JP2011064677A - Water surface profile measuring device and water surface profile measuring method - Google Patents

Water surface profile measuring device and water surface profile measuring method Download PDF

Info

Publication number
JP2011064677A
JP2011064677A JP2010182503A JP2010182503A JP2011064677A JP 2011064677 A JP2011064677 A JP 2011064677A JP 2010182503 A JP2010182503 A JP 2010182503A JP 2010182503 A JP2010182503 A JP 2010182503A JP 2011064677 A JP2011064677 A JP 2011064677A
Authority
JP
Japan
Prior art keywords
water surface
information
waves
wave
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010182503A
Other languages
Japanese (ja)
Other versions
JP5462740B2 (en
Inventor
Chang-Kyu Rheem
昌奎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2010182503A priority Critical patent/JP5462740B2/en
Publication of JP2011064677A publication Critical patent/JP2011064677A/en
Application granted granted Critical
Publication of JP5462740B2 publication Critical patent/JP5462740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water surface profile measuring device that uses an observation device comparatively easy to be installed and managed and measures the water surface profile of sea or the like, and to provide a water surface profile method. <P>SOLUTION: The water surface profile measuring device includes a plurality of radars 10 that radiate pulse-like microwaves to the water surface, receive back scattered waves plural times at each of predetermined timings, detect the back scattered waves at each of a plurality of measuring points, and output a plurality of Doppler signals corresponding to the respective back scattered waves. The plurality of Doppler signals output by the respective radars 10 are used to generate information concerning the movement of water particles on the water surface at the plurality of measuring point provided in the radiation directions of the pulse-like microwaves of the radars, and the advancing direction of waves is determined based on the information indicating angles formed by the radiation directions of the pulse-like microwaves of the respective radars 10 and the advancing direction of waves. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、海洋・湖水などで生じている波浪を計測する装置、及び計測方法に関する。   The present invention relates to an apparatus and a measurement method for measuring waves generated in the ocean, lake water, and the like.

海洋・湖水における波浪など水面形状の変動を表す情報は、その水面の影響を受ける船舶や海岸、海洋構造物の設計・運用において重要なものである。従って従来より、その実態を把握するために種々の観測が行われている。   Information representing changes in the shape of the water surface, such as waves in the ocean and lake water, is important in the design and operation of ships, coasts, and offshore structures affected by the water surface. Therefore, various observations have been made to grasp the actual situation.

一例として、海洋の波浪を観測するために海底式超音波波高計や海洋ブイを用いた直接観測方法がある。また、航海レーダー、航空機や人工衛星搭載の合成開口レーダー(SAR)を用いたリモートセンシング方法もある。   As an example, there is a direct observation method using an ocean bottom ultrasonic wave height meter or an ocean buoy to observe ocean waves. In addition, there is a remote sensing method using a navigation radar, a synthetic aperture radar (SAR) mounted on an aircraft or an artificial satellite.

Chang-KyuRheem、連続波ドップラーレーダーによる海洋波浪観測と波浪観測に及ぼすレーダー照射幅の影響、日本船舶海洋工学会論文集、No.8、2008年12月,61ページから69ページChang-KyuRheem, Ocean Wave Observation by Continuous Wave Doppler Radar and Effect of Radar Irradiation Width on Wave Observation, Proceedings of the Japan Society of Marine Science and Technology, No.8, December 2008, pages 61 to 69 Chang-KyuRheem、マイクロ波ドップラーレーダーによる実験水槽波浪観測、日本船舶海洋工学会論文集、No.6、2007年12月、65ページから73ページChang-KyuRheem, Experimental Aquarium Wave Observation by Microwave Doppler Radar, Proceedings of Japan Society of Marine Science and Technology, No.6, December 2007, pages 65 to 73

しかしながら、従来の観測においては、海面に計測機器を配したり、航空機や人工衛星を要するなど観測機器の設置や運用が容易でない。また漁業など他の海洋面等での活動にも支障を与えることとなる場合がある。   However, in the conventional observation, it is not easy to install and operate the observation equipment because it requires measuring equipment on the surface of the sea or requires an aircraft or an artificial satellite. It may also interfere with other marine activities such as fishing.

そこで、設置や運用が比較的容易な観測機器を用いて、海洋等の水面形状を測定する技術が求められている。なお、マイクロ波ドップラーレーダーを用いて海洋の波浪を関する方法が、非特許文献1,2に開示されている。   Therefore, there is a demand for a technique for measuring the surface shape of the ocean or the like using an observation device that is relatively easy to install and operate. Non-Patent Documents 1 and 2 disclose methods relating to ocean waves using a microwave Doppler radar.

本発明は上記実情に鑑みて為されたもので、設置や運用が比較的容易な観測機器を用いて、海洋等の水面形状を測定できる水面形状計測装置、及び水面形状計測方法を提供することを、その目的の一つとする。   The present invention has been made in view of the above circumstances, and provides a water surface shape measuring apparatus and a water surface shape measuring method capable of measuring the water surface shape of the ocean or the like using an observation device that is relatively easy to install and operate. Is one of its purposes.

上記従来例の問題点を解決するための本発明は、水面形状計測装置であって、水面に対してパルス状マイクロ波を放射し、当該放射したマイクロ波の後方散乱波を、予め定めたタイミングごとに複数回受信し、1つのパルス状マイクロ波ごとに複数の計測点ごとの後方散乱波を検出して、各後方散乱波に対応する複数のドップラー信号を出力するレーダーを複数備え、前記複数のレーダーの各々が出力する複数のドップラー信号により、各レーダーのパルス状マイクロ波放射方向に沿って配される、複数の計測点での水面での水粒子の運動の情報を生成するとともに、前記複数の計測点での水面での水粒子の運動の情報に基づいて各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を特定する第1方向特定手段と、前記各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を表す情報に基づいて、波浪の進行方向を決定する第2方向特定手段と、を含み、水面での水粒子の運動の情報と、波浪の進行方向の情報とに基づき、水面形状を特定する情報を出力することとしたものである。
また、本発明の一態様に係る水面形状計測装置は、前記マイクロ波が放射されるごとに、当該放射したマイクロ波の後方散乱波の信号強度の時間変化に基づき、信号強度の空間分布の中心位置に対応する後方散乱波の到来時点を表す情報を取得し、複数回のマイクロ波放射により取得された複数の前記信号強度の空間分布の中心位置に対応する後方散乱波の到来時点を表す情報の差から、水面の高さの変動を表す情報を生成して出力する手段をさらに備えたこととしたものである。
The present invention for solving the problems of the above-described conventional example is a water surface shape measuring apparatus, which emits pulsed microwaves to the water surface, and sets backscattered waves of the emitted microwaves at a predetermined timing. A plurality of radars that receive a plurality of times, detect a backscattered wave at each of a plurality of measurement points for each pulsed microwave, and output a plurality of Doppler signals corresponding to each backscattered wave, A plurality of Doppler signals output from each of the radars generate information on the movement of water particles on the water surface at a plurality of measurement points arranged along the pulsed microwave radiation direction of each radar, and First direction specifying means for specifying an angle between the pulsed microwave radiation direction of each radar and the traveling direction of the waves based on the information on the movement of water particles on the water surface at a plurality of measurement points; Second direction specifying means for determining the traveling direction of the waves based on information representing the angle formed by the pulsed microwave radiation direction of the encoder and the traveling direction of the waves, and information on the movement of water particles on the water surface And information specifying the water surface shape is output based on the traveling direction information of the waves.
In addition, the water surface shape measurement apparatus according to one aspect of the present invention provides a center of the spatial distribution of signal intensity based on the time change of the signal intensity of the backscattered wave of the emitted microwave every time the microwave is emitted. Information representing the arrival time of the backscattered wave corresponding to the position, and information representing the arrival time of the backscattered wave corresponding to the center position of the plurality of spatial distributions of the signal intensities obtained by multiple times of microwave radiation From the difference, a means for generating and outputting information indicating fluctuations in the height of the water surface is further provided.

さらに、本発明の一態様に係る水面形状計測方法は、水面に対してパルス状マイクロ波を放射し、当該放射したマイクロ波の後方散乱波を、予め定めたタイミングごとに複数回受信し、1つのパルス状マイクロ波ごとに複数の計測点ごとの後方散乱波を検出して、各後方散乱波に対応する複数のドップラー信号を出力する複数のレーダーに接続されたコンピュータを用い、前記複数のレーダーの各々が出力する複数のドップラー信号により、各レーダーのパルス状マイクロ波放射方向に沿って配される、複数の計測点での水面での水粒子の運動の情報を生成するとともに、前記複数の計測点での水面での水粒子の運動の情報に基づいて各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を表す情報とを生成する工程と、前記各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を表す情報に基づいて、波浪の進行方向を決定する工程と、を前記コンピュータに実行させて、水面での水粒子の運動の情報と、波浪の進行方向の情報とに基づき、水面形状を特定する情報を出力することとしたものである。   Furthermore, the water surface shape measuring method according to one aspect of the present invention radiates a pulsed microwave to the water surface, receives the backscattered wave of the emitted microwave a plurality of times at predetermined timings, Detecting a backscattered wave at each of a plurality of measurement points for each pulsed microwave and outputting a plurality of Doppler signals corresponding to each backscattered wave using a computer connected to the plurality of radars, A plurality of Doppler signals output from each of the plurality of Doppler signals generated along the pulsed microwave radiation direction of each radar to generate water particle motion information on the water surface at a plurality of measurement points, and Generating information representing the angle between the pulsed microwave radiation direction of each radar and the traveling direction of the waves based on the information on the movement of water particles on the water surface at the measurement point; Determining the traveling direction of the waves based on information representing the angle between the pulsed microwave radiation direction of each radar and the traveling direction of the waves, and causing the computer to execute the motion of the water particles on the water surface. Based on this information and information on the traveling direction of waves, information for specifying the water surface shape is output.

本発明によると、陸地や固定された海洋構造物など、観測する水面から離れた位置からの計測が可能であるので、設置や運用が比較的容易な装置を用いて水面形状を測定できる。   According to the present invention, since it is possible to measure from a position away from the surface of water to be observed, such as land or a fixed marine structure, the shape of the water surface can be measured using a device that is relatively easy to install and operate.

本発明の実施の形態に係る水面形状計測装置の構成例を表すブロック図である。It is a block diagram showing the example of a structure of the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置による計測の対象となる波浪の例を表す説明図である。It is explanatory drawing showing the example of the wave used as the object of a measurement by the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置が受信する後方散乱波を含む信号の例を表す説明図である。It is explanatory drawing showing the example of the signal containing the backscattered wave which the water surface shape measuring apparatus which concerns on embodiment of this invention receives. 本発明の実施の形態に係る水面形状計測装置が推定する波浪の進行方向の自由度を表す説明図である。It is explanatory drawing showing the freedom degree of the advancing direction of the wave which the water surface shape measuring apparatus which concerns on embodiment of this invention estimates. 本発明の実施の形態に係る水面形状計測装置による波浪の進行方位の決定動作を表す説明図である。It is explanatory drawing showing the determination operation | movement of the advancing direction of a wave by the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置によって送受される信号の時間変化例を表す説明図である。It is explanatory drawing showing the example of a time change of the signal transmitted and received by the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置の各レーダー部における測定対象となる計測点の配置例を表す説明図である。It is explanatory drawing showing the example of arrangement | positioning of the measurement point used as the measuring object in each radar part of the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置の別の構成例を表すブロック図である。It is a block diagram showing another structural example of the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置による計測結果の例を表す説明図である。It is explanatory drawing showing the example of the measurement result by the water surface shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水面形状計測装置のマイクロ波の放射方向を表す説明図である。It is explanatory drawing showing the radiation direction of the microwave of the water surface shape measuring apparatus which concerns on embodiment of this invention.

本発明の実施の形態について図面を参照しながら説明する。本実施の形態の水面形状計測装置1は、図1に例示するように、第1レーダー部10aと、第2レーダー部10bと、演算部20とを含んで構成される。各レーダー部10a,bは同様の構成を備え、すなわち、制御部11、発振器12、発信部13、分配器14、移相器15、受信部16、乗算器17-1、17-2、解析部18、及びアンテナ19を備える。   Embodiments of the present invention will be described with reference to the drawings. As illustrated in FIG. 1, the water surface shape measuring apparatus 1 according to the present embodiment includes a first radar unit 10 a, a second radar unit 10 b, and a calculation unit 20. Each radar unit 10a, b has the same configuration, that is, control unit 11, oscillator 12, transmission unit 13, distributor 14, phase shifter 15, reception unit 16, multipliers 17-1, 17-2, analysis. A unit 18 and an antenna 19 are provided.

ここに制御部11は、プログラムを記憶し、またワークメモリとしても動作するメモリを備えるマイクロコンピュータなどであり、予め定めたプログラムに従って各部を制御する。この制御部11は、マイクロ波の放射のタイミングでマイクロ波を放射するべき旨の信号を発信部13に出力する。また、このマイクロ波の放射のタイミングから予め定めた複数の受信時間(t1,t2,…)が経過するごとに、乗算器17からの出力信号を検出するべき旨の指示を解析部18に出力する。   Here, the control unit 11 is a microcomputer having a memory that stores a program and also operates as a work memory, and controls each unit according to a predetermined program. The control unit 11 outputs a signal indicating that the microwave should be emitted to the transmission unit 13 at the timing of the microwave emission. In addition, every time a plurality of predetermined reception times (t1, t2,...) Elapse from the timing of the microwave radiation, an instruction to detect the output signal from the multiplier 17 is output to the analysis unit 18. To do.

本実施の形態では、制御部11は前回マイクロ波を放射してから時刻Tだけ経過した後(ただしTは受信時間よりも大きいものとする)、再度、マイクロ波の放射を行わせる。   In the present embodiment, the control unit 11 causes the microwave to be radiated again after the time T has elapsed since the last microwave was radiated (where T is greater than the reception time).

発振器12は、予め定められた波長のマイクロ波を生成する。発信部13は制御部11から入力される指示に従い、予め定めたタイミングで、予め定めた時間(発信時間)だけアンテナ19を介して放射させる。つまりこの発信部13は、制御部11から指示されたタイミングでマイクロ波のパルス信号を生成して出力する。   The oscillator 12 generates a microwave having a predetermined wavelength. In accordance with an instruction input from the control unit 11, the transmission unit 13 radiates through the antenna 19 at a predetermined timing for a predetermined time (transmission time). That is, the transmission unit 13 generates and outputs a microwave pulse signal at a timing instructed by the control unit 11.

分配器14は、発振器12が生成するマイクロ波を分配して、乗算器17-1と、移相器15とに出力する。移相器15は、分配器14が出力するマイクロ波の位相をπ/2だけ移相して、乗算器17-2に出力する。   The distributor 14 distributes the microwave generated by the oscillator 12 and outputs it to the multiplier 17-1 and the phase shifter 15. The phase shifter 15 shifts the phase of the microwave output from the distributor 14 by π / 2 and outputs the phase to the multiplier 17-2.

受信部16は、アンテナ19に到来した信号を受信し、乗算器17-1と乗算器17-2とに出力する。   The receiving unit 16 receives a signal arriving at the antenna 19 and outputs the signal to the multiplier 17-1 and the multiplier 17-2.

乗算器17-1は、受信部16が出力する信号と、分配器14が出力する信号とを乗算してI相信号を出力する。乗算器17-2は、受信部16が出力する信号と、移相器15が出力する信号とを乗算してQ相信号を出力する。   Multiplier 17-1 multiplies the signal output from receiver 16 by the signal output from distributor 14, and outputs an I-phase signal. The multiplier 17-2 multiplies the signal output from the receiving unit 16 and the signal output from the phase shifter 15 and outputs a Q-phase signal.

解析部18は、乗算器17-1、17-2の出力する信号の入力を受け、この入力信号から制御部11から指示が入力されるタイミングごとに複数時点の信号を取り出す。つまり、これら乗算器17からの出力信号は、図3に例示するように、パルス状のマイクロ波が放射されてからの経過時間tに従って変化する。マイクロ波の放射が行われた時点からの経過時間をtとして、アンテナ19に時刻tに到来する信号は、マイクロ波の伝播速度をcとして、アンテナ19からc/2t(往復が必要であるため2で除している)だけ離れた位置を計測点として、当該計測点でのマイクロ波の後方散乱に基づく信号を含んでいる。   The analysis unit 18 receives the signals output from the multipliers 17-1 and 17-2, and extracts a signal at a plurality of time points for each timing when an instruction is input from the control unit 11. That is, the output signals from these multipliers 17 change according to the elapsed time t after the pulsed microwave is emitted, as illustrated in FIG. A signal arriving at the time t from the time point t when the elapsed time from the time when the microwave was radiated is assumed to be c / 2t from the antenna 19 (because a round-trip is necessary). A signal based on the backscattering of the microwave at the measurement point is included with a position separated by 2) as a measurement point.

従って、マイクロ波の放射が行われた時点から複数の経過時間t1,t2,…における信号は、アンテナ19から距離ri
ri=c/2ti (i=1,2,…)
だけ離れた計測点でのマイクロ波の後方散乱に基づく信号を含んでいることとなる。
Therefore, signals at a plurality of elapsed times t 1, t 2,.
ri = c / 2ti (i = 1, 2,...)
The signal based on the backscattering of the microwaves at the measurement points that are far away from each other is included.

海洋や湖水における水面付近の水粒子は、海流や潮汐流、吹送流、波浪等の影響を受けて運動をする。ここである海域における海流や潮汐流、吹送流による水粒子の運動は、十数分程度の時間スケールで一定とみなすことができる。他方、波浪による水粒子の運動は数秒から十数秒の比較的短い時間周期の運動である。いま、進行方向にそった断面で波浪を図示すれば、図2に示すようになる。   Water particles near the surface of the ocean and lake water move under the influence of ocean currents, tidal currents, blowing currents, waves, and the like. The movement of water particles due to ocean currents, tidal currents, and insufflation currents in this area can be considered constant on a time scale of about a dozen minutes. On the other hand, the motion of water particles due to waves is a motion with a relatively short time period of several seconds to tens of seconds. Now, if a wave is illustrated in a cross section along the traveling direction, it will be as shown in FIG.

この図2において、水面付近の水粒子は、波浪の位相に応じて白抜きの矢印で示すように運動する。つまり波高の最も高いところでは進行方向に沿って運動しており、波高の最も低いところでは進行方向とは逆向きに運動する。また、波高の低いところから波高の高い方向へ波浪の進行方向に沿ってみると、水粒子の運動方向は時計回りに変化している。   In FIG. 2, water particles in the vicinity of the water surface move as indicated by white arrows in accordance with the wave phase. That is, it moves along the traveling direction at the highest wave height, and moves in the direction opposite to the traveling direction at the lowest wave height. In addition, when the waves travel along the wave traveling direction from a low wave height to a high wave height, the direction of movement of the water particles changes clockwise.

さて、放射されたマイクロ波の波長をL、初期位相をp0とするとき、アンテナ19からの距離rの位置にある計測点からの後方散乱波の位相は、
p=−4πr/L+p0
となる。
Now, when the wavelength of the emitted microwave is L and the initial phase is p0, the phase of the backscattered wave from the measurement point at the position r from the antenna 19 is
p = -4πr / L + p0
It becomes.

従って、位相の時間変化は
dp/dt=−(4π/L)×dr/dt
となり、この位相の時間変化を知ることで、計測点における水粒子の移動速度Vd=dr/dtが演算できる。
Therefore, the time change of the phase is dp / dt = − (4π / L) × dr / dt.
Thus, by knowing the temporal change of this phase, the water particle moving speed Vd = dr / dt at the measurement point can be calculated.

本実施の形態の解析部18は、乗算器17-1、17-2から入力される信号のうち、マイクロ波放射後、時刻t1,t2,…でのI相成分及びQ相成分から、各時刻t1,t2,…で受信したマイクロ波の位相p1,p2,…を検出してメモリに記憶する。   The analysis unit 18 according to the present embodiment calculates each of the signals input from the multipliers 17-1 and 17-2 from the I-phase component and the Q-phase component at time t 1, t 2,. The phases p1, p2,... Of microwaves received at times t1, t2,... Are detected and stored in the memory.

また、この解析部18は、次のマイクロ波からの後方散乱波に基づく位相p1,p2,…を用いて(以下、区別のためメモリに記憶されている位相をpA1,pA2,…と書き、新たに受信した位相をp1,p2,…と書く)、位相の時間変化pi−pAi(i=1,2…)を演算し、さらにマイクロ波の放射間隔Tでこれを除し、係数−(L/4π)を乗じて、水粒子の移動速度Vdi(i=1,2…)を得る。   The analysis unit 18 uses the phases p1, p2,... Based on the backscattered wave from the next microwave (hereinafter, the phases stored in the memory are written as pA1, pA2,. The newly received phase is written as p1, p2,..., The phase time change pi−pAi (i = 1, 2,...) Is calculated, and this is divided by the microwave radiation interval T, and the coefficient − ( Multiply by (L / 4π) to obtain the water particle moving velocity Vdi (i = 1, 2,...).

このVdiは、それぞれ時刻tiに対応する距離ri=c/2tiだけアンテナ19から離れた水面での水粒子の移動速度(アンテナ19の放射するマイクロ波の放射方向成分)を表している。また、別の方法として、連続する複数の受信信号のI相成分とQ相成分とからSTFT(Short Time Fourier Transform)法を用いて、Vdiを求めてもよい。   This Vdi represents the moving speed of water particles on the water surface separated from the antenna 19 by a distance ri = c / 2ti corresponding to the time ti (radiation direction component of microwave radiated from the antenna 19). As another method, Vdi may be obtained by using a short time Fourier transform (STFT) method from the I-phase component and the Q-phase component of a plurality of consecutive received signals.

次に、ある一つの計測点に着目したときの波浪の進行方向とアンテナ19のマイクロ波放射方向との関係について述べる。なお、一つの計測点における水面の情報を生成する方法は、非特許文献1,2に開示の方法を採用すればよいので、ここではその概要を説明するだけに留める。   Next, the relationship between the wave traveling direction and the microwave radiation direction of the antenna 19 when focusing on one measurement point will be described. In addition, since the method of producing | generating the information of the water surface in one measurement point should just employ | adopt the method disclosed in the nonpatent literatures 1 and 2, it only gives only the outline | summary here.

いま、波浪の進行方向をx、波浪の高さ方向をyとして、波浪を余弦波で近似する。x方向に進行する変位振幅A、初期位相εの余弦波は、   The wave is approximated by a cosine wave, where x is the traveling direction of the wave and y is the height direction of the wave. The cosine wave with displacement amplitude A and initial phase ε traveling in the x direction is

Figure 2011064677
となる。
Figure 2011064677
It becomes.

水面付近での水粒子の運動は、xyの面内で行われ、その速度は成分毎に、   The movement of water particles near the water surface is performed in the plane of xy, and the velocity is

Figure 2011064677
である。
Figure 2011064677
It is.

アンテナ19が、図2に示すように、鉛直下方から角度θだけ傾いて配され、またアンテナ19によるマイクロ波の放射方向と波浪の進行方向(x)とのなす角をφで表すと、水粒子の移動速度のマイクロ波放射方向の成分は、   As shown in FIG. 2, the antenna 19 is inclined at an angle θ from the vertically lower side, and the angle between the microwave radiation direction and the wave traveling direction (x) by the antenna 19 is represented by φ. The component of the moving speed of particles in the microwave radiation direction is

Figure 2011064677
ただし、
Figure 2011064677
However,

Figure 2011064677
となる。
Figure 2011064677
It becomes.

既に述べたように、マイクロ波の放射回数を複数とすれば、水粒子の移動速度のマイクロ波放射方向成分の測定結果Vdが演算により複数得られるので、解析部18はこれらが各時点でのVmと等しいとして、各測定点における水粒子の移動速度の周波数スペクトル(マイクロ波放射方向成分Vmの角周波数ωの運動成分ごとの振幅AωK及び位相 k ri cosφ - ω t + αを得ることができる。また解析部18は、STFTを用いる方法によっても同様に、各測定点での水粒子の移動速度のマイクロ波放射方向成分Vmの角周波数ωの運動成分ごとの振幅AωK及び位相k ri cosφ - ω t + α(周波数スペクトル)を得ることができる。   As described above, if a plurality of microwaves are emitted, a plurality of measurement results Vd of the microwave radiation direction component of the moving speed of the water particles can be obtained by calculation. Assuming that it is equal to Vm, it is possible to obtain the frequency spectrum of the moving speed of water particles at each measurement point (the amplitude AωK and the phase k ri cosφ-ωt + α for each motion component of the angular frequency ω of the microwave radiation direction component Vm). Similarly, the analysis unit 18 also uses the STFT method to detect the amplitude AωK and the phase k ri cosφ − for each motion component of the angular frequency ω of the microwave radiation direction component Vm of the moving speed of the water particles at each measurement point. ω t + α (frequency spectrum) can be obtained.

こうしてマイクロ波の放射方向にアンテナ19から距離r1,r2…にある計測点S1,S2…での水粒子の移動速度の各角周波数ωの運動成分の振幅AωKと、位相k ri cosφ - ω t + αとが求められ、これら振幅と位相とから、解析部18は、(4)式及び(5)式と(6)式とを用いて、各角周波数ωの波浪成分のマイクロ波の放射方向と波浪の進行方向とのなす角φと、変位振幅A、初期位相εを求める。   In this way, the amplitude AωK of the motion component of each angular frequency ω of the moving speed of the water particles at the measurement points S1, S2... At the distances r1, r2... From the antenna 19 in the microwave radiation direction and the phase k ri cosφ − ω t + α is obtained, and from these amplitude and phase, the analysis unit 18 uses the equations (4), (5), and (6) to radiate the microwave of the wave component of each angular frequency ω. The angle φ formed by the direction and the wave traveling direction, the displacement amplitude A, and the initial phase ε are obtained.

なお、一般の波浪は、(1)式で示した余弦波の重ね合わせ(和)として表すことができるので、計測点S1,S2…における水面の高さyi(波高)は、解析部18が求めた、各角周波数ωの波浪成分のマイクロ波の放射方向と波浪の進行方向とのなす角φと、変位振幅A、初期位相εにより表される。   Since general waves can be expressed as the superposition (sum) of cosine waves shown in equation (1), the analysis unit 18 determines the height yi (wave height) of the water surface at the measurement points S1, S2,. This is expressed by the angle φ formed by the microwave radiation direction of the wave component of each angular frequency ω and the wave traveling direction, the displacement amplitude A, and the initial phase ε.

ここで、各角周波数ωの波浪成分のマイクロ波の放射方向と波浪の進行方向とのなす角φは、距離の差 dr の異なる計測点間での位相の差の計測値と理論値 k dr cosφ との関係から求める。   Here, the angle φ between the microwave radiation direction and the wave traveling direction of the wave component of each angular frequency ω is the measured value and the theoretical value k dr of the phase difference between the measurement points having different distance dr Calculated from the relationship with cosφ.

しかしながら、これだけでは、波浪の方向には次のような自由度がある。すなわち、ここでの解析部18は、一つのアンテナ19によるマイクロ波放射方向の成分を観測して、波浪の進行方向とマイクロ波放射方向とのなす角φを演算している。従って図4に示すように、マイクロ波放射方向に対して時計回りにφだけずれた角度に波浪の進行方向があるのか(A)、マイクロ波放射方向に対して反時計回りにφだけずれた角度に波浪の進行方向があるのか(B)がわからない(φの余弦が演算に関わっているため、φの符号の正負が明らかでない)。この波浪の進行方向の決定は、一つのアンテナ19による測定では困難であるので、解析部18は、以上の処理により生成した情報(水面を表す情報として、各角周波数ωの波浪成分の振幅A、初期位相ε、波浪とマイクロ波放射方向とのなす角φ)を演算部20に出力する。   However, this alone has the following degrees of freedom in the direction of the waves. That is, the analysis unit 18 here observes the component in the microwave radiation direction by one antenna 19 and calculates the angle φ formed by the wave traveling direction and the microwave radiation direction. Therefore, as shown in FIG. 4, is there a wave traveling direction at an angle shifted by φ clockwise relative to the microwave radiation direction (A), or shifted by φ counterclockwise relative to the microwave radiation direction? It is not known whether the wave has a traveling direction of the angle (B) (since the cosine of φ is involved in the calculation, the sign of φ is not clear). Since determination of the traveling direction of the waves is difficult by measurement with one antenna 19, the analysis unit 18 uses the information generated by the above processing (the amplitude A of the wave component of each angular frequency ω as information representing the water surface). , The initial phase ε, and the angle φ between the wave and the microwave radiation direction are output to the arithmetic unit 20.

演算部20は、第1レーダー部10aの解析部18a(ここでは区別のために添え字a,bを付す)と、第2レーダー部10bの解析部18bとから、それぞれのレーダー部10によって検出された各角周波数ωの波浪成分の振幅A、初期位相ε、波浪とマイクロ波放射方向とのなす角φを受け入れる。   The calculation unit 20 is detected by each radar unit 10 from the analysis unit 18a of the first radar unit 10a (here, subscripts a and b are attached for distinction) and the analysis unit 18b of the second radar unit 10b. The amplitude A of the wave component of each angular frequency ω, the initial phase ε, and the angle φ formed by the wave and the microwave radiation direction are received.

演算部20は、第1レーダー部10aの解析部18aが出力する角φの情報φaと、第2レーダー部10bの解析部18bが出力する角φの情報φbと、第1レーダー部10aのマイクロ波の放射方向の情報faと、第2レーダー部10bのマイクロ波の放射方向の情報fbとを用い、次のように波浪の進行方向を決定する処理を行う。なお、ここで各レーダーのマイクロ波の放射方向の情報fは、例えば北方を0とし、東方をπ/2とし…としてその方位を表すものとする。また、fa>fbとする(図5)。   The calculation unit 20 includes information φa of the angle φ output from the analysis unit 18a of the first radar unit 10a, information φb of the angle φ output from the analysis unit 18b of the second radar unit 10b, and the micro of the first radar unit 10a. Using the wave radiation direction information fa and the microwave radiation direction information fb of the second radar unit 10b, processing for determining the wave traveling direction is performed as follows. Here, the microwave radiation direction information f of each radar is assumed to represent the azimuth with, for example, 0 in the north and π / 2 in the east. Further, it is assumed that fa> fb (FIG. 5).

演算部20は、fa−φaと、fb+φbとを算出し、これらの差の絶対値X=|fa−fb−φa−φb|が予め定めたしきい値Δを下回っているか否かを調べる。そして、Xがしきい値Δを下回っている場合は、波浪の進行方向x(波浪の移動方位)をfa−φa(またはfb+φb)に平行とする。また、Xがしきい値Δを下回っていない場合は、波浪の進行方向xをfa+φa(またはfb−φb)に平行とする。なお、X=|fa−fb−φa−φb|と、Y=|fa−fb+φa+φb|とを比較し、X<Yのとき波浪の進行方向xをfa−φa(またはfb+φb)に平行とし、X>Yのとき波浪の進行方向xをfa+φa(またはfb−φb)に平行としてもよい。   The computing unit 20 calculates fa−φa and fb + φb, and checks whether or not the absolute value X = | fa−fb−φa−φb | of these differences is below a predetermined threshold value Δ. If X is below the threshold value Δ, the wave traveling direction x (wave movement direction) is made parallel to fa−φa (or fb + φb). If X is not less than the threshold value Δ, the wave traveling direction x is parallel to fa + φa (or fb−φb). Note that X = | fa−fb−φa−φb | and Y = | fa−fb + φa + φb | are compared, and when X <Y, the wave traveling direction x is parallel to fa−φa (or fb + φb), and X When> Y, the wave traveling direction x may be parallel to fa + φa (or fb−φb).

以上の処理により、演算部20においては、水面を表す情報として、各角周波数ωの波浪成分の振幅A、初期位相ε、及び波浪と各アンテナ19a,b…のマイクロ波放射方向とのなす角φa,φb…、さらに、波浪の進行方向xが求められ、これらから計測の対象となった水域の水面に存在する波浪の方向、波周期、高さ、特定の時刻かつ特定の計測点における波位相が求められる。   As a result of the above processing, the computing unit 20 uses the amplitude A of the wave component of each angular frequency ω, the initial phase ε, and the angle formed by the wave and the microwave radiation direction of each antenna 19a, b as information representing the water surface. φa, φb, and further, the wave traveling direction x is obtained, from which the wave direction, wave period, height, specific time and wave at a specific measurement point existing on the surface of the water area to be measured The phase is determined.

本実施の形態の装置は、以上の構成を備えてなり、次のように動作する。本実施の形態において備えられた複数のレーダー部10は、それぞれ陸地や固定された海洋構造物に設置され、水面に向けてマイクロ波を放射できるよう設置される。各レーダー部10は、それぞれのマイクロ波の放射方向が、互いに異なるよう配置される。一例として少なくともあるレーダー装置のマイクロ波の放射方向から±15°以内には、他のレーダー装置のマイクロ波の放射方向がないように設置する。図6に例示するように予め定めた時間間隔Tごとに、幅τの時間だけ継続するパルス状のマイクロ波を放射する。また、放射した各パルス状のマイクロ波の水面での後方散乱波を受けて、パルス状のマイクロ波放射後、予め定めた時間t1,t2…が経過するごとの後方散乱波を得る。ここでこれら予め定めた時間t1,t2…が経過するごとの後方散乱波は、レーダー部10からの距離r1,r2…にある水面(計測点)での後方散乱波である。以下、図7に例示するように、レーダー部10aのアンテナ19aが放射するマイクロ波の放射方向に沿って、距離r1,r2…にある計測点を計測点A-1,A-2…と表し、レーダー部10bのアンテナ19bが放射するマイクロ波の放射方向に沿って、距離r1,r2…にある計測点を計測点B-1,B-2…と表すこととする。   The apparatus according to the present embodiment has the above configuration and operates as follows. The plurality of radar units 10 provided in the present embodiment are installed on land or a fixed offshore structure, respectively, so that microwaves can be emitted toward the water surface. Each radar unit 10 is arranged such that the radiation directions of the respective microwaves are different from each other. As an example, it is installed so that there is no microwave radiation direction of other radar devices within ± 15 ° from the radiation direction of microwaves of a certain radar device. As illustrated in FIG. 6, pulsed microwaves that last for a time of width τ are radiated at predetermined time intervals T. Further, a backscattered wave on the water surface of each pulsed microwave is received, and a backscattered wave is obtained every time a predetermined time t1, t2,. Here, each time the predetermined times t1, t2,... Elapse, the backscattered waves are backscattered waves on the water surface (measurement points) at distances r1, r2,. Hereinafter, as illustrated in FIG. 7, measurement points at distances r1, r2,... Along the radiation direction of the microwave radiated from the antenna 19a of the radar unit 10a are represented as measurement points A-1, A-2,. The measurement points at distances r1, r2,... Along the radiation direction of the microwave radiated from the antenna 19b of the radar unit 10b are represented as measurement points B-1, B-2,.

複数のパルス状マイクロ波を用いて、各パルスに応答する距離r1,r2…の計測点(A-1,A-2…)での後方散乱波からSTFT等の方法で水面変位の周波数スペクトルを求める。各計測点に対応する水面変位の周波数スペクトルを求める方法は、非特許文献1,2に開示の方法で行うことができる。   Using a plurality of pulsed microwaves, the frequency spectrum of the water surface displacement is calculated from the backscattered waves at the measurement points (A-1, A-2, ...) at the distances r1, r2, ..., which respond to each pulse, using a method such as STFT. Ask. The method for obtaining the frequency spectrum of the water surface displacement corresponding to each measurement point can be performed by the methods disclosed in Non-Patent Documents 1 and 2.

またレーダー部10は、互いに異なる計測点間の距離と、当該各計測点間の位相差とに基づいて、マイクロ波の放射方向と波浪の運動方向とのなす角を特定する。   Further, the radar unit 10 specifies an angle formed by the microwave radiation direction and the wave motion direction based on the distance between the measurement points different from each other and the phase difference between the measurement points.

そして各レーダー部10は、それぞれの各計測点での波浪の方向(マイクロ波の放射方向と波浪の運動方向とのなす角)、波周期、高さ、特定の時刻かつ特定の計測点における波位相の各情報を出力する。   Then, each radar unit 10 has a wave direction (wave angle, height, specific time, and wave at a specific measurement point) at each measurement point. Output each phase information.

演算部20は、複数のレーダー部10が出力する上記各情報のうち、各レーダー部10のマイクロ波の放射方向と波浪の運動方向とのなす角の情報を用いて、波浪の移動方位を特定する。   The arithmetic unit 20 identifies the wave moving direction by using information on the angle formed by the microwave radiation direction and the wave motion direction of each radar unit 10 among the above information output from the plurality of radar units 10. To do.

このように本実施の形態では、水面に装置を浮かべる等の必要がなく、また航空機や人工衛星を使うのではなく、陸地や固定された海洋構造物に配備したレーダー装置によって、計測水面に存在するすべての波浪の方向、波周期、高さ、ある時刻ある計測点における波位相が計測できる。   As described above, in the present embodiment, there is no need to float the device on the water surface, and there is no need to use an aircraft or an artificial satellite, but there is a radar device deployed on land or a fixed offshore structure. The direction, wave period, height, and wave phase at a certain measurement point can be measured.

なお、発振器12や発信部13は、複数のレーダー部10で共用し、時分割的に各レーダーからの信号放射に用いられてもよい。この場合、発信部13の出力信号を時分割的に、各レーダー部10a,b…のアンテナ19a,b…に切り替えて出力させることとすればよい。   The oscillator 12 and the transmitter 13 may be shared by the plurality of radar units 10 and used for signal emission from each radar in a time-sharing manner. In this case, the output signal of the transmitter 13 may be switched and output to the antennas 19a, b... Of each radar unit 10a, b.

さらに本実施の形態の水面形状計測装置1における、レーダー部10は、図8に例示するように、制御部11、発振器12、発信部13、分配器14、移相器15、受信部16、乗算器17-1、17-2、解析部18、及びアンテナ19に加え、信号強度解析部21と、水位変化量演算部22とを含んでもよい。なお、既に説明したものと同様の構成をとるものについては同じ符号を付して説明を省略する。   Furthermore, the radar unit 10 in the water surface shape measuring apparatus 1 of the present embodiment includes a control unit 11, an oscillator 12, a transmission unit 13, a distributor 14, a phase shifter 15, a reception unit 16, as illustrated in FIG. In addition to the multipliers 17-1 and 17-2, the analysis unit 18, and the antenna 19, a signal strength analysis unit 21 and a water level change amount calculation unit 22 may be included. In addition, about the thing which has the structure similar to what was already demonstrated, the same code | symbol is attached | subjected and description is abbreviate | omitted.

ここで信号強度解析部21は、プログラムを記憶し、またワークメモリとしても動作するメモリを備えるマイクロコンピュータにより実現できる。この信号強度解析部21は、発信部13が前回、マイクロ波の放射を開始した時刻(t0とする)から、時間Tが経過するまでの間に、受信部16が出力する信号の強度変化を記録する。具体的には予め定めた時間間隔ごとに、受信部16が出力する信号の強度をディジタル化した値を、上記t0からの経過時間に関連づけて記録することとしてもよい。この記録の内容を概念的に図示すると、図9に示すようになる。既に述べたようにt0からの経過時間は、アンテナ19が放射するマイクロ波の放射方向に沿った、マイクロ波が反射した水面までの距離に対応しているので、この信号強度の時間変化は、マイクロ波の受信強度の空間分布ととらえることもできる。   Here, the signal strength analysis unit 21 can be realized by a microcomputer having a memory that stores a program and also operates as a work memory. The signal intensity analysis unit 21 changes the intensity of the signal output by the reception unit 16 from the time when the transmission unit 13 starts to radiate microwaves (t0) until the time T elapses. Record. Specifically, at a predetermined time interval, a value obtained by digitizing the intensity of the signal output from the receiving unit 16 may be recorded in association with the elapsed time from t0. The contents of this record are conceptually illustrated as shown in FIG. As described above, the elapsed time from t0 corresponds to the distance to the water surface reflected by the microwave along the radiation direction of the microwave radiated by the antenna 19, and the time change of this signal intensity is It can also be regarded as a spatial distribution of microwave reception intensity.

信号強度解析部21は、記録した順に、t0から、信号の強度が予め定めたしきい値を超える時間α1と、その後、受信部16が出力する信号の強度が予め定めたしきい値を下回る時間α2とを見いだす。そして、t0から信号強度の空間分布の中心位置に対応する後方散乱波が到来するまでの時間αMを、αM=(α1+α2)/2と算出する。信号強度解析部21は、この算出した時間の値αMを記憶しておく。   The signal strength analyzing unit 21 records the time α1 when the signal strength exceeds a predetermined threshold from t0 in the order of recording, and then the strength of the signal output by the receiving unit 16 falls below the predetermined threshold. Find time α2. Then, the time αM from the time t0 until the backscattered wave corresponding to the center position of the spatial distribution of signal intensity arrives is calculated as αM = (α1 + α2) / 2. The signal strength analysis unit 21 stores the calculated time value αM.

信号強度解析部21は、マイクロ波が放射されるごとに、上記の処理を行い、各回で算出した、各回のマイクロ波放射時刻t0から信号強度の空間分布の中心位置に対応する後方散乱波が到来するまでの時間αM1,αM2,…を得て、これらの値を水位変化量演算部22に出力する。   The signal intensity analysis unit 21 performs the above processing every time the microwave is radiated, and the back scattered wave corresponding to the center position of the spatial distribution of the signal intensity from each time of the microwave radiation time t0 calculated each time. Times αM1, αM2,... Until arrival are obtained, and these values are output to the water level change amount calculation unit 22.

水位変化量演算部22は、αMiと、αMi+k(i=1,2,…、k=1,2,…)との差を、
ΔL=c/(2×αMi+k)−c/(2×αMi)
とする。ここでkの値は予め定めておいてもよい。また、水位変化量演算部22は、アンテナ19からのマイクロ波放射方向の俯角θを用いて(図10を参照)、αMiの表す時点と、αMi+kの表す時点とでの水位の変化量ΔHを次のようにして演算して出力する。
ΔH=ΔL・cosθ
The water level change amount calculation unit 22 calculates the difference between αMi and αMi + k (i = 1, 2,..., K = 1, 2,...)
ΔL = c / (2 × αMi + k) −c / (2 × αMi)
And Here, the value of k may be determined in advance. Further, the water level change amount calculation unit 22 uses the depression angle θ in the microwave radiation direction from the antenna 19 (see FIG. 10), and the change amount of the water level between the time point represented by αMi and the time point represented by αMi + k. ΔH is calculated and output as follows.
ΔH = ΔL · cos θ

また、ここではt0から、信号の強度が予め定めたしきい値を超える時間α1と、その後、受信部16が出力する信号の強度が予め定めたしきい値を下回る時間α2とを見いだし、その平均時刻をもって、空間分布の中心位置としていたが、これに限らず、水位変化量演算部22は、例えば信号強度のピークの到来時点(当該到来時点に対応する距離)を、空間分布の中心位置としてもよい。この場合各回(i回目)のマイクロ波放射開始時刻t0からピーク到来までの時間をαMiとして、水位変化量演算部22は、
ΔL=c/(2×αMi+k)−c/(2×αMi)
を求める。
Here, from t0, a time α1 when the signal strength exceeds a predetermined threshold value and a time α2 when the signal strength output from the receiving unit 16 falls below the predetermined threshold value are found. The average time is the center position of the spatial distribution. However, the present invention is not limited to this, and the water level change amount calculation unit 22 determines, for example, the arrival time of the peak of the signal intensity (distance corresponding to the arrival time) as the center position of the spatial distribution. It is good. In this case, assuming that the time from the microwave radiation start time t0 of each time (i-th) to the arrival of the peak is αMi,
ΔL = c / (2 × αMi + k) −c / (2 × αMi)
Ask for.

すなわち、本実施の形態では、予め定めた時間間隔Tごとに放射されるパルス状(時間τだけ継続する)のマイクロ波の水面での後方散乱波の信号の強度の時間変化(マイクロ波放射後、予め定めた時間t1,t2…が経過するごとの後方散乱波の信号強度)を調べる。そして、複数回のマイクロ波の放射に対応する、後方散乱波の信号強度の時間変化のうち、互いに対応する時点の、各回の基準時刻(例えば上述のようにマイクロ波の放射開始時刻としてもよいし、マイクロ波の放射が終了する時刻としてもよい)からの経過時間を調べる。なお、ここで互いに対応する時点は、例えば信号強度の空間分布の中心位置に対応する後方散乱波の到来時点としてもよい。   That is, in the present embodiment, the time variation of the intensity of the backscattered wave signal on the water surface of the pulsed microwave (which continues for time τ) radiated at a predetermined time interval T (after microwave radiation) , The signal intensity of the backscattered wave every time a predetermined time t1, t2,. Of the time variations of the signal intensity of the backscattered wave corresponding to multiple times of microwave radiation, the reference time of each time at the time corresponding to each other (for example, the microwave radiation start time as described above may be used. And the time elapsed from the end of the microwave emission). Here, the time points corresponding to each other may be, for example, the time points of arrival of the backscattered waves corresponding to the center position of the spatial distribution of signal intensity.

そしてこの複数回のマイクロ波の放射に対応して求めた信号強度の空間分布の中心位置の差ΔLと、アンテナ19からのマイクロ波放射方向の俯角θとを用いて、水位の変化量ΔHを
ΔH=ΔL・cosθ
として求め、出力する。
Then, using the difference ΔL of the center position of the spatial distribution of the signal intensity obtained corresponding to the multiple times of microwave radiation and the depression angle θ in the direction of microwave radiation from the antenna 19, the change amount ΔH of the water level is ΔH = ΔL · cos θ
As and output.

この水位の変化量の情報は、演算部20に出力され、演算部20では、水面を表す情報とともに、この水位の変化量の情報を出力することとしてもよい。   The information on the amount of change in the water level is output to the calculation unit 20, and the calculation unit 20 may output information on the amount of change in the water level together with the information indicating the water surface.

1 水面形状計測装置、10 レーダー部、11 制御部,12 発振器、13 発信部、14 分配器、15 移相器、16 受信部、17 乗算器、18 解析部、19 アンテナ、20 演算部、21 信号強度解析部、22 水位変化量演算部 DESCRIPTION OF SYMBOLS 1 Water surface shape measuring device, 10 Radar part, 11 Control part, 12 Oscillator, 13 Transmission part, 14 Divider, 15 Phase shifter, 16 Reception part, 17 Multiplier, 18 Analysis part, 19 Antenna, 20 Calculation part, 21 Signal strength analysis unit, 22 Water level change calculation unit

Claims (3)

水面に対してパルス状マイクロ波を放射し、当該放射したマイクロ波の後方散乱波を、予め定めたタイミングごとに複数回受信し、1つのパルス状マイクロ波ごとに複数の計測点ごとの後方散乱波を検出して、各後方散乱波に対応する複数のドップラー信号を出力するレーダーを複数備え、
前記複数のレーダーの各々が出力する複数のドップラー信号により、各レーダーのパルス状マイクロ波放射方向に沿って配される、複数の計測点での水面での水粒子の運動の情報を生成するとともに、前記複数の計測点での水面での水粒子の運動の情報に基づいて各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を特定する第1方向特定手段と、
前記各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を表す情報に基づいて、波浪の進行方向を決定する第2方向特定手段と、
を含み、水面での水粒子の運動の情報と、波浪の進行方向の情報とに基づき、水面形状を特定する情報を出力することを特徴とする水面形状計測装置。
A pulsed microwave is emitted to the water surface, and the backscattered wave of the emitted microwave is received a plurality of times at predetermined timings, and the backscattering is performed at a plurality of measurement points for each pulsed microwave. Equipped with multiple radars that detect waves and output multiple Doppler signals corresponding to each backscattered wave,
A plurality of Doppler signals output from each of the plurality of radars generate information on the movement of water particles on the water surface at a plurality of measurement points arranged along the pulsed microwave radiation direction of each radar. First direction specifying means for specifying an angle formed between the pulsed microwave radiation direction of each radar and the traveling direction of the waves based on the information on the movement of water particles on the water surface at the plurality of measurement points;
Second direction specifying means for determining the traveling direction of the waves based on information representing an angle formed between the pulsed microwave radiation direction of each radar and the traveling direction of the waves;
A water surface shape measuring device characterized by outputting information for specifying a water surface shape based on information on the movement of water particles on the water surface and information on the traveling direction of waves.
請求項1記載の水面形状計測装置であって、前記マイクロ波が放射されるごとに、当該放射したマイクロ波の後方散乱波の信号強度の時間変化に基づき、信号強度の空間分布の中心位置に対応する後方散乱波の到来時点を表す情報を取得し、複数回のマイクロ波放射により取得された複数の前記信号強度の空間分布の中心位置に対応する後方散乱波の到来時点を表す情報の差から、水面の高さの変動を表す情報を生成して出力する手段をさらに備えたことを特徴とする水面形状計測装置。   The water surface shape measuring apparatus according to claim 1, wherein each time the microwave is radiated, based on a temporal change in the signal intensity of the backscattered wave of the radiated microwave, the signal is measured at the center position of the spatial distribution of the signal intensity. Information indicating the arrival time of the corresponding backscattered wave is obtained, and the difference between the information indicating the arrival time of the backscattered wave corresponding to the center position of the plurality of spatial distributions of the signal intensities acquired by the multiple times of microwave radiation. The water surface shape measuring device further comprising means for generating and outputting information representing fluctuations in the height of the water surface. 水面に対してパルス状マイクロ波を放射し、当該放射したマイクロ波の後方散乱波を、予め定めたタイミングごとに複数回受信し、1つのパルス状マイクロ波ごとに複数の計測点ごとの後方散乱波を検出して、各後方散乱波に対応する複数のドップラー信号を出力する複数のレーダーに接続されたコンピュータを用い、
前記複数のレーダーの各々が出力する複数のドップラー信号により、各レーダーのパルス状マイクロ波放射方向に沿って配される、複数の計測点での水面での水粒子の運動の情報を生成するとともに、前記複数の計測点での水面での水粒子の運動の情報に基づいて各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を表す情報とを生成する工程と、
前記各レーダーのパルス状マイクロ波放射方向と波浪の進行方向とのなす角を表す情報に基づいて、波浪の進行方向を決定する工程と、
を前記コンピュータに実行させて、水面での水粒子の運動の情報と、波浪の進行方向の情報とに基づき、水面形状を特定する情報を出力することを特徴とする水面形状計測方法。
A pulsed microwave is emitted to the water surface, and the backscattered wave of the emitted microwave is received a plurality of times at predetermined timings, and the backscattering is performed at a plurality of measurement points for each pulsed microwave. Using a computer connected to multiple radars that detect waves and output multiple Doppler signals corresponding to each backscattered wave,
A plurality of Doppler signals output from each of the plurality of radars generate information on the movement of water particles on the water surface at a plurality of measurement points arranged along the pulsed microwave radiation direction of each radar. Generating information representing an angle formed between the pulsed microwave radiation direction of each radar and the traveling direction of the waves based on the information on the movement of water particles on the water surface at the plurality of measurement points;
Determining the traveling direction of the waves based on information representing the angle formed between the pulsed microwave radiation direction of each radar and the traveling direction of the waves;
The water surface shape measuring method characterized in that the computer is executed to output information for specifying the water surface shape based on the information on the movement of the water particles on the water surface and the information on the traveling direction of the waves.
JP2010182503A 2009-08-21 2010-08-17 Water surface shape measuring apparatus and water surface shape measuring method Active JP5462740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010182503A JP5462740B2 (en) 2009-08-21 2010-08-17 Water surface shape measuring apparatus and water surface shape measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009192426 2009-08-21
JP2009192426 2009-08-21
JP2010182503A JP5462740B2 (en) 2009-08-21 2010-08-17 Water surface shape measuring apparatus and water surface shape measuring method

Publications (2)

Publication Number Publication Date
JP2011064677A true JP2011064677A (en) 2011-03-31
JP5462740B2 JP5462740B2 (en) 2014-04-02

Family

ID=43951062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182503A Active JP5462740B2 (en) 2009-08-21 2010-08-17 Water surface shape measuring apparatus and water surface shape measuring method

Country Status (1)

Country Link
JP (1) JP5462740B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900996A (en) * 2014-03-19 2014-07-02 中国科学院南海海洋研究所 Measuring method and device for measuring coverage rate of white crown on sea in field
DE102013213346A1 (en) * 2013-07-08 2015-01-08 Vega Grieshaber Kg Determination of level and flow rate of a medium
JP2015004608A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Waveform estimation device and waveform estimation method
JP2015004610A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Ocean radar system
CN104749114A (en) * 2015-04-14 2015-07-01 武汉大学 Device and method for observing and analyzing apparent spectrums of water bodies of three channels
WO2016079848A1 (en) * 2014-11-20 2016-05-26 三菱電機株式会社 State estimation device
US9677922B2 (en) 2013-07-08 2017-06-13 Vega Grieshaber Kg Universal measurement data acquisition in water
US9945709B2 (en) 2013-07-08 2018-04-17 Vega Grieshaber Kg Determining a distance and a flow speed of a medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900542B (en) * 2014-03-19 2016-06-29 中国科学院南海海洋研究所 A kind of measurement apparatus measuring the reflectance change that marine BAIGUAN generates to disappearing and measuring method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292273A (en) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho Tidal wave and maritime weather monitoring prediction device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292273A (en) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho Tidal wave and maritime weather monitoring prediction device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013063058; 林 昌奎: '連続波ドップラーレーダによる海洋波浪観測と波浪観測に及ぼすレーダ照射幅の影響' 日本船舶海洋工学会論文集 第8巻, 20090324, 61-69 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004608A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Waveform estimation device and waveform estimation method
JP2015004610A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Ocean radar system
DE102013213346A1 (en) * 2013-07-08 2015-01-08 Vega Grieshaber Kg Determination of level and flow rate of a medium
US9551606B2 (en) 2013-07-08 2017-01-24 Vega Grieshaber Kg Determining a level and flow speed of a medium
US9677922B2 (en) 2013-07-08 2017-06-13 Vega Grieshaber Kg Universal measurement data acquisition in water
US9945709B2 (en) 2013-07-08 2018-04-17 Vega Grieshaber Kg Determining a distance and a flow speed of a medium
US10001558B2 (en) 2013-07-08 2018-06-19 Vega Grieshaber Kg Determining a level and flow speed of a medium
CN103900996A (en) * 2014-03-19 2014-07-02 中国科学院南海海洋研究所 Measuring method and device for measuring coverage rate of white crown on sea in field
WO2016079848A1 (en) * 2014-11-20 2016-05-26 三菱電機株式会社 State estimation device
JPWO2016079848A1 (en) * 2014-11-20 2017-04-27 三菱電機株式会社 State estimation device
US9964408B2 (en) 2014-11-20 2018-05-08 Mitsubishi Electric Corporation State estimation device
CN104749114A (en) * 2015-04-14 2015-07-01 武汉大学 Device and method for observing and analyzing apparent spectrums of water bodies of three channels

Also Published As

Publication number Publication date
JP5462740B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5462740B2 (en) Water surface shape measuring apparatus and water surface shape measuring method
US10914818B2 (en) Angle-resolving FMCW radar sensor
JP5389267B2 (en) Method and apparatus for measuring seabed contours
WO2016027296A1 (en) Interference-type vibration observation device, vibration observation program, and vibration observation method
JPWO2014118968A1 (en) Radar equipment
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
WO2017158659A1 (en) Acoustic measurement device, acoustic measurement method, shaking component detection device, shaking component detection method, multi-beam acoustic measurement device, and synthetic aperture sonar
JP6192151B2 (en) Signal sorting apparatus, signal sorting method, and radar apparatus.
WO2020148461A1 (en) Non-invasive open channel flow meter
GB2525757A (en) Underwater detection apparatus, underwater detection method and underwater detection program
RU2346295C1 (en) Active sonar
JP2016090453A (en) Detection device and underwater detection device
JP6587564B2 (en) Acoustic measurement device, acoustic measurement method, multi-beam acoustic measurement device, and aperture synthesis sonar
RU2527136C1 (en) Method of measuring depth of object using sonar
WO2014192528A1 (en) Surface tidal-current estimation device, radar device, surface tidal-current estimation method and surface tidal-current estimation program
RU2571950C1 (en) Method for radio monitoring of radio-silent objects
WO2010019368A1 (en) System and method of range estimation
US20220236437A1 (en) Method and system for determining top and bottom depth of an under water mud layer
JP2010038832A (en) Pulse radar apparatus
RU153808U1 (en) PARAMETRIC ECHO DEDOMETER
JP2015014471A (en) Echo signal processing device, ocean wave radar, echo signal processing method, and echo signal processing program
RU2568935C1 (en) Method of determining torpedo motion parameters
RU2510608C1 (en) Method of measuring thickness of ice from underwater vehicle
JP2013506117A (en) Method and apparatus for measuring seabed contours
Srivastava et al. Passive underwater acoustic markers using Bragg backscattering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250