JP2011064101A - Evaporation fuel adsorbent and canister - Google Patents

Evaporation fuel adsorbent and canister Download PDF

Info

Publication number
JP2011064101A
JP2011064101A JP2009214363A JP2009214363A JP2011064101A JP 2011064101 A JP2011064101 A JP 2011064101A JP 2009214363 A JP2009214363 A JP 2009214363A JP 2009214363 A JP2009214363 A JP 2009214363A JP 2011064101 A JP2011064101 A JP 2011064101A
Authority
JP
Japan
Prior art keywords
heat storage
activated carbon
main body
evaporated fuel
carbon main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009214363A
Other languages
Japanese (ja)
Inventor
Shuichi Aso
秀一 麻生
Masanori Akagi
正紀 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009214363A priority Critical patent/JP2011064101A/en
Publication of JP2011064101A publication Critical patent/JP2011064101A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an evaporation fuel adsorbent capable of controlling the dropout of a heat storage material, and a canister provided with the evaporation fuel adsorbent. <P>SOLUTION: A heat storage molding 40 is configured by joining and integrating two or more heat storage material capsules 42, that enclose the phase-changing heat storage materials, within a spherical shell-like microcapsule formed of resin, ceramics, or the like. The heat storage molding 40 is built in an activated carbon body 38 formed into a cylindrical shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蒸発燃料吸着体及びキャニスタに関する。   The present invention relates to an evaporated fuel adsorber and a canister.

燃料タンク等で発生した蒸発燃料ガスを処理するためのキャニスタでは、活性炭(蒸発燃料吸着体)の温度変化を抑制することが望ましい。たとえば特許文献1には、表面に蓄熱材をまぶして固着した活性炭や、蓄熱材を練りこみペレット状に成形した活性炭が記載されている。   In a canister for treating evaporated fuel gas generated in a fuel tank or the like, it is desirable to suppress temperature change of activated carbon (evaporated fuel adsorbent). For example, Patent Document 1 describes activated carbon in which a surface is coated with a heat storage material and is fixed, and activated carbon obtained by kneading the heat storage material into a pellet shape.

しかし、特許文献1の活性炭では、蓄熱材が活性炭の表面に露出しているため、振動等で活性炭が擦れあって摩耗したときに、露出した蓄熱材が脱落することがある。   However, in the activated carbon of Patent Document 1, since the heat storage material is exposed on the surface of the activated carbon, the exposed heat storage material may fall off when the activated carbon is rubbed and worn by vibration or the like.

特開2006−207485号公報JP 2006-207485 A

本発明は上記事実を考慮し、蓄熱材の脱落を抑制可能な蒸発燃料吸着体と、この蒸発燃料吸着体を備えたキャニスタを得ることを課題とする。   This invention considers the said fact and makes it a subject to obtain the evaporative fuel adsorber which can suppress omission of a thermal storage material, and a canister provided with this evaporative fuel adsorber.

請求項1に記載の発明では、蒸発燃料の吸着及び脱離を行う活性炭により形成された活性炭本体と、前記活性炭本体の温度変化を抑制する複数の蓄熱部材が一体化され、活性炭本体に内蔵された蓄熱成形体と、を有する。   In the first aspect of the present invention, the activated carbon main body formed of activated carbon that adsorbs and desorbs the evaporated fuel and a plurality of heat storage members that suppress the temperature change of the activated carbon main body are integrated and incorporated in the activated carbon main body. And a heat storage molded body.

この蒸発燃料吸着体では、活性炭本体が活性炭により形成されており、蒸発燃料の吸着及び脱離を行う。また、蓄熱成形体を構成する蓄熱部材により、蒸発燃料吸着時の活性炭本体の温度上昇、及び、蒸発燃料脱離時の活性炭本体の温度低下が抑制される。   In this evaporated fuel adsorbent, the activated carbon main body is formed of activated carbon, and the evaporated fuel is adsorbed and desorbed. Moreover, the heat storage member which comprises a heat storage molded object suppresses the temperature rise of the activated carbon main body at the time of vaporization fuel adsorption | suction, and the temperature fall of the activated carbon main body at the time of vaporization fuel detachment | desorption.

複数の蓄熱部材は一体化されて蓄熱成形体とされており、しかも、活性炭本体に内蔵されている。すなわち、複数の蓄熱部材はいずれも、活性炭本体の表面に露出していないか、若しくは露出部分が少なっている状態で一体化されている。したがって、活性炭本体が擦れあったような場合でも、蓄熱部材の脱落が抑制される。   The plurality of heat storage members are integrated into a heat storage molded body, and are incorporated in the activated carbon main body. That is, all of the plurality of heat storage members are not exposed on the surface of the activated carbon main body or are integrated in a state where the exposed portions are few. Therefore, even when the activated carbon main body is rubbed, dropping of the heat storage member is suppressed.

なお、ここでいう「内蔵」とは、活性炭本体の表面から内側に入り込んだ位置にあること、すなわち、蓄熱部材の少なくとも一部は、活性炭本体の表面に露出しない構造になっていることをいう。   Note that the term “built-in” as used herein means that the inner wall of the activated carbon body is located inside, that is, the heat storage member is not exposed to the surface of the activated carbon body. .

請求項2に記載の発明では、請求項1に記載の発明において、前記活性炭本体が筒状に形成され、前記蓄熱成形体が前記活性炭本体の内側に収容されている。   In invention of Claim 2, in the invention of Claim 1, the said activated carbon main body is formed in the cylinder shape, and the said thermal storage molded object is accommodated inside the said activated carbon main body.

このように、筒状に活性炭本体を形成し、その内部には、蓄熱成形体を収容することで、簡単な構造で、蓄熱部材が活性炭本体に内蔵された構造の蒸発燃料吸着体が得られる。   In this way, the activated carbon main body is formed in a cylindrical shape, and the heat storage molded body is accommodated therein, thereby obtaining an evaporative fuel adsorber having a simple structure and a structure in which the heat storage member is built in the main body of the activated carbon. .

請求項3に記載の発明では、請求項2に記載の発明において、前記蓄熱成形体が、筒状に形成された前記活性炭本体の軸方向端部から内側に入り込んだ位置に配置されている。   In invention of Claim 3, in the invention of Claim 2, the said heat storage molded object is arrange | positioned in the position which entered inside from the axial direction edge part of the said activated carbon main body formed in the cylinder shape.

このように、蓄熱成形体を、活性炭本体の軸方向端部から内側に入り込んだ位置に配置することで、蓄熱部材が活性炭本体の軸方向端部から露出しなくなるので、蓄熱部材の脱落がより確実に抑制される。   In this way, by disposing the heat storage molded body at a position that goes inward from the axial end of the activated carbon main body, the heat storage member is not exposed from the axial end of the activated carbon main body, so that the heat storage member is more easily dropped. Suppressed reliably.

請求項4に記載の発明では、請求項1に記載の発明において、前記蓄熱成形体が、前記活性炭本体によってその外側の全面を覆われている。   In invention of Claim 4, in the invention of Claim 1, the said heat storage molded object is covered with the said activated carbon main body the whole outer surface.

このように、蓄熱成形体の外側の全面を活性炭本体によって覆ってしまうことで、蓄熱部材の脱落がより確実に抑制される。   Thus, the fall of a heat storage member is suppressed more reliably by covering the whole surface of the outside of a heat storage molded object with an activated carbon main body.

請求項5に記載の発明では、請求項1〜請求項4のいずれか1項に記載の蒸発燃料吸着体を備え、導入された蒸発燃料の前記活性炭本体による吸着と、吸着された蒸発燃料の活性炭本体からの脱離を行う。   The invention according to claim 5 includes the evaporated fuel adsorbent according to any one of claims 1 to 4, wherein the introduced evaporated fuel is adsorbed by the activated carbon main body, and the adsorbed evaporated fuel is absorbed. Desorption from the activated carbon body.

このキャニスタでは、導入された蒸発燃料ガスが蒸発燃料吸着体で吸着されるが、吸着時の温度上昇は、蓄熱部材によって抑制され、吸着能力の低下が防止される。また、吸着された蒸発燃料の脱離時には、温度低下が蓄熱部材によって抑制され、脱離能力の低下が防止される。   In this canister, the introduced evaporative fuel gas is adsorbed by the evaporative fuel adsorbent, but the temperature rise at the time of adsorption is suppressed by the heat storage member, and a decrease in the adsorption capacity is prevented. Further, at the time of desorption of the adsorbed evaporated fuel, the temperature decrease is suppressed by the heat storage member, and the decrease of the desorption capability is prevented.

蒸発燃料吸着体は活性炭により形成された活性炭本体を備えており、複数の蓄熱部材が、活性炭本体に内蔵されている。したがって、活性炭本体が擦れあったような場合でも、蓄熱部材の脱落が抑制され、活性炭の温度変化を抑制する効果を維持できる。   The evaporative fuel adsorber has an activated carbon main body formed of activated carbon, and a plurality of heat storage members are built in the activated carbon main body. Accordingly, even when the activated carbon main body is rubbed, the heat storage member is prevented from falling off, and the effect of suppressing the temperature change of the activated carbon can be maintained.

本発明は上記構成としたので、蓄熱材の脱落を抑制可能な蒸発燃料吸着体と、この蒸発燃料吸着体を備えたキャニスタが得られる。   Since the present invention has the above-described configuration, an evaporative fuel adsorber that can suppress the dropout of the heat storage material and a canister including the evaporative fuel adsorber are obtained.

(A)は本発明の第1実施形態のキャニスタの概略構成を示す断面図であり、(B)はこのキャニスタの内部の蒸発燃料吸着体を採り上げて示す説明図である。(A) is sectional drawing which shows schematic structure of the canister of 1st Embodiment of this invention, (B) is explanatory drawing which picks up and shows the fuel vapor adsorption body inside this canister. 本発明の第1実施形態の蒸発燃料吸着体を示し、(A)は斜視図、(B)は中心軸を通る平面で切断した断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The vaporized fuel adsorption body of 1st Embodiment of this invention is shown, (A) is a perspective view, (B) is sectional drawing cut | disconnected by the plane which passes along a central axis. 本発明の蒸発燃料吸着体を構成する蓄熱材カプセルを示す断面図である。It is sectional drawing which shows the thermal storage material capsule which comprises the evaporative fuel adsorption body of this invention. 本発明の第2実施形態の蒸発燃料吸着体を示し、(A)は斜視図、(B)は中心軸を通る平面で切断した断面図である。The evaporated fuel adsorption body of 2nd Embodiment of this invention is shown, (A) is a perspective view, (B) is sectional drawing cut | disconnected by the plane which passes along a central axis. 本発明の第3実施形態の蒸発燃料吸着体を示し、(A)は斜視図、(B)は中心軸を通る平面で切断した断面図である。The evaporated fuel adsorption body of 3rd Embodiment of this invention is shown, (A) is a perspective view, (B) is sectional drawing cut | disconnected by the plane which passes along a central axis. (A)は本発明の第4実施形態のキャニスタの概略構成を示す断面図であり、(B)はこのキャニスタの内部の蒸発燃料吸着体を採り上げて示す説明図である。(A) is sectional drawing which shows schematic structure of the canister of 4th Embodiment of this invention, (B) is explanatory drawing which picks up and shows the evaporative fuel adsorption body inside this canister. 本発明の第4実施形態の蒸発燃料吸着体を示し、(A)は斜視図、(B)は中心を通る平面で切断した断面図である。The evaporative fuel adsorption body of 4th Embodiment of this invention is shown, (A) is a perspective view, (B) is sectional drawing cut | disconnected by the plane which passes along the center.

図1(A)には、本発明の第一実施形態のキャニスタ12が示されている。このキャニスタ12は、略箱状に形成されたキャニスタ本体14を有している。キャニスタ本体14の内部には、一端壁14A及び他端壁14Bのそれぞれに対して平行に、不織布等で略板状に構成されたフィルタ膜16、18が備えられている。   FIG. 1A shows a canister 12 according to the first embodiment of the present invention. The canister 12 has a canister body 14 formed in a substantially box shape. Inside the canister main body 14, filter films 16, 18 configured in a substantially plate shape with a nonwoven fabric or the like are provided in parallel to the one end wall 14 </ b> A and the other end wall 14 </ b> B.

また、キャニスタ本体14の一端壁14Aからは、フィルタ膜18に達する隔壁20が延出されている。この隔壁20とフィルタ膜16、18により、キャニスタ本体14内には第一吸着室22と第二吸着室24とが構成されている。そして、第一吸着室22から、フィルタ膜18と他端壁14Bの間の空間28を経て第二吸着室24に至る方向F1と、その反対方向F2を含む、略U字状の気体流動経路が構成されている。   A partition wall 20 that reaches the filter film 18 extends from the one end wall 14 </ b> A of the canister body 14. The partition 20 and the filter films 16 and 18 constitute a first adsorption chamber 22 and a second adsorption chamber 24 in the canister body 14. Then, a substantially U-shaped gas flow path including a direction F1 from the first adsorption chamber 22 through the space 28 between the filter film 18 and the other end wall 14B to the second adsorption chamber 24 and the opposite direction F2. Is configured.

キャニスタ本体14には、第一吸着室22に対応する位置に、図示しない燃料タンクに接続された導入配管32が設けられている。また、同じく第一吸着室22に対応する位置に、図示しないエンジンに接続された排出配管34が設けられている。さらに、第二吸着室24に対応する位置には、大気と連通された大気連通配管36が設けられている。   The canister body 14 is provided with an introduction pipe 32 connected to a fuel tank (not shown) at a position corresponding to the first adsorption chamber 22. Similarly, a discharge pipe 34 connected to an engine (not shown) is provided at a position corresponding to the first adsorption chamber 22. Further, an atmosphere communication pipe 36 communicating with the atmosphere is provided at a position corresponding to the second adsorption chamber 24.

給油時等には燃料タンク内で蒸発燃料ガスが生じるが、この蒸発燃料ガスは、導入配管32を経てキャニスタ12に導入される。そして、導入された蒸発燃料ガスの蒸発燃料成分は、後述する蒸発燃料吸着体30で吸着され、浄化された空気が大気連通配管36を経て大気開放される。また、車両走行時等には、蒸発燃料吸着体30に吸着された蒸発燃料成分が脱離され、大気連通配管36を経て導入された空気と共に、排出配管34からエンジンに送られるようになっている。   Evaporated fuel gas is generated in the fuel tank at the time of refueling or the like, and this evaporated fuel gas is introduced into the canister 12 through the introduction pipe 32. Then, the evaporated fuel component of the introduced evaporated fuel gas is adsorbed by the evaporated fuel adsorber 30 described later, and the purified air is released into the atmosphere through the atmosphere communication pipe 36. Further, when the vehicle travels, the evaporated fuel component adsorbed on the evaporated fuel adsorbing body 30 is desorbed and sent to the engine from the exhaust pipe 34 together with the air introduced through the atmospheric communication pipe 36. Yes.

図1(B)に示すように、これら第一吸着室22及び第二吸着室24には、多数の蒸発燃料吸着体30が充填されている。図2(A)及び(B)にも詳細に示すように、蒸発燃料吸着体30のそれぞれは、本実施形態では円筒状に形成された活性炭本体38と、その内部に収容(内蔵)された円柱状の蓄熱成形体40と、を有している。すなわち、蒸発燃料吸着体30は、外層の活性炭本体38と、内層の蓄熱成形体40との2層で構成されている。本実施形態では、蓄熱成形体40の軸方向の長さL2は、活性炭本体38の軸方向の長さL1と同程度とされており、活性炭本体38の軸方向端面38Eと、蓄熱成形体40の軸方向端面38Eとが面一になる(少なくとも、蓄熱成形体40は活性炭本体38の内部から突出しない)構造とされている。   As shown in FIG. 1B, the first adsorption chamber 22 and the second adsorption chamber 24 are filled with a large number of evaporated fuel adsorbers 30. As shown in detail in FIGS. 2A and 2B, each of the evaporated fuel adsorbers 30 is accommodated (built in) in the activated carbon main body 38 formed in a cylindrical shape in this embodiment. And a columnar heat storage molded body 40. That is, the evaporated fuel adsorbing body 30 is composed of two layers of an outer layer activated carbon main body 38 and an inner layer heat storage molded body 40. In the present embodiment, the axial length L2 of the heat storage molded body 40 is substantially the same as the axial length L1 of the activated carbon main body 38, and the axial end face 38E of the activated carbon main body 38 and the heat storage molded body 40 are. The axial end surface 38E is flush with the surface (at least the heat storage molded body 40 does not protrude from the inside of the activated carbon main body 38).

活性炭本体38は、蒸発燃料を吸着及び脱離する作用を有する活性炭を混錬し、所望の形状(本実施形態では円筒状)とすることで形成されており、全表面において活性炭が連続している。したがって、活性炭本体38は、特にその表面の全体で蒸発燃料を吸着及び脱離する。   The activated carbon main body 38 is formed by kneading activated carbon having an action of adsorbing and desorbing evaporated fuel into a desired shape (cylindrical in the present embodiment). Yes. Therefore, the activated carbon main body 38 adsorbs and desorbs the evaporated fuel particularly on the entire surface thereof.

蓄熱成形体40は、複数の蓄熱材カプセル42を有している。蓄熱材カプセル42は、図3にも詳細に示すように、樹脂又はセラミック等で成形した球殻状のマイクロカプセル44の内部に、相変化する蓄熱材46を封入することで構成されている。そして、多数の蓄熱材カプセル42をバインダーで接合して固め、全体として、図2(A)及び(B)に示すような、蓄熱材カプセル42が一体化されたマイクロカプセル群48としている。このマイクロカプセル群48を、活性炭本体38の内部に収容可能な形状、本実施形態では円柱状に成形し、蓄熱成形体40としている。蓄熱成形体40は、外周面の全面に渡って、活性炭本体38の内周面に接触している。   The heat storage molded body 40 has a plurality of heat storage material capsules 42. As shown in detail in FIG. 3, the heat storage material capsule 42 is configured by enclosing a phase-change heat storage material 46 inside a spherical shell-shaped microcapsule 44 formed of resin or ceramic. Then, a large number of heat storage material capsules 42 are joined and hardened with a binder to form a microcapsule group 48 in which the heat storage material capsules 42 are integrated as shown in FIGS. 2A and 2B as a whole. The microcapsule group 48 is formed into a shape that can be accommodated inside the activated carbon main body 38, in this embodiment, a columnar shape, and is used as a heat storage molded body 40. The heat storage molded body 40 is in contact with the inner peripheral surface of the activated carbon main body 38 over the entire outer peripheral surface.

また、本実施形態では、上記したように、活性炭本体38の軸方向端面38Eと蓄熱成形体40の軸方向端面38Eとが面一になるように、蓄熱成形体40が活性炭本体38に内蔵されている。したがって、蓄熱成形体40の軸方向端面38Eは活性炭本体38の表面から露出するが、これ以外の部分(実質的に、蓄熱成形体40を構成する蓄熱材カプセル42の殆ど)は、活性炭本体38の表面から露出していない。   In the present embodiment, as described above, the heat storage molded body 40 is built in the activated carbon main body 38 so that the axial end surface 38E of the activated carbon main body 38 and the axial end surface 38E of the heat storage molded body 40 are flush with each other. ing. Therefore, the axial end surface 38E of the heat storage molded body 40 is exposed from the surface of the activated carbon main body 38, but the other parts (substantially most of the heat storage material capsules 42 constituting the heat storage molded body 40) are the activated carbon main body 38. Not exposed from the surface.

なお、マイクロカプセル44を接合するバインダーとしては、例えば軟質樹脂を用いることができる。軟質樹脂のバインダーを用いると、熱による膨張時あるいは収縮時に、活性炭本体38と蓄熱成形体40との寸法変化がバインダーによって吸収できる。本実施形態では特に、バインダーとして、線膨張係数が活性炭本体38と同程度の軟質樹脂を用いており、膨張時あるいは収縮時に、活性炭本体38と蓄熱成形体40との間にズレや歪みが生じないようになっている。   In addition, as a binder which joins the microcapsule 44, a soft resin can be used, for example. When a soft resin binder is used, a dimensional change between the activated carbon main body 38 and the heat storage molded body 40 can be absorbed by the binder during expansion or contraction due to heat. In this embodiment, in particular, a soft resin having a linear expansion coefficient similar to that of the activated carbon main body 38 is used as the binder, and a deviation or distortion occurs between the activated carbon main body 38 and the heat storage molded body 40 during expansion or contraction. There is no such thing.

このような構造とされた蒸発燃料吸着体30が、図1(A)に示すように、キャニスタ本体14の第一吸着室22及び第二吸着室24に充填されている。フィルタ膜18と他端壁14Bの間の空間28にはコイルバネ26が配置されており、フィルタ膜16が、第一吸着室22と第二吸着室24の容積を縮小する方向に付勢されている。これにより、蒸発燃料吸着体30も、所定の充填密度に維持された状態となっている。   The evaporated fuel adsorber 30 having such a structure is filled in the first adsorption chamber 22 and the second adsorption chamber 24 of the canister main body 14 as shown in FIG. A coil spring 26 is disposed in the space 28 between the filter film 18 and the other end wall 14B, and the filter film 16 is urged in a direction to reduce the volume of the first adsorption chamber 22 and the second adsorption chamber 24. Yes. As a result, the evaporated fuel adsorber 30 is also maintained at a predetermined filling density.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

本実施形態のキャニスタ12では、図1(A)に矢印F1で示すように、給油時等に導入配管32を経て導入された蒸発燃料ガスの蒸発燃料成分が、蒸発燃料吸着体30で吸着され、浄化された空気が大気連通配管36を経て大気に開放される。また、図1(A)に矢印F2で示すように、車両走行時等には、蒸発燃料吸着体30に吸着された蒸発燃料成分が脱離され、大気連通配管36を経て導入された空気と共に、排出配管34からエンジンに送られる。   In the canister 12 of this embodiment, as shown by an arrow F1 in FIG. 1A, the evaporated fuel component of the evaporated fuel gas introduced through the introduction pipe 32 at the time of refueling or the like is adsorbed by the evaporated fuel adsorber 30. The purified air is released to the atmosphere via the atmosphere communication pipe 36. Further, as shown by an arrow F2 in FIG. 1A, when the vehicle travels, the evaporated fuel component adsorbed by the evaporated fuel adsorbent 30 is desorbed and together with the air introduced through the atmospheric communication pipe 36. The exhaust pipe 34 is sent to the engine.

ここで一般に、活性炭を含んだ蒸発燃料吸着体30では、蒸発燃料ガスの吸着時には活性炭本体38の温度が上昇して吸着能力が低下し、脱離時には活性炭本体38の温度が低下して脱離能力が低下する。本実施形態では、蒸発燃料吸着体30が蓄熱成形体40を内蔵しているので、蒸発燃料の吸着時には活性炭本体38から蓄熱成形体40に熱が移動し、活性炭本体38の温度上昇が抑制される。また、脱離時には蓄熱成形体40から活性炭本体38に熱が移動し、活性炭本体38の温度低下が抑制される(以下、吸着時の温度上昇抑制効果と脱離時の温度低下抑制効果をまとめて保温効果という)。これにより、蒸発燃料吸着体30の温度変化に伴う性能低下が防止される。   Here, in general, in the evaporated fuel adsorbent 30 including activated carbon, the temperature of the activated carbon main body 38 is increased when the evaporated fuel gas is adsorbed, and the adsorption capacity is decreased. Ability is reduced. In the present embodiment, the evaporative fuel adsorbing body 30 incorporates the heat storage molded body 40, so that heat is transferred from the activated carbon main body 38 to the heat storage molded body 40 during the adsorption of the evaporated fuel, and the temperature rise of the activated carbon main body 38 is suppressed. The Further, at the time of desorption, heat is transferred from the heat storage molded body 40 to the activated carbon main body 38, and the temperature decrease of the activated carbon main body 38 is suppressed (hereinafter, the temperature increase suppressing effect during adsorption and the temperature decrease suppressing effect during desorption are summarized. Is called warming effect). Thereby, the performance fall accompanying the temperature change of the evaporative fuel adsorption body 30 is prevented.

特に本実施形態では、全ての蒸発燃料吸着体30のそれぞれにおいて、蓄熱成形体40が内蔵されている。したがって、第一吸着室22及び第二吸着室24のいずれにおいても、活性炭本体38に対し均等に、蓄熱成形体40による保温効果が作用し、活性炭本体38の吸着性能、脱離性能が維持される。   In particular, in this embodiment, each of the evaporated fuel adsorbers 30 includes a heat storage molded body 40. Therefore, in both the first adsorption chamber 22 and the second adsorption chamber 24, the heat retention effect by the heat storage molded body 40 acts equally on the activated carbon main body 38, and the adsorption performance and desorption performance of the activated carbon main body 38 are maintained. The

しかも、本実施形態では、蓄熱成形体40が、外周面の全面に渡って、活性炭本体38の内周面に接触する構造としている。蓄熱成形体40と活性炭本体38との接触面積が広く確保できるので、蓄熱成形体40と活性炭本体38との間で熱を効率的に移動させることができる。   And in this embodiment, it is set as the structure where the thermal storage molded object 40 contacts the inner peripheral surface of the activated carbon main body 38 over the whole outer peripheral surface. Since a wide contact area between the heat storage molded body 40 and the activated carbon main body 38 can be ensured, heat can be efficiently transferred between the heat storage molded body 40 and the activated carbon main body 38.

また、本実施形態の蒸発燃料吸着体30では、蓄熱成形体40が活性炭本体38に内蔵されており、実質的に、内層側の蓄熱成形体40が外層側の活性炭本体38により周囲を保護されている。第一吸着室22及び第二吸着室24の内部では、蒸発燃料吸着体30同士が接触して摩耗することがあるため、たとえば蓄熱成形体40を構成している蓄熱材カプセル42が蒸発燃料吸着体30の表面に多数露出していると、摩耗によってこれらの露出した蓄熱材カプセル42が蒸発燃料吸着体30から脱落するおそれがある。しかし、本実施形態では、蓄熱成形体40(蓄熱材カプセル42)が活性炭本体38の内部に収容されることで、蓄熱材カプセル42の脱落が抑制されているので、蓄熱成形体40による保温効果の低下も抑制される。これにより、蒸発燃料吸着体30の吸着性能、脱離性能も安定する。   Further, in the evaporated fuel adsorbing body 30 of the present embodiment, the heat storage molded body 40 is built in the activated carbon main body 38, and the inner layer side heat storage molded body 40 is substantially protected by the outer layer side activated carbon main body 38. ing. Inside the first adsorption chamber 22 and the second adsorption chamber 24, the vaporized fuel adsorbers 30 may come into contact with each other and wear. Therefore, for example, the heat storage material capsule 42 constituting the heat storage molded body 40 is adsorbed by the vaporized fuel. If many are exposed on the surface of the body 30, the exposed heat storage material capsules 42 may fall off the evaporated fuel adsorbent 30 due to wear. However, in this embodiment, since the heat storage molded body 40 (heat storage material capsule 42) is accommodated in the activated carbon main body 38, dropping of the heat storage material capsule 42 is suppressed. Is also suppressed. Thereby, the adsorption performance and desorption performance of the evaporated fuel adsorbent 30 are also stabilized.

しかも、蓄熱材46が封入された多数の蓄熱材カプセル42をバインダーで接合して固めることにより、一体化された蓄熱成形体40を成形し、この蓄熱成形体40を活性炭本体38の内側に収容している。したがって、複数の蓄熱材カプセル42が活性炭本体38に分散されている(一体化されていない)構造として、蓄熱材カプセル42の脱落をより効果的に抑制できる。   In addition, a large number of heat storage material capsules 42 encapsulating the heat storage material 46 are joined and hardened with a binder to form an integrated heat storage molded body 40, and the heat storage molded body 40 is accommodated inside the activated carbon main body 38. is doing. Accordingly, the structure in which the plurality of heat storage material capsules 42 are dispersed (not integrated) in the activated carbon main body 38 can more effectively suppress the dropout of the heat storage material capsules 42.

なお、第1実施形態の蒸発燃料吸着体30の製造方法は特に限定されないが、たとえば、内側(中心)に長尺状(長い円柱の棒状)の蓄熱成形体40を保持した状態で、活性炭が混錬された活性炭本体38を押し出して長尺状とし、これを(蓄熱成形体40と活性炭本体38とをまとめて)一定長さで切断することで、蒸発燃料吸着体30が得られる。   In addition, although the manufacturing method of the fuel vapor adsorbent 30 of 1st Embodiment is not specifically limited, For example, activated carbon is the state which hold | maintained the heat storage molded object 40 of the elongate (long cylindrical rod shape) inside (center). The evaporative fuel adsorbent 30 is obtained by extruding the kneaded activated carbon main body 38 into a long shape and cutting it into a predetermined length (collecting the heat storage molded body 40 and the activated carbon main body 38 together).

図4(A)及び(B)には、本発明の第2実施形態の蒸発燃料吸着体60が示されている。なお、以下の各実施形態においては、蒸発燃料吸着体の構造のみが第1実施形態と異なっており、第1実施形態と同一の構成要素部材等については、同一符号を付して、適宜説明を省略する。また、第2実施形態以降では、キャニスタの全体的構成も第1実施形態と略同一とされる。   4A and 4B show an evaporated fuel adsorbent 60 according to a second embodiment of the present invention. In each of the following embodiments, only the structure of the evaporated fuel adsorber is different from that of the first embodiment, and the same constituent elements as those of the first embodiment are denoted by the same reference numerals and appropriately described. Is omitted. In the second and subsequent embodiments, the overall configuration of the canister is substantially the same as that of the first embodiment.

第2実施形態の蒸発燃料吸着体60では、円筒状の活性炭本体38に円柱状の蓄熱部材62が内蔵されているが、蓄熱部材62の軸方向の長さL2が、活性炭本体38の軸方向の軸方向の長さL1よりも短くされており、蓄熱部材62の軸方向端面62Eが、活性炭本体38の軸方向端面38Eよりも、軸方向内側に位置している。換言すれば、活性炭本体38の内側には、蓄熱成形体40の軸方向両端に、空洞部64が構成されている。   In the evaporated fuel adsorbing body 60 of the second embodiment, the cylindrical activated carbon main body 38 includes a columnar heat storage member 62, but the axial length L <b> 2 of the thermal storage member 62 is the axial direction of the activated carbon main body 38. The axial end face 62E of the heat storage member 62 is positioned axially inward from the axial end face 38E of the activated carbon main body 38. In other words, the cavity 64 is formed inside the activated carbon main body 38 at both axial ends of the heat storage molded body 40.

第2実施形態の蒸発燃料吸着体60はこのように、蓄熱成形体40が活性炭本体38よりも軸方向内側に入り込んだ構造とされているので、第1実施形態の蒸発燃料吸着体30と比較して、蓄熱部材62の軸方向端面62Eの摩耗の可能性がさらに低くなる。すなわち、第1実施形態よりも、さらに、蓄熱部材62(蓄熱材カプセル42)の脱落を抑制できる。   As described above, the evaporated fuel adsorber 60 of the second embodiment has a structure in which the heat storage molded body 40 enters the inner side in the axial direction with respect to the activated carbon main body 38, so that it is compared with the evaporated fuel adsorber 30 of the first embodiment. Thus, the possibility of wear of the axial end surface 62E of the heat storage member 62 is further reduced. That is, the dropout of the heat storage member 62 (heat storage material capsule 42) can be further suppressed than in the first embodiment.

なお、第2実施形態の蒸発燃料吸着体60においても、第1実施形態の蒸発燃料吸着体30と略同様の製造方向で製造可能であるが、蓄熱部材62はあらかじめ完成品としての長さL2に切断しておき、この蓄熱部材62を一点間隔を空けて所定方向に送りながら、その周囲に活性炭本体38を押し出して長尺状とした後、蓄熱部材62の中間部分で活性炭本体38を切断すればよい。ただし、第2実施形態の蒸発燃料吸着体60では、長尺状の活性炭本体を切断する位置の特定が難しい(蓄熱部材62の中間部分からずれないようにする必要がある)ことがある。この点で、第1実施形態の蒸発燃料吸着体30の方が製造に関しては容易である。   The evaporative fuel adsorber 60 of the second embodiment can be manufactured in substantially the same manufacturing direction as the evaporative fuel adsorber 30 of the first embodiment, but the heat storage member 62 has a length L2 as a finished product in advance. After cutting the heat storage member 62 in a predetermined direction with a one-point interval, the activated carbon main body 38 is pushed out into a long shape, and then the activated carbon main body 38 is cut at an intermediate portion of the heat storage member 62. do it. However, in the evaporative fuel adsorbing body 60 of the second embodiment, it may be difficult to specify the position at which the elongated activated carbon main body is cut (it is necessary to prevent deviation from the intermediate portion of the heat storage member 62). In this respect, the evaporative fuel adsorber 30 of the first embodiment is easier to manufacture.

図5(A)及び(B)には、本発明の第3実施形態の蒸発燃料吸着体70が示されている。第3実施形態の蒸発燃料吸着体70では、第2実施形態と同様に蓄熱部材62の軸方向の長さL2が活性炭本体38の軸方向の軸方向の長さL1よりも短くされているが、第2実施形態において空洞部64となっていた部分も活性炭が配置された活性炭本体72の形状とされている。   FIGS. 5A and 5B show an evaporated fuel adsorbent 70 according to a third embodiment of the present invention. In the evaporated fuel adsorbing body 70 according to the third embodiment, the axial length L2 of the heat storage member 62 is shorter than the axial length L1 of the activated carbon main body 38 in the same manner as in the second embodiment. In the second embodiment, the portion that has become the hollow portion 64 is also in the shape of the activated carbon main body 72 in which the activated carbon is disposed.

したがって、第3実施形態では、蓄熱部材62の表面(周囲)を活性炭本体72で完全に覆っていることになる。このため、第2実施形態よりも、さらに、蓄熱部材62(蓄熱材カプセル42)の脱落を抑制できる。   Therefore, in the third embodiment, the surface (surrounding) of the heat storage member 62 is completely covered with the activated carbon main body 72. For this reason, the dropout of the heat storage member 62 (heat storage material capsule 42) can be further suppressed than in the second embodiment.

なお、第3実施形態の蒸発燃料吸着体70の製造方法も特に限定されず、たとえば、第2実施形態の蒸発燃料吸着体60を一旦製造しておき、これに対しさらに空洞部64に活性炭を充填してもよい。また、最初に円柱状の蓄熱部材62(長さL2)を形成し、その周囲に活性炭をコーティングして、全体として円柱状の蒸発燃料吸着体70を成形してもよい。   The method for manufacturing the evaporated fuel adsorbent 70 according to the third embodiment is not particularly limited. For example, the evaporated fuel adsorbent 60 according to the second embodiment is once manufactured, and activated carbon is further added to the cavity 64. It may be filled. Alternatively, the columnar heat storage member 62 (length L2) may be formed first, and activated carbon may be coated around it to form the columnar evaporated fuel adsorbent 70 as a whole.

図6(A)には、本発明の第4実施形態の蒸発燃料吸着体80を備えたキャニスタ92が示されている。また、図6(B)及び図7には、第4実施形態の蒸発燃料吸着体80が示されている。第4実施形態の蒸発燃料吸着体80では、全体形状を略球形とし、蓄熱部材84としても、多数の蓄熱材カプセル42を全体として略球形になるように接合している。すなわち、第4実施形態の蒸発燃料吸着体80では、略球形の蓄熱部材84の周囲に、略一定の厚みを有する活性炭本体82がコーティングされている。そして、図6(A)に示すように、蒸発燃料吸着体80がキャニスタ本体14の第一吸着室22及び第二吸着室24に充填されることで、第4実施形態のキャニスタ92が構成されている。   FIG. 6A shows a canister 92 provided with an evaporated fuel adsorbent 80 according to a fourth embodiment of the present invention. FIGS. 6B and 7 show an evaporated fuel adsorbent 80 according to the fourth embodiment. In the evaporated fuel adsorbing body 80 of the fourth embodiment, the overall shape is substantially spherical, and the heat storage member 84 is joined so that a large number of heat storage material capsules 42 are generally spherical. That is, in the evaporated fuel adsorbent 80 of the fourth embodiment, the activated carbon main body 82 having a substantially constant thickness is coated around the substantially spherical heat storage member 84. 6A, the evaporative fuel adsorber 80 is filled in the first adsorption chamber 22 and the second adsorption chamber 24 of the canister main body 14, whereby the canister 92 of the fourth embodiment is configured. ing.

したがって、第4実施形態の蒸発燃料吸着体80においても、第3実施形態の蒸発燃料吸着体70と同様に、蓄熱部材84の表面(周囲)を活性炭本体82で完全に覆っている。このため、第2実施形態よりも、さらに、蓄熱部材84(蓄熱材カプセル42)の脱落を抑制できる。   Therefore, also in the evaporated fuel adsorbent 80 of the fourth embodiment, the surface (periphery) of the heat storage member 84 is completely covered with the activated carbon main body 82 as in the evaporated fuel adsorbent 70 of the third embodiment. For this reason, the dropout of the heat storage member 84 (heat storage material capsule 42) can be further suppressed than in the second embodiment.

第4実施形態の蒸発燃料吸着体80の製造方法も特に限定されないが、たとえば、最初に蓄熱材カプセル42をバインダー等で接合して略球形の蓄熱部材84を成形し、この蓄熱部材84の周囲に(必要に応じて蓄熱部材84を回転させながら)活性炭を略一定の厚みでコーティングして、活性炭本体82を構成すればよい。   The manufacturing method of the evaporated fuel adsorbent 80 according to the fourth embodiment is not particularly limited. For example, the heat storage material capsule 42 is first joined with a binder or the like to form a substantially spherical heat storage member 84, and the periphery of the heat storage member 84. The activated carbon main body 82 may be configured by coating activated carbon with a substantially constant thickness (while rotating the heat storage member 84 as necessary).

なお、上記各実施形態では、本発明の蓄熱部材として、略球形の蓄熱材カプセル42により構成されたものを挙げているが、蓄熱材カプセル42の形状は球形に限定されず、他の形状でもよい。ただし、略球形とすれば、蓄熱材46の温度変化による蓄熱材カプセル42の内圧変化に対する耐圧性を、他の形状よりも高く確保できる。   In each of the above embodiments, the heat storage member of the present invention is configured by a substantially spherical heat storage material capsule 42. However, the shape of the heat storage material capsule 42 is not limited to a spherical shape, and other shapes may be used. Good. However, if the shape is substantially spherical, the pressure resistance against the change in the internal pressure of the heat storage material capsule 42 due to the temperature change of the heat storage material 46 can be ensured higher than other shapes.

また、蓄熱部材(マイクロカプセル群48)の形状も、上記では円柱状及び略球形のものを挙げているが、これに限定されない。第1〜第3実施形態のように、蓄熱部材を円柱状とすれば、活性炭本体と広く均一に接触させることができるので、活性炭本体38吸着性能、脱離性能を向上させることが可能になる。また、第4実施形態のように、蓄熱部材を略球形としても、活性炭本体と均一に接触させることができるので、活性炭本体38吸着性能、脱離性能を向上させることが可能になる。   In addition, the shape of the heat storage member (microcapsule group 48) is also exemplified as a cylindrical shape and a substantially spherical shape in the above, but is not limited thereto. If the heat storage member has a columnar shape as in the first to third embodiments, the activated carbon main body 38 can be widely and uniformly contacted, so that the adsorption performance and desorption performance of the activated carbon main body 38 can be improved. . Moreover, even if the heat storage member has a substantially spherical shape as in the fourth embodiment, the activated carbon main body 38 can be brought into uniform contact with the activated carbon main body 38, so that the adsorption performance and desorption performance of the activated carbon main body 38 can be improved.

12 キャニスタ
14 キャニスタ本体
16 フィルタ膜
18 フィルタ膜
22 第一吸着室
24 第二吸着室
30 蒸発燃料吸着体
38 活性炭本体
40 蓄熱成形体
42 蓄熱材カプセル(蓄熱部材)
44 マイクロカプセル
46 蓄熱材
48 マイクロカプセル群
60 蒸発燃料吸着体
62 蓄熱部材
64 空洞部
70 蒸発燃料吸着体
72 活性炭本体
80 蒸発燃料吸着体
82 活性炭本体
84 蓄熱部材
12 canister 14 canister body 16 filter film 18 filter film 22 first adsorption chamber 24 second adsorption chamber 30 evaporated fuel adsorber 38 activated carbon main body 40 heat storage molded body 42 heat storage material capsule (heat storage member)
44 Microcapsule 46 Heat storage material 48 Microcapsule group 60 Evaporated fuel adsorber 62 Heat storage member 64 Cavity 70 Evaporated fuel adsorber 72 Activated carbon main body 80 Evaporated fuel adsorbent 82 Activated carbon main body 84 Thermal storage member

Claims (5)

蒸発燃料の吸着及び脱離を行う活性炭により形成された活性炭本体と、
前記活性炭本体の温度変化を抑制する複数の蓄熱部材が一体化され、活性炭本体に内蔵された蓄熱成形体と、
を有する蒸発燃料吸着体。
An activated carbon body formed of activated carbon that performs adsorption and desorption of evaporated fuel;
A plurality of heat storage members that suppress the temperature change of the activated carbon main body are integrated, and a heat storage molded body built in the activated carbon main body,
An evaporative fuel adsorber having
前記活性炭本体が筒状に形成され、
前記蓄熱成形体が前記活性炭本体の内側に収容されている請求項1に記載の蒸発燃料吸着体。
The activated carbon body is formed in a cylindrical shape,
The evaporated fuel adsorbent according to claim 1, wherein the heat storage molded body is accommodated inside the activated carbon main body.
前記蓄熱成形体が、筒状に形成された前記活性炭本体の軸方向端部から内側に入り込んだ位置に配置されている請求項2に記載の蒸発燃料吸着体。   The evaporated fuel adsorbent according to claim 2, wherein the heat storage molded body is disposed at a position entering the inside from an axial end of the activated carbon main body formed in a cylindrical shape. 前記蓄熱成形体が、前記活性炭本体によってその外側の全面を覆われている請求項1に記載の蒸発燃料吸着体。   The evaporated fuel adsorbent according to claim 1, wherein the heat storage molded body is entirely covered with the activated carbon main body. 請求項1〜請求項4のいずれか1項に記載の蒸発燃料吸着体を備え、
導入された蒸発燃料の前記活性炭本体による吸着と、吸着された蒸発燃料の活性炭本体からの脱離を行うキャニスタ。
The fuel vapor adsorbent according to any one of claims 1 to 4, comprising:
A canister that adsorbs the introduced evaporated fuel by the activated carbon main body and desorbs the adsorbed evaporated fuel from the activated carbon main body.
JP2009214363A 2009-09-16 2009-09-16 Evaporation fuel adsorbent and canister Pending JP2011064101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214363A JP2011064101A (en) 2009-09-16 2009-09-16 Evaporation fuel adsorbent and canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214363A JP2011064101A (en) 2009-09-16 2009-09-16 Evaporation fuel adsorbent and canister

Publications (1)

Publication Number Publication Date
JP2011064101A true JP2011064101A (en) 2011-03-31

Family

ID=43950608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214363A Pending JP2011064101A (en) 2009-09-16 2009-09-16 Evaporation fuel adsorbent and canister

Country Status (1)

Country Link
JP (1) JP2011064101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021059A (en) * 2010-07-13 2012-02-02 Aisan Industry Co Ltd Granulation heat accumulation material and evaporation fuel treatment device
CN105810812A (en) * 2016-05-04 2016-07-27 中国科学院上海应用物理研究所 Assembly method for spherical high-temperature phase-change thermal storage component and thermal storage component formed by assembly method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194879A (en) * 2003-12-11 2005-07-21 Kuraray Co Ltd Evaporating fuel gas adsorbent and its manufacturing method
JP2006207485A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Canister
JP2008069680A (en) * 2006-09-13 2008-03-27 Mahle Filter Systems Japan Corp Canister

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194879A (en) * 2003-12-11 2005-07-21 Kuraray Co Ltd Evaporating fuel gas adsorbent and its manufacturing method
JP2006207485A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Canister
JP2008069680A (en) * 2006-09-13 2008-03-27 Mahle Filter Systems Japan Corp Canister

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021059A (en) * 2010-07-13 2012-02-02 Aisan Industry Co Ltd Granulation heat accumulation material and evaporation fuel treatment device
CN105810812A (en) * 2016-05-04 2016-07-27 中国科学院上海应用物理研究所 Assembly method for spherical high-temperature phase-change thermal storage component and thermal storage component formed by assembly method

Similar Documents

Publication Publication Date Title
JP5242360B2 (en) Evaporative fuel processing equipment
US9283513B2 (en) Fuel vapor treatment device
JP5976381B2 (en) Evaporative fuel processing equipment
JP2004100691A (en) Evaporation fuel processing device
US20090151706A1 (en) Fuel vapor processing apparatus
JP2012017403A (en) Granulated heat storage material and evaporated fuel processing device
JP2003193917A (en) Evaporated fuel adsorbent and air cleaner
JP6591955B2 (en) Canister
JP5107216B2 (en) Evaporative fuel processing equipment
JP2006233962A (en) Canister and method for manufacturing canister
JP2013217243A (en) Trap canister
JP4691386B2 (en) Evaporative fuel processing apparatus and manufacturing method thereof
EP3530930B1 (en) Canister
JP2011064101A (en) Evaporation fuel adsorbent and canister
JP6725483B2 (en) Canister
CN103480236A (en) Evaporated fuel treatment device
JP2021102937A (en) Fuel adsorption device and evaporated fuel treatment device using the same
JP2020112164A (en) Canister
US20230151783A1 (en) Canister
JP7381516B2 (en) canister
JP5627948B2 (en) Evaporative fuel processing equipment
JP2005325708A (en) Canister
JP2021195898A (en) Evaporated fuel treatment device
JP2018084195A (en) Adsorbent and canister using the same
US11905915B2 (en) Canister

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514