JP2011064419A - Method and device of manufacturing latent heat storage slurry - Google Patents

Method and device of manufacturing latent heat storage slurry Download PDF

Info

Publication number
JP2011064419A
JP2011064419A JP2009216542A JP2009216542A JP2011064419A JP 2011064419 A JP2011064419 A JP 2011064419A JP 2009216542 A JP2009216542 A JP 2009216542A JP 2009216542 A JP2009216542 A JP 2009216542A JP 2011064419 A JP2011064419 A JP 2011064419A
Authority
JP
Japan
Prior art keywords
slurry
heat storage
heat exchanger
latent heat
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009216542A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Mizukami
剛志 水上
Hidemasa Ogose
英雅 生越
Masayuki Sugiyama
正行 杉山
Hideyuki Miyamoto
英幸 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009216542A priority Critical patent/JP2011064419A/en
Publication of JP2011064419A publication Critical patent/JP2011064419A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for stably or continuously manufacturing a latent heat storage slurry for a longer time by stabilizing an operation of a heat exchanger producing a latent heat storage substance or exchanging heat between a cold medium and a material solution. <P>SOLUTION: This method of manufacturing the latent heat storage slurry is provided to produce the latent heat storage slurry capable of producing the latent heat storage substance, and producing the latent heat storage substance in the solution by cooling the solution capable of generating supercooling in production by heat exchange with the cold medium in the heat exchanger, and includes a process for circulating a part of the solution with the latent heat storage substance included therein, from an outlet side to an inlet side of the heat exchanger, and a process for circulating a part of the cold medium from the outlet side to the inlet side of the heat exchanger. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液(以下「原料溶液」という場合がある)中に当該潜熱蓄熱性物質が分散又は懸濁してなるもの、即ち潜熱蓄熱性スラリの製造技術に関する。   The present invention is a product in which a latent heat storage material can be produced and dispersed or suspended in a solution that may cause supercooling during the production (hereinafter sometimes referred to as “raw material solution”). That is, the present invention relates to a technology for manufacturing a latent heat storage slurry.

原料溶液は、潜熱蓄熱性物質を生成可能な溶液である。それ故、既に潜熱蓄熱性物質が分散又は懸濁していると否とに拘らず、更なる潜熱蓄熱性物質を生成可能なものであれば、それは原料溶液に該当する。
原料溶液は、潜熱蓄熱性物質の生成の際過冷却を起こし得るものである。それ故、既に潜熱蓄熱性物質が分散又は懸濁していると否とに拘らず、過冷却を起こし得るものであれば、それは原料溶液に該当する。例えば、潜熱蓄熱性物質が分散又は懸濁しているために全体にわたり過冷却が解除されているように見えても、局所的に過冷却が解除されていない溶液であれば、局所的とはいえども過冷却を起こし得るものなので、当該溶液は原料溶液に該当する。
The raw material solution is a solution capable of generating a latent heat storage material. Therefore, if a latent heat storage material can be further generated regardless of whether the latent heat storage material is already dispersed or suspended, it corresponds to a raw material solution.
Raw material solution is one capable of causing supercooling in the generation of latent heat storage material. Therefore, if it can cause supercooling regardless of whether the latent heat storage material is already dispersed or suspended, it corresponds to the raw material solution. For example, even if it seems that supercooling has been released over the entire surface due to the dispersion or suspension of the latent heat storage material, it can be said that the solution is not locally released from supercooling. Since the solution can cause supercooling, the solution corresponds to a raw material solution.

本発明における潜熱蓄熱性物質は、周辺環境(例えば管内壁や熱交換器の熱交換面)への付着を起こし易い物質であり、その物質の代表例は無機水和塩や包接化合物である。なお、包接化合物には包接水和物が含まれ、包接水和物には準包接水和物が含まれる。潜熱蓄熱性物質が包接水和物であれば、そのゲスト分子の水溶液は、潜熱蓄熱性物質である包接水和物を生成可能で、その生成の際過冷却を起こし得るので、原料溶液に該当する。   The latent heat storage substance in the present invention is a substance that easily adheres to the surrounding environment (for example, the inner wall of a pipe or the heat exchange surface of a heat exchanger). Typical examples of the substance are inorganic hydrate salts and clathrate compounds. . The clathrate compound includes clathrate hydrate, and the clathrate hydrate includes quasi clathrate hydrate. If the latent heat storage material is clathrate hydrate, the aqueous solution of the guest molecule can generate clathrate hydrate, which is a latent heat storage material, and can cause supercooling during the generation. It corresponds to.

原料溶液中に潜熱蓄熱性物質が分散又は懸濁してなる潜熱蓄熱性スラリを製造する際、当該潜熱蓄熱性物質が周辺環境への付着を起こし易い性質を有していると、管内壁に付着して圧力損失を増加させ円滑な流送を阻害しさらに閉塞が生じたり、熱交換器の熱交換面に付着して熱交換効率を低下させたりして、潜熱蓄熱性スラリを長時間にわたり安定に又は連続して製造することが困難になる。また、原料溶液の少なくとも一部が過冷却状態になっていると、その過冷却状態が解除するまで当該潜熱蓄熱性物質の生成が起こらない又は十分起こらない、或いは、過冷却状態が解除すると同時に、一度に大量の潜熱蓄熱性物質が生成する結果、周辺環境への付着量が急増するため、やはり、潜熱蓄熱性スラリを長時間にわたり安定に又は連続して製造することが困難になる。   When manufacturing a latent heat storage material slurry in which the latent heat storage material is dispersed or suspended in the raw material solution, if the latent heat storage material has the property of easily adhering to the surrounding environment, it adheres to the inner wall of the pipe. This increases the pressure loss, impedes smooth flow and further clogs or adheres to the heat exchange surface of the heat exchanger to reduce the heat exchange efficiency and stabilizes the latent heat storage slurry for a long time. It becomes difficult to manufacture continuously or continuously. In addition, if at least a part of the raw material solution is in a supercooled state, the latent heat storage material is not generated or sufficiently generated until the supercooled state is released, or at the same time the supercooled state is released. As a result of producing a large amount of latent heat storage material at a time, the amount of adhesion to the surrounding environment increases rapidly, so that it becomes difficult to stably or continuously manufacture the latent heat storage slurry for a long time.

このような問題を解決するための一手段として、原料溶液の中に固体状態の潜熱蓄熱性物質が存在する状態にしたものを熱交換器の出口側から入口側に循環させるとともに熱交換器で冷却させる技術が知られている。この技術によれば、固体状態の潜熱蓄熱性物質が次の(別の)潜熱蓄熱性物質の生成核として機能するので、原料溶液に生じ得る過冷却を防止することができる(特許文献1参照)。   As a means for solving such a problem, a raw material solution in which a solid latent heat storage material is present is circulated from the outlet side to the inlet side of the heat exchanger and the heat exchanger. Techniques for cooling are known. According to this technology, since the solid-state latent heat storage material functions as a generation nucleus of the next (other) latent heat storage material, it is possible to prevent overcooling that may occur in the raw material solution (see Patent Document 1). ).

また、第1の熱交換器により原料溶液を過冷却状態にさせた後、第1の熱交換器の下流においてその過冷却状態を解除させ、原料溶液中に少量の潜熱蓄熱性物質を生成させ、引き続き第2の熱交換器により冷却することにより、原料溶液中により大量の潜熱蓄熱性物質を生成させる技術が知られている(特許文献2)。   Further, after the raw material solution is brought into a supercooled state by the first heat exchanger, the supercooled state is released downstream of the first heat exchanger, and a small amount of latent heat storage material is generated in the raw material solution. Subsequently, a technique is known in which a large amount of latent heat storage material is generated in the raw material solution by subsequently cooling with a second heat exchanger (Patent Document 2).

特許文献2(図10参照)の技術においては、例えば、第1の熱交換器の出口と第2の熱交換器の入口との間において原料溶液の過冷却の少なくとも一部を解除させるために、第2の熱交換器の出口側から入口側に原料溶液(又は潜熱蓄熱性スラリ)を還流させることにより、その中に分散又は懸濁している潜熱蓄熱性物質を次の(別の)潜熱蓄熱性物質の生成核として供給する手法が開示されている。また、特許文献3(図2参照)の技術においては、バッファタンクを設置して過冷却解除に要する時間を確保する手法が開示されている。
また潜熱蓄熱性スラリの長時間にわたる連続製造を実現するために、複数台の第2の熱交換器を順次切り替える、即ち潜熱蓄熱性スラリの製造に寄与していたために潜熱蓄熱性物質が付着するに至った一方の第2の熱交換器から、潜熱蓄熱性物質が付着していない又は取り除かれた他方の第2の熱交換器に切り替え、当該他方の第2の熱交換器により潜熱蓄熱性スラリの製造を行うとともに、当該一方の第2の熱交換器の伝熱面やその近くの周辺環境に付着している潜熱蓄熱性物質を取り除く。そのような複数台の第2の熱交換器の切替えを繰り返すという手法も採用される場合もある(特許文献4参照)。
In the technique of Patent Document 2 (see FIG. 10), for example, in order to release at least a part of the supercooling of the raw material solution between the outlet of the first heat exchanger and the inlet of the second heat exchanger. , By refluxing the raw material solution (or latent heat storage slurry) from the outlet side to the inlet side of the second heat exchanger, the latent heat storage material dispersed or suspended therein is transferred to the next (other) latent heat. A method of supplying as a generation nucleus of a heat storage material is disclosed. Moreover, in the technique of patent document 3 (refer FIG. 2), the method of installing the buffer tank and ensuring the time required for supercooling cancellation | release is disclosed.
Moreover, in order to realize continuous production of the latent heat storage slurry for a long time, the plurality of second heat exchangers are sequentially switched, that is, the latent heat storage material adheres because it contributed to the manufacture of the latent heat storage slurry. Switch to the other second heat exchanger from which the latent heat storage material is not attached or removed, and the other second heat exchanger causes the latent heat storage performance The slurry is manufactured and the latent heat storage material adhering to the heat transfer surface of the second heat exchanger and the surrounding environment is removed. There is also a case where a method of repeatedly switching such a plurality of second heat exchangers is employed (see Patent Document 4).

他方、熱交換器の伝熱面への潜熱蓄熱性物質の付着量は、その伝熱面を介して熱交換を行う原料溶液と冷熱媒体との温度差が小さいほど減少することが知られている(特許文献5、段落0039参照)。原料溶液と冷熱媒体との温度差が小さくなると、交換熱量が減り、潜熱蓄熱性物質の生成量が減り、潜熱蓄熱性スラリの製造に支障が生じるおそれがあるとはいえ、そのような支障が生じない範囲であれば、原料溶液と冷熱媒体との温度差を小さくすることは、熱交換器の伝熱面への潜熱蓄熱性物質の付着を抑制するための一つの選択肢となり得る。   On the other hand, it is known that the amount of the latent heat storage material attached to the heat transfer surface of the heat exchanger decreases as the temperature difference between the raw material solution that exchanges heat through the heat transfer surface and the cooling medium decreases. (See Patent Document 5, paragraph 0039). When the temperature difference between the raw material solution and the cooling medium is reduced, the amount of exchange heat is reduced, the amount of latent heat storage material is reduced, and the production of latent heat storage slurry may be hindered. If it does not occur, reducing the temperature difference between the raw material solution and the cooling medium can be an option for suppressing the adhesion of the latent heat storage material to the heat transfer surface of the heat exchanger.

特開2007−107773JP2007-107773 特開2002−263470Patent 2002-263470 特開2009−51906JP 2009-51906 特許第3972734号Patent No. 3972734 特開2009−68826JP 2009-68826

上記の特許文献2に記載された従来技術は、要すれば、原料溶液と冷熱媒体との熱交換が行われる系において、原料溶液(又は潜熱蓄熱性スラリ)の還流を通じて過冷却解除に役立つ生成核を供給することにより、原料溶液の過冷却又は過冷却解除を適切に制御又は調整し、周辺環境への潜熱蓄熱性物質の付着を抑制し、もって潜熱蓄熱性スラリの長時間にわたる安定で又は連続的な製造に寄与するものといえる。   The prior art described in Patent Document 2 described above is a production that is useful for releasing the supercooling through the reflux of the raw material solution (or latent heat storage slurry) in a system in which heat exchange between the raw material solution and the cooling medium is performed if necessary. By supplying nuclei, it is possible to appropriately control or adjust the supercooling or subcooling release of the raw material solution, suppress the adhesion of the latent heat storage material to the surrounding environment, and thus stabilize the latent heat storage slurry for a long time or It can be said that it contributes to continuous production.

しかし、原料溶液(又は潜熱蓄熱性スラリ)の還流により生成核を供給しても、原料溶液の過冷却又は過冷却解除に起因する周辺環境への潜熱蓄熱性物質の付着の問題を完全に解決することはできない。例えば、原料溶液の還流により生成核を供給する一方で、熱交換器を流れる冷熱媒体の温度が変動すると、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度も変動するので、過冷却が解除された原料溶液から生成してくる潜熱蓄熱性物質の生成量や潜熱蓄熱性物質の周辺環境への付着量も変動する。このような不安定な状況の下で潜熱蓄熱性スラリを長時間製造すると、潜熱蓄熱性物質の周辺環境への付着量が徐々に又は累積的に増加してくるため、或いは予想を越えて急激に増加することがあるため、時間の経過に伴い潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化してくる。   However, even if the generated nuclei are supplied by refluxing the raw material solution (or latent heat storage slurry), the problem of adhesion of the latent heat storage material to the surrounding environment due to the supercooling or release of the supercooling of the raw material solution is completely solved It can not be. For example, when the temperature of the cooling medium flowing through the heat exchanger fluctuates while supplying the production nuclei by refluxing the raw material solution, the degree of heat exchange between the cooling medium and the raw material solution or the degree of cooling of the raw material solution by the cooling medium is also increased. Since it fluctuates, the generation amount of the latent heat storage material generated from the raw solution whose supercooling has been released and the adhesion amount of the latent heat storage material to the surrounding environment also vary. If the latent heat storage slurry is manufactured for a long time under such unstable conditions, the amount of the latent heat storage material adhering to the surrounding environment gradually or cumulatively increases, or suddenly exceeds expectations. Therefore, troubles and malfunctions that occur during the production of the latent heat storage slurry become apparent with the passage of time.

この問題に対する解決策の一つは、複数台の第2の熱交換器の切替えを繰り返すという従来手法(特許文献4)において、その切替え頻度を高める、即ち潜熱蓄熱性物質が付着するに至った第2の熱交換器からその付着物を除去する頻度を高めることである。しかし、付着物を除去するために第2の熱交換器を切り替えることは、潜熱蓄熱性スラリの効率的な製造という観点からすると本来望ましいやり方とはいえず、そのような切替えの頻度を高めることは本来好ましいものではない。複数台の第2の熱交換器の切替えはできるだけ少なく、換言すれば、複数台の第2の熱交換器の切替えを行いながら原料溶液を冷却する際には、第2の熱交換器1個当たりの原料溶液の冷却時間はできるだけ長くするのが好ましいため、矛盾することになる。   One solution to this problem is to increase the switching frequency in the conventional method (Patent Document 4) in which switching of a plurality of second heat exchangers is repeated, that is, the latent heat storage material is attached. Increasing the frequency of removing the deposits from the second heat exchanger. However, switching the second heat exchanger to remove deposits is not an inherently desirable approach from the standpoint of efficient production of latent heat storage slurries and increases the frequency of such switching. Is not inherently preferred. Switching of the plurality of second heat exchangers is as small as possible. In other words, when cooling the raw material solution while switching the plurality of second heat exchangers, one second heat exchanger is used. Since it is preferable to make the cooling time of the raw material solution as long as possible, there is a contradiction.

また、特許文献5に記載された従来技術において、熱交換器への伝熱面への潜熱蓄熱性物質の付着を抑制するために、当該伝熱面を介して熱交換を行う原料溶液と冷熱媒体との温度差を小さくする際に、原料溶液の温度と冷熱媒体の温度のいずれか一方が変動し易い又は不安定であると、両温度の差を適切に制御又は調整することが難しくなり、当該伝熱面への潜熱蓄熱性物質の付着を効果的に抑制することができなくなる。熱交換器の出口側から入口側に原料溶液を還流させると、当該熱交換器を流れる原料溶液の温度を変動し難く又は安定にすることができる。しかし、熱交換器への伝熱面への潜熱蓄熱性物質の付着を抑制するためには、それだけでは不十分であり、冷熱媒体の温度をも変動し難く又は安定にする必要がある。   Moreover, in the prior art described in patent document 5, in order to suppress adhesion of the latent heat storage material to the heat transfer surface to the heat exchanger, the raw material solution that performs heat exchange via the heat transfer surface and the cold heat When reducing the temperature difference with the medium, if either the temperature of the raw material solution or the temperature of the cooling medium is likely to fluctuate or is unstable, it becomes difficult to appropriately control or adjust the difference between the two temperatures. Therefore, it becomes impossible to effectively suppress adhesion of the latent heat storage material to the heat transfer surface. When the raw material solution is refluxed from the outlet side to the inlet side of the heat exchanger, the temperature of the raw material solution flowing through the heat exchanger can be hardly changed or stabilized. However, in order to suppress adhesion of the latent heat storage material to the heat transfer surface to the heat exchanger, it is not sufficient by itself, and it is necessary to make the temperature of the cooling medium difficult or stable.

従って、より長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造するためには従来手法では不十分であり、更なる工夫が必要である。
本発明は、以上の点に鑑みてなされたものであり、潜熱蓄熱性物質の生成又は冷熱媒体と原料溶液との熱交換が行われる熱交換器の動作をより安定化させることにより、より長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造することができる技術を提供することを目的とする。
Therefore, in order to produce a latent heat storage slurry in a stable or continuous manner for a longer time, the conventional method is insufficient, and further contrivance is necessary.
The present invention has been made in view of the above points, and by further stabilizing the operation of the heat exchanger in which the latent heat storage material is generated or the heat exchange between the cooling medium and the raw material solution is performed, the present invention is made longer. It is an object of the present invention to provide a technique capable of producing a latent heat storage slurry stably or continuously over time.

上記の目的を達成するための、本発明の第1の形態に係る潜熱蓄熱性スラリの製造方法は、潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液を熱交換器における冷熱媒体との熱交換により冷却することにより、前記溶液中に前記潜熱蓄熱性物質を生成させる潜熱蓄熱性スラリの製造方法であって、前記熱交換器の出口側から入口側に前記溶液の一部をそこに含まれる前記潜熱蓄熱性物質とともに還流させる工程と、前記熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる工程とを有することを特徴とするものである。   In order to achieve the above object, the method for producing a latent heat storage slurry according to the first embodiment of the present invention is capable of generating a latent heat storage material and a solution capable of causing supercooling during the generation of the latent heat storage material. The method of manufacturing a latent heat storage slurry that generates the latent heat storage material in the solution by cooling by heat exchange with a cooling medium in the method, wherein the solution is transferred from the outlet side to the inlet side of the heat exchanger. And a step of refluxing a part of the cooling medium together with the latent heat storage material contained therein, and a step of refluxing a part of the cooling medium from the outlet side to the inlet side of the heat exchanger. .

本発明の第2の形態に係る潜熱蓄熱性スラリの製造装置は、潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液の少なくとも一部を冷熱媒体との熱交換により冷却させる熱交換器と、該熱交換器の出口側から入口側に前記溶液の一部をそこに含まれる前記潜熱蓄熱性物質とともに還流させる第1の還流用配管と、前記熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる第2の還流用配管と、を備えることを特徴とするものである。   The apparatus for producing a latent heat storage slurry according to the second aspect of the present invention is capable of generating a latent heat storage material and cooling at least a part of the solution that may cause supercooling during the generation by heat exchange with a cooling medium. A heat exchanger to be recirculated, a first recirculation pipe for recirculating a part of the solution together with the latent heat storage material contained therein from the outlet side to the inlet side of the heat exchanger, and the outlet side of the heat exchanger And a second recirculation pipe for recirculating a part of the cooling medium from the first to the inlet side.

本発明の第3の形態に係る潜熱蓄熱性スラリの製造方法は、潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液の少なくとも一部を過冷却状態にした後、その過冷却状態を解除し、引き続き熱交換器における冷熱媒体との熱交換により冷却することにより、前記溶液中に前記潜熱蓄熱性物質を生成させる潜熱蓄熱性スラリの製造装置であって、前記熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる工程を有することを特徴とするものである。   In the method for producing a latent heat storage slurry according to the third aspect of the present invention, after the latent heat storage material can be generated and at least a part of the solution that may cause supercooling in the generation is in a supercooled state, An apparatus for producing a latent heat storage slurry that generates the latent heat storage material in the solution by releasing the supercooling state and subsequently cooling by heat exchange with a cooling medium in a heat exchanger, wherein the heat exchange And a step of refluxing a part of the cooling medium from the outlet side to the inlet side of the vessel.

本発明の第4の形態に係る潜熱蓄熱性スラリの製造装置は、潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液の少なくとも一部を過冷却状態にした後、その過冷却状態を解除し、引き続き熱交換器における冷熱媒体との熱交換により冷却することにより、前記溶液中に前記潜熱蓄熱性物質を生成させる潜熱蓄熱性スラリの製造装置であって、前記熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる還流用配管を備えることを特徴とするものである。   An apparatus for producing a latent heat storage slurry according to a fourth aspect of the present invention is capable of generating a latent heat storage material and, after making at least a part of a solution capable of causing supercooling during the production, An apparatus for producing a latent heat storage slurry that generates the latent heat storage material in the solution by releasing the supercooling state and subsequently cooling by heat exchange with a cooling medium in a heat exchanger, wherein the heat exchange A recirculation pipe for recirculating a part of the cooling medium from the outlet side to the inlet side of the vessel is provided.

本発明の第5の形態に係る潜熱蓄熱性スラリの製造装置は、潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液を冷却させる第1の熱交換器と、第1の熱交換器により冷却された前記溶液を冷熱媒体との熱交換により冷却させる第2の熱交換器と、第2の熱交換器の出口側から入口側に前記溶液の一部を還流させる第1の還流用配管と、第2の熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる第2の還流用配管と、を備えることを特徴とするものである。   The apparatus for producing a latent heat storage slurry according to the fifth aspect of the present invention includes a first heat exchanger that can generate a latent heat storage material and cool a solution that can cause supercooling during the generation, and a first heat exchanger. A second heat exchanger that cools the solution cooled by the heat exchanger by heat exchange with a cooling medium, and a second heat exchanger that circulates a part of the solution from the outlet side to the inlet side of the second heat exchanger. And a second recirculation pipe for recirculating a part of the cooling medium from the outlet side to the inlet side of the second heat exchanger.

(1)本発明の第1及び第2の各形態が奏する効果について
本発明の第1及び第2の各形態においては、原料溶液の一部の還流により過冷却解除に役立つ生成核を供給するとともに、熱交換器の出口側から入口側に冷熱媒体の一部を還流させる。熱交換器の出口側から入口側に冷熱媒体の一部が還流されると、熱交換器に流入する冷熱媒体の流量が増加し冷熱媒体の温度の変動が低減され、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生じにくくなる。そのため、冷熱媒体と原料溶液との熱交換(換言すれば熱交換器の動作)が安定化し、原料溶液の中での潜熱蓄熱性物質の生成が安定化する。その結果、潜熱蓄熱性物質の周辺環境への付着量が予想を越えて急激に増加することがなくなるので、付着の進行が予測し易くなり、原料溶液の過冷却又は過冷却解除を適切に制御又は調整し易くなる。そして、潜熱蓄熱性物質の付着量が徐々に又は累積的に増加することが避けられないとしても、より長い時間が経過しない限り、潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化し難くなる。
また、原料溶液の一部の還流によりその温度が変動し難くなり安定すると同時に、冷熱媒体の一部の還流によりその温度が変動し難くなり安定すると、原料溶液と冷熱媒体の両温度の差が変動し難くなり安定するので、原料溶液の過冷却又は過冷却解除を適切に制御又は調整することが容易になり、延いては熱交換器の伝熱面への潜熱蓄熱性物質の付着の効果的な抑制が可能になる。
従って、本発明の第1及び第2の各形態によれば、より長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造することができる。
(1) About the effect which 1st and 2nd form of this invention show | plays In 1st and 2nd form of this invention, the production | generation nucleus useful for a supercooling release is supplied by recirculation | reflux of a part of raw material solution. At the same time, a part of the cooling medium is refluxed from the outlet side to the inlet side of the heat exchanger. When a part of the cooling medium is recirculated from the outlet side to the inlet side of the heat exchanger, the flow rate of the cooling medium flowing into the heat exchanger is increased, the temperature fluctuation of the cooling medium is reduced, and the cooling medium, the raw material solution, Fluctuations are less likely to occur in the degree of heat exchange or the degree of cooling of the raw material solution by the cooling medium. Therefore, the heat exchange between the cooling medium and the raw material solution (in other words, the operation of the heat exchanger) is stabilized, and the generation of the latent heat storage material in the raw material solution is stabilized. As a result, the amount of adhesion of the latent heat storage material to the surrounding environment does not increase more rapidly than expected, making it easier to predict the progress of adhesion and appropriately controlling the subcooling or overcooling of the raw material solution. Or it becomes easy to adjust. Even if it is inevitable that the amount of adhesion of the latent heat storage material gradually or cumulatively increases, troubles and malfunctions that occur during the production of the latent heat storage slurry will become obvious unless a longer time elapses. It becomes difficult.
In addition, when the temperature of the raw material solution is less likely to fluctuate due to reflux, and at the same time the temperature is less likely to fluctuate due to partial reflux of the cooling medium, the temperature difference between the raw material solution and the cooling medium is Since it is difficult to fluctuate and stabilizes, it becomes easy to appropriately control or adjust the supercooling or supercooling release of the raw material solution, and consequently the effect of adhesion of the latent heat storage material to the heat transfer surface of the heat exchanger Suppression is possible.
Therefore, according to each of the first and second embodiments of the present invention, the latent heat storage slurry can be manufactured stably or continuously over a longer time.

(2)本発明の第3及び第4の各形態が奏する効果について
原料溶液を過冷却状態にした後、その過冷却状態の少なくとも一部を解除し、引き続き熱交換器における冷熱媒体との熱交換により冷却することにより、原料溶液中に潜熱蓄熱性物質を生成させる場合、冷熱媒体の温度が変動すると、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生ずるので、過冷却が解除された原料溶液から生成してくる潜熱蓄熱性物質の生成量や潜熱蓄熱性物質の周辺環境への付着量も変動し、時間の経過に伴い潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化してくる。
(2) Effects of the third and fourth embodiments of the present invention After the raw material solution is brought into a supercooled state, at least a part of the supercooled state is released, and subsequently the heat with the cooling medium in the heat exchanger When the latent heat storage material is generated in the raw material solution by cooling by exchange, if the temperature of the cooling medium fluctuates, the degree of heat exchange between the cooling medium and the raw material solution or the degree of cooling of the raw material solution by the cooling medium As the fluctuation occurs, the amount of latent heat storage material generated from the raw solution whose supercooling has been released and the amount of latent heat storage material attached to the surrounding environment also vary. Troubles and defects that occur during the manufacture of the

これに対して、本発明の第3及び第4の各形態においては、熱交換器の出口側から入口側に冷熱媒体の一部を還流させ、冷熱媒体の温度の変動を低減させるので、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生じにくくなる。その結果、上記(1)同様、冷熱媒体と原料溶液との熱交換が安定し、原料溶液からの潜熱蓄熱性物質の生成が安定化する。従って、本発明の第3及び第4の各形態によれば、原料溶液を過冷却状態にした後、その過冷却状態を解除し、引き続き熱交換器における冷熱媒体との熱交換により冷却することにより、原料溶液中に前記潜熱蓄熱性物質を生成させる場合であっても、より長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造することができる。   On the other hand, in each of the third and fourth embodiments of the present invention, a part of the cooling medium is circulated from the outlet side to the inlet side of the heat exchanger to reduce the temperature fluctuation of the cooling medium. Variations are less likely to occur in the degree of heat exchange between the medium and the raw material solution or the degree of cooling of the raw material solution by the cooling medium. As a result, as in (1) above, the heat exchange between the cooling medium and the raw material solution is stabilized, and the generation of the latent heat storage material from the raw material solution is stabilized. Therefore, according to each of the third and fourth aspects of the present invention, after the raw material solution is brought into a supercooled state, the supercooled state is released and subsequently cooled by heat exchange with the cooling medium in the heat exchanger. Thus, even when the latent heat storage material is generated in the raw material solution, the latent heat storage slurry can be produced stably or continuously over a longer time.

なお、原料溶液の一部が熱交換器の出口側から入口側に還流することにより当該原料溶液の温度が変動し難く又は安定する場合には、冷熱媒体の一部の還流によりその温度も変動し難くなり、安定しているので、原料溶液と冷熱媒体の両温度の差が変動し難くなり安定し、適切に制御又は調整することが容易になり、延いては熱交換器の伝熱面への潜熱蓄熱性物質の付着の効果的な抑制が可能になる。従って、この場合には、より効果的に、より長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造することができる。   In addition, when a part of the raw material solution is refluxed from the outlet side of the heat exchanger to the inlet side, the temperature of the raw material solution is difficult or stable, and the temperature also fluctuates due to a part of the cooling medium. The difference between the temperature of the raw material solution and the cooling medium is less likely to fluctuate and is stable, and can be easily controlled or adjusted properly, and thus the heat transfer surface of the heat exchanger. It is possible to effectively suppress the adhesion of the latent heat storage material to the surface. Therefore, in this case, the latent heat storage slurry can be manufactured more effectively, stably or continuously over a longer time.

(3)本発明の第5の形態が奏する効果について
原料溶液を第1の熱交換器において冷却させ、引き続き第2の熱交換器において冷熱媒体との熱交換により冷却させることにより潜熱蓄熱性物質を生成させる場合、第1の熱交換器における冷却により原料溶液の少なくとも一部は過冷却状態になる。このため、第1の還流用配管を通じて第2の熱交換器の出口側から入口側に原料溶液の一部を還流させると、還流された原料溶液に含まれる潜熱蓄熱性物質が生成核として作用し、第1の熱交換器において冷却された原料溶液に生じた過冷却が解除されるので、引き続く第2の熱交換器における冷却により、より多くの潜熱蓄熱性物質を生成させることができる。しかし、この場合、第2の熱交換器における冷熱媒体の温度が変動すると、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生ずるので、過冷却が解除された原料溶液から生成してくる潜熱蓄熱性物質の生成量や潜熱蓄熱性物質の周辺環境への付着量も変動し、時間の経過に伴い潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化してくる。
(3) Effect of the fifth embodiment of the present invention The latent heat storage material is obtained by cooling the raw material solution in the first heat exchanger and subsequently cooling it by heat exchange with the cooling medium in the second heat exchanger. When at least a part of the raw material solution is brought into a supercooled state by cooling in the first heat exchanger. Therefore, when a part of the raw material solution is refluxed from the outlet side of the second heat exchanger to the inlet side through the first reflux pipe, the latent heat storage material contained in the refluxed raw material solution acts as a production nucleus. And since the supercooling which arose in the raw material solution cooled in the 1st heat exchanger is cancelled | released, more latent-heat thermal storage substances can be produced | generated by the cooling in a 2nd heat exchanger succeeding. However, in this case, if the temperature of the cold medium in the second heat exchanger fluctuates, the degree of heat exchange between the cold medium and the raw material solution or the degree of cooling of the raw material solution by the cold medium will fluctuate. The amount of latent heat storage material generated from the released raw material solution and the amount of adhesion of the latent heat storage material to the surrounding environment also fluctuate, which may cause problems in the production of latent heat storage slurry over time. Defects become obvious.

これに対して、本発明の第5の形態においては、第2の熱交換器の出口側から入口側に冷熱媒体の一部を還流させ、冷熱媒体の温度の変動を低減させるので、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生じにくくなる。その結果、潜熱蓄熱性物質の生成又は冷熱媒体と原料溶液との熱交換が行われる第2の熱交換器の動作がより安定化する。
また、原料溶液の一部の還流によりその温度が変動し難くなり、安定すると同時に、冷熱媒体の一部の還流によりその温度が変動し難くなり安定すると、原料溶液と冷熱媒体の両温度の差が変動し難くなり安定するので、適切に制御又は調整することが容易になり、延いては熱交換器の伝熱面への潜熱蓄熱性物質の付着の効果的な抑制が可能になる。
従って、本発明の第5の形態によれば、第1の熱交換器と第2の熱交換器との間で原料溶液の少なくとも一部に生じる過冷却を解除する一方で、過冷却状態が解除された原料溶液を第2の熱交換器において冷熱媒体と熱交換させることにより潜熱蓄熱性物質を生成させる場合であっても、より長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造することができる。
On the other hand, in the fifth embodiment of the present invention, since a part of the cooling medium is recirculated from the outlet side to the inlet side of the second heat exchanger to reduce the temperature fluctuation of the cooling medium, the cooling medium The degree of heat exchange with the raw material solution or the degree of cooling of the raw material solution by the cooling medium is less likely to vary. As a result, the operation of the second heat exchanger in which the latent heat storage material is generated or the heat exchange between the cooling medium and the raw material solution is further stabilized.
In addition, when the temperature of the raw material solution is less likely to fluctuate and stabilize due to the reflux of a part of the cooling medium, and when the temperature is less likely to fluctuate due to the reflux of a part of the cooling medium, the difference between the temperature of the raw material solution and the cooling medium is reduced. Since it becomes difficult to fluctuate and stabilize, it becomes easy to appropriately control or adjust, and consequently, it is possible to effectively suppress adhesion of the latent heat storage material to the heat transfer surface of the heat exchanger.
Therefore, according to the fifth aspect of the present invention, the supercooling state is canceled while at least part of the raw material solution between the first heat exchanger and the second heat exchanger is released. Even when the latent heat storage material is generated by exchanging the released raw material solution with the cooling medium in the second heat exchanger, the latent heat storage slurry is produced stably or continuously over a longer period of time. can do.

(4) なお、熱交換器を流れる冷熱媒体の温度変動を低減させる手法としては、例えば冷熱媒体を熱交換器に向けて送出する前に一時的にタンクに貯留し、均一温度にするという手法も考えられる。しかし、当該タンクの設置には相応の敷地や空間が必要になる。また、潜熱蓄熱性スラリを製造する際に採用すべき手法として必ずしも奏効的とはいえないことが判明した(この点については後述する)。そのような問題も考慮のうえで、本発明では冷熱媒体の一部を還流させる手法が採用されている。   (4) In addition, as a method of reducing the temperature fluctuation of the cooling medium flowing through the heat exchanger, for example, a method of temporarily storing the cooling medium in a tank before sending it to the heat exchanger to obtain a uniform temperature. Is also possible. However, the installation of the tank requires a suitable site and space. Further, it has been found that it is not always effective as a method to be adopted when manufacturing a latent heat storage slurry (this point will be described later). In consideration of such a problem, the present invention employs a technique of refluxing a part of the cooling medium.

(5) 熱交換器の出口側から入口側に冷熱媒体の一部が還流するように構成されていると、熱交換器において原料溶液と熱交換を行う冷熱媒体の温度がより高くなり、熱交換効率が低下し、潜熱蓄熱性物質の生成量が低下するというおそれがある。しかし、熱交換器の出口側から入口側への冷熱媒体の還流割合が適切に調整されていれば、生成した潜熱蓄熱性物質が熱交換器の伝熱面に付着する量が低下し、その分、熱交換効率が増加する。それ故、熱交換器における冷熱媒体と原料溶液との間の熱交換効率の低下を回避することができ、むしろ当該熱交換効率を増加させることすらできる場合がある。   (5) If a part of the cooling medium is refluxed from the outlet side to the inlet side of the heat exchanger, the temperature of the cooling medium that exchanges heat with the raw material solution in the heat exchanger becomes higher, and the heat There is a risk that the exchange efficiency is lowered, and the amount of latent heat storage material is reduced. However, if the reflux ratio of the cooling medium from the outlet side to the inlet side of the heat exchanger is appropriately adjusted, the amount of the generated latent heat storage material attached to the heat transfer surface of the heat exchanger decreases, The heat exchange efficiency increases. Therefore, a decrease in the heat exchange efficiency between the cooling medium and the raw material solution in the heat exchanger can be avoided, and the heat exchange efficiency can even be increased.

従来の潜熱蓄熱性スラリ製造装置(a)の説明図である。It is explanatory drawing of the conventional latent-heat thermal storage slurry manufacturing apparatus (a). 従来の潜熱蓄熱性スラリ製造装置(b)の説明図である。It is explanatory drawing of the conventional latent-heat thermal storage slurry manufacturing apparatus (b). 従来の潜熱蓄熱性スラリ製造装置(c)の説明図である。It is explanatory drawing of the conventional latent-heat thermal storage slurry manufacturing apparatus (c). 従来の潜熱蓄熱性スラリ製造装置(d)の説明図である。It is explanatory drawing of the conventional latent-heat thermal storage slurry manufacturing apparatus (d). 本発明に係る潜熱蓄熱性スラリ製造装置(A)の説明図である。It is explanatory drawing of the latent-heat thermal storage slurry manufacturing apparatus (A) which concerns on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(B)の説明図である。It is explanatory drawing of the latent-heat thermal storage slurry manufacturing apparatus (B) which concerns on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(C)の説明図である。It is explanatory drawing of the latent-heat thermal storage slurry manufacturing apparatus (C) which concerns on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(D)の説明図である。It is explanatory drawing of the latent-heat thermal storage slurry manufacturing apparatus (D) which concerns on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(E)のうち冷熱媒体循環経路の一部を除いた構成の説明図である。It is explanatory drawing of the structure except a part of cooling-heat-medium circulation path | route among the latent-heat thermal storage slurry manufacturing apparatuses (E) which concern on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(E)の説明図である。It is explanatory drawing of the latent-heat thermal storage slurry manufacturing apparatus (E) which concerns on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(F)のうち冷熱媒体循環経路の一部を除いた構成の説明図である。It is explanatory drawing of the structure except a part of cooling-medium circulation path | route among the latent-heat thermal storage slurry manufacturing apparatuses (F) based on this invention. 本発明に係る潜熱蓄熱性スラリ製造装置(F)の説明図である。It is explanatory drawing of the latent-heat thermal storage slurry manufacturing apparatus (F) which concerns on this invention. タンクを備える潜熱蓄熱性スラリ製造装置(d)の説明図である。It is explanatory drawing of a latent-heat thermal storage slurry manufacturing apparatus (d) provided with a tank. 実施例と比較例とを比較した第2の熱交換器におけるスラリ側の圧力損失増加分の実験結果である。It is an experimental result for the pressure loss increase by the side of the slurry in the 2nd heat exchanger which compared an example and a comparative example. 実施例と比較例とを比較した第2の熱交換器におけるスラリ側の圧力損失増加分の実験結果である。It is an experimental result for the pressure loss increase by the side of the slurry in the 2nd heat exchanger which compared an example and a comparative example. 第2の熱交換器におけるスラリ側の圧力損失増加分の比較結果である。It is a comparison result of the pressure loss increase on the slurry side in the second heat exchanger. 実施例と比較例とを比較した第2の熱交換器におけるスラリ側の圧力損失増加分の実験結果である。It is an experimental result for the pressure loss increase by the side of the slurry in the 2nd heat exchanger which compared an example and a comparative example.

以下、実施形態又は実施例により本発明を詳細に説明する。その際、必要に応じて図表を参照しつつ説明するが、各図表において同じ部分又は相当する若しくは共通する部分にはこれと同じ符号を付し、一部の説明を省略する。いうまでもなく、本発明は、図面に記載された実施の形態や実施例に限定されない。   Hereinafter, the present invention will be described in detail by embodiments or examples. At that time, the description will be made with reference to the charts as necessary, but the same parts or corresponding or common parts in each chart will be denoted by the same reference numerals, and a part of the description will be omitted. Needless to say, the present invention is not limited to the embodiments and examples described in the drawings.

本発明に係る潜熱蓄熱性スラリの製造装置において実行されている潜熱蓄熱性スラリの製造方法が本発明に係るそれである。それ故、以下において説明する本発明に係る潜熱蓄熱性スラリの製造装置の実施形態又は実施例において実行されている潜熱蓄熱性スラリの製造方法が、本発明に係る潜熱蓄熱性スラリの製造方法の実施形態又は実施例に相当する。   The manufacturing method of the latent heat storage slurry which is performed in the latent heat storage slurry manufacturing apparatus according to the present invention is that according to the present invention. Therefore, the latent heat storage slurry manufacturing method executed in the embodiment or example of the latent heat storage slurry manufacturing apparatus according to the present invention described below is the latent heat storage slurry manufacturing method of the present invention. This corresponds to the embodiment or the example.

以下、包接水和物のゲスト物質(ゲスト分子)の水溶液を原料溶液とし、その包接水和物が原料溶液に分散又は懸濁してなるスラリ(以下、「潜熱蓄熱性物質スラリ」と略称する場合がある)を、本発明における潜熱蓄熱性スラリの例として説明する。配管に設置されていることがあるバルブ、センサ、継手、ポンプ等については、従来技術や本発明を説明する必要がある限りにおいて、それらを図面に描写し、説明するものとする。
本明細書において、経路が接続する又は接続している箇所を(個別に又はまとめて)節点という。
Hereinafter, an aqueous solution of a clathrate hydrate guest substance (guest molecule) is used as a raw material solution, and the clathrate hydrate is dispersed or suspended in the raw material solution (hereinafter abbreviated as “latent heat storage material slurry”). the there) to be described as an example of a latent heat storage slurry in the present invention. For valves, sensors, joints, pumps, and the like that may be installed in the piping, they should be depicted and described in the drawings as long as it is necessary to explain the prior art and the present invention.
In this specification, a place where a path is connected or connected is called a node (individually or collectively).

本発明の特徴点を明確にする観点から以下の説明においては、まず、従来の潜熱蓄熱性物質スラリ製造装置の形態を図1乃至図4に基づいて説明し、それぞれの形態に対応する本発明の潜熱蓄熱性物質スラリ製造装置の形態を図5乃至図8に基づいて説明する。   From the viewpoint of clarifying the features of the present invention, in the following description, first, the form of a conventional latent heat storage material slurry manufacturing apparatus will be described based on FIGS. 1 to 4, and the present invention corresponding to each form. An embodiment of the latent heat storage material slurry manufacturing apparatus will be described with reference to FIGS.

<従来の潜熱蓄熱性物質スラリ製造技術についての説明>
図1乃至4は、それぞれ、従来の潜熱蓄熱性スラリ製造装置(a)乃至(d)の説明図である。
<Description of conventional latent heat storage material slurry manufacturing technology>
1 to 4 are explanatory views of conventional latent heat storage slurry production apparatuses (a) to (d), respectively.

<従来の潜熱蓄熱性スラリ製造装置(a)>
図1は原料溶液と冷熱媒体との熱交換を一つの熱交換器により行う潜熱蓄熱性スラリ製造装置(a)を示す図である。図1中、C1は、冷熱媒体を流通させるための冷熱媒体循環経路である。冷熱媒体循環経路C1は、冷凍機1、冷熱媒体循環ポンプ2及び熱交換器3を接続してなる環状の配管経路である。冷凍機1は冷却塔、ポンプ、熱交換器などを含んで構成され、原料溶液及び潜熱蓄熱性スラリを冷却するための冷熱媒体を生成する。C2は、蓄熱槽4に収容されている原料溶液又は潜熱蓄熱性物質の存在割合が相対的に低い潜熱蓄熱性スラリを熱交換器3に向かって流通させ、潜熱蓄熱性スラリを蓄熱槽4に向かって流通させるための製造側スラリ循環経路である。製造側スラリ循環経路C2は、熱交換器3、蓄熱槽4及び製造側循環ポンプ5を接続してなる環状の配管経路である。C3は、熱交換器3の出口側から入口側に原料溶液の一部をそこに含まれる前記潜熱蓄熱性物質とともに還流させるためのスラリ還流経路である。スラリ還流経路C3は、熱交換器3の出口側の節点N1及び入口側の節点N2との間を接続する還流用配管(第1の還流用配管)並びに製造側スラリ循環経路C2の一部を備えており、熱交換器3及びスラリ還流ポンプ6を接続してなる環状の配管経路である。
<Conventional Latent Heat Storage Slurry Manufacturing Device (a)>
FIG. 1 is a diagram showing a latent heat storage slurry production apparatus (a) that performs heat exchange between a raw material solution and a cooling medium using a single heat exchanger. In FIG. 1, C1 is a cooling medium circulation path for circulating the cooling medium. The cooling medium circulation path C <b> 1 is an annular piping path formed by connecting the refrigerator 1, the cooling medium circulation pump 2, and the heat exchanger 3. The refrigerator 1 includes a cooling tower, a pump, a heat exchanger, and the like, and generates a cooling medium for cooling the raw material solution and the latent heat storage slurry. C2 circulates the latent heat storage slurry having a relatively low ratio of the raw material solution or latent heat storage material contained in the heat storage tank 4 toward the heat exchanger 3, and the latent heat storage slurry is transferred to the heat storage tank 4. This is a manufacturing-side slurry circulation path for distribution toward the outside. The production-side slurry circulation path C2 is an annular piping path formed by connecting the heat exchanger 3, the heat storage tank 4, and the production-side circulation pump 5. C3 is a slurry recirculation path for recirculating a part of the raw material solution together with the latent heat storage material contained therein from the outlet side of the heat exchanger 3 to the inlet side. The slurry recirculation path C3 includes a recirculation pipe (first recirculation pipe) that connects the outlet-side node N1 and the inlet-side node N2 of the heat exchanger 3 and a part of the production-side slurry circulation path C2. It is an annular piping path that is provided and connects the heat exchanger 3 and the slurry reflux pump 6.

図1に示す潜熱蓄熱性スラリ製造装置(a)において、冷熱媒体は、冷熱媒体循環経路C1を辿るように、冷凍機1において冷却された後、冷熱媒体循環ポンプ2により冷凍機1から熱交換器3に向けて送出され、熱交換器3において熱交換により原料溶液を冷却した後、冷凍機1に戻される。   In the latent heat storage slurry production apparatus (a) shown in FIG. 1, the cooling medium is cooled in the refrigerator 1 so as to follow the cooling medium circulation path C <b> 1, and then heat is exchanged from the refrigerator 1 by the cooling medium circulation pump 2. The raw material solution is cooled by heat exchange in the heat exchanger 3 and then returned to the refrigerator 1.

蓄熱槽4に収容されている原料溶液は、製造側スラリ循環経路C2を辿るように、製造側循環ポンプ5により熱交換器3に送出され、そこで冷熱媒体との熱交換により冷却されることにより少なくとも一部が過冷却状態にある原料溶液となり、蓄熱槽4に再度収容される。蓄熱槽4に再度収容された原料溶液の過冷却状態は、収容先の蓄熱槽4の中で徐々に解除される。これにより、蓄熱槽4の中で潜熱蓄熱性物質の存在割合が高まり、原料溶液は潜熱蓄熱性スラリといえるものとなる。そして蓄熱槽4に収容されるに至った潜熱蓄熱性スラリは、原料溶液として製造側循環ポンプ5により再び又は循環的に製造側スラリ循環経路C2を辿るように送出され、蓄熱槽4に戻される。かくして蓄熱槽4に収容されている潜熱蓄熱性スラリにおける潜熱蓄熱性物質の存在割合は、熱利用に適した水準に至るまで徐々に高められてゆく。   The raw material solution stored in the heat storage tank 4 is sent to the heat exchanger 3 by the production-side circulation pump 5 so as to follow the production-side slurry circulation path C2, where it is cooled by heat exchange with the cold medium. At least a part of the raw material solution is in a supercooled state, and is stored again in the heat storage tank 4. The supercooled state of the raw material solution stored again in the heat storage tank 4 is gradually released in the heat storage tank 4 at the storage destination. Thereby, the abundance ratio of the latent heat storage material increases in the heat storage tank 4, and the raw material solution becomes a latent heat storage slurry. Then, the latent heat storage slurry that has been accommodated in the heat storage tank 4 is sent as a raw material solution by the manufacturing side circulation pump 5 again or cyclically so as to follow the manufacturing side slurry circulation path C2, and returned to the heat storage tank 4. . Thus, the ratio of the latent heat storage material in the latent heat storage slurry contained in the heat storage tank 4 is gradually increased to a level suitable for heat utilization.

このとき、少なくとも一部が過冷却状態にある原料溶液又は原料溶液として送出された潜熱蓄熱性スラリの一部は、スラリ還流経路C3に沿って、節点N1からスラリ還流ポンプ6により引き出され、節点N2を経由して熱交換器3に送出され、節点N1に戻される。少なくとも一部が過冷却状態にある原料溶液の一部がスラリ還流経路C3に沿って移動する場合には、その移動の過程で、その過冷却状態の一部又は全部が解除されるので、熱交換器3の入口側で流入する原料溶液により多くの生成核が供給される。その生成核の供給により、熱交換器3における冷却により原料溶液に生じる過冷却が解除され、延いては、周辺環境への潜熱蓄熱性物質の付着が抑制される。   At this time, at least a part of the raw solution or a part of the latent heat storage slurry sent as a raw material solution in the supercooled state is drawn from the node N1 by the slurry reflux pump 6 along the slurry reflux path C3. It is sent to the heat exchanger 3 via N2 and returned to the node N1. When a part of the raw material solution in which at least a part is in a supercooled state moves along the slurry reflux path C3, a part or all of the supercooled state is released in the course of the movement. Many production nuclei are supplied to the raw material solution flowing in at the inlet side of the exchanger 3. By supplying the generated nuclei, the supercooling generated in the raw material solution due to the cooling in the heat exchanger 3 is released, and thus the adhesion of the latent heat storage material to the surrounding environment is suppressed.

なお、C4は、蓄熱槽4に収容される潜熱蓄熱性スラリを熱負荷側の熱交換器7に流通させ、熱交換器7における熱交換を通じて潜熱蓄熱性物質が蓄えている潜熱相当(又は潜熱と顕熱の両方)の熱エネルギーが放出されることによりできる原料溶液を再び蓄熱槽4に流通させるための熱利用側スラリ循環経路であり、蓄熱槽4、熱利用側循環ポンプ8及び熱負荷側の熱交換器7を接続してなる環状の配管経路である。
熱利用側スラリ循環経路C4は、潜熱蓄熱性スラリ製造装置により製造された潜熱蓄熱性スラリの利用を可能にするためのものであり、厳密には潜熱蓄熱性スラリ製造装置の一部を構成するものとはいえない。しかし、熱交換器7において熱利用に供され、蓄熱槽4に送出される原料溶液は、再度又は循環的に潜熱蓄熱性スラリの製造に供されるので、潜熱蓄熱性スラリの製造と密接な関係があるものといって差支えない。この意味から、潜熱蓄熱性スラリ製造装置の動作・役割等の理解の便のため、図1にあえて熱利用側スラリ循環経路C4を描いている(利用側スラリ循環経路C4をあえて描いている点は、他図に示す潜熱蓄熱性スラリ製造装置についても同様である)。
また、熱負荷側の熱交換器7は、熱利用側の熱交換器(例えば、室内空調機の熱交換器であって潜熱蓄熱性スラリと室内空気との熱交換を行うもの)であってもよいし、熱利用側の熱交換器に熱エネルギーを供給する熱媒体と、潜熱蓄熱性スラリとの熱交換を行うための熱交換器(中間的な熱交換器)であってもよい。「熱負荷側」とはあくまでも、方向(熱交換器3よりも紙面右側)を意味するに止まる。この点、他図に示す潜熱蓄熱性スラリ製造装置についても同様である。
In addition, C4 distribute | circulates the latent heat thermal storage slurry accommodated in the thermal storage tank 4 to the heat exchanger 7 by the side of a heat load, and is equivalent to the latent heat (or latent heat which the latent heat storage material has stored through the heat exchange in the heat exchanger 7). A heat utilization side slurry circulation path for allowing the raw material solution produced by the release of thermal energy (both sensible heat and sensible heat) to flow again to the heat storage tank 4, and the heat storage tank 4, the heat utilization side circulation pump 8 and the heat load It is an annular piping path formed by connecting the side heat exchanger 7.
The heat utilization-side slurry circulation path C4 is for enabling utilization of the latent heat storage slurry produced by the latent heat storage slurry manufacturing apparatus, and strictly constitutes a part of the latent heat storage slurry manufacturing apparatus. Not a thing. However, since the raw material solution that is used for heat in the heat exchanger 7 and is sent to the heat storage tank 4 is again or cyclically used for the production of the latent heat storage slurry, it is closely related to the production of the latent heat storage slurry. It can be said that there is a relationship. In this sense, the heat utilization side slurry circulation path C4 is drawn in FIG. 1 for the convenience of understanding the operation and role of the latent heat storage slurry production apparatus (the use side slurry circulation path C4 is intentionally drawn) The same applies to the latent heat storage slurry production apparatus shown in the other figures).
The heat exchanger 7 on the heat load side is a heat exchanger on the heat utilization side (for example, a heat exchanger for an indoor air conditioner that exchanges heat between the latent heat storage slurry and room air). Alternatively, it may be a heat exchanger (intermediate heat exchanger) for performing heat exchange between a heat medium that supplies heat energy to the heat exchanger on the heat utilization side and the latent heat storage slurry. “Thermal load side” merely means the direction (the right side of the drawing with respect to the heat exchanger 3). This point also applies to the latent heat storage slurry manufacturing apparatus shown in other drawings.

また、図1に示す潜熱蓄熱性スラリ製造装置は、製造側スラリ循環経路C2と熱利用側スラリ循環経路C4との間に蓄熱槽4を備えているが、原理的には蓄熱槽4は必ずしも備える必要はなく、熱交換器3において冷却された原料溶液を、その冷却により生成された潜熱蓄熱性物質とともに熱負荷側の熱交換器7に直接送出させ、熱交換器7における熱交換を通じて潜熱蓄熱性物質が蓄えている潜熱相当(又は潜熱と顕熱の両方)の熱エネルギーが放出されることによりできる原料溶液を再び又は循環的に熱交換器3に流通させてもよい。この場合、製造側スラリ循環経路C2と熱利用側スラリ循環経路C4の二つの環状の配管経路は別々には存在し得ず、少なくとも熱交換器3、節点N1、熱負荷側の熱交換器7、製造側スラリ循環ポンプ5、節点N2を接続して構成される環状の配管経路が一つだけ存在することになる。
原理的には蓄熱槽4を必ずしも備える必要がなく、熱交換器3において冷却された原料溶液を、その冷却により生成された潜熱蓄熱性物質とともに熱負荷側の熱交換器7に直接送出させてもよい点は、他図に示す潜熱蓄熱性スラリ製造装置についても同様である。
The latent heat storage slurry production apparatus shown in FIG. 1 includes a heat storage tank 4 between the production-side slurry circulation path C2 and the heat-use side slurry circulation path C4. The raw material solution cooled in the heat exchanger 3 is directly sent to the heat exchanger 7 on the heat load side together with the latent heat storage material generated by the cooling, and the latent heat is exchanged through the heat exchange in the heat exchanger 7. A raw material solution generated by releasing thermal energy equivalent to latent heat (or both latent heat and sensible heat) stored in the heat storage material may be recirculated or circulated through the heat exchanger 3. In this case, the two annular piping paths of the production-side slurry circulation path C2 and the heat utilization-side slurry circulation path C4 cannot exist separately, and at least the heat exchanger 3, the node N1, the heat exchanger 7 on the heat load side. Thus, there is only one annular piping path formed by connecting the production-side slurry circulation pump 5 and the node N2.
In principle, the heat storage tank 4 is not necessarily provided, and the raw material solution cooled in the heat exchanger 3 is directly sent to the heat exchanger 7 on the heat load side together with the latent heat storage material generated by the cooling. The same applies to the latent heat storage slurry production apparatus shown in the other figures.

<従来の潜熱蓄熱性スラリ製造装置(b)>
図2は原料溶液と冷熱媒体との熱交換を直列に配設した二つの熱交換器により行う潜熱蓄熱性スラリ製造装置(b)を示す図である。図2中、冷熱媒体循環経路C1は、冷熱媒体を第2の熱交換器32及び第1の熱交換器31の順に流通させるための環状の配管経路であり、冷凍機1、冷熱媒体循環ポンプ2、第2の熱交換器32及び第1の熱交換器31を接続してなるものである。製造側スラリ循環経路C2は、蓄熱槽4から原料溶液(又は潜熱蓄熱性物質の存在割合が相対的に低い潜熱蓄熱性スラリ)を第1の熱交換器31及び第2の熱交換器32の順に流通させ、潜熱蓄熱性スラリを蓄熱槽4に向かって流通させるための環状の配管経路であり、第1の熱交換器31、第2の熱交換器32、蓄熱槽4及び製造側循環ポンプ5を接続してなるものである。スラリ還流経路C3は、第2の熱交換器32の出口側から入口側に原料溶液(又は潜熱蓄熱性スラリ)の一部をそこに含まれる潜熱蓄熱性物質とともに還流させるための環状の配管経路であり、第2の熱交換器32の出口側にある節点N1と第1の熱交換器31の出口側であって第2の熱交換器32の入口側にある節点N2との間を接続する環流用配管(第1の環流用配管)並びに製造側スラリ循環経路C2の一部を備えてなるものである。
熱利用側スラリ循環経路C4は、図1に示すものと基本的に同じであるので、それについての説明は省略する。
<Conventional Latent Heat Storage Slurry Manufacturing Device (b)>
FIG. 2 is a diagram showing a latent heat storage slurry manufacturing apparatus (b) that performs heat exchange between a raw material solution and a cooling medium using two heat exchangers arranged in series. In FIG. 2, the cooling medium circulation path C1 is an annular piping path for circulating the cooling medium in the order of the second heat exchanger 32 and the first heat exchanger 31, and includes the refrigerator 1, the cooling medium circulation pump. 2, the 2nd heat exchanger 32 and the 1st heat exchanger 31 are connected. The production-side slurry circulation path C <b> 2 transfers the raw material solution (or the latent heat storage slurry having a relatively low presence ratio of the latent heat storage material) from the heat storage tank 4 to the first heat exchanger 31 and the second heat exchanger 32. It is a cyclic | annular piping path | route for distribute | circulating in order and distribute | circulating a latent-heat thermal storage slurry toward the thermal storage tank 4, 1st heat exchanger 31, 2nd heat exchanger 32, thermal storage tank 4, and manufacturing side circulation pump 5 is connected. The slurry recirculation path C3 is an annular piping path for recirculating a part of the raw material solution (or latent heat storage slurry) together with the latent heat storage material contained therein from the outlet side of the second heat exchanger 32 to the inlet side. Between the node N1 on the outlet side of the second heat exchanger 32 and the node N2 on the outlet side of the first heat exchanger 31 and on the inlet side of the second heat exchanger 32 And a part of the manufacturing side slurry circulation path C2.
The heat utilization side slurry circulation path C4 is basically the same as that shown in FIG.

図2に示す潜熱蓄熱性物質スラリ製造装置(b)において、冷熱媒体は、冷熱媒体循環経路C1を辿るように、冷凍機1において冷却された後、冷熱媒体循環ポンプ2により冷凍機1から第2の熱交換器32に向けて、更に第2の熱交換器32から第1の熱交換器31に向けて送出され、それぞれの熱交換器において原料溶液(又は潜熱蓄熱性スラリ)との熱交換が行われた後、冷凍機1に戻される。   In the latent heat storage material slurry manufacturing apparatus (b) shown in FIG. 2, the cooling medium is cooled in the refrigerator 1 so as to follow the cooling medium circulation path C <b> 1, and then cooled from the refrigerator 1 by the cooling medium circulation pump 2. 2 toward the second heat exchanger 32 and further sent from the second heat exchanger 32 toward the first heat exchanger 31, and heat with the raw material solution (or latent heat storage slurry) in each heat exchanger. After the replacement, it is returned to the refrigerator 1.

蓄熱槽4に収容されている原料溶液は、製造側スラリ循環経路C2を辿るように、製造側循環ポンプ5により第1の熱交換器31及び第2の熱交換器32に送出され、第1の熱交換器31において顕熱相当の熱エネルギーが除かれ、原料溶液はある程度まで過冷却される。スラリ還流経路C3に沿って節点N2に潜熱蓄熱性物質を含んだ原料溶液が供給されることに起因して、より詳しくは節点N2に合流する原料溶液に含まれる潜熱蓄熱性物質が別の潜熱蓄熱性物質の生成核となり、原料溶液の過冷却の少なくとも一部は解除される。その過冷却解除により、原料溶液中に少量の潜熱蓄熱性物質が生成される。引き続き、少なくとも一部の過冷却が解除された原料溶液は、第2の熱交換器32において冷却され潜熱相当の熱エネルギーが除かれ、より多くの潜熱蓄熱性物質を生成させ、全体として潜熱蓄熱性物質の存在割合がより高まった潜熱蓄熱性スラリとなり、蓄熱槽4に送出される。蓄熱槽4に収容されるに至った潜熱蓄熱性スラリは、原料溶液として製造側循環ポンプ5により再び又は循環的に製造側スラリ循環経路C2を辿るように送出され、蓄熱槽4に戻される。かくして蓄熱槽4に収容されている潜熱蓄熱性スラリにおける潜熱蓄熱性物質の存在割合は、熱利用に適した水準に至るまで徐々に高められてゆく。   The raw material solution accommodated in the heat storage tank 4 is sent to the first heat exchanger 31 and the second heat exchanger 32 by the production-side circulation pump 5 so as to follow the production-side slurry circulation path C2, and the first In the heat exchanger 31, the heat energy corresponding to sensible heat is removed, and the raw material solution is supercooled to a certain extent. More specifically, since the raw material solution containing the latent heat storage material is supplied to the node N2 along the slurry reflux path C3, the latent heat storage material contained in the raw material solution that merges with the node N2 has another latent heat. It becomes a production nucleus of the heat storage material, and at least a part of the supercooling of the raw material solution is released. By releasing the supercooling, a small amount of latent heat storage material is generated in the raw material solution. Subsequently, the raw material solution from which at least a part of the supercooling has been released is cooled in the second heat exchanger 32 to remove the heat energy corresponding to the latent heat, thereby generating more latent heat storage material, and the latent heat storage as a whole. It becomes a latent heat storage slurry with a higher content of the active substance and is sent to the heat storage tank 4. The latent heat storage slurry that has been accommodated in the heat storage tank 4 is sent as a raw material solution by the manufacturing side circulation pump 5 again or cyclically so as to follow the manufacturing side slurry circulation path C2, and returned to the heat storage tank 4. Thus, the ratio of the latent heat storage material in the latent heat storage slurry contained in the heat storage tank 4 is gradually increased to a level suitable for heat utilization.

このとき、潜熱蓄熱性スラリとなった原料溶液の一部は、スラリ還流経路C3に沿って、節点N1からスラリ還流ポンプ6により引き出され、節点N2を経由して第2の熱交換器32に送出され、節点N1に戻される。すると、第2の熱交換器32の入口側に生成核が供給されるので、第2の熱交換器32における冷却により原料溶液に生じる過冷却が解除され、延いては、周辺環境への潜熱蓄熱性物質の付着が抑制される。   At this time, a part of the raw material solution that has become the latent heat storage slurry is withdrawn by the slurry reflux pump 6 from the node N1 along the slurry reflux path C3, and is transferred to the second heat exchanger 32 via the node N2. Sent out and returned to node N1. Then, since the generated nuclei are supplied to the inlet side of the second heat exchanger 32, the supercooling generated in the raw material solution due to the cooling in the second heat exchanger 32 is released, and as a result, the latent heat to the surrounding environment is released. Adhesion of heat storage material is suppressed.

<従来の潜熱蓄熱性スラリ製造装置(c)>
図3は原料溶液と冷熱媒体との熱交換を二つの熱交換器により行い、冷熱媒体を並列に流通させ原料溶液を直列に流通させる潜熱蓄熱性スラリ製造装置(c)を示す図である。図3に示す潜熱蓄熱性物質スラリ製造装置(c)の構成は、冷熱媒体循環経路C1を除き、図2に示す潜熱蓄熱性スラリ製造装置(b)のそれと基本的に同じである。図2に示す潜熱蓄熱性スラリ製造装置(b)の冷熱媒体循環経路C1は二つの熱交換器へ冷熱媒体を直列に流送するのに対して、図3に示す潜熱蓄熱性物質スラリ製造装置(c)の冷熱媒体循環経路C1は二つの熱交換器へ冷熱媒体を並列に流送する。
図3中、冷熱媒体循環経路C1は、冷凍機1を通過した冷熱媒体を冷熱媒体循環ポンプ2から送出させ、冷熱媒体を節点N3で分岐させ、その一部及び残部をそれぞれ第1の熱交換器31及び第2の熱交換器32に向かって並列に流通させる配管経路と、第1の熱交換器31及び第2の熱交換器32をそれぞれ通過した冷熱媒体を節点N4で合流させた後、冷凍機1に向かって流通させる配管経路とから構成される。
<Conventional latent heat storage slurry production device (c)>
FIG. 3 is a diagram showing a latent heat storage slurry manufacturing apparatus (c) that performs heat exchange between the raw material solution and the cold medium using two heat exchangers, and distributes the cold medium in parallel and the raw material solution in series. The configuration of the latent heat storage material slurry production apparatus (c) shown in FIG. 3 is basically the same as that of the latent heat storage material slurry production apparatus (b) shown in FIG. 2 except for the cooling medium circulation path C1. The cooling medium circulation path C1 of the latent heat storage slurry manufacturing apparatus (b) shown in FIG. 2 sends the cooling medium in series to two heat exchangers, whereas the latent heat storage material slurry manufacturing apparatus shown in FIG. The cooling medium circulation path C1 in (c) feeds the cooling medium in parallel to the two heat exchangers.
In FIG. 3, the cooling medium circulation path C1 feeds the cooling medium that has passed through the refrigerator 1 from the cooling medium circulation pump 2, branches the cooling medium at a node N3, and a part of the cooling medium and the remaining part are subjected to the first heat exchange. After joining the pipe path which flows in parallel toward the heat exchanger 31 and the second heat exchanger 32 and the cooling medium passing through the first heat exchanger 31 and the second heat exchanger 32 respectively at the node N4 And a piping path that circulates toward the refrigerator 1.

図3に示す潜熱蓄熱性スラリ製造装置(c)において、冷熱媒体は、冷熱媒体循環経路C1を辿るように、冷凍機1において冷却された後、冷熱媒体循環ポンプ2により冷凍機1から第2の熱交換器32及び第1の熱交換器31に向けて並列的に送出され、それぞれの熱交換器における冷熱媒体との熱交換により原料溶液を冷却した後、冷凍機1に戻される。   In the latent heat storage slurry production apparatus (c) shown in FIG. 3, after the cooling medium is cooled in the refrigerator 1 so as to follow the cooling medium circulation path C <b> 1, the cooling medium circulation pump 2 removes the second cooling medium from the refrigerator 1. The heat exchanger 32 and the first heat exchanger 31 are sent in parallel, and the raw material solution is cooled by heat exchange with the cooling medium in each heat exchanger, and then returned to the refrigerator 1.

原料溶液は、製造側スラリ循環経路C2を辿るように、製造側循環ポンプ5により第1の熱交換器31及び第2の熱交換器32の順に流通され、第1の熱交換器31において顕熱相当の熱エネルギーが除かれ、ある程度まで過冷却される。原料溶液の過冷却は、スラリ還流経路C3に沿って節点N2に潜熱蓄熱性物質を含んだ原料溶液が供給されることに起因して解除される。引き続き、少なくとも一部の過冷却が解除された原料溶液は、第2の熱交換器32において冷却され、より多くの潜熱蓄熱性物質を生成させ、全体として潜熱蓄熱性物質の存在割合がより高まった潜熱蓄熱性スラリとなり、蓄熱槽4に送出される。蓄熱槽4に収容されるに至った潜熱蓄熱性スラリは、原料溶液として製造側循環ポンプ5により再び又は循環的に製造側スラリ循環経路C2を辿るように送出され、蓄熱槽4に戻される。かくして蓄熱槽4に収容されている潜熱蓄熱性スラリにおける潜熱蓄熱性物質の存在割合は、熱利用に適した水準に至るまで徐々に高められてゆく。   The raw material solution is circulated in the order of the first heat exchanger 31 and the second heat exchanger 32 by the production-side circulation pump 5 so as to follow the production-side slurry circulation path C <b> 2, and is manifested in the first heat exchanger 31. Heat energy equivalent to heat is removed, and it is supercooled to some extent. The supercooling of the raw material solution is canceled due to the supply of the raw material solution containing the latent heat storage material to the node N2 along the slurry reflux path C3. Subsequently, at least a part of the raw material solution whose supercooling has been released is cooled in the second heat exchanger 32 to generate more latent heat storage material, and as a whole, the proportion of the latent heat storage material increases. The resulting latent heat storage slurry is sent to the heat storage tank 4. The latent heat storage slurry that has been accommodated in the heat storage tank 4 is sent as a raw material solution by the manufacturing side circulation pump 5 again or cyclically so as to follow the manufacturing side slurry circulation path C2, and returned to the heat storage tank 4. Thus, the ratio of the latent heat storage material in the latent heat storage slurry contained in the heat storage tank 4 is gradually increased to a level suitable for heat utilization.

このとき、潜熱蓄熱性スラリとなった原料溶液の一部は、スラリ還流経路C3に沿って、節点N1からスラリ還流ポンプ6により引き出され、節点N2を経由して第2の熱交換器32に送出され、節点N1に戻される。すると、第2の熱交換器32の入口側に生成核が供給されるので、第2の熱交換器32における冷却により原料溶液に生じる過冷却が解除され、延いては、周辺環境への潜熱蓄熱性物質の付着が抑制される。   At this time, a part of the raw material solution that has become the latent heat storage slurry is withdrawn by the slurry reflux pump 6 from the node N1 along the slurry reflux path C3, and is transferred to the second heat exchanger 32 via the node N2. Sent out and returned to node N1. Then, since the generated nuclei are supplied to the inlet side of the second heat exchanger 32, the supercooling generated in the raw material solution due to the cooling in the second heat exchanger 32 is released, and as a result, the latent heat to the surrounding environment is released. Adhesion of heat storage material is suppressed.

<従来の潜熱蓄熱性スラリ製造装置(d)>
図4は、図2に示す潜熱蓄熱性物質スラリ製造装置(b)における第2の熱交換器32が二つ並列に配設された潜熱蓄熱性スラリ製造装置を示す図(d)である。図4に示す潜熱蓄熱性スラリ製造装置(d)は、潜熱蓄熱性物質及び潜熱蓄熱性スラリがそれぞれ包接水和物及び水和物スラリである点を除き、特許文献4(特許第3972734号)に記載されている潜熱蓄熱性物質スラリ製造装置と同じである。
図4中、第2の熱交換器32は複数台あり、一つの第2の熱交換器から残りのいずれかの第2の熱交換器への原料溶液や冷熱媒体の流送の切替えが自在になるように構成されている。それにより、原料溶液の流れの上流側にある第1の熱交換器31に直列に接続される第2の熱交換器32が複数台の中から選択的に切り替えられる。以下においては、便宜的に、第2の熱交換器32が2台である場合について説明する。
<Conventional latent heat storage slurry production apparatus (d)>
FIG. 4 is a diagram (d) illustrating the latent heat storage slurry production apparatus in which two second heat exchangers 32 are arranged in parallel in the latent heat storage material slurry production apparatus (b) shown in FIG. 2. The latent heat storage slurry production apparatus (d) shown in FIG. 4 is patent document 4 (Patent No. 3972734) except that the latent heat storage material and the latent heat storage slurry are clathrate hydrate and hydrate slurry, respectively. is the same as the latent heat storage material slurry manufacturing apparatus described in).
In FIG. 4, there are a plurality of second heat exchangers 32, and the flow of the raw material solution and the cooling medium from one second heat exchanger to any one of the remaining second heat exchangers can be freely switched. It is configured to be. Thereby, the second heat exchanger 32 connected in series to the first heat exchanger 31 on the upstream side of the flow of the raw material solution is selectively switched from a plurality of units. Below, the case where the 2nd heat exchanger 32 is two is demonstrated for convenience.

C6は、第1の熱交換器31との接続が断たれているいずれかの第2の熱交換器に温水を供給するための温水循環経路である。温水循環経路C6は、温水タンク10、温水循環ポンプ11、当該いずれかの第2の熱交換器32を接続してなる環状の配管経路である。T1乃至T4は原料溶液や冷熱媒体の温度を計測するための温度センサである。図4においては一つの第2の熱交換器321に配設したもののみ図示しているが、他の第2の熱交換器にも同様に配設しており、ただ、その図示を省略している。   C6 is a hot water circulation path for supplying hot water to any of the second heat exchangers that are disconnected from the first heat exchanger 31. The hot water circulation path C6 is an annular piping path formed by connecting the hot water tank 10, the hot water circulation pump 11, and any one of the second heat exchangers 32. T1 to T4 are temperature sensors for measuring the temperature of the raw material solution and the cooling medium. FIG. 4 shows only one second heat exchanger 321 arranged, but the other second heat exchangers are also arranged in the same manner, but the illustration is omitted. ing.

まず、図4に示す潜熱蓄熱性スラリ製造装置(d)の潜熱蓄熱性スラリの製造原理は、図2に示す各潜熱蓄熱性スラリ製造装置(b)のそれと同じである。即ち、潜熱蓄熱性スラリ製造装置(d)は、原料溶液の流れに沿って順に直列に接続される第1の熱交換器31及び一つの第2の熱交換器(仮に321としておく)と、第2の熱交換器321の出口側の節点N1と入口側の節点N2とを接続する還流用配管(第1の還流用配管)を備えたスラリ還流経路C3とを備えている。
これにより、蓄熱槽4に収容されている原料溶液は、製造側循環ポンプ5により第1の熱交換器31に送出され、そこで顕熱相当の熱エネルギーが除かれ、ある程度まで過冷却される。そして、節点N2に潜熱蓄熱性物質を含んだ原料溶液が供給されることに起因して、より詳しくは節点N2に合流する原料溶液に含まれる潜熱蓄熱性物質が別の潜熱蓄熱性物質の生成核となり、原料溶液の過冷却の少なくとも一部が解除される。その過冷却解除により、原料溶液中に少量の潜熱蓄熱性物質が生成される。引き続き、少なくとも一部の過冷却が解除された原料溶液は、第2の熱交換器321において冷却され、より多くの潜熱蓄熱性物質を生成させ、全体として潜熱蓄熱性物質の存在割合がより高まった潜熱蓄熱性スラリとなり、蓄熱槽4に送出される。蓄熱槽4に収容されるに至った潜熱蓄熱性スラリは原料溶液として再び又は循環的に、製造側循環ポンプ5により第1の熱交換器31に向けて送出され、上記と同様の工程を経て蓄熱槽4に戻される。かくして蓄熱槽4に収容されている潜熱蓄熱性スラリにおける潜熱蓄熱性物質の存在割合は、熱利用に適した水準に至るまで徐々に高められてゆく。
First, the production principle of the latent heat storage slurry production apparatus (d) shown in FIG. 4 is the same as that of each latent heat storage slurry production apparatus (b) shown in FIG. That is, the latent heat storage slurry production apparatus (d) includes a first heat exchanger 31 and one second heat exchanger (temporarily set as 321) connected in series in order along the flow of the raw material solution, A slurry recirculation path C3 including a recirculation pipe (first recirculation pipe) that connects the outlet-side node N1 and the inlet-side node N2 of the second heat exchanger 321 is provided.
Thereby, the raw material solution accommodated in the heat storage tank 4 is sent to the first heat exchanger 31 by the production-side circulation pump 5, where the heat energy corresponding to sensible heat is removed and supercooled to some extent. In addition, since the raw material solution containing the latent heat storage material is supplied to the node N2, more specifically, the latent heat storage material contained in the raw material solution that merges with the node N2 generates another latent heat storage material. It becomes a nucleus and at least a part of the supercooling of the raw material solution is released. By releasing the supercooling, a small amount of latent heat storage material is generated in the raw material solution. Subsequently, at least a part of the raw material solution whose supercooling is released is cooled in the second heat exchanger 321 to generate more latent heat storage material, and as a whole, the proportion of the latent heat storage material increases. The resulting latent heat storage slurry is sent to the heat storage tank 4. The latent heat storage slurry that has been accommodated in the heat storage tank 4 is sent to the first heat exchanger 31 by the production side circulation pump 5 again or as a raw material solution, and undergoes the same steps as described above. It is returned to the heat storage tank 4. Thus, the ratio of the latent heat storage material in the latent heat storage slurry contained in the heat storage tank 4 is gradually increased to a level suitable for heat utilization.

このとき、潜熱蓄熱性スラリとなった原料溶液の一部が、スラリ還流経路C3に沿って、節点N1からスラリ還流ポンプ6により引き出され、節点N2を経由して第2の熱交換器321に送出され、節点N1に戻される。すると、第2の熱交換器321の入口側に生成核が供給されるので、第2の熱交換器321における冷却により原料溶液に生じる過冷却が解除され、延いては、周辺環境への潜熱蓄熱性物質の付着が抑制される。   At this time, a part of the raw material solution that has become the latent heat storage slurry is withdrawn by the slurry reflux pump 6 from the node N1 along the slurry reflux path C3, and is transferred to the second heat exchanger 321 via the node N2. Sent out and returned to node N1. Then, since the generated nuclei are supplied to the inlet side of the second heat exchanger 321, the supercooling generated in the raw material solution due to the cooling in the second heat exchanger 321 is released, and consequently the latent heat to the surrounding environment Adhesion of heat storage material is suppressed.

次に、第2の熱交換器32が2台あることに対応して、冷熱媒体循環経路C1については、冷凍機1、冷熱媒体循環ポンプ2、第2の熱交換器321、第1の熱交換器31が環状に接続されたもの(冷熱媒体循環経路C11)と、冷凍機1、冷熱媒体循環ポンプ2、第2の熱交換器322、第1の熱交換器31が環状に接続されたもの(冷熱媒体循環経路C12)の二つ、製造側スラリ循環経路C2については、蓄熱槽4、製造側循環ポンプ5、第1の熱交換器31、第2の熱交換器321が環状に接続されたもの(製造側スラリ循環経路C21)と、蓄熱槽4、製造側循環ポンプ5、第1の熱交換器31、第2の熱交換器322が環状に接続されたもの(製造側スラリ循環経路C22)の二つ、スラリ還流経路C3については、スラリ還流ポンプ6及び第2の熱交換器321が環状に接続されたもの(スラリ還流経路C31)と、スラリ還流ポンプ6及び第2の熱交換器322が環状に接続されたもの(スラリ還流経路C32)の二つ、温水循環経路C6については、温水タンク10、温水循環ポンプ11、第2の熱交換器321が環状に接続されたもの(温水循環経路C61)と、温水タンク10及び温水循環ポンプ11及び第2の熱交換器322が環状に接続されたもの(温水循環経路C62)の二つがそれぞれ設定されるところ、原料溶液を冷却する第2の熱交換器が選択的に切り替えられるために、対応する又は関係する冷熱媒体循環経路C11、C12、製造側スラリ循環経路C21、C22、製造側スラリ還流経路C31、C32及び温水循環経路C61、C62もそれぞれ選択的に切り替えられる。   Next, in correspondence with the two second heat exchangers 32, the cooling medium circulation path C1, the refrigerator 1, the cooling medium circulation pump 2, the second heat exchanger 321, and the first heat The one in which the exchanger 31 is annularly connected (cooling medium circulation path C11), and the refrigerator 1, the cooling medium circulation pump 2, the second heat exchanger 322, and the first heat exchanger 31 are annularly connected. As for two things (cooling medium circulation path C12) and the production-side slurry circulation path C2, the heat storage tank 4, the production-side circulation pump 5, the first heat exchanger 31, and the second heat exchanger 321 are connected in a ring shape. The product (manufacturing-side slurry circulation path C21), the heat storage tank 4, the production-side circulation pump 5, the first heat exchanger 31, and the second heat exchanger 322 are connected in an annular shape (manufacturing-side slurry circulation) For the two routes C22) and the slurry reflux route C3, the slurry reflux In which the pump 6 and the second heat exchanger 321 are annularly connected (slurry reflux path C31), and in which the slurry reflux pump 6 and the second heat exchanger 322 are annularly connected (slurry reflux path C32) As for the hot water circulation path C6, the hot water tank 10, the hot water circulation pump 11, and the second heat exchanger 321 connected in a ring shape (the warm water circulation path C61), the hot water tank 10 and the hot water circulation pump 11 are used. And the second heat exchanger 322 connected in an annular shape (warm water circulation path C62) are respectively set, so that the second heat exchanger for cooling the raw material solution is selectively switched. Corresponding or related cooling medium circulation paths C11 and C12, production-side slurry circulation paths C21 and C22, production-side slurry circulation paths C31 and C32, and hot water circulation paths C61 and C62 Respectively selectively switched.

即ち、まず、第2の熱交換器321により原料溶液の冷却が行われている場合には、冷熱媒体循環経路C11に沿って冷熱媒体が第2の熱交換器321と第1の熱交換器31に供給され、製造側スラリ循環経路C21に沿って原料溶液(又は潜熱蓄熱性スラリ)が第1の熱交換器31と第2の熱交換器321に供給され、スラリ還流経路C31に沿って節点N1から原料溶液(又は潜熱蓄熱性スラリ)の一部が、そこに含まれる潜熱蓄熱性物質とともに節点N2に還流される。このとき、原料溶液を冷却していない他方の第2の熱交換器322には、温水循環経路C62に沿って温水が供給され、当該他方の第2の熱交換器322の伝熱面又はその近くの周辺環境に付着している潜熱蓄熱性物質が融解除去される。
その後、第2の熱交換器321の伝熱面又はその近くの周辺環境への潜熱蓄熱性物質の付着量が許容水準を超えたとき又は一定時間が経過したときに、原料溶液の冷却を行う第2の熱交換器32が第2の熱交換器322に切り替えられる。それと同時に、冷熱媒体循環経路C11から同C12に、製造側スラリ循環経路C21から同C22に、スラリ還流経路C31から同C32に、温水循環経路C62から同C61に、それぞれ切り替えられる。以後、原料溶液を冷却する第2の熱交換器321、322の選択的切替えに対応又は関係する、冷熱媒体循環経路C11、C12、製造側スラリ循環経路C21、C22、製造側スラリ還流経路C31、C32及び温水循環経路C61、C62それぞれの選択的切替えが繰り返される。
That is, first, when the raw material solution is cooled by the second heat exchanger 321, the cooling medium moves along the cooling medium circulation path C <b> 11 between the second heat exchanger 321 and the first heat exchanger. 31 and the raw material solution (or latent heat storage slurry) is supplied to the first heat exchanger 31 and the second heat exchanger 321 along the production-side slurry circulation path C21, and along the slurry reflux path C31. A part of the raw material solution (or latent heat storage slurry) is recirculated from the node N1 to the node N2 together with the latent heat storage material contained therein. At this time, the hot water is supplied along the hot water circulation path C62 to the other second heat exchanger 322 that has not cooled the raw material solution, and the heat transfer surface of the other second heat exchanger 322 or its latent heat storage material adhering to the vicinity of the surrounding environment is melted removed.
Thereafter, the raw material solution is cooled when the amount of the latent heat storage material adhering to the heat transfer surface of the second heat exchanger 321 or its surrounding environment exceeds an allowable level or when a certain time has passed. The second heat exchanger 32 is switched to the second heat exchanger 322. At the same time, the cooling medium circulation path C11 is switched to C12, the production-side slurry circulation path C21 to C22, the slurry recirculation path C31 to C32, and the hot water circulation path C62 to C61. Thereafter, the cooling medium circulation paths C11 and C12, the production-side slurry circulation paths C21 and C22, the production-side slurry reflux path C31, which correspond to or relate to the selective switching of the second heat exchangers 321 and 322 for cooling the raw material solution, C32 and hot water circulation path C61, C62 are each selectively switching is repeated.

以上の切替えは、バルブVs1、Vs2、Vc1〜Vc4及びVw1〜Vw4の開閉の操作により、運転モード1と運転モード2との間の切替えの形で実現される。それぞれの運転モードにおける選択される経路とバルブの開閉との対応関係をまとめたものが表1である。表1中の記号・表記の意味は以下のとおりである。   The above switching is realized in the form of switching between the operation mode 1 and the operation mode 2 by opening and closing the valves Vs1, Vs2, Vc1 to Vc4, and Vw1 to Vw4. Table 1 summarizes the correspondence between the selected path and the opening / closing of the valve in each operation mode. The meanings of symbols and notations in Table 1 are as follows.

運転モード1: 熱交換器321において原料溶液を冷却し、熱交換器322において付着物を除去するための運転モード。
運転モード2: 熱交換器322において原料溶液を冷却し、熱交換器321において付着物を除去するための運転モード。
Vs1、Vs2:製造側スラリ循環経路に配設されたバルブ(記号に付した数字の順に図中上から配置)
Vc1〜Vc4:冷熱媒体循環経路に配設されたバルブ(記号に付した数字の順に図中上から配置)
Vw1〜Vw4:温水循環経路に配設されたバルブ(記号に付した数字の順に図中上から配置)
開: バルブ開 閉: バルブ閉
Operation mode 1: An operation mode for cooling the raw material solution in the heat exchanger 321 and removing deposits in the heat exchanger 322.
Operation mode 2: An operation mode for cooling the raw material solution in the heat exchanger 322 and removing deposits in the heat exchanger 321.
Vs1, Vs2: Valves disposed in the manufacturing-side slurry circulation path (arranged from the top in the figure in the order of the numbers attached to the symbols)
Vc1 to Vc4: Valves arranged in the cooling medium circulation path (arranged from the top in the figure in the order of the numbers attached to the symbols)
Vw1 to Vw4: Valves arranged in the hot water circulation path (arranged from the top in the figure in the order of the numbers attached to the symbols)
Open: Valve open Close: Valve closed

Figure 2011064419
Figure 2011064419

図4に示す潜熱蓄熱性スラリ製造装置(d)では、原料溶液を冷却していた一方の第2の熱交換器321(又は322)の伝熱面に許容水準を超えた潜熱蓄熱性物質が付着したとき又は一定時間経過したときに、原料溶液の冷却が、潜熱蓄熱性物質が付着していない又は取り除かれた他方の第2の熱交換器322(又は321)に切り替えられる。そして、原料溶液の冷却が当該他方の第2の熱交換器322(又は321)により引き続き行われるとともに、温水循環経路C6を通じて冷熱媒体の代わりに供給される温水の熱エネルギーにより、当該一方の第2の熱交換器321(又は322)の伝熱面やその近くの周辺環境に付着している潜熱蓄熱性物質が融解されて取り除かれる。その故、図1乃至図3に示す潜熱蓄熱性スラリ製造装置(a)乃至(c)と比べて、長時間にわたり安定に又は連続して潜熱蓄熱性スラリを製造することが可能になる。
尤も、原料溶液を冷却していた一方の第2の熱交換器321(又は322)の伝熱面やその近くの周辺環境に許容水準を超えた潜熱蓄熱性物質が付着したとき又は一定時間経過したときに、原料溶液の冷却を潜熱蓄熱性物質が付着していない又は取り除かれた他方の第2の熱交換器322(又は321)に切り替える操作の頻度が高くなると、付着した潜熱蓄熱性物質を融解除去するために必要な温水の供給頻度や供給量が増加するので、潜熱蓄熱性スラリの製造に要する熱エネルギーの利用効率が存外に低下するという問題が残る。
In the latent heat storage slurry production apparatus (d) shown in FIG. 4, the latent heat storage material exceeding the allowable level is present on the heat transfer surface of one second heat exchanger 321 (or 322) that has cooled the raw material solution. When adhering or when a certain period of time has elapsed, the cooling of the raw material solution is switched to the other second heat exchanger 322 (or 321) to which the latent heat storage material is not adhering or removed. Then, the raw material solution is continuously cooled by the other second heat exchanger 322 (or 321), and the heat energy of the hot water supplied instead of the cooling medium through the hot water circulation path C6 is used for the one of the first heat exchangers 322 (or 321). The latent heat storage material adhering to the heat transfer surface of the second heat exchanger 321 (or 322) and the surrounding environment nearby is melted and removed. Therefore, the latent heat storage slurry can be manufactured stably or continuously for a long time as compared with the latent heat storage slurry manufacturing apparatuses (a) to (c) shown in FIGS.
However, when a latent heat storage material exceeding the permissible level adheres to the heat transfer surface of one of the second heat exchangers 321 (or 322) that has cooled the raw material solution or its surrounding environment, or a certain time has elapsed. If the frequency of the operation of switching the cooling of the raw material solution to the other second heat exchanger 322 (or 321) to which the latent heat storage material is not attached or removed is increased, the attached latent heat storage material Since the supply frequency and supply amount of hot water necessary for melting and removing water increases, there remains a problem that the utilization efficiency of the heat energy required for producing the latent heat storage slurry is unnecessarily lowered.

なお、図4に示す潜熱蓄熱性スラリ製造装置(d)は、冷熱媒体の流れに沿って第2の熱交換器32と第1の熱交換器31とが直列に接続されているという観点からすると、図2に示す潜熱蓄熱性スラリ製造装置(b)と同じであるが、冷熱媒体の流れに沿って第2の熱交換器32と第1の熱交換器31とが並列に接続されている図3に示す潜熱蓄熱性スラリ製造装置(c)とは異なる。しかし、以上の図4に示す潜熱蓄熱性スラリ製造装置(d)の複数の第2の熱交換器を切替えることに関する説明は、図3において第2の熱交換器32を複数台にして、一つの第2の熱交換器から残りのいずれかの第2の熱交換器への原料溶液の冷却の切替えを自在にするとともに、付着した潜熱蓄熱性物質を融解除去するために温水循環経路C6を追加することにより構成される潜熱蓄熱性スラリ製造装置(d1)(図示せず)或いは、図4において冷熱媒体の流れに沿って第2の熱交換器321、322と第1の熱交換器31とを並列に接続する(即ち図3における冷熱媒体循環経路C1のように接続する)ことにより構成される潜熱蓄熱性スラリ製造装置(d2)(図示せず)についても当て嵌まる。   The latent heat storage slurry production apparatus (d) shown in FIG. 4 is from the viewpoint that the second heat exchanger 32 and the first heat exchanger 31 are connected in series along the flow of the cooling medium. Then, although it is the same as the latent heat storage slurry manufacturing apparatus (b) shown in FIG. 2, the 2nd heat exchanger 32 and the 1st heat exchanger 31 are connected in parallel along the flow of the cooling medium. This is different from the latent heat storage slurry production apparatus (c) shown in FIG. However, the description regarding switching the plurality of second heat exchangers of the latent heat storage slurry production apparatus (d) shown in FIG. It is possible to freely switch the cooling of the raw material solution from one second heat exchanger to any one of the remaining second heat exchangers, and in order to melt and remove the attached latent heat storage material, a hot water circulation path C6 is provided. Second heat exchangers 321 and 322 and first heat exchanger 31 along the flow of the cooling medium in FIG. This also applies to the latent heat storage slurry manufacturing apparatus (d2) (not shown) configured by connecting the two in parallel (that is, as in the cooling medium circulation path C1 in FIG. 3).

<本発明に係る潜熱蓄熱性スラリ製造技術について>
図5乃至図8は、それぞれ、本発明に係る潜熱蓄熱性スラリ製造装置(A)乃至(D)の説明図である。本発明に係る潜熱蓄熱性スラリ製造装置(A)乃至(D)は、それぞれ、従来の潜熱蓄熱性物質スラリ製造装置(a)乃至(d)に対応しており、従来の潜熱蓄熱性スラリ製造装置(a)乃至(d)に本発明を適用して構成されるものである。
本発明に係る潜熱蓄熱性スラリ製造装置(A)乃至(D)において、対応する従来の潜熱蓄熱性物質スラリ製造装置(a)乃至(d)と同じ部分又は相当する若しくは共通する部分には同じ符号を付し、一部の説明を省略する。
<Regarding the latent heat storage slurry production technology according to the present invention>
5 to 8 are explanatory diagrams of the latent heat storage slurry production apparatuses (A) to (D) according to the present invention, respectively. The latent heat storage slurry production apparatuses (A) to (D) according to the present invention correspond to the conventional latent heat storage material slurry production apparatuses (a) to (d), respectively. are those composed by applying the present invention to the apparatus (a) to (d).
In the latent heat storage slurry production apparatuses (A) to (D) according to the present invention, the same parts as the corresponding conventional latent heat storage material slurry production apparatuses (a) to (d), or the same or corresponding parts are the same. Reference numerals are assigned and a part of the description is omitted.

図5乃至8の各図中、C5は、熱交換器3の出口側から入口側に冷熱媒体の一部を還流させるための冷熱媒体還流経路である。冷熱媒体還流経路C5は、冷熱媒体との熱交換により原料溶液が冷却される熱交換器3(図6及び図7では32、図8では321又は322)の入口側の節点Naと出口側の節点Nbの間を接続する還流用配管(第2の還流用配管)並びに冷熱媒体循環経路C1の一部を備えており、熱交換器3(図6及び図7では32、図8では321又は322)及び冷熱媒体還流ポンプ9を接続してなる環状の配管経路である。
節点Naは、熱交換器3(図6及び図7では32、図8では321又は322)の入口側であって冷凍機1、冷熱媒体循環ポンプ2の下流側にある冷熱媒体循環経路C1上の特定位置であり、節点Nbは、熱交換器3(図6及び図7では32、図8では321又は322)の出口側であって冷凍機1より上流側にある冷熱媒体循環経路C1上の特定位置である。
5 to 8, C5 is a cooling medium reflux path for returning a part of the cooling medium from the outlet side to the inlet side of the heat exchanger 3. The cooling medium reflux path C5 is configured such that the inlet side node Na and the outlet side of the heat exchanger 3 (32 in FIGS. 6 and 7, 321, or 322 in FIG. 8) in which the raw material solution is cooled by heat exchange with the cooling medium. A recirculation pipe (second recirculation pipe) connecting between the nodes Nb and a part of the cooling medium circulation path C1 are provided, and the heat exchanger 3 (32 in FIGS. 6 and 7, 321 in FIG. 8, or 322) and an annular pipe path formed by connecting the cold heat medium reflux pump 9.
The node Na is on the cooling medium circulation path C1 on the inlet side of the heat exchanger 3 (32 in FIGS. 6 and 7, 321 or 322 in FIG. 8) and downstream of the refrigerator 1 and the cooling medium circulation pump 2. The node Nb is located on the cooling medium circulation path C1 on the outlet side of the heat exchanger 3 (32 in FIGS. 6 and 7, 321 or 322 in FIG. 8) and upstream of the refrigerator 1. Is a specific position.

図8に示す潜熱蓄熱性スラリ製造装置(D)の場合、冷熱媒体循環経路C1が、C11とC12との間で切り替えられるので、それに対応して、冷熱媒体還流経路C5は、第1の熱交換器321、両節点Na、Nbの間を接続する還流用配管(第2の還流用配管)及び冷熱媒体循環経路C11の一部を備える冷熱媒体還流経路C51と、第2の熱交換器322、両節点Na、Nbの間を接続する還流用配管(第2の還流用配管)及び冷熱媒体循環経路C12の一部を備える冷熱媒体還流経路C52との間で切り替えられる。
表2に運転モード1と運転モード2との間で切り替えられる選択経路とバルブの開閉との対応関係をまとめたものを示す。表2中の記号・表記の意味は表1のものと同じである。
In the case of the latent heat storage slurry production apparatus (D) shown in FIG. 8, the cooling medium circulation path C1 is switched between C11 and C12. Accordingly, the cooling medium recirculation path C5 corresponds to the first heat transfer path C5. The cooling medium return path C51 including a part of the exchanger 321, the reflux pipe (second reflux pipe) connecting the nodes Na and Nb and the cooling medium circulation path C11, and the second heat exchanger 322 , Switching between the reflux pipe (second reflux pipe) connecting between the nodes Na and Nb and the cooling medium circulation path C52 including a part of the cooling medium circulation path C12.
Table 2 summarizes the correspondence between the selection path switched between the operation mode 1 and the operation mode 2 and the opening / closing of the valve. The meanings of symbols and notations in Table 2 are the same as those in Table 1.

Figure 2011064419
Figure 2011064419

図5乃至8の各図に示す潜熱蓄熱性スラリ製造装置(A)乃至(D)では、熱交換器3(図6及び図7では32、図8では321又は322)において原料溶液を冷却する冷熱媒体の一部が、冷却媒体還流経路C5に沿って当該熱交換器の出口側から入口側に還流されるので、熱交換器に流入する冷熱媒体の温度の変動が低減され、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生じ難くなる。そのため、冷熱媒体と原料溶液との熱交換(換言すれば熱交換器の動作)が安定化し、原料溶液の中での潜熱蓄熱性物質の生成が安定化する。その結果、潜熱蓄熱性物質の周辺環境への付着量が予想を越えて急激に増加することがなくなるので、付着の進行が予測し易くなり、原料溶液の過冷却又は過冷却解除を適切に制御又は調整し易くなる。そして、潜熱蓄熱性物質の付着量が徐々に又は累積的に増加することが避けられないとしても、より長い時間が経過しない限り、潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化し難くなる。
従って、潜熱蓄熱性スラリ製造装置(A)乃至(D)は、より長時間にわたり安定に又は連続して運転することができる装置になる。
In the latent heat storage slurry production apparatuses (A) to (D) shown in FIGS. 5 to 8, the raw material solution is cooled in the heat exchanger 3 (32 in FIGS. 6 and 7, 321 or 322 in FIG. 8). Since a part of the cooling medium is recirculated from the outlet side to the inlet side of the heat exchanger along the cooling medium reflux path C5, the temperature variation of the cooling medium flowing into the heat exchanger is reduced, and the cooling medium and Variations are less likely to occur in the degree of heat exchange with the raw material solution or the degree of cooling of the raw material solution by the cooling medium. Therefore, the heat exchange between the cooling medium and the raw material solution (in other words, the operation of the heat exchanger) is stabilized, and the generation of the latent heat storage material in the raw material solution is stabilized. As a result, the amount of adhesion of the latent heat storage material to the surrounding environment does not increase more rapidly than expected, making it easier to predict the progress of adhesion and appropriately controlling the subcooling or overcooling of the raw material solution. Or it becomes easy to adjust. Even if it is inevitable that the amount of adhesion of the latent heat storage material gradually or cumulatively increases, troubles and malfunctions that occur during the production of the latent heat storage slurry will become obvious unless a longer time elapses. It becomes difficult.
Therefore, the latent heat storage slurry production apparatuses (A) to (D) can be operated stably or continuously for a longer time.

また、図5乃至図8の各図に示す潜熱蓄熱性スラリ製造装置(A)乃至(D)では、原料溶液の一部が還流されることにより、その温度が変動し難くなる又は安定すると同時に、冷熱媒体の一部が還流されることにより、その温度が変動し難くなる又は安定するので、原料溶液と冷熱媒体の両温度の差が変動し難くなり安定し、それにより原料溶液の過冷却又は過冷却解除を適切に制御又は調整することが容易になり、延いては熱交換器の伝熱面への潜熱蓄熱性物質の付着の効果的な抑制が可能になる。
従って、潜熱蓄熱性スラリ製造装置(A)乃至(D)は、より長時間にわたり安定に又は連続して運転することができる、より好ましい装置になる。
Further, in the latent heat storage slurry manufacturing apparatuses (A) to (D) shown in each of FIGS. 5 to 8, the temperature of the raw material solution is not easily changed or stabilized as a part of the raw material solution is refluxed. When the part of the cooling medium is refluxed, the temperature is hardly changed or stabilized, so that the difference between the temperature of the raw material solution and the cooling medium is difficult to be changed and stabilized, and thereby the supercooling of the raw material solution is performed. Or it becomes easy to appropriately control or adjust the supercooling release, and by extension, it is possible to effectively suppress the adhesion of the latent heat storage material to the heat transfer surface of the heat exchanger.
Accordingly, the latent heat storage slurry production apparatuses (A) to (D) are more preferable apparatuses that can be operated stably or continuously for a longer time.

また、特に、図8に示す潜熱蓄熱性スラリ製造装置(D)の場合には、付着した潜熱蓄熱性物質を除去するために複数台の第2の熱交換器321、322を頻繁に切り替える必要がなくなる、換言すれば第2の熱交換器1個当たりの原料溶液の冷却時間をより長く設定することができるので、潜熱蓄熱性スラリの製造がより効率化された装置になる。   In particular, in the case of the latent heat storage slurry production apparatus (D) shown in FIG. 8, it is necessary to frequently switch the plurality of second heat exchangers 321 and 322 in order to remove the attached latent heat storage material. In other words, since the cooling time of the raw material solution per second heat exchanger can be set longer, the production of the latent heat storage slurry becomes more efficient.

なお、図7に示す潜熱蓄熱性スラリ製造装置(C)では、冷熱媒体還流経路C5は、冷熱媒体との熱交換により原料溶液が冷却される熱交換器32の入口側の節点Na(節点Naは冷凍機1の下流側にあり、第1の熱交換器31と第2の熱交換器32との分岐点である節点N3より上流側の特定位置である)及び出口側の節点Nbの間を接続する還流用配管(第2の還流用配管)を備えて構成されているが、冷熱媒体との熱交換により原料溶液が冷却される熱交換器32の入口側の節点Na*(節点Na*は節点N3より下流側であり熱交換器32より上流側の特定位置である)及び出口側のNbの間を接続する還流用配管(第2の還流用配管)を備えて構成されている冷熱媒体還流経路C5*であってもよい。しかし、両者を比較した場合には、前者(Na、Nbの間を接続する還流用配管の場合)の方が、第1の熱交換器31を流れる冷熱媒体の温度の変動も低減され、全体として潜熱蓄熱性スラリの製造がより安定化するので好ましい。   In the latent heat storage slurry production apparatus (C) shown in FIG. 7, the cooling medium recirculation path C5 has a node Na (node Na) on the inlet side of the heat exchanger 32 where the raw material solution is cooled by heat exchange with the cooling medium. Is on the downstream side of the refrigerator 1 and is a specific position upstream of the node N3, which is a branch point between the first heat exchanger 31 and the second heat exchanger 32), and between the node Nb on the outlet side Is provided with a recirculation pipe (second recirculation pipe) for connecting the heat exchanger 32 to the inlet side of the heat exchanger 32 where the raw material solution is cooled by heat exchange with the cooling medium (node Na *). (* Is a specific position downstream from the node N3 and upstream from the heat exchanger 32) and a reflux pipe (second reflux pipe) for connecting the outlet side Nb. The cooling medium reflux path C5 * may be used. However, when both are compared, the former (in the case of a reflux pipe connecting Na and Nb) reduces the temperature fluctuation of the cooling medium flowing through the first heat exchanger 31, and the whole As the production of the latent heat storage slurry is more stable.

このこと、即ち前者(Na、Nbの間を接続する環流用配管の場合)の方が、第1の熱交換器31を流れる冷熱媒体の温度の変動も低減され、全体として潜熱蓄熱性スラリの製造がより安定化するので好ましいことは、冷熱媒体循環経路C1を備える潜熱蓄熱性スラリ製造装置(d1)、即ち図7において第2の熱交換器32を複数台にして、一つの第2の熱交換器から残りのいずれかの第2の熱交換器への原料溶液の冷却の切替えを自在にするとともに、付着した潜熱蓄熱性物質を融解除去するために温水循環経路C6を追加することにより構成される潜熱蓄熱性スラリ製造装置(D1)(図示せず)或いは、冷熱媒体循環経路C1を備える潜熱蓄熱性スラリ製造装置(d2)、即ち図4において冷熱媒体の流れに沿って第2の熱交換器321、322と第1の熱交換器31とを並列に接続する(即ち図3における冷熱媒体循環経路C1のように接続する)ことにより構成される潜熱蓄熱性スラリ製造装置(D2)(図示せず)についても当て嵌まる。   This means that the former (in the case of the circulation pipe connecting Na and Nb) also reduces the temperature fluctuation of the cooling medium flowing through the first heat exchanger 31, and the latent heat storage slurry as a whole is reduced. It is preferable that the production becomes more stable. Preferably, the latent heat storage slurry production apparatus (d1) having the cooling medium circulation path C1, that is, a plurality of second heat exchangers 32 in FIG. By freely switching the cooling of the raw material solution from the heat exchanger to any of the remaining second heat exchangers, and by adding a hot water circulation path C6 to melt and remove the attached latent heat storage material A latent heat storage slurry production apparatus (D1) (not shown) or a latent heat storage slurry production apparatus (d2) having a cooling medium circulation path C1, that is, a second along the flow of the cooling medium in FIG. Heat exchanger 3 1, 322 and the first heat exchanger 31 are connected in parallel (that is, connected as in the cooling medium circulation path C1 in FIG. 3), a latent heat storage slurry manufacturing apparatus (D2) (not shown). Is also true.

次に、本発明の潜熱蓄熱性物質スラリ製造装置(E)を図10に基づき説明する。なお、発明の特徴点を明確にする観点から、本発明の潜熱蓄熱性物質スラリ製造装置(E)の構成からその特徴点である冷熱媒体循環経路の一部を除いた構成を図9に示し、これについて先に説明する。   Next, the latent heat storage material slurry manufacturing apparatus (E) of this invention is demonstrated based on FIG. From the viewpoint of clarifying the features of the invention, FIG. 9 shows a configuration in which a part of the cooling medium circulation path, which is the feature point, is excluded from the configuration of the latent heat storage material slurry manufacturing apparatus (E) of the present invention. This will be described first.

<潜熱蓄熱性物質スラリ製造装置(E)のうち冷熱媒体循環経路の一部を除いた部分の説明>
図9に示す、潜熱蓄熱性スラリ製造装置(E)のうち冷熱媒体循環経路の一部を除いた部分は、図1に示す従来の潜熱蓄熱性スラリ製造装置(a)において、原料溶液(又は潜熱蓄熱性スラリ)及び冷熱媒体のそれぞれの流れに対して熱交換器3が並列に接続される複数個の熱交換器3A、3B・・・(図9では、説明の便のため、二つの熱交換器3A、3Bを描写するに止めている)に置換されたものに相当する。
<Description of a portion of the latent heat storage material slurry manufacturing apparatus (E) excluding a part of the cooling medium circulation path>
9 except for a part of the cooling medium circulation path in the latent heat storage slurry production apparatus (E), the conventional latent heat storage slurry production apparatus (a) shown in FIG. A plurality of heat exchangers 3A, 3B... (In FIG. 9, for convenience of explanation, two heat exchangers 3A, 3B... Are connected in parallel to the respective flows of the latent heat storage slurry) and the cooling medium. The heat exchangers 3A and 3B are replaced with (represented only to depict).

図9中、冷熱媒体循環経路C1は、冷熱媒体循環ポンプ2から送出され冷凍機1を通過した冷熱媒体を節点N3で分岐させた後、その冷熱媒体の一部及び残部をそれぞれ熱交換器3A及び熱交換器3Bに向かって並列に流通させる配管経路と、熱交換器3A及び熱交換器3Bをそれぞれ通過した冷熱媒体を節点N4で合流させた後、冷熱媒体循環ポンプ2に向かって流通させる配管経路とから構成される。
製造側スラリ循環経路C2は、蓄熱槽4から取り出されスラリ循環ポンプ5から送出される原料溶液(又は潜熱蓄熱性物質の存在割合が相対的に低い潜熱蓄熱性スラリ)を、節点N2を通過させた後節点N5で分岐させた後、その原料溶液の一部及び残部をそれぞれ熱交換器3A及び熱交換器3Bに向かって並列に流通させる配管経路と、熱交換器3A及び熱交換器3Bをそれぞれ通過した原料溶液を節点N6で合流させた後、節点N1を通過させた後蓄熱槽4に送出させる配管経路とから構成される。
スラリ還流経路C3は、両熱交換器3A,3Bの出口側から入口側に原料溶液(又は潜熱蓄熱性スラリ)の一部をそこに含まれる潜熱蓄熱性物質とともに還流させるための環状の配管経路であり、両熱交換器3A,3Bの出口側の節点N1と入口側の節点N2との間を接続する環流用配管(第1の環流用配管)並びに製造側スラリ循環経路C2の一部を備えてなるものである。
熱利用側スラリ循環経路C4は、図1に示すものと基本的に同じであるので、それについての説明は省略する。
In FIG. 9, the cooling medium circulation path C1 branches the cooling medium sent from the cooling medium circulation pump 2 and passed through the refrigerator 1 at the node N3, and then a part and the rest of the cooling medium are respectively transferred to the heat exchanger 3A. And the piping path that circulates in parallel toward the heat exchanger 3B and the cooling medium that has passed through the heat exchanger 3A and the heat exchanger 3B are merged at the node N4 and then circulated toward the cooling medium circulation pump 2. It consists of a piping route.
The production-side slurry circulation path C2 allows the raw material solution (or latent heat storage slurry having a relatively low presence ratio of latent heat storage materials) taken out from the heat storage tank 4 and sent out from the slurry circulation pump 5 to pass through the node N2. After branching at the rear node N5, a pipe path through which a part and the remainder of the raw material solution flow in parallel toward the heat exchanger 3A and the heat exchanger 3B, respectively, and the heat exchanger 3A and the heat exchanger 3B are provided. After the raw material solutions that have passed through each other are merged at the node N6, the raw material solution is passed through the node N1 and then sent to the heat storage tank 4.
The slurry recirculation path C3 is an annular piping path for recirculating a part of the raw material solution (or latent heat storage slurry) together with the latent heat storage material contained therein from the exit side to the entrance side of both heat exchangers 3A and 3B. The circulation pipe (first circulation pipe) for connecting between the outlet node N1 and the inlet node N2 of both heat exchangers 3A and 3B and a part of the production-side slurry circulation path C2 It is prepared.
The heat utilization side slurry circulation path C4 is basically the same as that shown in FIG.

図9に示す潜熱蓄熱性物質スラリ製造装置において、冷熱媒体は、冷熱媒体循環経路C1に沿って、冷熱媒体循環ポンプ2により冷凍機1に送られ冷凍機1において冷却された後、後述する節点Na経由で節点N3に向けて送出された後、節点N3において分岐され、引き続き並列に接続された熱交換器3Aと熱交換器3Bに向けて送出され、それぞれの熱交換器3A,3Bにおいて原料溶液との熱交換が行われた後、合流点である節点N4及び引き続く後述する節点Nbを経由して、冷凍機1に戻される。
Naは、両熱交換器3A,3Bの入口側であって冷凍機1の下流側にある冷熱媒体循環経路C1上の節点であり、Nbは、両熱交換器3A,3Bの出口側にあって冷熱媒体循環ポンプ2の上流側にある冷熱媒体循環経路C1上の節点である。
In the latent heat storage material slurry manufacturing apparatus shown in FIG. 9, the cooling medium is sent to the refrigerator 1 by the cooling medium circulation pump 2 along the cooling medium circulation path C <b> 1 and cooled in the refrigerator 1. After being sent to the node N3 via Na, it is branched at the node N3 and subsequently sent to the heat exchanger 3A and the heat exchanger 3B connected in parallel, and the raw materials are supplied to the heat exchangers 3A and 3B. After heat exchange with the solution, it is returned to the refrigerator 1 via a node N4 that is a junction and a node Nb that will be described later.
Na is a node on the cooling medium circulation path C1 on the inlet side of both heat exchangers 3A and 3B and downstream of the refrigerator 1, and Nb is on the outlet side of both heat exchangers 3A and 3B. This is a node on the cooling medium circulation path C1 on the upstream side of the cooling medium circulation pump 2.

蓄熱槽4に収容されている原料溶液は、製造側スラリ循環経路C2に沿って、製造側循環ポンプ5により分岐点である節点N5を経由して各熱交換器3A、3Bに送出され、それぞれの熱交換器3A、3Bにおける冷熱媒体との熱交換により冷却されることにより少なくとも一部が過冷却状態にある原料溶液となり、蓄熱槽4に再度収容される。蓄熱槽4に再度収容された原料溶液の過冷却状態は、収容先の蓄熱槽4の中で徐々に解除される。これにより、蓄熱槽4の中で潜熱蓄熱性物質の存在割合が高まり、原料溶液は潜熱蓄熱性スラリといえるものとなる。そして蓄熱槽4に収容されるに至った潜熱蓄熱性スラリは、原料溶液として製造側循環ポンプ5により再び又は循環的に製造側スラリ循環経路C2に沿って送出され、蓄熱槽4に戻される。かくして蓄熱槽4に収容されている潜熱蓄熱性スラリにおける潜熱蓄熱性物質の存在割合は、熱利用に適した水準に至るまで徐々に高められてゆく。   The raw material solution stored in the heat storage tank 4 is sent to the heat exchangers 3A and 3B through the node N5 which is a branch point by the manufacturing side circulation pump 5 along the manufacturing side slurry circulation path C2, respectively. The heat exchangers 3A and 3B are cooled by heat exchange with the cooling medium, so that at least a part of the raw material solution is in a supercooled state and is stored in the heat storage tank 4 again. The supercooled state of the raw material solution stored again in the heat storage tank 4 is gradually released in the heat storage tank 4 at the storage destination. Thereby, the abundance ratio of the latent heat storage material increases in the heat storage tank 4, and the raw material solution becomes a latent heat storage slurry. Then, the latent heat storage slurry that has been accommodated in the heat storage tank 4 is sent as a raw material solution again or cyclically along the production side slurry circulation path C2 as a raw material solution, and returned to the heat storage tank 4. Thus, the ratio of the latent heat storage material in the latent heat storage slurry contained in the heat storage tank 4 is gradually increased to a level suitable for heat utilization.

このとき、少なくとも一部が過冷却状態にある原料溶液又は原料溶液として送出された潜熱蓄熱性スラリの一部は、スラリ還流経路C3に沿って、節点N1からスラリ還流ポンプ6により引き出され、節点N2を経由して両熱交換器3A,3Bに送出され、節点N1に戻される。少なくとも一部が過冷却状態にある原料溶液の一部がスラリ還流経路C3に沿って移動する場合には、その移動の過程で、その過冷却状態の一部又は全部が解除されるので、両熱交換器3A,3Bの入口側により多くの生成核が供給される。その生成核の供給により、各熱交換器3A,3Bにおける冷却により原料溶液に生じる過冷却が解除され、延いては、周辺環境への潜熱蓄熱性物質の付着が抑制される。   At this time, at least a part of the raw solution or a part of the latent heat storage slurry sent as a raw material solution in the supercooled state is drawn from the node N1 by the slurry reflux pump 6 along the slurry reflux path C3. It is sent to both heat exchangers 3A and 3B via N2, and returned to the node N1. When a part of the raw material solution in which at least a part is in a supercooled state moves along the slurry reflux path C3, part or all of the supercooled state is released in the course of the movement. More production nuclei are supplied to the inlet side of the heat exchangers 3A and 3B. By supplying the generated nuclei, the supercooling generated in the raw material solution due to the cooling in each of the heat exchangers 3A and 3B is released, and thereby the adhesion of the latent heat storage material to the surrounding environment is suppressed.

<本発明に係る潜熱蓄熱性スラリ製造装置(E)>
図10は本発明の潜熱蓄熱性物質スラリ製造装置(E)の説明図である。潜熱蓄熱性物質スラリ製造装置(E)は、図9に示した潜熱蓄熱性スラリ製造装置に冷熱媒体還流経路C5を付加したものであり、冷熱媒体還流経路C5以外の構成は図9に基づき既に説明している。
<Latent heat storage slurry production apparatus (E) according to the present invention>
FIG. 10 is an explanatory view of the latent heat storage material slurry manufacturing apparatus (E) of the present invention. The latent heat storage material slurry manufacturing apparatus (E) is obtained by adding a cooling medium reflux path C5 to the latent heat storage slurry manufacturing apparatus shown in FIG. 9, and the configuration other than the cooling medium reflux path C5 has already been based on FIG. Explains.

図10中、C5は、熱交換器3A及び3Bの出口側から入口側に冷熱媒体の一部を還流させるための冷熱媒体還流経路である。冷熱媒体還流経路C5は、冷熱媒体との熱交換により原料溶液が冷却される熱交換器3A及び3Bの入口側の節点Naと出口側の節点Nbの間を接続する還流用配管(第2の還流用配管)並びに冷熱媒体循環経路C1の一部を備えており、熱交換器3A及び3B及び冷熱媒体還流ポンプ9を接続してなる環状の配管経路である。
Naは、両熱交換器3A,3Bの入口側であって冷凍機1の下流側にある冷熱媒体循環経路C1上の特定位置であり、Nbは、両熱交換器3A,3Bの出口側にあって冷熱媒体循環ポンプ2の上流側にある冷熱媒体循環経路C1上の特定位置である。
In FIG. 10, C5 is a cooling medium reflux path for returning a part of the cooling medium from the outlet side to the inlet side of the heat exchangers 3A and 3B. The cooling medium recirculation path C5 is a recirculation pipe (second pipe) connecting between the node Na on the inlet side and the node Nb on the outlet side of the heat exchangers 3A and 3B in which the raw material solution is cooled by heat exchange with the cooling medium. A recirculation pipe) and a part of the cooling medium circulation path C1, and is an annular piping path formed by connecting the heat exchangers 3A and 3B and the cooling medium recirculation pump 9.
Na is a specific position on the cooling medium circulation path C1 on the inlet side of both heat exchangers 3A and 3B and on the downstream side of the refrigerator 1, and Nb is on the outlet side of both heat exchangers 3A and 3B. The specific position on the cooling medium circulation path C1 on the upstream side of the cooling medium circulation pump 2.

図10に示す潜熱蓄熱性スラリ製造装置(E)では、熱交換器3A及び3Bにおいて原料溶液を冷却する冷熱媒体の一部が、冷却媒体還流経路C5に沿って当該熱交換器の出口側から入口側に還流されるので、熱交換器に流入する冷熱媒体の温度の変動が低減され、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生じ難くなる。そのため、冷熱媒体と原料溶液との熱交換(換言すれば熱交換器の動作)が安定化し、原料溶液の中での潜熱蓄熱性物質の生成が安定化する。その結果、潜熱蓄熱性物質の周辺環境への付着量が予想を越えて急激に増加することがなくなるので、付着の進行が予測し易くなり、原料溶液の過冷却又は過冷却解除を適切に制御又は調整し易くなる。そして、潜熱蓄熱性物質の付着量が徐々に又は累積的に増加することが避けられないとしても、より長い時間が経過しない限り、潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化し難くなる。
従って、潜熱蓄熱性スラリ製造装置(E)は、より長時間にわたり安定に又は連続して運転することができる装置になる。
In the latent heat storage slurry production apparatus (E) shown in FIG. 10, a part of the cooling medium that cools the raw material solution in the heat exchangers 3A and 3B passes from the outlet side of the heat exchanger along the cooling medium reflux path C5. Since the refrigerant is recirculated to the inlet side, the temperature variation of the cooling medium flowing into the heat exchanger is reduced, and the degree of heat exchange between the cooling medium and the raw material solution or the cooling of the raw material solution by the cooling medium is less likely to occur. Become. Therefore, the heat exchange between the cooling medium and the raw material solution (in other words, the operation of the heat exchanger) is stabilized, and the generation of the latent heat storage material in the raw material solution is stabilized. As a result, the amount of adhesion of the latent heat storage material to the surrounding environment does not increase more rapidly than expected, making it easier to predict the progress of adhesion and appropriately controlling the subcooling or overcooling of the raw material solution. Or it becomes easy to adjust. Even if it is inevitable that the amount of adhesion of the latent heat storage material gradually or cumulatively increases, troubles and malfunctions that occur during the production of the latent heat storage slurry will become obvious unless a longer time elapses. It becomes difficult.
Therefore, the latent heat storage slurry production apparatus (E) becomes an apparatus that can be operated stably or continuously for a longer time.

また、図10に示す潜熱蓄熱性スラリ製造装置(E)では、原料溶液の一部が還流されることにより、その温度が変動し難くなる又は安定すると同時に、冷熱媒体の一部が還流されることにより、その温度が変動し難くなる又は安定するので、原料溶液と冷熱媒体の両温度の差が変動し難くなり安定し、それにより原料溶液の過冷却又は過冷却解除を適切に制御又は調整することが容易になり、延いては熱交換器の伝熱面への潜熱蓄熱性物質の付着の効果的な抑制が可能になる。
従って、潜熱蓄熱性スラリ製造装置(E)は、より長時間にわたり安定に又は連続して運転することができる、より好ましい装置になる。
In addition, in the latent heat storage slurry production apparatus (E) shown in FIG. 10, when a part of the raw material solution is refluxed, the temperature is hardly changed or stabilized, and at the same time, a part of the cooling medium is refluxed. Therefore, the temperature hardly changes or stabilizes, so that the difference between the temperature of the raw material solution and the cooling medium becomes difficult to change and is stabilized, thereby appropriately controlling or adjusting the supercooling or overcooling release of the raw material solution. As a result, it is possible to effectively suppress adhesion of the latent heat storage material to the heat transfer surface of the heat exchanger.
Therefore, the latent heat storage slurry production apparatus (E) becomes a more preferable apparatus that can be stably or continuously operated for a longer time.

次に、本発明の潜熱蓄熱性物質スラリ製造装置(F)を図12に基づき説明する。なお、発明の特徴点を明確にする観点から、本発明の潜熱蓄熱性物質スラリ製造装置(F)の構成からその特徴点である冷熱媒体循環経路の一部を除いた構成を図11に示し、これについて先に説明する。   Next, the latent heat storage material slurry manufacturing apparatus (F) of this invention is demonstrated based on FIG. From the viewpoint of clarifying the features of the invention, FIG. 11 shows the configuration of the latent heat storage material slurry manufacturing apparatus (F) of the present invention, excluding a part of the cooling medium circulation path, which is a feature of the device. This will be described above.

<潜熱蓄熱性物質スラリ製造装置(F)のうち冷熱媒体循環経路の一部を除いた部分の説明>
図11に示す、潜熱蓄熱性スラリ製造装置(F)のうち冷熱媒体循環経路の一部を除いた部分は、図2に示す従来の潜熱蓄熱性スラリ製造装置(b)において、原料溶液(又は潜熱蓄熱性スラリ)及び冷熱媒体のそれぞれの流れに対して第2の熱交換器32が並列に接続される複数個の熱交換器32A、32B・・・(図11では、説明の便のため、二つの熱交換器32A、32Bを描写するに止めている)に置換されたものに相当する。
<Description of a portion of the latent heat storage material slurry manufacturing apparatus (F) excluding a part of the cooling medium circulation path>
A portion of the latent heat storage slurry production apparatus (F) shown in FIG. 11 excluding a part of the cooling medium circulation path is a raw material solution (or in the conventional latent heat storage slurry production apparatus (b) shown in FIG. A plurality of heat exchangers 32A, 32B in which the second heat exchanger 32 is connected in parallel to each flow of the latent heat storage slurry and the cooling medium (in FIG. 11, for convenience of explanation) , The two heat exchangers 32A and 32B are illustrated in FIG.

図11中、冷熱媒体循環経路C1は、冷熱媒体を流通させるための環状の配管経路であり、冷熱媒体循環ポンプ2、冷凍機1、第2の熱交換器32及び第1の熱交換器31を接続してなるものである。
製造側スラリ循環経路C2は、蓄熱槽4から原料溶液(又は潜熱蓄熱性物質の存在割合が相対的に低い潜熱蓄熱性スラリ)を第1の熱交換器31及び第2の熱交換器32の順に流通させ、潜熱蓄熱性スラリを蓄熱槽4に向かって流通させるための環状の配管経路であり、第1の熱交換器31、第2の熱交換器32、蓄熱槽4及び製造側循環ポンプ5を接続してなるものである。第2の熱交換器32は、冷熱媒体の流れ及び原料溶液の流れに対して並列に接続された複数個の熱交換器32A、32Bを備えている。
In FIG. 11, the cooling medium circulation path C <b> 1 is an annular piping path for circulating the cooling medium, and the cooling medium circulation pump 2, the refrigerator 1, the second heat exchanger 32, and the first heat exchanger 31. Are connected.
The production-side slurry circulation path C <b> 2 passes the raw material solution (or the latent heat storage slurry having a relatively low ratio of the latent heat storage material) from the heat storage tank 4 to the first heat exchanger 31 and the second heat exchanger 32. It is a cyclic | annular piping path | route for distribute | circulating in order and distribute | circulating a latent-heat thermal storage slurry toward the thermal storage tank 4, 1st heat exchanger 31, 2nd heat exchanger 32, thermal storage tank 4, and manufacturing side circulation pump 5 is connected. The second heat exchanger 32 includes a plurality of heat exchangers 32A and 32B connected in parallel to the flow of the cooling medium and the flow of the raw material solution.

スラリ還流経路C3は、第2の熱交換器32A,32Bの出口側から入口側に原料溶液(又は潜熱蓄熱性スラリ)の一部をそこに含まれる潜熱蓄熱性物質とともに還流させるための環状の配管経路であり、第2の熱交換器32A,32Bの出口側にある節点N1と、第1の熱交換器31の出口側であって、第2の熱交換器32A,32Bの入口側にある節点N2との間を接続する環流用配管(第1の環流用配管)並びに製造側スラリ循環経路C2の一部を備えてなるものである。熱利用側スラリ循環経路C4は、図1に示すものと基本的に同じであるので、それについての説明は省略する。   The slurry recirculation path C3 is an annular shape for recirculating a part of the raw material solution (or latent heat storage slurry) together with the latent heat storage material contained therein from the exit side to the entrance side of the second heat exchangers 32A and 32B. It is a piping path and is located on the outlet side of the second heat exchangers 32A and 32B, on the outlet side of the first heat exchanger 31 and on the inlet side of the second heat exchangers 32A and 32B. A circulating pipe (first circulating pipe) for connecting to a certain node N2 and a part of the manufacturing-side slurry circulation path C2 are provided. Since the heat utilization side slurry circulation path C4 is basically the same as that shown in FIG. 1, the description thereof is omitted.

図11に示す潜熱蓄熱性物質スラリ製造装置において、冷熱媒体は、冷熱媒体循環経路C1に沿って、冷熱媒体循環ポンプ2により送出され、冷凍機1において冷却された後、節点Naを経由して節点N3に送出され、節点N3において各第2の熱交換器32A,32Bに向けて分岐され、各第2の熱交換器32A,32Bにおいて原料溶液との熱交換との熱交換が行われた後、更に節点N4において合流し、節点Nbを経由して第1の熱交換器31に向けて送出され、第1の熱交換器31において原料溶液との熱交換が行われた後、冷熱媒体循環ポンプ2に戻される。
節点Naは、第2の熱交換器32A,32Bの入口側であって冷凍機1の下流側にある冷熱媒体循環経路C1上の節点であり、節点Nbは、第2の熱交換器32A,32Bの出口側にあって第1の熱交換器31の上流側にある冷熱媒体循環経路C1上の節点である。
In the latent heat storage material slurry manufacturing apparatus shown in FIG. 11, the cooling medium is sent out by the cooling medium circulation pump 2 along the cooling medium circulation path C <b> 1 and cooled in the refrigerator 1, and then passes through the node Na. Sent to the node N3, branched to the second heat exchangers 32A and 32B at the node N3, and heat exchange with the raw material solution was performed in the second heat exchangers 32A and 32B. After that, it further merges at the node N4, is sent toward the first heat exchanger 31 via the node Nb, and after the heat exchange with the raw material solution is performed in the first heat exchanger 31, the cooling medium Returned to the circulation pump 2.
The node Na is a node on the cooling medium circulation path C1 on the inlet side of the second heat exchangers 32A and 32B and on the downstream side of the refrigerator 1, and the node Nb is the second heat exchanger 32A, This is a node on the cooling medium circulation path C1 on the outlet side of 32B and on the upstream side of the first heat exchanger 31.

蓄熱槽4に収容されている原料溶液は、製造側スラリ循環経路C2に沿って、製造側循環ポンプ5により第1の熱交換器31に送出され、その後節点N2を経由して分岐点である節点N5において第2の熱交換器32A,32Bに向けて送出される。原料溶液は、第1の熱交換器31において、冷熱媒体との熱交換により顕熱相当の熱エネルギーが除かれ、ある程度まで過冷却される。スラリ還流経路C3に沿って節点N2に潜熱蓄熱性物質を含んだ原料溶液が供給されることに起因して、より詳しくは節点N2に合流する原料溶液に含まれる潜熱蓄熱性物質が別の潜熱蓄熱性物質の生成核となり、原料溶液の過冷却の少なくとも一部が解除される。その過冷却解除により、原料溶液中に少量の潜熱蓄熱性物質が生成される。引き続き、少なくとも一部の過冷却が解除された原料溶液は、各第2の熱交換器32A,32Bにおいて冷却され、より多くの潜熱蓄熱性物質を生成させ、全体として潜熱蓄熱性物質の存在割合がより高まった潜熱蓄熱性スラリとなり、合流点である節点N6を経由して蓄熱槽4に送出される。蓄熱槽4に収容されるに至った潜熱蓄熱性スラリは、原料溶液として製造側循環ポンプ5により再び又は循環的に製造側スラリ循環経路C2に沿って送出され、蓄熱槽4に戻される。かくして蓄熱槽4に収容されている潜熱蓄熱性スラリにおける潜熱蓄熱性物質の存在割合は、熱利用に適した水準に至るまで徐々に高められてゆく。   The raw material solution accommodated in the heat storage tank 4 is sent to the first heat exchanger 31 by the production-side circulation pump 5 along the production-side slurry circulation path C2, and is then a branch point via the node N2. It is sent toward the second heat exchangers 32A and 32B at the node N5. In the first heat exchanger 31, the raw material solution is supercooled to a certain degree by removing heat energy corresponding to sensible heat by heat exchange with the cooling medium. More specifically, since the raw material solution containing the latent heat storage material is supplied to the node N2 along the slurry reflux path C3, the latent heat storage material contained in the raw material solution that merges with the node N2 has another latent heat. It becomes a production nucleus of the heat storage material, and at least a part of the supercooling of the raw material solution is released. By releasing the supercooling, a small amount of latent heat storage material is generated in the raw material solution. Subsequently, the raw material solution from which at least a part of the supercooling has been released is cooled in each of the second heat exchangers 32A and 32B to generate more latent heat storage material, and the overall ratio of the latent heat storage material is present. Becomes a more latent heat storage slurry and is sent to the heat storage tank 4 via a node N6 which is a junction. The latent heat storage slurry that has been accommodated in the heat storage tank 4 is sent as a raw material solution again or cyclically along the production side slurry circulation path C2 as a raw material solution, and returned to the heat storage tank 4. Thus, the ratio of the latent heat storage material in the latent heat storage slurry contained in the heat storage tank 4 is gradually increased to a level suitable for heat utilization.

このとき、潜熱蓄熱性スラリとなった原料溶液の一部は、スラリ還流経路C3に沿って、節点N1からスラリ還流ポンプ6により引き出され、節点N2を経由して各第2の熱交換器32A,32Bに送出され、節点N1に戻される。すると、各第2の熱交換器32A,32Bの入口側に生成核が供給されるので、各第2の熱交換器32A,32Bにおける冷却により原料溶液に生じる過冷却が解除され、延いては、周辺環境への潜熱蓄熱性物質の付着が抑制される。   At this time, a part of the raw material solution that becomes the latent heat storage slurry is withdrawn from the node N1 by the slurry reflux pump 6 along the slurry reflux path C3, and passes through the node N2 to each second heat exchanger 32A. , 32B and returned to node N1. Then, since the generated nuclei are supplied to the inlet side of each of the second heat exchangers 32A and 32B, the supercooling generated in the raw material solution by the cooling in each of the second heat exchangers 32A and 32B is released. , Adhesion of the latent heat storage material to the surrounding environment is suppressed.

<本発明に係る潜熱蓄熱性スラリ製造装置(F)>
図12は本発明の潜熱蓄熱性物質スラリ製造装置(F)の説明図である。潜熱蓄熱性物質スラリ製造装置(F)は、図11に示した潜熱蓄熱性スラリ製造装置に冷熱媒体還流経路C5を付加したものであり、冷熱媒体還流経路C5以外の構成は図11に基づき既に説明している。
<Latent heat storage slurry manufacturing apparatus (F) according to the present invention>
FIG. 12 is an explanatory view of the latent heat storage material slurry manufacturing apparatus (F) of the present invention. The latent heat storage material slurry manufacturing apparatus (F) is obtained by adding a cooling medium reflux path C5 to the latent heat storage slurry manufacturing apparatus shown in FIG. 11, and the configuration other than the cooling medium circulation path C5 has already been based on FIG. Explains.

図12中、C5は、熱交換器32A及び32Bの出口側から入口側に冷熱媒体の一部を還流させるための冷熱媒体還流経路である。冷熱媒体還流経路C5は、冷熱媒体との熱交換により原料溶液が冷却される熱交換器32A及び32Bの入口側の節点Naと出口側の節点Nbの間を接続する還流用配管(第2の還流用配管)並びに冷熱媒体循環経路C1の一部を備えており、熱交換器32A及び32B及び冷熱媒体還流ポンプ9を接続してなる環状の配管経路である。
節点Naは、第2の熱交換器32A,32Bの入口側であって冷凍機1の下流側にある冷熱媒体循環経路C1上の特定位置であり、節点Nbは、第2の熱交換器32A,32Bの出口側にあって第1の熱交換器31の上流側にある冷熱媒体循環経路C1上の特定位置である。
In FIG. 12, C5 is a cooling medium reflux path for returning a part of the cooling medium from the outlet side to the inlet side of the heat exchangers 32A and 32B. The cooling medium recirculation path C5 is a recirculation pipe (second pipe) connecting between the node Na on the inlet side and the node Nb on the outlet side of the heat exchangers 32A and 32B in which the raw material solution is cooled by heat exchange with the cooling medium. A pipe for recirculation) and a part of the cooling medium circulation path C 1, and is an annular pipe path formed by connecting the heat exchangers 32 A and 32 B and the cooling medium reflux pump 9.
The node Na is a specific position on the cooling medium circulation path C1 on the inlet side of the second heat exchangers 32A and 32B and downstream of the refrigerator 1, and the node Nb is the second heat exchanger 32A. , 32B and at a specific position on the cooling medium circulation path C1 on the upstream side of the first heat exchanger 31.

図12に示す潜熱蓄熱性スラリ製造装置(F)では、熱交換器32A及び32Bにおいて原料溶液を冷却する冷熱媒体の一部が、冷却媒体還流経路C5に沿って当該熱交換器の出口側から入口側に還流されるので、熱交換器に流入する冷熱媒体の温度の変動が低減され、冷熱媒体と原料溶液との熱交換の程度又は冷熱媒体による原料溶液の冷却の程度に変動が生じ難くなる。そのため、冷熱媒体と原料溶液との熱交換(換言すれば熱交換器の動作)が安定化し、原料溶液の中での潜熱蓄熱性物質の生成が安定化する。その結果、潜熱蓄熱性物質の周辺環境への付着量が予想を越えて急激に増加することがなくなるので、付着の進行が予測し易くなり、原料溶液の過冷却又は過冷却解除を適切に制御又は調整し易くなる。そして、潜熱蓄熱性物質の付着量が徐々に又は累積的に増加することが避けられないとしても、より長い時間が経過しない限り、潜熱蓄熱性スラリの製造の際に生じる支障や不具合が顕在化し難くなる。
従って、潜熱蓄熱性スラリ製造装置(F)は、より長時間にわたり安定に又は連続して運転することができる装置になる。
In the latent heat storage slurry production apparatus (F) shown in FIG. 12, a part of the cooling medium that cools the raw material solution in the heat exchangers 32A and 32B passes from the outlet side of the heat exchanger along the cooling medium reflux path C5. Since the refrigerant is recirculated to the inlet side, the temperature variation of the cooling medium flowing into the heat exchanger is reduced, and the degree of heat exchange between the cooling medium and the raw material solution or the cooling of the raw material solution by the cooling medium is less likely to occur. Become. Therefore, the heat exchange between the cooling medium and the raw material solution (in other words, the operation of the heat exchanger) is stabilized, and the generation of the latent heat storage material in the raw material solution is stabilized. As a result, the amount of adhesion of the latent heat storage material to the surrounding environment does not increase more rapidly than expected, making it easier to predict the progress of adhesion and appropriately controlling the subcooling or overcooling of the raw material solution. Or it becomes easy to adjust. Even if it is inevitable that the amount of adhesion of the latent heat storage material gradually or cumulatively increases, troubles and malfunctions that occur during the production of the latent heat storage slurry will become obvious unless a longer time elapses. It becomes difficult.
Therefore, the latent heat storage slurry production apparatus (F) is an apparatus that can be operated stably or continuously for a longer time.

また、図12に示す潜熱蓄熱性スラリ製造装置(F)では、原料溶液の一部が還流されることにより、その温度が変動し難くなる又は安定すると同時に、冷熱媒体の一部が還流されることにより、その温度が変動し難くなる又は安定するので、原料溶液と冷熱媒体の両温度の差が変動し難くなり安定し、それにより原料溶液の過冷却又は過冷却解除を適切に制御又は調整することが容易になり、延いては熱交換器の伝熱面への潜熱蓄熱性物質の付着の効果的な抑制が可能になる。
従って、潜熱蓄熱性スラリ製造装置(F)は、より長時間にわたり安定に又は連続して運転することができる、より好ましい装置になる。
In addition, in the latent heat storage slurry production apparatus (F) shown in FIG. 12, when a part of the raw material solution is refluxed, the temperature becomes difficult or stable, and at the same time, a part of the cooling medium is refluxed. Therefore, the temperature hardly changes or stabilizes, so that the difference between the temperature of the raw material solution and the cooling medium becomes difficult to change and is stabilized, thereby appropriately controlling or adjusting the supercooling or overcooling release of the raw material solution. As a result, it is possible to effectively suppress adhesion of the latent heat storage material to the heat transfer surface of the heat exchanger.
Therefore, the latent heat storage slurry production apparatus (F) becomes a more preferable apparatus that can be stably or continuously operated for a longer time.

図6〜8、12に記載の第1の熱交換器は、互いに流動する冷熱媒体と原料溶液との熱交換が行われる装置として描写されている。ここで、第1の熱交換器の役割は、原料水溶液を冷却して、原料溶液から顕熱相当の熱エネルギーを除去し、その少なくとも一部を過冷却状態にすることにある。それ故、第1の熱交換器は、その役割を果たすものである限り、公知の冷却手段により置き換えることができる。   The first heat exchanger described in FIGS. 6 to 8 and 12 is depicted as an apparatus in which heat exchange is performed between a cold medium and a raw material solution that flow with each other. Here, the role of the first heat exchanger is to cool the raw material aqueous solution, remove the thermal energy corresponding to sensible heat from the raw material solution, and bring at least a part thereof into a supercooled state. Therefore, the first heat exchanger can be replaced by a known cooling means as long as it plays its role.

<本発明の効果の検証>
以下の検証実験において、冷熱媒体は冷水であり、潜熱蓄熱性スラリは包接水和物が水又は原料溶液に分散又は懸濁してなる包接水和物スラリとする。また、蓄熱槽から原料溶液として送出される包接水和物の存在割合が少ない包接水和物スラリ及び製造された包接水和物スラリを単にスラリという場合がある。
<Verification of the effect of the present invention>
In the following verification experiment, the cold medium is cold water, and the latent heat storage slurry is an clathrate hydrate slurry in which clathrate hydrate is dispersed or suspended in water or a raw material solution. Moreover, the clathrate hydrate slurry in which the existing ratio of clathrate hydrate delivered from the heat storage tank as a raw material solution is small and the clathrate hydrate slurry produced may be simply referred to as slurry.

[検証実験1]
<冷熱媒体と原料溶液との温度差の変動幅とスラリ製造装置の安定運転との関係>
図4に示すスラリ製造装置(d)を用いて、冷熱媒体と原料溶液との温度差の変動幅とスラリ製造装置の安定運転との関係を検証する実験を実施した。熱交換器321のスラリ入口と冷水入口の温度差の平均値は同じであるが、温度差の変動幅が異なる場合について、スラリ製造装置の安定運転について検証した。
第1の熱交換器31にはプレート式熱交換器(高さ1.1m、幅0.4m、奥行き0.2m、片側の保有水量0.01m3、対向流方式)を、第2の熱交換器321と322には、プレート式熱交換器(高さ1.6m、幅0.6m、奥行き0.1m、片側の保有水量0.01m3、対向流方式)を用いて、スラリ製造実験を実施した。原料溶液には、臭化テトラnブチルアンモニウム(TBAB)の16wt%濃度の水溶液を用いた。
[Verification Experiment 1]
<Relationship between fluctuation range of temperature difference between cooling medium and raw material solution and stable operation of slurry production apparatus>
Using the slurry manufacturing apparatus (d) shown in FIG. 4, an experiment was conducted to verify the relationship between the fluctuation range of the temperature difference between the cooling medium and the raw material solution and the stable operation of the slurry manufacturing apparatus. The average value of the temperature difference between the slurry inlet and the cold water inlet of the heat exchanger 321 is the same, but the case where the variation range of the temperature difference is different was verified for the stable operation of the slurry manufacturing apparatus.
The first heat exchanger 31 includes a plate heat exchanger (height 1.1 m, width 0.4 m, depth 0.2 m, amount of water retained on one side 0.01 m 3 , counter flow system), and the second heat exchanger 321. In 322, a slurry production experiment was carried out using a plate heat exchanger (height 1.6 m, width 0.6 m, depth 0.1 m, retained water amount 0.01 m 3 on one side, counter flow system). As a raw material solution, a 16 wt% aqueous solution of tetra n-butylammonium bromide (TBAB) was used.

熱交換器321の冷水の入口側に温度計T1を、出口側に温度計T2を設け、冷水の温度を計測し、さらに流通する冷水の流量を計測し、入口側と出口側の冷水の温度差と冷水の流量に基づき冷水の交換熱量を計算する。熱交換器321のスラリの入口側に温度計T3を、出口側に温度計T4を設置してスラリの温度を計測し、さらに流通するスラリの流量を計測する。冷水の交換熱量と冷水の入口温度、出口温度、スラリの入口温度、出口温度より熱通過率を計算した。また、熱交換器321のスラリの入口側と出口側に圧力計を設置して、熱交換器のスラリ側の圧力損失を計測した。熱交換器31および熱交換器321に流通させる液体の流量をそれぞれ一定に保ち、熱交換器内部の流速を一定とした。
第1の熱交換器31で冷水と原料溶液との熱交換により、原料溶液から顕熱相当の熱エネルギーを奪い、同時に(多少の)過冷却状態を作り出している。引き続き、節点N2で、第2の熱交換器321を出たスラリの一部を還流し、過冷却状態の原料溶液にスラリを混合して、過冷却を解除する。そして第2の熱交換器321で冷水と過冷却を解除された原料溶液との熱交換により潜熱相当の熱エネルギーを奪い、多量の包接水和物を生成して潜熱蓄熱性スラリを製造する。
A thermometer T1 is provided on the cold water inlet side of the heat exchanger 321, a thermometer T2 is provided on the outlet side, the temperature of the cold water is measured, the flow rate of the circulating cold water is measured, and the temperature of the cold water on the inlet side and the outlet side is measured. Calculate the exchange heat of cold water based on the difference and the flow rate of cold water. A thermometer T3 is installed on the inlet side of the slurry of the heat exchanger 321 and a thermometer T4 is installed on the outlet side to measure the temperature of the slurry, and further the flow rate of the circulating slurry is measured. The heat transmission rate was calculated from the amount of heat exchanged for cold water, the inlet temperature of the cold water, the outlet temperature, the inlet temperature of the slurry, and the outlet temperature. Moreover, the pressure loss was installed in the inlet side and outlet side of the slurry of the heat exchanger 321, and the pressure loss on the slurry side of the heat exchanger was measured. The flow rate of the liquid flowing through the heat exchanger 31 and the heat exchanger 321 was kept constant, and the flow rate inside the heat exchanger was kept constant.
By heat exchange between the cold water and the raw material solution in the first heat exchanger 31, heat energy equivalent to sensible heat is taken from the raw material solution and at the same time a (some) supercooled state is created. Subsequently, at the node N2, a part of the slurry exiting the second heat exchanger 321 is refluxed, and the slurry is mixed with the raw solution in the supercooled state to release the supercooling. Then, heat energy corresponding to latent heat is taken away by heat exchange between the cold water and the raw material solution that has been subcooled in the second heat exchanger 321 to produce a large amount of clathrate hydrate to produce a latent heat storage slurry. .

表3に実験条件としての熱交換器321の冷水の入口温度、冷水の入口温度変動幅、(原料溶液としての)スラリの入口温度、スラリの入口温度と冷水の入口温度の温度差、平均温度差及び温度差の変動幅を示す。スラリの入口温度は、スラリを還流させることにより安定した温度となっている。
熱交換器321のスラリ入口と冷水入口の温度差の平均値である平均温度差が同じ2.4℃であるが、温度差の変動幅が0.7℃と大きいケースと、0.3℃と小さいケースについて、スラリ製造装置の運転の安定性について検証した。
Table 3 shows the cold water inlet temperature of the heat exchanger 321 as experimental conditions, the fluctuation range of the cold water inlet temperature, the slurry inlet temperature (as a raw material solution), the temperature difference between the slurry inlet temperature and the cold water inlet temperature, and the average temperature. The fluctuation range of the difference and the temperature difference is shown. The inlet temperature of the slurry is a stable temperature by refluxing the slurry.
The average temperature difference which is the average value of the temperature difference between the slurry inlet and the cold water inlet of the heat exchanger 321 is the same 2.4 ° C., but the fluctuation range of the temperature difference is as large as 0.7 ° C., and 0.3 ° C. In the small case, the stability of the operation of the slurry manufacturing equipment was verified.

Figure 2011064419
Figure 2011064419

冷水の入口温度の変動幅を小さくして冷水の入口温度を安定化させることにより、スラリ入口と冷水入口の温度差の変動幅を小さくすることができる。熱交換器321について、冷水流量とスラリ流量がそれぞれ一定の場合においては、スラリ入口と冷水入口の温度差で交換熱量が決定される。そのため、スラリ入口と冷水入口の温度差の変動が大きい場合、交換熱量が大きく変動するが、温度差の変動が小さい場合には交換熱量はほぼ一定となる。   By reducing the fluctuation range of the cold water inlet temperature and stabilizing the cold water inlet temperature, the fluctuation range of the temperature difference between the slurry inlet and the cold water inlet can be reduced. In the heat exchanger 321, when the cold water flow rate and the slurry flow rate are constant, the exchange heat amount is determined by the temperature difference between the slurry inlet and the cold water inlet. For this reason, when the variation in the temperature difference between the slurry inlet and the cold water inlet is large, the exchange heat amount fluctuates greatly, but when the variation in temperature difference is small, the exchange heat amount is almost constant.

表3に示すケースについて、5時間スラリ製造運転を行った後の、熱交換器321のスラリ流路の圧力損失増加分と熱通過率を、それぞれ冷水の入口温度の変動が大きいケースの場合を1として表4に示す。変動が小さいケースの場合には圧力損失増加分が小さく、熱通過率は大きくなった。この結果から下記のことを確認できた。   For the cases shown in Table 3, the increase in pressure loss and the heat passage rate of the slurry flow path of the heat exchanger 321 after the slurry manufacturing operation for 5 hours is performed in the case where the fluctuation of the inlet temperature of the cold water is large. 1 as shown in Table 4. In the case of small fluctuation, the increase in pressure loss was small and the heat transfer rate was large. From the results, the following could be confirmed.

Figure 2011064419
Figure 2011064419

冷水入口の温度が安定せず大きく変動して、スラリ入口と冷水入口の温度差が安定していない場合には、突発的な交換熱量の増減に伴いスラリ温度の変動が激しくなり、過冷却解除が安定して行われない。過冷却解除が安定的に起こらないと、過冷却解除が急激に起こり、熱交換器内部で潜熱蓄熱性物質が急激に生成することがある。熱交換器内部で急激に潜熱蓄熱性物質が生成すると、熱交換器のスラリの流路を潜熱蓄熱性物質がふさぎ、熱交換器のスラリ流路の圧力損失が増大し、スラリの円滑な流送が阻害され安定的なスラリ製造ができなくなる。また、熱交換器の伝熱面に潜熱蓄熱性物質が付着するため、熱交換器の熱交換特性を示す熱通過率を低下させ、交換熱量が低下して安定的なスラリ製造ができなくなる。
一方、冷水の入口温度の変動幅を小さくして冷水入口の温度を安定化させることにより、スラリ入口と冷水入口の温度差の変動が小さくなり安定化し、交換熱量がほぼ一定となる。そのためスラリの過冷却解除が安定的に行われて、熱交換器内部での急激な過冷却解除を回避できる。スラリの過冷却解除が安定的に行われると、熱交換器内部で急激に潜熱蓄熱性物質が生成してスラリの流路を潜熱蓄熱性物質がふさぐことがないため、圧力損失の増大を抑制することができ、スラリが円滑に流送され安定的なスラリ製造ができる。また、熱交換器の伝熱面に潜熱蓄熱性物質が付着することを抑制できるため、熱通過率の低下を抑制でき熱通過率を高く維持できるため、交換熱量の低下を抑制して安定的なスラリ製造ができる。
If the temperature of the chilled water inlet is not stable and fluctuates greatly, and the temperature difference between the slurry inlet and the chilled water inlet is not stable, the fluctuation of the slurry temperature becomes more acute with sudden increase or decrease of the exchange heat, and the overcooling is released. Is not performed stably. If the supercooling release does not occur stably, the supercooling release occurs abruptly, and a latent heat storage material may be rapidly generated inside the heat exchanger. If the latent heat storage material is suddenly generated inside the heat exchanger, the latent heat storage material will block the slurry flow path of the heat exchanger, increasing the pressure loss in the slurry flow path of the heat exchanger and smoothing the flow of the slurry. Feeding is hindered and stable slurry production cannot be performed. Further, since the latent heat storage material adheres to the heat transfer surface of the heat exchanger, the heat passage rate indicating the heat exchange characteristics of the heat exchanger is lowered, and the amount of exchange heat is lowered, so that stable slurry production cannot be performed.
On the other hand, by reducing the fluctuation range of the cold water inlet temperature to stabilize the temperature of the cold water inlet, the fluctuation of the temperature difference between the slurry inlet and the cold water inlet is reduced and stabilized, and the exchange heat quantity becomes substantially constant. For this reason, the slurry is stably released from the supercooling, and the sudden supercooling release in the heat exchanger can be avoided. If the slurry is stably released from overcooling, the latent heat storage material will not be abruptly generated inside the heat exchanger and the slurry flow path will not block the slurry flow path, preventing an increase in pressure loss. it can be slurry can smoothly Nagareoku are stable slurry preparation. In addition, since it is possible to suppress the latent heat storage material from adhering to the heat transfer surface of the heat exchanger, it is possible to suppress a decrease in the heat passage rate and maintain a high heat passage rate. Slurry manufacturing is possible.

潜熱蓄熱性物質をより長時間にわたり安定に又は連続して製造するために、スラリ入口と冷水入口の平均温度差が同じ場合には、スラリ入口と冷水入口の温度差の変動幅を小さくすることが効果的であることを明らかにした。そのためには、スラリ入口と冷水入口の両方の温度を安定化させる必要がある。スラリ入口温度を安定化させるためにスラリ側を還流させる従来技術に加えて、冷水側を還流させることにより冷水側の温度を安定化させることができ、その結果スラリと冷水の温度差が安定し交換熱量が一定となり、スラリの過冷却解除を安定に起こすことができるようになり、潜熱蓄熱性物質をより長時間にわたり安定にまたは連続に製造可能となる。   If the average temperature difference between the slurry inlet and the chilled water inlet is the same, the fluctuation range of the temperature difference between the slurry inlet and the chilled water inlet should be reduced in order to produce the latent heat storage material stably or continuously over a longer period of time. It was revealed that is effective. For that purpose, it is necessary to stabilize the temperature of both the slurry inlet and the cold water inlet. In addition to the conventional technology of refluxing the slurry side to stabilize the slurry inlet temperature, the temperature of the cold water side can be stabilized by refluxing the cold water side, resulting in a stable temperature difference between the slurry and the cold water. The exchange heat amount becomes constant, the slurry can be stably released from overcooling, and the latent heat storage material can be manufactured stably or continuously over a longer period of time.

[検証実験2]
<本発明のスラリ製造装置とタンクを設けるスラリ製造装置との比較>
図8に示す冷水還流経路を設けたスラリ製造装置(D)(実施例1)と、冷水の入口温度の変動幅を小さくする手段として、冷水を一旦貯留するタンク13を冷水循環ポンプ2と熱交換器321との間に設けるスラリ製造装置(比較例1、図13に示す)について、スラリ製造装置の安定運転について検証した。原料溶液と熱交換器は検証実験1と同じものであり、実施例1において冷水を還流する割合は、熱交換器321の出口から送出される冷水の55vol%を還流した。
[Verification experiment 2]
<Comparison between the slurry manufacturing apparatus of the present invention and a slurry manufacturing apparatus provided with a tank>
The slurry manufacturing apparatus (D) (Example 1) provided with the cold water recirculation path shown in FIG. 8 and the tank 13 for temporarily storing the cold water as the means for reducing the fluctuation range of the cold water inlet temperature are connected to the cold water circulation pump 2 and the heat. About the slurry manufacturing apparatus (comparative example 1, shown in FIG. 13) provided between the exchangers 321, the stable operation of the slurry manufacturing apparatus was verified. The raw material solution and the heat exchanger were the same as those in the verification experiment 1. In Example 1, the ratio of the reflux of cold water was 55 vol% of the cold water sent from the outlet of the heat exchanger 321.

表5に冷水入口温度、冷水の変動幅、スラリ入口−冷水入口の温度差、平均温度差及び温度差の変動幅を示す。実施例1と比較例1とも冷水温度の変動幅を小さくして、スラリ入口−冷水入口の温度差の変動幅を0.5℃と抑制できている。   Table 5 shows the cold water inlet temperature, the fluctuation range of the cold water, the temperature difference between the slurry inlet and the cold water inlet, the average temperature difference, and the fluctuation range of the temperature difference. In both Example 1 and Comparative Example 1, the fluctuation range of the chilled water temperature is reduced, and the fluctuation range of the temperature difference between the slurry inlet and the chilled water inlet can be suppressed to 0.5 ° C.

Figure 2011064419
Figure 2011064419

5時間スラリ製造運転を行った後の、熱交換器321のスラリ流路の圧力損失増加分を表6に示す。   Table 6 shows the increase in pressure loss in the slurry flow path of the heat exchanger 321 after the slurry manufacturing operation for 5 hours.

Figure 2011064419
Figure 2011064419

実施例1と比較例1ともスラリ入口−冷水入口の温度差の変動幅を0.5℃と小さく抑制できていたが、圧力損失増加分は比較例1のタンク13を設けた場合の方が大きくなっていた。スラリ入口−冷水入口の温度差は実施例1では1.4℃であったが、比較例1では2.5℃と大きくなっていた。
この結果より、冷水入口温度を安定させてスラリ入口と冷水入口の温度差の変動幅を同程度とした場合には、実施例1のようにスラリ入口と冷水入口の温度差そのものを小さくする方が圧力損失の増加を抑制できることがわかった。そのため、スラリ入口と冷水入口の温度差を小さくしながら、冷水入口温度を安定させて、温度差の変動幅を小さくすることにより、潜熱蓄熱性物質をより長時間にわたり安定に又は連続して製造することができる。
In both Example 1 and Comparative Example 1, the fluctuation range of the temperature difference between the slurry inlet and the cold water inlet was suppressed to be as small as 0.5 ° C. However, the increase in pressure loss was more when the tank 13 of Comparative Example 1 was provided. It was getting bigger. The temperature difference between the slurry inlet and the cold water inlet was 1.4 ° C. in Example 1, but was as large as 2.5 ° C. in Comparative Example 1.
From this result, when the temperature of the chilled water inlet is stabilized and the fluctuation range of the temperature difference between the slurry inlet and the chilled water inlet is made approximately the same, the temperature difference itself between the slurry inlet and the chilled water inlet is reduced as in the first embodiment. It was found that the increase in pressure loss can be suppressed. For this reason, the temperature difference between the slurry inlet and the chilled water inlet is reduced, the temperature of the chilled water inlet is stabilized, and the fluctuation range of the temperature difference is reduced, thereby producing the latent heat storage material stably or continuously over a longer period of time. can do.

潜熱蓄熱性物質をより長時間にわたり安定に又は連続して製造するために、スラリ入口と冷水入口の温度差を小さくしながら、冷水入口温度を安定させてスラリ入口と冷水入口の温度差の変動幅を小さくするスラリ製造装置として、タンク13を設けるスラリ製造装置についてさらに検討する。
比較例1で用いた図13に示すタンク13を設けるスラリ製造装置において、比較例1では冷水入口温度を5.1〜5.2℃としていたが、実施例1と同程度の6.2℃としてスラリ入口と冷水入口の温度差を小さくすること(比較例2、3)を検討する。
In order to produce a latent heat storage material stably or continuously over a longer period of time, the temperature difference between the slurry inlet and the chilled water inlet is stabilized by reducing the temperature difference between the slurry inlet and the chilled water inlet while the temperature of the chilled water inlet is stabilized. as slurry manufacturing apparatus for reducing the width, further consider the slurry manufacturing apparatus provided with a tank 13.
In the slurry manufacturing apparatus provided with the tank 13 shown in FIG. 13 used in Comparative Example 1, the cold water inlet temperature was 5.1 to 5.2 ° C. in Comparative Example 1, but it was 6.2 ° C., which was the same as that in Example 1. As an example, it is considered to reduce the temperature difference between the slurry inlet and the cold water inlet (Comparative Examples 2 and 3).

<比較例2、3>
比較例2は、冷凍機1から供給する冷水の量を比較例1と同じにし、冷水を一旦貯留するタンク13を用いて熱交換器入口側の冷水温度を安定させ、さらに冷水入口温度を6.2℃にしてスラリ入口と冷水入口の温度差を実施例1と同程度に小さくするスラリ製造装置である。比較例2では、冷水入口温度を6.2℃にしてスラリ入口と冷水入口の温度差を1.4℃と小さくし、冷水温度を安定させスラリ入口と冷水入口の温度差の変動を小さくすることにより、熱交換器における潜熱蓄熱性物質の付着を少なくし、圧力損失の増加を抑制して、潜熱蓄熱性物質をより長時間にわたり安定に又は連続して製造することができる。しかし、比較例1と比べて、スラリ入口と冷水入口の温度差が小さい分、交換熱量が小さくなるために、スラリ製造装置の能力が低下するという問題が生じる。
そこで、比較例2における冷凍機1から供給する冷水の量を増加させ、交換熱量を低下させないようにするスラリ製造装置である比較例3を検討する。比較例3では、スラリ入口と冷水入口の温度差を小さくし、冷水温度を安定させスラリ入口と冷水入口の温度差の変動を小さくすることにより、熱交換器における潜熱蓄熱性物質の付着を少なくし、圧力損失の増加を抑制して、かつ交換熱量を高く維持でき、潜熱蓄熱性物質をより長時間にわたり安定に又は連続して製造することができる。
しかし、比較例3では冷凍機から供給される冷水の量が2.3倍になるために、冷凍機の容量を2.3倍に大きくする必要があり(冷水の量を冷凍機の容量に比例させた場合)、冷凍機の仕様を大きくするため設備コストと運転コストが高くなるという問題がある。また、冷水の量を2.3倍まで増加させると、比較例1又は2と同じ配管を使用すると配管内部の冷水流速が大きくなり圧力損失が急激に増加するために、冷水側の配管を全て大きくする必要があり、設備コストが高くなるという問題、配管設置面積が増加する問題、配管が大きくなると重量増となるため施工上好ましくないという問題など多くの問題が生じる。さらに、冷水の量を2.3倍まで多くすると、冷水の温度を安定化させるためのタンク13も大きくする必要があり、設備コストが高くなりまた設置面積が増加するため問題が生じる。
<Comparative Examples 2 and 3>
In Comparative Example 2, the amount of cold water supplied from the refrigerator 1 is the same as that of Comparative Example 1, the temperature of the cold water at the heat exchanger inlet side is stabilized using the tank 13 for temporarily storing the cold water, and the cold water inlet temperature is set to 6 This is a slurry manufacturing apparatus in which the temperature difference between the slurry inlet and the cold water inlet is reduced to about 2 ° C. to the same extent as in the first embodiment. In Comparative Example 2, the chilled water inlet temperature is set to 6.2 ° C., the temperature difference between the slurry inlet and the chilled water inlet is reduced to 1.4 ° C., the chilled water temperature is stabilized, and the fluctuation of the temperature difference between the slurry inlet and the chilled water inlet is reduced. Thereby, adhesion of the latent heat storage material in the heat exchanger can be reduced, an increase in pressure loss can be suppressed, and the latent heat storage material can be manufactured stably or continuously over a longer period of time. However, compared with the comparative example 1, since the amount of exchange heat becomes small because the temperature difference between the slurry inlet and the cold water inlet is small, there arises a problem that the capacity of the slurry manufacturing apparatus is lowered.
Therefore, Comparative Example 3 which is a slurry manufacturing apparatus that increases the amount of cold water supplied from the refrigerator 1 in Comparative Example 2 and does not decrease the amount of exchange heat will be examined. In Comparative Example 3, the temperature difference between the slurry inlet and the chilled water inlet is reduced, the chilled water temperature is stabilized, and the fluctuation of the temperature difference between the slurry inlet and the chilled water inlet is reduced, thereby reducing the adhesion of the latent heat storage material in the heat exchanger. In addition, the increase in pressure loss can be suppressed and the exchange heat quantity can be maintained high, and the latent heat storage material can be produced stably or continuously over a longer period of time.
However, in Comparative Example 3, since the amount of cold water supplied from the refrigerator is 2.3 times, it is necessary to increase the capacity of the refrigerator by 2.3 times (the amount of cold water is set to the capacity of the refrigerator). In the case of proportionality), there is a problem that the equipment cost and the operating cost increase because the specification of the refrigerator is increased. Also, if the amount of chilled water is increased up to 2.3 times, using the same piping as in Comparative Example 1 or 2, the chilled water flow rate inside the piping increases and the pressure loss increases rapidly. Many problems arise, such as the problem that the equipment cost becomes high, the problem that the piping installation area increases, the problem that the pipe becomes large, and the weight increases when the pipe becomes large, which is not preferable in construction. Further, if the amount of cold water is increased up to 2.3 times, the tank 13 for stabilizing the temperature of the cold water needs to be increased, which causes a problem because the equipment cost increases and the installation area increases.

比較例3では上記のような問題が生じるが、本発明の冷水を還流させるスラリ製造装置では、スラリ入口と冷水入口の温度差が小さいが、冷水を還流させ冷凍機から送られる冷水と合流させるため熱交換器に流入させる冷水の量が多いため、交換熱量を高く維持することができる。そのため、タンク13が不要であり冷凍機の大きさを変える必要もなく、冷水還流ラインC5と冷水還流ポンプ9を設けるだけでよい。冷水側配管の口径に関しても、冷水還流ラインC5を冷水循環経路C1に合流させる節点Naから熱交換器を通って節点Nbまでの間を接続する配管だけを大きくするだけでよい。   Although the above problems occur in Comparative Example 3, the temperature difference between the slurry inlet and the cold water inlet is small in the slurry manufacturing apparatus for refluxing cold water according to the present invention, but the cold water is refluxed and merged with the cold water sent from the refrigerator. Therefore, since there is much quantity of the cold water which flows in into a heat exchanger, exchange heat quantity can be maintained highly. Therefore, the tank 13 is not necessary and the size of the refrigerator need not be changed, and only the cold water reflux line C5 and the cold water reflux pump 9 are provided. As for the diameter of the cold water side pipe, only the pipe connecting the node Na where the cold water reflux line C5 joins the cold water circulation path C1 to the node Nb through the heat exchanger only needs to be enlarged.

[検証実験3]
<冷水を還流するスラリ製造装置と冷水を還流しないスラリ製造装置との比較>
図8に示す冷水還流経路を設けたスラリ製造装置(D)を用いて、冷水を還流するスラリ製造装置(実施例2)と、冷水を還流しないスラリ製造装置(比較例4)とについて、スラリ製造装置の安定運転を検証する実験を実施した。
スラリ製造装置(D)では、第1の熱交換器31で冷水と原料溶液との熱交換により、原料溶液から顕熱相当の熱エネルギーを奪い、同時に(多少の)過冷却状態を作り出している。引き続き、節点N2で、第2の熱交換器321を出たスラリの一部を還流し、過冷却状態の原料溶液にスラリを混合して、過冷却を解除する。そして第2の熱交換器321で冷水と過冷却を解除された原料溶液との熱交換により潜熱相当の熱エネルギーを奪い、多量の包接水和物を生成して潜熱蓄熱性スラリを製造する。
第1の熱交換器31にはプレート式熱交換器(高さ1.1m、幅0.4m、奥行き0.2m、片側の保有水量0.01m3、対向流方式)を、第2の熱交換器321と322には、プレート式熱交換器(高さ1.6m、幅0.6m、奥行き0.1m、片側の保有水量0.01m3、対向流方式)を用いて、スラリ製造実験を実施した。原料溶液には、臭化テトラnブチルアンモニウム(TBAB)の16wt%濃度の水溶液を用いた。実施例2において冷水を還流する割合は、熱交換器321の出口から送出される冷水の55vol%を還流した。
[Verification Experiment 3]
<Comparison between a slurry production apparatus that circulates cold water and a slurry production apparatus that does not circulate cold water>
A slurry production apparatus (Example 2) that recirculates cold water and a slurry production apparatus (Comparative Example 4) that does not recirculate cold water using a slurry production apparatus (D) provided with a cold water recirculation path shown in FIG. An experiment was conducted to verify the stable operation of the manufacturing equipment.
In the slurry manufacturing apparatus (D), heat energy equivalent to sensible heat is taken from the raw material solution by heat exchange between the cold water and the raw material solution in the first heat exchanger 31, and at the same time, a (some) supercooled state is created. . Subsequently, at the node N2, a part of the slurry exiting the second heat exchanger 321 is refluxed, and the slurry is mixed with the raw solution in the supercooled state to release the supercooling. Then, heat energy corresponding to latent heat is taken away by heat exchange between the cold water and the raw material solution that has been subcooled in the second heat exchanger 321 to produce a large amount of clathrate hydrate to produce a latent heat storage slurry. .
The first heat exchanger 31 includes a plate heat exchanger (height 1.1 m, width 0.4 m, depth 0.2 m, amount of retained water 0.01 m 3 on one side, counter-flow system), and the second heat exchanger 321. In 322, a slurry production experiment was performed using a plate heat exchanger (height 1.6 m, width 0.6 m, depth 0.1 m, water content 0.01 m 3 on one side, counter flow system). As a raw material solution, a 16 wt% aqueous solution of tetra n-butylammonium bromide (TBAB) was used. In Example 2, the ratio of refluxing cold water was such that 55 vol% of cold water fed from the outlet of the heat exchanger 321 was refluxed.

検証実験1と同様に冷水とスラリの温度を計測し、スラリの入口温度と冷水の入口温度の温度差、平均温度差及び温度差の変動幅を表7に示す。実施例2では冷水還流により冷水の入口温度が安定化しているため、スラリ入口と冷水入口の温度差の変動幅は0.4℃と冷水還流しない比較例4の半分程度になっており、スラリ入口と冷水入口の温度差を小さくしつつ、温度差を変動し難く安定化させることができている。   The temperature of cold water and slurry was measured in the same manner as in verification experiment 1, and the temperature difference between the inlet temperature of the slurry and the inlet temperature of the cold water, the average temperature difference, and the fluctuation range of the temperature difference are shown in Table 7. In Example 2, since the cold water inlet temperature is stabilized by the cold water recirculation, the variation width of the temperature difference between the slurry inlet and the cold water inlet is 0.4 ° C., which is about half that of Comparative Example 4 in which the cold water does not recirculate. While the temperature difference at the cold water inlet is reduced, the temperature difference is not easily changed and stabilized.

Figure 2011064419
Figure 2011064419

また、検証実験1と同様に熱交換器のスラリ側の圧力損失を計測した。図14に、スラリ製造運転開始から5時間経過時点までの熱交換器321のスラリ側の圧力損失増加分の経時変化を示し、表7に5時間後の圧力損失増加分を示す。冷水還流しない比較例4では圧力損失が40kPaまで増加しているのに対して、冷水還流を行う実施例2では圧力損失が13kPaまでしか増加していなかった。
冷水還流することによりスラリ入口と冷水入口の温度差を安定化して、突発的な交換熱量の増減を回避でき、スラリの過冷却解除を安定して行い、熱交換器内部の伝熱面への潜熱蓄熱性物質の付着を抑制でき、圧力損失の増加を1/3以下に抑制でき、長時間にわたり安定にまたは連続して潜熱蓄熱性スラリを製造することができる。
It was also measured pressure loss of the slurry side of the heat exchanger in the same manner as the verification experiment 1. FIG. 14 shows the change over time of the increase in pressure loss on the slurry side of the heat exchanger 321 from the start of the slurry production operation to the point of 5 hours, and Table 7 shows the increase in pressure loss after 5 hours. In Comparative Example 4 where the cold water was not refluxed, the pressure loss increased to 40 kPa, whereas in Example 2 where the cold water was refluxed, the pressure loss increased only to 13 kPa.
By circulating the cold water, the temperature difference between the slurry inlet and the cold water inlet can be stabilized, and sudden increase and decrease in the amount of exchange heat can be avoided, the slurry can be overcooled stably, and the heat transfer surface inside the heat exchanger can be removed. The adhesion of the latent heat storage material can be suppressed, the increase in pressure loss can be suppressed to 1/3 or less, and the latent heat storage slurry can be produced stably or continuously over a long period of time.

また、検証実験1と同様に熱交換器の熱通過率を計算し、表7に熱交換器の熱通過率の低下割合を示す。スラリ製造を開始してから1時間後の熱通過率を基にして、5時間後の熱通過率の低下割合を算出したものである。冷水還流しない比較例4では熱通過率の低下割合が50%にまで低下しているのに対して、冷水還流を行う実施例2では熱通過率の低下割合が36%にまでしか低下していなかった。
冷水還流することによりスラリ入口と冷水入口の温度差が安定化して、突発的な交換熱量の増減を回避でき、スラリの過冷却解除が安定して行われ、熱交換器内部の伝熱面への潜熱蓄熱性物質の付着を抑制でき、伝熱特性の悪化を抑えることができる。そのため、熱交換特性を現す熱通過率の時間の経過に対する低下割合を小さくすることができる。
実施例2のように冷水還流することにより、スラリ入口と冷水入口の温度差を安定化することができ、熱通過率を高く維持できることができ、長時間にわたり安定にまたは連続して潜熱蓄熱性スラリを製造することができる。
Moreover, the heat passage rate of the heat exchanger was calculated in the same manner as in the verification experiment 1, and Table 7 shows the rate of decrease in the heat passage rate of the heat exchanger. The rate of decrease in the heat passage rate after 5 hours is calculated based on the heat passage rate after 1 hour from the start of slurry production. In Comparative Example 4 in which cold water is not refluxed, the rate of decrease in heat passage rate is reduced to 50%, whereas in Example 2 in which cold water is refluxed, the rate of decrease in heat passage rate is only reduced to 36%. There wasn't.
By circulating the chilled water, the temperature difference between the slurry inlet and the chilled water inlet is stabilized, and sudden increase / decrease in the amount of exchange heat can be avoided, and the slurry is stably released from overcooling to the heat transfer surface inside the heat exchanger. Adhesion of the latent heat storage material can be suppressed, and deterioration of heat transfer characteristics can be suppressed. For this reason, it is possible to reduce the rate of decrease of the heat passage rate that exhibits heat exchange characteristics with respect to the passage of time.
By circulating cold water as in Example 2, the temperature difference between the slurry inlet and the cold water inlet can be stabilized, the heat transfer rate can be maintained high, and the latent heat storage property can be stably or continuously over a long period of time. A slurry can be produced.

冷水還流することにより冷水の入口温度の変動幅を小さくして冷水入口の温度を安定化させることにより、スラリ入口と冷水入口の温度差の変動を小さくして安定化し、交換熱量をほぼ一定とする。そのためスラリの過冷却解除が安定的に行われて、熱交換器内部での急激な過冷却解除を回避できる。スラリの過冷却解除が安定的に行われると、熱交換器内部で急激に潜熱蓄熱性物質が生成してスラリの流路を潜熱蓄熱性物質がふさぐことがないため、圧力損失の増大を抑制することができ、スラリが円滑に流送され安定的なスラリ製造ができる。また、熱交換器の伝熱面に潜熱蓄熱性物質が付着することを低減できるため、熱通過率の低下を抑制でき熱通過率を高く維持できるため、交換熱量の低下を抑制して安定的なスラリ製造ができる。   By reducing the fluctuation range of the cold water inlet temperature by circulating the cold water and stabilizing the temperature of the cold water inlet, the fluctuation of the temperature difference between the slurry inlet and the cold water inlet is reduced and stabilized, and the exchange heat amount is made substantially constant. To do. For this reason, the slurry is stably released from the supercooling, and the sudden supercooling release in the heat exchanger can be avoided. If the slurry is stably released from overcooling, the latent heat storage material will not be abruptly generated inside the heat exchanger and the slurry flow path will not block the slurry flow path, preventing an increase in pressure loss. Thus, the slurry can be smoothly fed and stable slurry production can be achieved. In addition, since it is possible to reduce the adhesion of latent heat storage materials to the heat transfer surface of the heat exchanger, it is possible to suppress a decrease in the heat transfer rate and maintain a high heat transfer rate, thereby suppressing a decrease in the exchange heat amount and being stable. it is a slurry production.

[検証実験4]
<交換熱量の検証>
本発明の冷水を還流するスラリ製造装置では、熱交換器から送出された冷水の一部を熱交換器の入口側に還流させるため、冷水を還流しない場合に比べて、熱交換器に流入する冷水入口温度が高くなり、熱交換器の対数平均温度差が小さい。そこで、交換熱量について検証した。検証実験3に用いた装置と原料溶液を用いて、冷水を還流するスラリ製造装置(実施例3)と、冷水を還流しないスラリ製造装置(比較例5)とについて、スラリ製造装置の交換熱量を検証する実験を実施した。
[Verification Experiment 4]
<Verification of heat exchange amount>
In the slurry manufacturing apparatus for recirculating cold water according to the present invention, a portion of the cold water sent from the heat exchanger is recirculated to the inlet side of the heat exchanger, so that it flows into the heat exchanger as compared with the case where the cold water is not recirculated. The cold water inlet temperature is high, and the logarithmic average temperature difference of the heat exchanger is small. Therefore, the amount of exchange heat was verified. Using the apparatus and raw material solution used in the verification experiment 3, for the slurry manufacturing apparatus that recirculates cold water (Example 3) and the slurry manufacturing apparatus that does not recirculate cold water (Comparative Example 5), the exchange heat amount of the slurry manufacturing apparatus is Experiments to verify were performed.

検証実験1と同様に熱交換器のスラリ側の圧力損失を計測した。図15に、スラリ製造装置の運転開始から10時間までの熱交換器321のスラリ側の圧力損失増加分の経時変化を示す。冷水還流しない比較例5では圧力損失が160kPaまで増加しているのに対して、冷水還流を行う実施例3では圧力損失が60kPaまでしか増加していなかった。
冷水還流することによりスラリ入口と冷水入口の温度差を安定化して、突発的な交換熱量の増減を回避でき、スラリの過冷却解除が安定して行われ、熱交換器内部の伝熱面への潜熱蓄熱性物質の付着を抑制でき、圧力損失の増加を大幅に抑制でき、長時間にわたり安定にまたは連続して潜熱蓄熱性スラリを製造することができる。
As in the verification experiment 1, the pressure loss on the slurry side of the heat exchanger was measured. FIG. 15 shows the change over time of the increase in pressure loss on the slurry side of the heat exchanger 321 from the start of operation of the slurry production apparatus to 10 hours. In Comparative Example 5 where the cold water was not refluxed, the pressure loss increased to 160 kPa, whereas in Example 3 where the cold water was refluxed, the pressure loss increased only to 60 kPa.
By circulating the cold water, the temperature difference between the slurry inlet and the cold water inlet can be stabilized to avoid sudden increase and decrease in the amount of exchange heat, and the slurry can be stably released from overcooling to the heat transfer surface inside the heat exchanger. The adhesion of the latent heat storage material can be suppressed, the increase in pressure loss can be significantly suppressed, and the latent heat storage slurry can be produced stably or continuously over a long period of time.

また、検証実験1と同様に熱交換器の交換熱量と熱通過率を計算し、表8に示す。冷水入口の平均温度は、比較例5では5.0℃であるのに対して、実施例3では熱交換器321から送出した熱交換された冷水の一部を還流させるために高くなり5.9℃である。対数平均温度差は比較例5では1.0℃であるのに対して、実施例3では冷水還流により冷水入口温度が高いため0.7℃である。
一方、実施例3では冷水還流により熱交換器に流入する冷水の流量が増加するために、熱交換器内部の冷水流速は比較例5の2.2倍になり、交換熱量が大きくなる。これにより、スラリ製造装置の運転開始時における実施例3の熱通過率は比較例5と比較して1.4倍と大きくなっている。スラリ製造装置の運転開始から10時間後の熱通過率は、比較例5の運転開始時の熱通過率を1とすると、比較例5では0.5にまで低下する(熱通過率の低下割合50%)のに対して、実施例3では0.9になる程度(熱通過率の低下割合36%)であり、熱通過率の低下を小さくすることができる。
スラリ製造装置の運転開始から10時間後の交換熱量は、実施例3では比較例5に対して1.3倍と大きくなっている。実施例3の対数平均温度差は比較例5に比べて小さいが、冷水還流により冷水の流量が増加するため交換熱量が大きくなることと、運転を継続した時の熱通過率の低下を小さくすることができることにより、交換熱量を高く維持することができることを確認した。
Further, as in the verification experiment 1, the heat exchange rate and the heat passage rate of the heat exchanger are calculated and shown in Table 8. The average temperature of the cold water inlet is 5.0 ° C. in Comparative Example 5, whereas in Example 3, the average temperature becomes high in order to recirculate a part of the heat-exchanged cold water sent from the heat exchanger 321. 9 ° C. The logarithmic average temperature difference is 1.0 ° C. in Comparative Example 5, whereas it is 0.7 ° C. in Example 3 because the cold water inlet temperature is high due to cold water reflux.
On the other hand, in Example 3, since the flow rate of the cold water flowing into the heat exchanger due to the cold water reflux increases, the flow rate of the cold water inside the heat exchanger becomes 2.2 times that of the comparative example 5, and the amount of exchange heat increases. Thereby, the heat passage rate of Example 3 at the start of operation of the slurry manufacturing apparatus is 1.4 times larger than that of Comparative Example 5. The heat passage rate after 10 hours from the start of operation of the slurry manufacturing apparatus is reduced to 0.5 in Comparative Example 5 when the heat passage rate at the start of operation in Comparative Example 5 is 1. On the other hand, in Example 3, it is about 0.9 (the rate of decrease in the heat passage rate is 36%), and the decrease in the heat passage rate can be reduced.
The amount of exchange heat 10 hours after the start of operation of the slurry manufacturing apparatus is 1.3 times as large as that of Comparative Example 5 in Example 3. Although the logarithmic average temperature difference of Example 3 is smaller than that of Comparative Example 5, the flow rate of cold water increases due to the cold water recirculation, so that the amount of exchange heat increases and the decrease in the heat passage rate when the operation is continued is reduced. by being able to confirm that it is possible to maintain a high amount of heat exchange.

Figure 2011064419
Figure 2011064419

包接水和物スラリを利用した蓄熱空調システムにおいて、蓄熱するためにスラリ製造装置によりスラリを製造する時間は通常10時間程度である。実施例3のスラリ製造装置において、一つの第2の熱交換器により10時間安定して連続運転することができるということは、一方の第2の熱交換器から他方の第2の熱交換器に切り替える必要がなくなり、第2の熱交換器を1台にすることが可能となる。また、温水循環経路C6が不要となり、スラリ製造装置をコンパクトにすることができ、設備コストを低くすることができ、狭い空間でもスラリ製造装置を設置することが可能となる。   In a heat storage air-conditioning system using clathrate hydrate slurry, the time for producing the slurry by the slurry production apparatus to store heat is usually about 10 hours. In the slurry manufacturing apparatus of Example 3, the fact that one second heat exchanger can be continuously operated stably for 10 hours means that from one second heat exchanger to the other second heat exchanger. There is no need to switch to, and the second heat exchanger can be made one. Further, the hot water circulation path C6 is not required, the slurry manufacturing apparatus can be made compact, the equipment cost can be reduced, and the slurry manufacturing apparatus can be installed even in a narrow space.

[検証実験5]
<冷水を還流する割合>
検証実験3に用いた冷水を還流するスラリ製造装置と原料溶液を用いて、冷水を還流する割合を変えてスラリ製造装置の製造の安定性への影響を検証する実験(実施例4)を実施した。冷凍機から送出される冷水流量に対する還流冷水流量の割合を冷水還流割合として、還流しない場合と冷水還流割合が50vol%、70vol%、80vol%、90vol%の場合について、スラリ製造運転開始から10時間後の熱交換器のスラリ側の圧力損失増加分を計測し、図16に示す。
[Verification Experiment 5]
<Ratio of refluxing cold water>
Using the slurry manufacturing equipment that circulates cold water and the raw material solution used in verification experiment 3, an experiment (Example 4) was conducted to verify the effect on the manufacturing stability of the slurry manufacturing equipment by changing the ratio of circulating cold water did. The ratio of the flow rate of the refrigerated cold water to the flow rate of the chilled water delivered from the refrigerator is the ratio of the chilled water flow rate, and when the refrigeration rate is 50 vol%, 70 vol%, 80 vol%, 90 vol%, 10 hours from the start of the slurry manufacturing operation. the increase pressure loss of the slurry side of the heat exchanger after the measure, shown in Figure 16.

スラリ製造運転開始から10時間後の圧力損失増加分は、冷水還流しない場合には150kPaであるが、冷水還流割合が50vol%の場合には60kPaと大幅に低くすることができる。冷水還流割合が50vol%より大きくなると圧力損失増加分は小さくなるが、冷水還流割合が70vol%より大きい場合には圧力損失増加分の低下は少なくなり、ほとんど同程度である。
冷水還流量を大きくすればするほど熱交換器に流通する冷水の量が増えるため、流送配管の口径を大きくすることが必要となる。そのため、冷水還流割合は50vol%から70vol%の間に設定するのが適当である。ただし、スラリ製造装置の条件により、この適切な冷水還流割合の範囲は異なる可能性がある。
The increase in pressure loss 10 hours after the start of the slurry production operation is 150 kPa when the cold water is not refluxed, but can be significantly reduced to 60 kPa when the cold water reflux ratio is 50 vol%. When the chilled water reflux rate is greater than 50 vol%, the increase in pressure loss decreases, but when the chilled water reflux rate is greater than 70 vol%, the decrease in the increase in pressure loss decreases and is almost the same.
As the amount of chilled water recirculation increases, the amount of chilled water flowing through the heat exchanger increases, so it is necessary to increase the diameter of the inflow pipe. Therefore, it is appropriate to set the cold water reflux ratio between 50 vol% and 70 vol%. However, the appropriate range of the cold water reflux ratio may vary depending on the conditions of the slurry manufacturing apparatus.

[検証実験6]
<大型熱交換器を用いたスラリ製造装置>
検証実験1〜5で用いたスラリ製造装置の熱交換器よりも大きな熱交換器を用いて、図8に示すスラリ製造装置(D)を構成し実験を実施した。熱交換器31にはプレート式熱交換器(高さ1.8m、幅0.6m、奥行き0.3m、片側の保有水量0.06m3、対向流方式)を、熱交換器321と322には、プレート式熱交換器(高さ2m、幅0.8m、奥行き0.6m、片側の保有水量0.2m3、対向流方式)を用いて、潜熱蓄熱性スラリ製造実験を実施した。溶液には、臭化テトラnブチルアンモニウム(TBAB)16wt%濃度の水溶液を用いた。冷水を還流するスラリ製造装置(実施例5)と、冷水を還流しないスラリ製造装置(比較例6)とについて、スラリ製造装置の安定運転を検証する実験を実施した。実施例5において冷水を還流する割合は、熱交換321の出口から送出される冷水の20vol%を還流した。
[Verification Experiment 6]
<Slurry manufacturing equipment using large heat exchanger>
The slurry manufacturing apparatus (D) shown in FIG. 8 was configured using a heat exchanger larger than the heat exchanger of the slurry manufacturing apparatus used in the verification experiments 1 to 5, and the experiment was performed. The heat exchanger 31 is a plate heat exchanger (height 1.8m, width 0.6m, depth 0.3m, amount of water held on one side 0.06m 3 , counter flow system), and the heat exchangers 321 and 322 are plate types Using a heat exchanger (height 2m, width 0.8m, depth 0.6m, retained water volume 0.2m 3 on one side, counter flow system), a latent heat storage slurry production experiment was conducted. As the solution, an aqueous solution of tetra n-butylammonium bromide (TBAB) having a concentration of 16 wt% was used. Experiments were conducted to verify the stable operation of the slurry production apparatus for the slurry production apparatus that recirculates cold water (Example 5) and the slurry production apparatus that does not recirculate cold water (Comparative Example 6). In Example 5, 20% by volume of cold water fed from the outlet of the heat exchange 321 was refluxed.

検証実験1と同様に冷水とスラリの温度を計測し、スラリの入口温度と冷水の入口温度の温度差、平均温度差及び温度差の変動幅を表9に示す。実施例5では冷水還流により冷水の入口温度が安定化しているため、スラリ入口と冷水入口の温度差の変動幅は0.6℃と冷水還流しない比較例6に比べて小さくなっており、スラリ入口と冷水入口の温度差を小さくしつつ、温度差を変動し難く安定化させることができている。   The temperature of cold water and slurry was measured in the same manner as in the verification experiment 1, and the temperature difference between the inlet temperature of the slurry and the inlet temperature of the cold water, the average temperature difference, and the fluctuation range of the temperature difference are shown in Table 9. In Example 5, since the cold water inlet temperature is stabilized by the cold water recirculation, the fluctuation range of the temperature difference between the slurry inlet and the cold water inlet is 0.6 ° C., which is smaller than that of Comparative Example 6 in which the cold water is not recirculated. While the temperature difference between the inlet and the cold water inlet is reduced, the temperature difference is less likely to fluctuate and can be stabilized.

Figure 2011064419
Figure 2011064419

また、検証実験1と同様に熱交換器のスラリ側の圧力損失を計測した。図17に、運転開始から5時間経過時点までの熱交換器321のスラリ側の圧力損失増加分の経時変化を示す。冷水還流しない比較例6では圧力損失が170kPaまで増加しているのに対して、冷水還流を行う実施例5では圧力損失が100kPaまでしか増加していなかった。
冷水還流することによりスラリ入口と冷水入口の温度差を安定化して、突発的な交換熱量の増減を回避でき、スラリの過冷却解除を安定して行うことができ、熱交換器内部の伝熱面への潜熱蓄熱性物質の付着を抑制でき、圧力損失の増加を抑制でき、長時間にわたり安定にまたは連続して潜熱蓄熱性スラリを製造することができる。
熱交換器の大きさを変えた場合においても検証実験3と同様の効果が得られることが判明した。
It was also measured pressure loss of the slurry side of the heat exchanger in the same manner as the verification experiment 1. FIG. 17 shows changes over time in the amount of increase in pressure loss on the slurry side of the heat exchanger 321 from the start of operation to the time point when 5 hours have elapsed. In Comparative Example 6 in which the cold water was not refluxed, the pressure loss increased to 170 kPa, while in Example 5 in which the cold water was refluxed, the pressure loss increased only to 100 kPa.
Recirculating cold water stabilizes the temperature difference between the slurry inlet and the cold water inlet, avoids sudden increases and decreases in the amount of exchange heat, and enables stable release of slurry supercooling, and heat transfer inside the heat exchanger The adhesion of the latent heat storage material to the surface can be suppressed, the increase in pressure loss can be suppressed, and the latent heat storage slurry can be produced stably or continuously over a long period of time.
Even when the size of the heat exchanger was changed, it was found that the same effect as in the verification experiment 3 was obtained.

1 冷凍機
2 冷熱媒体循環ポンプ
3 熱交換器
31 第1の熱交換器
32 第2の熱交換器
321、322 第2の熱交換器
3A、3B 熱交換器
32A、32B 熱交換器
4 蓄熱槽
5 製造側循環ポンプ
6 スラリ還流ポンプ
7 熱負荷側の熱交換器
8 熱利用側循環ポンプ
9、9* 冷熱媒体還流ポンプ
10 温水タンク
11 温水循環ポンプ
13 タンク
C1 冷熱媒体循環経路
C2 製造側スラリ循環経路
C3 スラリ還流経路(第1の還流用配管)
C4 熱利用側スラリ循環経路
C5、C5* 冷熱媒体還流経路(第2の還流用配管)
C6 温水循環経路
N1〜N6、Na、Na*、Nb 節点
T1〜T4 温度センサ
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Cooling medium circulation pump 3 Heat exchanger 31 1st heat exchanger 32 2nd heat exchanger 321, 322 2nd heat exchanger 3A, 3B Heat exchanger 32A, 32B Heat exchanger 4 Thermal storage tank 5 Production-side circulation pump 6 Slurry recirculation pump 7 Heat exchanger 8 on heat load side Heat utilization-side circulation pump 9, 9 * Cooling medium recirculation pump 10 Hot water tank 11 Hot water circulation pump 13 Tank C 1 Cold heat medium circulation path C 2 Production-side slurry circulation Path C3 Slurry return path (first return pipe)
C4 Heat utilization side slurry circulation path C5, C5 * Cooling medium reflux path (second reflux pipe)
C6 Hot water circulation path N1 to N6, Na, Na *, Nb Nodes T1 to T4 Temperature sensor

Claims (3)

潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液を熱交換器における冷熱媒体との熱交換により冷却することにより、前記溶液中に前記潜熱蓄熱性物質を生成させる潜熱蓄熱性スラリの製造方法であって、前記熱交換器の出口側から入口側に前記溶液の一部をそこに含まれる前記潜熱蓄熱性物質とともに還流させる工程と、前記熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる工程とを有することを特徴とする潜熱蓄熱性スラリの製造方法。 A latent heat storage material capable of generating a latent heat storage material that can generate a latent heat storage material in the solution by cooling a solution that may cause supercooling during the generation by heat exchange with a cooling medium in a heat exchanger. A method for producing a porous slurry, the step of refluxing a part of the solution together with the latent heat storage material contained therein from the outlet side to the inlet side of the heat exchanger, and the inlet from the outlet side of the heat exchanger And a step of refluxing a part of the cooling medium on the side, a method for producing a latent heat storage slurry. 潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液の少なくとも一部を過冷却状態にした後、その過冷却状態を解除し、引き続き熱交換器における冷熱媒体との熱交換により冷却することにより、前記溶液中に前記潜熱蓄熱性物質を生成させる潜熱蓄熱性スラリの製造方法であって、前記熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる工程を有することを特徴とする潜熱蓄熱性スラリの製造方法。 After at least a part of the solution capable of generating a latent heat storage material that can cause supercooling at the time of generation is subcooled, the supercooled state is released, and then heat exchange with the cooling medium in the heat exchanger is performed. A method for producing a latent heat storage slurry that generates the latent heat storage material in the solution by cooling with a step, wherein a part of the cooling medium is refluxed from the outlet side to the inlet side of the heat exchanger A process for producing a latent heat storage slurry, comprising: 潜熱蓄熱性物質を生成可能で、その生成の際過冷却を起こし得る溶液を冷却させる第1の熱交換器と、第1の熱交換器により冷却された前記溶液を冷熱媒体との熱交換により冷却させる第2の熱交換器と、第2の熱交換器の出口側から入口側に前記溶液の一部を還流させる第1の還流用配管と、第2の熱交換器の出口側から入口側に前記冷熱媒体の一部を還流させる第2の還流用配管と、を備えることを特徴とする潜熱蓄熱性スラリの製造装置。 A first heat exchanger capable of generating a latent heat storage material and capable of cooling a solution that may cause supercooling during the generation, and the solution cooled by the first heat exchanger by heat exchange with a cooling medium A second heat exchanger to be cooled, a first reflux pipe for refluxing a part of the solution from the outlet side of the second heat exchanger to the inlet side, and an inlet from the outlet side of the second heat exchanger And a second recirculation pipe for recirculating a part of the cooling medium on the side, a latent heat storage slurry manufacturing apparatus.
JP2009216542A 2009-09-18 2009-09-18 Method and device of manufacturing latent heat storage slurry Pending JP2011064419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216542A JP2011064419A (en) 2009-09-18 2009-09-18 Method and device of manufacturing latent heat storage slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216542A JP2011064419A (en) 2009-09-18 2009-09-18 Method and device of manufacturing latent heat storage slurry

Publications (1)

Publication Number Publication Date
JP2011064419A true JP2011064419A (en) 2011-03-31

Family

ID=43950856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216542A Pending JP2011064419A (en) 2009-09-18 2009-09-18 Method and device of manufacturing latent heat storage slurry

Country Status (1)

Country Link
JP (1) JP2011064419A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183252A (en) * 1997-09-05 1999-03-26 Shinryo Corp Ice making apparatus
JP3972734B2 (en) * 2002-05-31 2007-09-05 Jfeエンジニアリング株式会社 Hydrate slurry manufacturing apparatus and operation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183252A (en) * 1997-09-05 1999-03-26 Shinryo Corp Ice making apparatus
JP3972734B2 (en) * 2002-05-31 2007-09-05 Jfeエンジニアリング株式会社 Hydrate slurry manufacturing apparatus and operation method thereof

Similar Documents

Publication Publication Date Title
CN101208564B (en) Hotwater supply device
JP2007107773A (en) Heat accumulator, heat pump system and solar system
KR101095483B1 (en) Heat pump heating and cooling system using sea water source
US20090266106A1 (en) Method and apparatus for producing clathrate hydrate slurry, and method for operating the same apparatus
JP2007132582A (en) Cooling system
JP2009074750A (en) Hot water supply system
JP5875925B2 (en) Thermal storage system and thermal storage method for thermal storage system
JP6337412B2 (en) Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system
JP2011064419A (en) Method and device of manufacturing latent heat storage slurry
WO2017110683A1 (en) Coolant circulating device and coolant circulating method
JP4888521B2 (en) Hydrate slurry manufacturing equipment
JP2007132658A (en) Generation suppression method of liquid passage of hydrate slurry
JP4514804B2 (en) Ice making and air conditioning system using supercooled water
JP2008215717A (en) Heat transfer device
JP2011064422A (en) Method and device of producing latent heat storage slurry
JP3947780B2 (en) Remodeling existing air conditioning system
JP6511710B2 (en) Refrigeration system
JP2014081167A (en) Water-cooling type air conditioning system and its operation control method
JP2011145028A (en) Ice thermal storage system
JP2009068826A (en) Method and apparatus for producing clathrate hydrate slurry and method of operating the production apparatus
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JP2006336018A (en) Method for bringing distribution of hydrate particle diameter of hydrate slurry close to normal distribution, method for transporting latent heat, medium, and method for transporting hydrate slurry
JP2007046855A (en) Hydrate slurry thermal storage device and thermal storage method
JP6569117B2 (en) Cold energy recovery system and cold energy recovery method
CN210197836U (en) Refrigeration water tank, cooling water machine for cutting machine, laser cutting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625