parallel connection conductor L4 between the cell terminals, an equivalent resistance r11 is provided between the cell terminal T4 and the cell terminal T7, an equivalent resistance r12 is provided between the cell terminal T4 and the cell terminal T8, and the cell terminal T4 and the cell terminal T9. An equivalent resistance r13, an equivalent resistance r14 between the cell terminal T5 and the cell terminal T7, an equivalent resistance r15 between the cell terminal T5 and the cell terminal T8, and an equivalent resistance r16 between the cell terminal T5 and the cell terminal T9. An equivalent resistance r17 exists between the cell terminal T6 and the cell terminal T7, an equivalent resistance r18 exists between the cell terminal T6 and the cell terminal T8, and an equivalent resistance r19 exists between the cell terminal T6 and the cell terminal T9.

同様に、セル端子間直並列接続導体L3においては、セル端子T10とセル端子T13との間に等価抵抗r21、セル端子T10とセル端子T14との間に等価抵抗r22、セル端子T10とセル端子T15との間に等価抵抗r23、セル端子T11とセル端子T13との間に等価抵抗r24、セル端子T11とセル端子T14との間に等価抵抗r25、セル端子T11とセル端子T15との間に等価抵抗r26、セル端子T12とセル端子T13との間に等価抵抗r27、セル端子T12とセル端子T14との間に等価抵抗r28、セル端子T12とセル端子T15との間に等価抵抗r29が存在する。 Similarly, in the serial-parallel connection conductor L3 between the cell terminals, an equivalent resistance r21 is provided between the cell terminal T10 and the cell terminal T13, an equivalent resistance r22 is provided between the cell terminal T10 and the cell terminal T14, and the cell terminal T10 and the cell terminal. An equivalent resistance r23 between the cell terminal T11 and the cell terminal T13, an equivalent resistance r24 between the cell terminal T11 and the cell terminal T13, an equivalent resistance r25 between the cell terminal T11 and the cell terminal T14, and between the cell terminal T11 and the cell terminal T15. An equivalent resistance r26, an equivalent resistance r27 between the cell terminal T12 and the cell terminal T13, an equivalent resistance r28 between the cell terminal T12 and the cell terminal T14, and an equivalent resistance r29 between the cell terminal T12 and the cell terminal T15 exist. To do.

ここで注意すべきは、セル端子間直並列接続導体L3、L4の各等価抵抗が、セル端子間並列接続導体L1、L2の各等価抵抗より値が小さいことである。例えば、等価抵抗r2やr3より、r11〜r13などの方が相対的に抵抗値が小さい。 It should be noted here that the equivalent resistances of the inter-cell terminal series / parallel connection conductors L3 and L4 are smaller than the equivalent resistances of the inter-cell terminal parallel connection conductors L1 and L2. For example, the resistance values of r11 to r13 are relatively smaller than the equivalent resistances r2 and r3.

上述した充電電流経路(モジュール端子部TPからモジュール端子部TNに至る流路)において、等価抵抗値の差の関係で、電池セルC1,C2,C3の電流分担を比較すると、電池セルC1の電流が最も大きく、電池セルC3が最も小さくなる。 When the current sharing of the battery cells C1, C2, and C3 is compared in the above-described charging current path (flow path from the module terminal part TP to the module terminal part TN) due to the difference in equivalent resistance value, the current of the battery cell C1 is compared. Is the largest, and the battery cell C3 is the smallest.

同様に、電池セルC7,C8,C9の電流分担を比較すると、電池セルC9の電流が最も大きく、電池セルC7が最も小さくなる。   Similarly, when the current sharing of the battery cells C7, C8, and C9 is compared, the current of the battery cell C9 is the largest and the battery cell C7 is the smallest.

上述したように、端子間を接続する導体に等価抵抗が存在するため、並列セル間の電流の不均等が発生し、これによりマージンの増大、発生する温度上昇値の不均等による寿命低下などを招くので好ましくない。 As described above, since there is an equivalent resistance in the conductor connecting the terminals, current non-uniformity occurs between the parallel cells, thereby increasing the margin and reducing the life due to the non-uniform temperature rise value. Since it invites, it is not preferable.

課題の第二は、各並列セル群の電圧監視値が、並列セル群相互間で差異があることである。電池セルの保護を目的として、電池電圧の監視が行われている。電圧はセル端子間並列接続導体L1、L2またはセル端子間直並列接続導体L3、L4に形成した電圧検出部D1、D2、D3、D4を介して電圧監視基板DBで監視する。すなわち、電池セルC1、C2、C3により構成される並列セル群の電圧は、電圧検出部D1、D2により検出される。同様に、電池セルC4、C5、C6により構成される並列セル群の電圧は、電圧検出部D2、D3により検出される。さらに、電池セルC7、C8、C9により構成される並列セル群の電圧は、電圧検出部D3、D4により検出される。   The second problem is that the voltage monitoring value of each parallel cell group is different between the parallel cell groups. Battery voltage is monitored for the purpose of protecting battery cells. The voltage is monitored by the voltage monitoring board DB via the voltage detection units D1, D2, D3, and D4 formed in the inter-cell terminal parallel connection conductors L1 and L2 or the inter-cell terminal serial / parallel connection conductors L3 and L4. That is, the voltage of the parallel cell group configured by the battery cells C1, C2, and C3 is detected by the voltage detection units D1 and D2. Similarly, the voltage of the parallel cell group constituted by the battery cells C4, C5, and C6 is detected by the voltage detection units D2 and D3. Furthermore, the voltage of the parallel cell group constituted by the battery cells C7, C8, and C9 is detected by the voltage detection units D3 and D4.

ここで注意すべきは、各接続導体上の電圧検出部の形成位置の違いによって検出電圧の値が異なってくることである。   It should be noted here that the value of the detection voltage varies depending on the difference in the position where the voltage detection unit is formed on each connection conductor.

セル端子間並列接続導体L1、L2およびセル端子間直並列接続導体L3、L4の内部の等価抵抗と、通電電流の積で決まる電圧上昇もしくは電圧降下が生じるので、セル電圧に等価抵抗による電圧変動分が付加される。 Since the voltage rise or voltage drop is determined by the product of the equivalent resistance inside the cell terminal parallel connection conductors L1 and L2 and the cell terminal serial / parallel connection conductors L3 and L4, and the energization current, the voltage fluctuation due to the equivalent resistance occurs in the cell voltage. Minutes are added.

等価抵抗による電圧変動は、電圧検出部を形成する位置により変わる。図9に示すように、電圧検出部D1、D2、D3、D4がそれぞれセル端子間並列接続導体L1、L2およびセル端子間直並列接続導体L3、L4の図示された位置に設けられた場合、図11において、セル端子T1,T6,T12,T18がそれぞれ電圧検出部D1、D2、D3、D4に相当する。   The voltage fluctuation due to the equivalent resistance varies depending on the position where the voltage detection unit is formed. As shown in FIG. 9, when the voltage detectors D1, D2, D3, D4 are provided at the illustrated positions of the inter-cell terminal parallel connection conductors L1, L2 and the inter-cell terminal serial / parallel connection conductors L3, L4, respectively. In FIG. 11, cell terminals T1, T6, T12, and T18 correspond to voltage detectors D1, D2, D3, and D4, respectively.

セル端子T1とセル端子T6間の電圧はセル端子T6とセル端子T12間の電圧やセル端子T12とセル端子T18間の電圧より小さい値になる。セル端子間T1とT6との間には、電池セルC3以外に等価抵抗r3とr2の直列回路が存在し、一方、セル端子T6とT12との間には電池セルC6以外に等価抵抗r19が存在する。セル端子間T1とT6との間には、等価抵抗が2つ存在することにより、セル端子T6とT12との間と比較して電圧降下が大きく、よって、セル端子T1とセル端子T6間の電圧はセル端子T6とセル端子T12間の電圧やセル端子T12とセル端子T18間の電圧より小さい値になる。 The voltage between the cell terminal T1 and the cell terminal T6 is smaller than the voltage between the cell terminal T6 and the cell terminal T12 or the voltage between the cell terminal T12 and the cell terminal T18. Between the cell terminals T1 and T6, there is a series circuit of equivalent resistances r3 and r2 in addition to the battery cell C3, while an equivalent resistance r19 is provided between the cell terminals T6 and T12 in addition to the battery cell C6. Exists. Since two equivalent resistances exist between the cell terminals T1 and T6, the voltage drop is larger than that between the cell terminals T6 and T12. Therefore, between the cell terminals T1 and T6. The voltage is smaller than the voltage between the cell terminal T6 and the cell terminal T12 or the voltage between the cell terminal T12 and the cell terminal T18.

課題の第三は、セル端子を直並列接続する配線部材による発生損失である。図9、図10の構成においてセル端子間並列接続導体やセル端子間直並列接続導体に特別に抵抗が大きい部分が存在する訳ではない。しかし導体の抵抗は、発生損失を増大させ、電池セルの温度上昇を増大させ、さらに効率を低下させる。   The third problem is a loss generated by the wiring member that connects the cell terminals in series and parallel. In the configuration of FIGS. 9 and 10, there is not a portion where the resistance is particularly large in the inter-cell terminal parallel connection conductor or the inter-cell terminal serial / parallel connection conductor. However, the resistance of the conductor increases the generation loss, increases the temperature rise of the battery cell, and further reduces the efficiency.

特開平9−219181号公報JP-A-9-219181

本発明は上記事情に鑑みて成されたものであって、直並列接続された電池セルに流れる電流を均等化させ、損失の少なく、効率のよい信頼性の高い二次電池モジュールを提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a secondary battery module that equalizes the current flowing through battery cells connected in series and parallel, has low loss, is efficient, and has high reliability. With the goal.

本発明による二次電池モジュールは、複数の電池セルを並列接続してなる並列接続電池群を複数直列接続してなる二次電池モジュールにおいて、並列接続電池群の電池セルの正極端子間を電気的に接続する第1のセル端子間接続導体と、並列接続電池群の負極端子間を電気的に接続する第2のセル端子間接続導体と、並列接続電池群のセル端子間接続導体どうしを電気的に接続する第3のセル端子間接続導体とを具備したことを特徴とする二次電池モジュールである。   The secondary battery module according to the present invention is a secondary battery module in which a plurality of parallel-connected battery groups in which a plurality of battery cells are connected in parallel is connected in series, and the positive terminals of the battery cells in the parallel-connected battery group are electrically connected. Between the first inter-cell terminal connection conductor connected to the second cell terminal, the second inter-cell terminal connection conductor electrically connecting the negative electrode terminals of the parallel connection battery group, and the inter-cell terminal connection conductor of the parallel connection battery group. A secondary battery module comprising a third inter-terminal connecting conductor connected electrically.

本発明によれば、直並列接続された電池セルに流れる電流を均等化させ、損失の少ない効率のよい信頼性の高い二次電池モジュールを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric current which flows into the battery cell connected in series and parallel is equalized, and an efficient and reliable secondary battery module with few losses can be provided.

本発明の第1実施形態に係る二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the secondary battery module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the secondary battery module which concerns on 1st Embodiment of this invention. 図1記載の第1実施形態に係る電池モジュールの電気的接続状態を説明するための図である。It is a figure for demonstrating the electrical connection state of the battery module which concerns on 1st Embodiment of FIG. 本発明の第2実施形態に係る二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the secondary battery module which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the secondary battery module which concerns on 2nd Embodiment of this invention. 図4記載の第1実施形態に係る電池モジュールの電気的接続状態を説明するための図である。It is a figure for demonstrating the electrical connection state of the battery module which concerns on 1st Embodiment of FIG. 本発明の第3実施形態に係る二次電池モジュールの構成部品の一部を説明するための図である。It is a figure for demonstrating a part of component of the secondary battery module which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る二次電池モジュールの構成部品の一部を説明するための図である。It is a figure for demonstrating a part of component of the secondary battery module which concerns on 4th Embodiment of this invention. 従来の二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the conventional secondary battery module. 従来の二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the conventional secondary battery module. 図9記載の電池モジュールの電気的接続状態を説明するための図である。It is a figure for demonstrating the electrical connection state of the battery module of FIG. 従来の二次電池モジュールの構成を説明するための図である。It is a figure for demonstrating the structure of the conventional secondary battery module.

以下、本発明の第1実施形態に係る二次電池モジュールついて、図面を参照して説明する。   Hereinafter, the secondary battery module according to the first embodiment of the present invention will be described with reference to the drawings.

図1、図2に示されるように、二次電池モジュールは、電池セルC1、C2、C3を並列接続したもの、電池セルC4、C5、C6を並列接続したもの、電池セルC7、C8、C9を並列接続したものを直列接続することにより構成される。   As shown in FIGS. 1 and 2, the secondary battery module includes battery cells C1, C2, and C3 connected in parallel, battery cells C4, C5, and C6 connected in parallel, and battery cells C7, C8, and C9. Are connected in parallel and connected in series.

各電池セル(C1乃至C9)は、箱型の外形を有し、上部にセル端子T1乃至T18が設けられている。 Each of the battery cells (C1 to C9) has a box-shaped outer shape, and cell terminals T1 to T18 are provided on the upper part.

各隣り合う電池セルの端子相互間は、図1、2に示すようにセル端子間並列接続導体L11、L12もしくはセル端子間直並列接続導体L13、L14により並列もしくは直列に接続されている。セル端子間並列接続導体L11、L12及びセル端子間直並列接続導体L13、L14は、例えばアルミニウムなどの電気の良導体材料で形成されており、同種の材料で形成されているセル端子T1乃至T18に溶接工法などで接合されている。 As shown in FIGS. 1 and 2, terminals of adjacent battery cells are connected in parallel or in series by cell terminal parallel connection conductors L11 and L12 or cell terminal serial / parallel connection conductors L13 and L14. The inter-cell terminal parallel connection conductors L11 and L12 and the inter-cell terminal serial / parallel connection conductors L13 and L14 are made of, for example, a good electrical conductor material such as aluminum, and are connected to the cell terminals T1 to T18 made of the same kind of material. Joined by welding method.

さらに、セル端子間並列接続導体L11、L12の端部には、電池モジュールが外部と接続するためのモジュール端子部TP、TNが夫々設けられている。ここで、セル端子間直並列接続導体L13、L14は、従来の四角形状ではなく、図にしめされるよう、コの字状の形状をしている。このセル端子間直並列接続導体L13は、電池セルC1、C2、C3のセル端子T4、T5、T6を接続し、さらに電池セルC4、C5、C6のセル端子T7、T8、T9を接続し、セル端子T6とセル端子T9を接続するものである。 Furthermore, module terminal portions TP and TN for connecting the battery module to the outside are provided at the ends of the inter-cell terminal parallel connection conductors L11 and L12, respectively. Here, the series-parallel connection conductors L13 and L14 between the cell terminals have a U-shape, as shown in the figure, instead of the conventional square shape. The cell terminal series-parallel connection conductor L13 connects the cell terminals T4, T5, T6 of the battery cells C1, C2, C3, and further connects the cell terminals T7, T8, T9 of the battery cells C4, C5, C6, The cell terminal T6 and the cell terminal T9 are connected.

また、セル端子間並列接続導体L1、L2並びにセル端子間直並列接続導体L3、L4には、電圧検出用の電圧検出端子D11、D12、D13、D14が設けられている。電池モジュールの上部には、セル端子間並列接続導体L11、L12並びにセル端子間直並列接続導体L13、L14を覆う形で、図示しない電圧監視基板が設けれ、電圧検出端子D11、D12、D13、D14が電圧監視基板上の電気回路に接続している。   In addition, voltage detection terminals D11, D12, D13, and D14 for voltage detection are provided on the inter-cell terminal parallel connection conductors L1 and L2 and the inter-cell terminal serial / parallel connection conductors L3 and L4. On the upper part of the battery module, a voltage monitoring board (not shown) is provided so as to cover the inter-cell terminal parallel connection conductors L11, L12 and the inter-cell terminal serial / parallel connection conductors L13, L14, and the voltage detection terminals D11, D12, D13, D14 is connected to an electric circuit on the voltage monitoring board.

図3は、本実施形態における二次電池モジュール内の電気的接続状態を示す回路図である。図3において、電池セルC1、C2、C3に着目すると、セル端子T1からT6へ至る電流経路において、いずれの電池セルに対する電流経路についても、セル端子間並列接続導体またはセル端子間直並列接続導体に存在する4個の等価抵抗r2、r3、r101、r102の内、2個の等価抵抗を経由することになる。 FIG. 3 is a circuit diagram showing an electrical connection state in the secondary battery module in the present embodiment. In FIG. 3, focusing on the battery cells C1, C2, and C3, in the current path from the cell terminals T1 to T6, the inter-cell terminal parallel connection conductor or the inter-cell terminal serial / parallel connection conductor is used for the current path for any battery cell. Of the four equivalent resistances r2, r3, r101, r102 existing through the two equivalent resistances.

同様に、電池セルC4、C5、C6に着目すると、セル端子T9からT10へ至る電流経路において、いずれの電池セルに対する電流経路についても、セル端子間並列接続導体またはセル端子間直並列接続導体に存在する4個の等価抵抗r104、r105、r111、r112の内、2個の等価抵抗を経由することになる。 Similarly, when attention is paid to the battery cells C4, C5, and C6, in the current path from the cell terminals T9 to T10, the current path for any of the battery cells is either the parallel connection conductor between cell terminals or the series-parallel connection conductor between cell terminals. Of the existing four equivalent resistances r104, r105, r111, r112, two equivalent resistances are routed.

同様に、電池セルC7、C8、C9に着目すると、セル端子T13からT18へ至る電流経路において、いずれの電池セルに対する電流経路についても、セル端子間並列接続導体またはセル端子間直並列接続導体に存在する4個の等価抵抗r4、r5、r114、r115の内、2個の等価抵抗を経由することになる。 Similarly, when attention is paid to the battery cells C7, C8, C9, in the current path from the cell terminals T13 to T18, the current path for any battery cell is either the parallel connection conductor between cell terminals or the series-parallel connection conductor between cell terminals. Of the existing four equivalent resistances r4, r5, r114, r115, two equivalent resistances are routed.

以上により、いずれの電池セルを経由する電流経路の等価抵抗を同等にすることができる。これにより、各電池セルに流れる電流を均等化することができる。 As described above, the equivalent resistances of the current paths passing through any of the battery cells can be made equal. Thereby, the electric current which flows into each battery cell can be equalized.

その結果、セルへの通電マージンの低減、発生する温度上昇値の均等化による寿命低下を回避することができる。 As a result, it is possible to avoid a reduction in the life due to a reduction in energization margin to the cell and equalization of the generated temperature rise value.

一方、二次電池セルの保護を目的として、電池電圧を監視する。電圧は、セル端子間並列接続導体L11、L12またはセル端子間直並列接続導体L13、L14に形成した電圧検出部D11、D12、D13、D14を介して電圧監視基板(図示せず)で監視する。 On the other hand, the battery voltage is monitored for the purpose of protecting the secondary battery cell. The voltage is monitored by a voltage monitoring board (not shown) via the voltage detectors D11, D12, D13, D14 formed in the inter-cell terminal parallel connection conductors L11, L12 or the inter-cell terminal serial / parallel connection conductors L13, L14. .

すなわち、二次電池セルC1、C2、C3により構成される並列セル群の電圧は、電圧検出部D11、D12により検出される。同様に、二次電池セルC4、C5、C6により構成される並列セル群の電圧は、電圧検出部D12、D13により検出される。さらに、電池セルC7、C8、C9により構成される並列セル群の電圧は、電圧検出部D13、D14により検出される。 That is, the voltage of the parallel cell group constituted by the secondary battery cells C1, C2, and C3 is detected by the voltage detection units D11 and D12. Similarly, the voltage of the parallel cell group comprised by the secondary battery cells C4, C5, C6 is detected by the voltage detection units D12, D13. Furthermore, the voltage of the parallel cell group comprised by battery cell C7, C8, C9 is detected by the voltage detection parts D13 and D14.

次に、本発明の第2実施形態に関わる二次電池モジュールについて図面を参照して以下に説明する。 Next, a secondary battery module according to the second embodiment of the present invention will be described below with reference to the drawings.

図4、図5を示されるように、二次電池モジュールは、電池セルC1、C2、C3を並列接続したもの、電池セルC4、C5、C6を並列接続したもの、電池セルC7、C8、C9を並列接続したものを直列接続することにより構成される。   4 and 5, the secondary battery module includes battery cells C1, C2, and C3 connected in parallel, battery cells C4, C5, and C6 connected in parallel, and battery cells C7, C8, and C9. Are connected in parallel and connected in series.

各電池セル(C1乃至C9)は、箱型の外形を有し、上部にセル端子T1乃至T18が設けられている。 Each of the battery cells (C1 to C9) has a box-shaped outer shape, and cell terminals T1 to T18 are provided on the upper part.

各隣り合う電池セルの端子相互間は、図4、5に示すようにセル端子間並列接続導体L21、L22もしくはセル端子間直並列接続導体L23、L24により並列もしくは直列に接続されている。セル端子間並列接続導体L21、L22及びセル端子間直並列接続導体L23、L24は、例えばアルミニウムなどの電気の良導体材料で形成されており、同種の材料で形成されているセル端子T1乃至T18に溶接工法などで接合されている。 The terminals of adjacent battery cells are connected in parallel or in series by cell terminal parallel connection conductors L21 and L22 or cell terminal serial / parallel connection conductors L23 and L24 as shown in FIGS. The inter-cell terminal parallel connection conductors L21 and L22 and the inter-cell terminal serial / parallel connection conductors L23 and L24 are made of, for example, a good electrical conductor material such as aluminum, and the cell terminals T1 to T18 made of the same kind of material are used. Joined by welding method.

さらに、セル端子間並列接続導体L21、L22の端部には、電池モジュールが外部と接続するためのモジュール端子部TP、TNが夫々設けられている。ここで、セル端子間直並列接続導体L23、L24は、従来の四角形状ではなく、図にしめされるよう、コの字状の形状をしている。このセル端子間直並列接続導体L23は、電池セルC1、C2、C3のセル端子T4、T5、T6を接続し、さらに電池セルC4、C5、C6のセル端子T7、T8、T9を接続し、セル端子T6とセル端子T9を接続するものである。 Further, module terminal portions TP and TN for connecting the battery module to the outside are provided at the ends of the inter-cell terminal parallel connection conductors L21 and L22, respectively. Here, the series-parallel connection conductors L23 and L24 between the cell terminals have a U-shape, as shown in the figure, instead of the conventional square shape. This series-parallel connection conductor L23 between the cell terminals connects the cell terminals T4, T5, T6 of the battery cells C1, C2, C3, and further connects the cell terminals T7, T8, T9 of the battery cells C4, C5, C6, The cell terminal T6 and the cell terminal T9 are connected.

図6は、本実施形態における二次電池モジュール内の電気的接続状態を示す回路図である。図6において、電池セルC1、C2、C3に着目すると、セル端子T1からT6へ至る電流経路において、いずれの電池セルに対する電流経路についても、セル端子間並列接続導体またはセル端子間直並列接続導体に存在する4個の等価抵抗r2、r3、r101、r102の内、2個の等価抵抗を経由することになる。 FIG. 6 is a circuit diagram showing an electrical connection state in the secondary battery module in the present embodiment. In FIG. 6, focusing on the battery cells C1, C2, and C3, in the current path from the cell terminals T1 to T6, the inter-cell terminal parallel connection conductor or the inter-cell terminal serial / parallel connection conductor is used for the current path for any battery cell. Of the four equivalent resistances r2, r3, r101, r102 existing through the two equivalent resistances.

同様に、電池セルC4、C5、C6に着目すると、セル端子T9からT10へ至る電流経路において、いずれの電池セルに対する電流経路についても、セル端子間並列接続導体またはセル端子間直並列接続導体に存在する4個の等価抵抗r104、r105、r111、r112の内、2個の等価抵抗を経由することになる。 Similarly, when attention is paid to the battery cells C4, C5, and C6, in the current path from the cell terminals T9 to T10, the current path for any of the battery cells is either the parallel connection conductor between cell terminals or the series-parallel connection conductor between cell terminals. Of the existing four equivalent resistances r104, r105, r111, r112, two equivalent resistances are routed.

同様に、電池セルC7、C8、C9に着目すると、セル端子T13からT18へ至る電流経路において、いずれの電池セルに対する電流経路についても、セル端子間並列接続導体またはセル端子間直並列接続導体に存在する4個の等価抵抗r4、r5、r114、r115の内、2個の等価抵抗を経由することになる。 Similarly, when attention is paid to the battery cells C7, C8, C9, in the current path from the cell terminals T13 to T18, the current path for any battery cell is either the parallel connection conductor between cell terminals or the series-parallel connection conductor between cell terminals. Of the existing four equivalent resistances r4, r5, r114, r115, two equivalent resistances are routed.

以上により、いずれの電池セルを経由する電流経路の等価抵抗を同等にすることができる。これにより、各電池セルに流れる電流を均等化することができる。 As described above, the equivalent resistances of the current paths passing through any of the battery cells can be made equal. Thereby, the electric current which flows into each battery cell can be equalized.

その結果、セルへの通電マージンの低減、発生する温度上昇値の均等化による寿命低下を回避することができる。 As a result, it is possible to avoid a reduction in the life due to a reduction in energization margin to the cell and equalization of the generated temperature rise value.

さらに、図4、図5に示されるように、セル端子間並列接続導体L21、L22並びにセル端子間直並列接続導体L23、L24には、電圧検出用の電圧検出端子D21、D22、D23、D24が設けられている。なお、電圧検出端子D21は、図に示されるように、板状のセル端子間並列接続導体L21の幅方向中間部分に設けられている。従来の電圧検出端子D1がセル端子間並列接続導体L1の端部に設けられている点で差異がある。同様に、電圧検出端子D24は、図に示されるように、板状のセル端子間並列接続導体L22の幅方向中間部分に設けられている。 Furthermore, as shown in FIG. 4 and FIG. 5, the voltage detection terminals D21, D22, D23, and D24 for voltage detection are included in the inter-cell terminal parallel connection conductors L21 and L22 and the inter-cell terminal serial / parallel connection conductors L23 and L24. Is provided. In addition, the voltage detection terminal D21 is provided in the intermediate part of the width direction of the parallel connection conductor L21 between plate-shaped cell terminals, as the figure shows. There is a difference in that the conventional voltage detection terminal D1 is provided at the end of the inter-cell terminal parallel connection conductor L1. Similarly, as shown in the drawing, the voltage detection terminal D24 is provided in the intermediate portion in the width direction of the plate-shaped inter-cell terminal parallel connection conductor L22.

さらに、電圧検出端子D22は、図に示されるように、板状のセル端子間直並列接続導体L23のセル端子T6およびT9の中間位置に設けられている。従来の電圧検出端子がセル端子間並列接続導体の端部に設けられている点で差異がある。同様に、電圧検出端子D23は、図に示されるように、板状のセル端子間直並列接続導体L24のセル端子T10およびT13の中間位置に設けられている。 Furthermore, as shown in the drawing, the voltage detection terminal D22 is provided at an intermediate position between the cell terminals T6 and T9 of the plate-like inter-cell terminal series-parallel connection conductor L23. There is a difference in that a conventional voltage detection terminal is provided at an end of a parallel connection conductor between cell terminals. Similarly, as shown in the drawing, the voltage detection terminal D23 is provided at an intermediate position between the cell terminals T10 and T13 of the plate-like inter-cell terminal series-parallel connection conductor L24.

図6は、本実施形態における二次電池モジュール内の電気的接続状態を示す回路図である。 FIG. 6 is a circuit diagram showing an electrical connection state in the secondary battery module in the present embodiment.

図6中、図3に記載の構成と同一のものについては、同一符号を付して、その説明を省略する。 6, the same components as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態では、電圧検出端子D21が、セル端子T1およびモジュール端子部TPとの中間に設けられているため、セル端子T1と電圧検出端子D21との間の等価回路r1bと、電圧検出端子D21とモジュール端子部TPとの間の等価回路r1aとはほぼ同じ抵抗値となる。 In the present embodiment, since the voltage detection terminal D21 is provided between the cell terminal T1 and the module terminal portion TP, an equivalent circuit r1b between the cell terminal T1 and the voltage detection terminal D21, and the voltage detection terminal D21. And the equivalent circuit r1a between the module terminal portion TP have substantially the same resistance value.

同様に、電圧検出端子D24が、セル端子T18およびモジュール端子部TNとの中間に設けられているため、セル端子T18と電圧検出端子D24との間の等価回路r6aと、電圧検出端子D24とモジュール端子部TNとの間の等価回路r1bとはほぼ同じ抵抗値となる。 Similarly, since the voltage detection terminal D24 is provided between the cell terminal T18 and the module terminal portion TN, the equivalent circuit r6a between the cell terminal T18 and the voltage detection terminal D24, the voltage detection terminal D24, and the module The equivalent circuit r1b between the terminal portion TN has almost the same resistance value.

一方、電圧検出端子D22が、セル端子T6およびセル端子T9との中間に設けられているため、セル端子T6と電圧検出端子D22との間の等価回路r103aと、電圧検出端子D22とセル端子T9との間の等価回路r103bとはほぼ同じ抵抗値となる。 On the other hand, since the voltage detection terminal D22 is provided between the cell terminal T6 and the cell terminal T9, the equivalent circuit r103a between the cell terminal T6 and the voltage detection terminal D22, the voltage detection terminal D22, and the cell terminal T9. The equivalent circuit r103b between the two has almost the same resistance value.

同様に、電圧検出端子D23が、セル端子T10およびセル端子T13との中間に設けられているため、セル端子T10と電圧検出端子D23との間の等価回路r113aと、電圧検出端子D23とセル端子T13との間の等価回路r113bとはほぼ同じ抵抗値となる。 Similarly, since the voltage detection terminal D23 is provided between the cell terminal T10 and the cell terminal T13, an equivalent circuit r113a between the cell terminal T10 and the voltage detection terminal D23, the voltage detection terminal D23, and the cell terminal The equivalent circuit r113b between T13 has almost the same resistance value.

このように構成すると、電圧検出端子D21〜D22間、電圧検出端子D22〜D23間、電圧検出端子D23〜D24間の3つの電圧を考えると、並列セル群自体の電圧差は別にして、電圧検出部の位置の違いにより、並列接続導体または直並列接続導体の抵抗値に差異が生じるというような事象は無くなる。そのため、それに起因する電圧差の発生を無くすことができる。 With this configuration, when considering three voltages between the voltage detection terminals D21 to D22, between the voltage detection terminals D22 to D23, and between the voltage detection terminals D23 to D24, the voltage difference between the parallel cell groups themselves is Due to the difference in the position of the detection unit, the phenomenon that the resistance value of the parallel connection conductor or the series-parallel connection conductor is different is eliminated. Therefore, it is possible to eliminate the occurrence of a voltage difference due to it.

このような構成を採用することにより、検出電圧を均等にできる。電圧監視値の並列セル群相互間でのアンバランスが無くなるので、不要なマージンを除去できる。   By adopting such a configuration, the detection voltages can be made uniform. Since there is no unbalance between the parallel cell groups of the voltage monitoring value, an unnecessary margin can be removed.

本発明の第三の実施形態を図面を用いて説明する。図7、図8は本実施形態を示す図である。 A third embodiment of the present invention will be described with reference to the drawings. 7 and 8 show the present embodiment.

上述した構成において、セル間を配線接続した場合、板状のセル端子間直並列接続導体L23、L24の直列接続部にはセル3個分の通電電流が通過するので、並列接続部と比較して電流量が大きくそれに比例して生じる発熱量も多くなる。発熱量増加は効率の低下と電池セルの温度上昇による信頼性の低下を招くので好ましくない。 In the configuration described above, when the cells are connected by wiring, the conduction current for three cells passes through the series connection part of the plate-like series-parallel connection conductors L23 and L24 between the cell terminals. As a result, the amount of current is large, and the amount of heat generated is proportionally increased. An increase in the amount of heat generation is not preferable because it causes a decrease in efficiency and a decrease in reliability due to an increase in temperature of the battery cell.

図7は、直並列接続導体の直列接続部に導電部材L233を形成したものである。導電部材L233はアルミなどの良導体金属を想定しており、直並列接続導体と一体で形成する、あるいは別の部品を接合するものである。 FIG. 7 shows a structure in which a conductive member L233 is formed in a series connection portion of series-parallel connection conductors. The conductive member L233 is assumed to be a good conductor metal such as aluminum, and is formed integrally with the series-parallel connection conductor or another part is joined.

さらに図8は、図7に記載した導電部材L233をフィン形状の部材L234としたものである。 Further, in FIG. 8, the conductive member L233 shown in FIG. 7 is replaced with a fin-shaped member L234.

このように直並列接続導体を構成することにより、まず直列接続部の抵抗値を低減することが出来る。これは、導体断面積増加による抵抗低減効果である。また図7に記載したフィン形状は、放熱面積を顕著に増加することができる。その結果、抵抗値低減による発熱量の抑制と、放熱面積増大による冷却効率向上との相乗効果により、直列接続部の温度上昇を抑制することができる。従って、効率低下と信頼性低下を回避することができる。 By configuring the series-parallel connection conductor in this way, first, the resistance value of the series connection portion can be reduced. This is a resistance reduction effect due to an increase in conductor cross-sectional area. Moreover, the fin shape described in FIG. 7 can remarkably increase the heat radiation area. As a result, it is possible to suppress an increase in the temperature of the series connection part due to a synergistic effect of suppressing the heat generation amount by reducing the resistance value and improving the cooling efficiency by increasing the heat radiation area. Accordingly, it is possible to avoid a decrease in efficiency and a decrease in reliability.

C1〜C9…電池セル、L11…セル端子間並列接続導体、L12…セル端子間並列接続導体、L13…セル端子間直並列接続導体、L14…セル端子間直並列接続導体、D11〜D14…電圧検出端子 C1 to C9: Battery cells, L11: Parallel connection conductor between cell terminals, L12 ... Parallel connection conductor between cell terminals, L13 ... Series / parallel connection conductor between cell terminals, L14 ... Series / parallel connection conductor between cell terminals, D11 to D14 ... Voltage Detection terminal

Claims (4)

複数の電池セルを並列接続してなる並列接続電池群を複数直列接続してなる二次電池モジュールにおいて、
前記並列接続電池群の電池セルの正極端子間を電気的に接続する第1のセル端子間接続導体と、
前記並列接続電池群の電池セルの負極端子間を電気的に接続する第2のセル端子間接続導体と、
前記並列接続電池群のセル端子間接続導体どうしを電気的に接続する第3のセル端子間接続導体とを具備したことを特徴とする二次電池モジュール。
In a secondary battery module formed by connecting a plurality of parallel connection battery groups formed by connecting a plurality of battery cells in parallel,
A first inter-terminal connecting conductor for electrically connecting the positive terminals of the battery cells of the parallel-connected battery group;
A second inter-terminal connecting conductor for electrically connecting the negative terminals of the battery cells of the parallel-connected battery group;
A secondary battery module, comprising: a third inter-cell terminal connection conductor that electrically connects inter-cell terminal connection conductors of the parallel connection battery group.
前記第1のセル端子間接続導体の一端に前記二次電池モジュールから外部に電力を供給する正極側モジュール端子と、前記第2のセル端子間接続導体の一端に前記二次電池モジュールから外部に電力を供給する負局側モジュール端子とを設けたことを特徴とする請求項1記載の二次電池モジュール。 A positive-side module terminal that supplies electric power from the secondary battery module to one end of the first inter-cell terminal connection conductor, and an external end from the secondary battery module to one end of the second inter-cell terminal connection conductor The secondary battery module according to claim 1, further comprising a negative station side module terminal for supplying electric power. 前記セル端子間接続導体を板状に構成し、前記第3のセル端子間接続導体により前記第1のセル端子間接続導体の端部と第2のセル端子間接続導体の端部とを接続したことを特徴とする請求項2記載の二次電池モジュール The inter-cell terminal connecting conductor is configured in a plate shape, and the end of the first inter-cell terminal connecting conductor and the end of the second inter-cell terminal connecting conductor are connected by the third inter-cell terminal connecting conductor. The secondary battery module according to claim 2, wherein 前記板状のセル端子間接続導体の中央部分に前記セル電池の電圧を検出する電圧検出部を設けたことを特徴とする請求項3記載の二次電池モジュール。   The secondary battery module according to claim 3, wherein a voltage detection unit that detects a voltage of the cell battery is provided in a central portion of the plate-shaped inter-cell terminal connection conductor.
JP2009213998A 2009-09-16 2009-09-16 Secondary battery module Pending JP2011065794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213998A JP2011065794A (en) 2009-09-16 2009-09-16 Secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213998A JP2011065794A (en) 2009-09-16 2009-09-16 Secondary battery module

Publications (1)

Publication Number Publication Date
JP2011065794A true JP2011065794A (en) 2011-03-31

Family

ID=43951852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213998A Pending JP2011065794A (en) 2009-09-16 2009-09-16 Secondary battery module

Country Status (1)

Country Link
JP (1) JP2011065794A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005570A (en) * 2011-06-16 2013-01-07 Meidensha Corp Power source module connection structure
WO2014064900A1 (en) * 2012-10-22 2014-05-01 三洋電機株式会社 Assembled battery and manufacturing method thereof
WO2014155410A1 (en) * 2013-03-25 2014-10-02 三洋電機株式会社 Storage battery system
JP2015125979A (en) * 2013-12-27 2015-07-06 新神戸電機株式会社 Power storage system
JP2015191842A (en) * 2014-03-28 2015-11-02 株式会社Gsユアサ Battery pack and space structure
JP2016054128A (en) * 2014-09-04 2016-04-14 株式会社Gsユアサ Power storage device
JP2017182911A (en) * 2016-03-28 2017-10-05 株式会社デンソー Battery pack
JP2018078782A (en) * 2016-11-08 2018-05-17 磐石電池股▲分▼有限公司 Battery parallel device including charge path and discharge path having equivalent impedance
CN108063193A (en) * 2016-11-08 2018-05-22 磐石电池股份有限公司 With the cell parallel device for waiting resistance charge and discharge path
WO2018139350A1 (en) * 2017-01-30 2018-08-02 三洋電機株式会社 Power source device
JP2018206673A (en) * 2017-06-07 2018-12-27 矢崎総業株式会社 Bus bar module and battery pack
EP3428997A1 (en) 2017-07-12 2019-01-16 Toyota Jidosha Kabushiki Kaisha Battery pack
JP2019207823A (en) * 2018-05-30 2019-12-05 株式会社オートネットワーク技術研究所 Wiring module and power storage module
WO2020008681A1 (en) * 2018-07-06 2020-01-09 日立オートモティブシステムズ株式会社 Secondary battery module
US10811645B2 (en) 2016-07-21 2020-10-20 Samsung Sdi Co., Ltd. Battery system
JP2021504896A (en) * 2017-12-27 2021-02-15 三星エスディアイ株式会社Samsung SDI Co., Ltd. Battery pack
JP2022046541A (en) * 2018-05-30 2022-03-23 株式会社オートネットワーク技術研究所 Wiring module and power storage module
WO2022255017A1 (en) * 2021-06-04 2022-12-08 株式会社Gsユアサ Power storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287985A (en) * 2007-05-16 2008-11-27 Sony Corp Battery pack

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287985A (en) * 2007-05-16 2008-11-27 Sony Corp Battery pack

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005570A (en) * 2011-06-16 2013-01-07 Meidensha Corp Power source module connection structure
WO2014064900A1 (en) * 2012-10-22 2014-05-01 三洋電機株式会社 Assembled battery and manufacturing method thereof
CN104205413A (en) * 2012-10-22 2014-12-10 三洋电机株式会社 Assembled battery and manufacturing method thereof
WO2014155410A1 (en) * 2013-03-25 2014-10-02 三洋電機株式会社 Storage battery system
JP2015125979A (en) * 2013-12-27 2015-07-06 新神戸電機株式会社 Power storage system
JP2015191842A (en) * 2014-03-28 2015-11-02 株式会社Gsユアサ Battery pack and space structure
JP2016054128A (en) * 2014-09-04 2016-04-14 株式会社Gsユアサ Power storage device
JP2017182911A (en) * 2016-03-28 2017-10-05 株式会社デンソー Battery pack
US10811645B2 (en) 2016-07-21 2020-10-20 Samsung Sdi Co., Ltd. Battery system
CN108063193A (en) * 2016-11-08 2018-05-22 磐石电池股份有限公司 With the cell parallel device for waiting resistance charge and discharge path
JP2018078782A (en) * 2016-11-08 2018-05-17 磐石電池股▲分▼有限公司 Battery parallel device including charge path and discharge path having equivalent impedance
US10680227B2 (en) 2016-11-08 2020-06-09 Stone Energy Technology Corporation Battery parallel device having charge path and discharge path with equal impedances
CN110268552A (en) * 2017-01-30 2019-09-20 三洋电机株式会社 Power supply device
JPWO2018139350A1 (en) * 2017-01-30 2019-11-14 三洋電機株式会社 Power supply
JP7114488B2 (en) 2017-01-30 2022-08-08 三洋電機株式会社 power supply
CN110268552B (en) * 2017-01-30 2022-05-17 三洋电机株式会社 Power supply device
WO2018139350A1 (en) * 2017-01-30 2018-08-02 三洋電機株式会社 Power source device
JP2018206673A (en) * 2017-06-07 2018-12-27 矢崎総業株式会社 Bus bar module and battery pack
EP3428997A1 (en) 2017-07-12 2019-01-16 Toyota Jidosha Kabushiki Kaisha Battery pack
JP7026792B2 (en) 2017-12-27 2022-02-28 三星エスディアイ株式会社 Battery pack
JP2021504896A (en) * 2017-12-27 2021-02-15 三星エスディアイ株式会社Samsung SDI Co., Ltd. Battery pack
JP2022046541A (en) * 2018-05-30 2022-03-23 株式会社オートネットワーク技術研究所 Wiring module and power storage module
JP2019207823A (en) * 2018-05-30 2019-12-05 株式会社オートネットワーク技術研究所 Wiring module and power storage module
JP7336065B2 (en) 2018-05-30 2023-08-31 株式会社オートネットワーク技術研究所 Wiring module and power storage module
JPWO2020008681A1 (en) * 2018-07-06 2021-03-11 ビークルエナジージャパン株式会社 Rechargeable battery module
WO2020008681A1 (en) * 2018-07-06 2020-01-09 日立オートモティブシステムズ株式会社 Secondary battery module
WO2022255017A1 (en) * 2021-06-04 2022-12-08 株式会社Gsユアサ Power storage device

Similar Documents

Publication Publication Date Title
JP2011065794A (en) Secondary battery module
US20240006647A1 (en) Bus bars for battery packs
JP5621765B2 (en) Battery module, battery system, and electric vehicle
JP6451650B2 (en) Power supply
JP5210434B2 (en) Battery module
JP4961511B2 (en) Battery module
JP2011049158A (en) Battery module, battery system, and electric vehicle
EP2541641A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, power supply device, and electric apparatus
JP5761370B2 (en) Power storage device, vehicle
JP2011119240A (en) Battery system and electric vehicle including the same
JP2008091183A (en) Square battery and battery pack
JP2011049155A (en) Battery system and electric vehicle including the same
JP2010519677A (en) Uniform distribution type connection member and medium- or large-sized battery pack using equal distribution type connection member
JP2013531868A (en) System and method for monitoring a battery bus bar in a battery pack
WO2013080136A1 (en) A battery module
US20160322623A1 (en) Battery module
US20140117762A1 (en) Battery System
CN220189845U (en) Bus bar having high heat dissipation performance and battery pack including the same
JP2014123517A (en) Battery pack
JP2013008649A (en) Lithium ion cell and module
JP2011204584A (en) Battery module
JP2013037861A (en) Secondary battery device and manufacturing method of the same
WO2018180254A1 (en) Battery pack
WO2021145204A1 (en) Battery management system
JP2015170413A (en) battery unit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140328