JP2011063950A - Building external facing material and coating liquid for building external facing - Google Patents

Building external facing material and coating liquid for building external facing Download PDF

Info

Publication number
JP2011063950A
JP2011063950A JP2009213464A JP2009213464A JP2011063950A JP 2011063950 A JP2011063950 A JP 2011063950A JP 2009213464 A JP2009213464 A JP 2009213464A JP 2009213464 A JP2009213464 A JP 2009213464A JP 2011063950 A JP2011063950 A JP 2011063950A
Authority
JP
Japan
Prior art keywords
oxide particles
coating liquid
photocatalytic
photocatalyst
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213464A
Other languages
Japanese (ja)
Inventor
Yoji Takagi
洋二 高木
Junji Kameshima
順次 亀島
Makoto Hayakawa
信 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009213464A priority Critical patent/JP2011063950A/en
Publication of JP2011063950A publication Critical patent/JP2011063950A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • C04B26/32Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Finishing Walls (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building external facing material which is excellent in harmful gas degradability, fungus-proofness and alga-proofness while suppressing a deterioration in base material; and to provide a photocatalytic water-based coating liquid. <P>SOLUTION: Characteristically, this building external facing material includes the base material and a photocatalytic layer which is provided on the base material; the photocatalytic layer is obtained by drying the photocatalytic coating liquid after the application; and photocatalytic coating liquid includes photocatalytic titanium oxide particles, cerium oxide particles, a silicone emulsion, a water-soluble copper compound, and water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有害ガス分解性および防カビ・防藻性に優れる建築用外装材に関する。
あるいは、建造物、乗物およびそれらを構成する部材、複合材に有害ガス分解性および防カビ・防藻性等の光触媒機能を、コーティング層を形成することにより付与可能な建築外装用コーティング液に関する。
The present invention relates to a building exterior material excellent in harmful gas decomposability and antifungal / algae resistance.
Alternatively, the present invention relates to a coating liquid for building exteriors capable of imparting photocatalytic functions such as harmful gas decomposability and fungicidal / algae-proofing properties to buildings, vehicles, members constituting them, and composite materials by forming a coating layer.

酸化チタンなどの光触媒が、近年建築物の建造物、乗物およびそれらを構成する部材、複合材など多くの用途において利用されている。
屋外用途については、基材表面に光触媒を塗装することにより、光エネルギーを利用してNOx、SOx等の有害物質の分解機能、防カビ・防藻性等を付与することが可能となる。
In recent years, photocatalysts such as titanium oxide have been used in many applications such as buildings of buildings, vehicles, members constituting them, and composite materials.
For outdoor use, by applying a photocatalyst to the surface of the substrate, it is possible to impart a function of decomposing toxic substances such as NOx and SOx, antifungal and antialgal properties, etc. using light energy.

建築物の建造物、乗物およびそれらを構成する部材、複合材などの場合、上記光触媒機能を付与したい基材の表面は、意匠性を持たせるためにエナメル塗装されていたり、エナメル塗装の上にクリア塗装されている場合が多い。
そこに直接光触媒層を形成しようとすると、エナメル塗装面やクリア塗装面は主として有機物で構成されているため、長期的には光触媒層と上記塗装面の界面に存在する光触媒性酸化チタン粒子による影響や紫外線の影響により塗装面が劣化するという問題を生じる。
In the case of building structures, vehicles, and members, composite materials, etc., the surface of the base material to which the photocatalytic function is to be applied is enameled or applied on top of the enamel to provide design. Often painted clear.
If an attempt is made to directly form a photocatalyst layer, the enameled or clear-coated surface is mainly composed of organic matter, so in the long term it will be affected by the photocatalytic titanium oxide particles present at the interface between the photocatalyst layer and the painted surface. This causes a problem that the coated surface deteriorates due to the influence of ultraviolet rays and ultraviolet rays.

そのために、従来、エナメル塗装面やクリア塗装面と、光触媒層との間に、無機成分の多いバリア層を形成することが行われている(特開2007−167718号公報)。
しかし、バリア層を形成すると、コストアップになるだけでなく、工数がかかり、手軽に光触媒機能を付与できない。
Therefore, conventionally, a barrier layer containing a large amount of inorganic components has been formed between the enamel-coated surface, the clear-coated surface, and the photocatalyst layer (Japanese Patent Laid-Open No. 2007-167718).
However, when the barrier layer is formed, not only the cost is increased, but also man-hours are required and the photocatalytic function cannot be easily provided.

そこで、エナメル塗装面やクリア塗装面の劣化を抑制しつつ光触媒機能を発揮し、さらに好適には塗布時に異臭や環境汚染がなく、最も好適には基材表面の紫外線による劣化も抑制する、基材に直接塗布して光触媒機能層を形成する、光触媒塗装体、あるいは光触媒コーティング液が必要とされる。   Therefore, the photocatalytic function is exhibited while suppressing the deterioration of the enameled surface or the clear painted surface, more preferably, there is no off-flavor or environmental pollution during application, and most preferably the deterioration of the substrate surface due to ultraviolet rays is suppressed. A photocatalyst-coated body or a photocatalyst coating solution that directly coats the material to form a photocatalytic functional layer is required.

このような基材に直接1コートで光触媒機能を発揮する光触媒コーティング組成物としては、例えば、シラン変性された光触媒性酸化チタン粒子と、コロイダルシリカと、シリコーン重合体エマルジョン粒子を含んでなる水系汚染防止用組成物が知られている(特開2008−31297号公報)。
更に、特開2008−31297号には、「上述した光触媒(a1)は、好適にPt、Rh、Ru、Nb、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化したり、シリカや多孔質リン酸カルシウム等で被覆したり(例えば特開平10−244166号公報参照)して使用することもできる。」と開示されている。
As such a photocatalytic coating composition that directly exerts a photocatalytic function on one substrate, for example, water-based contamination comprising silane-modified photocatalytic titanium oxide particles, colloidal silica, and silicone polymer emulsion particles. A composition for prevention is known (Japanese Patent Laid-Open No. 2008-31297).
Further, JP-A-2008-31297 states that “the above-mentioned photocatalyst (a1) is preferably added with a metal such as Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe and / or an oxide thereof. It can also be used after being fixed or coated with silica, porous calcium phosphate or the like (see, for example, JP-A-10-244166).

特開2007−167718号JP 2007-167718 A 特開2008−31297号JP 2008-31297 特開平10−244166号JP-A-10-244166

しかしながら、特開2008−31297号公報に開示されているような光触媒にCu及び/又はこれらの酸化物を添加するのでは、銅が光触媒作用で還元され、防カビ・防藻効果を期待する場合、効果が弱くなる。
そこで、本発明では、上記事情に鑑み、基材の劣化を抑制しつつ有害ガス分解性および防カビ・防藻性にも優れる建築用外装材および光触媒水性コーティング液を提供することを目的とする。
However, when Cu and / or oxides thereof are added to a photocatalyst as disclosed in Japanese Patent Application Laid-Open No. 2008-31297, copper is reduced by the photocatalytic action, and an antifungal / algae-proof effect is expected. , The effect becomes weaker.
Therefore, in view of the above circumstances, the present invention aims to provide a building exterior material and a photocatalytic aqueous coating solution that are excellent in harmful gas decomposability and antifungal / algae resistance while suppressing deterioration of the substrate. .

すなわち、本発明の建築用外装材は、基材と、前記基材上に設けられた光触媒層とを備えた建築用外装材であって、前記光触媒層は、光触媒コーティング液を塗布後乾燥することにより得られ、前記光触媒コーティング液は、光触媒性酸化チタン粒子と、酸化セリウム粒子と、シリコーンエマルジョンと、水溶性の銅化合物と、水とを備えていることを特徴とする建築用外装材である。   That is, the building exterior material of the present invention is a building exterior material including a base material and a photocatalyst layer provided on the base material, and the photocatalyst layer is dried after applying the photocatalyst coating liquid. The photocatalytic coating liquid is a building exterior material comprising photocatalytic titanium oxide particles, cerium oxide particles, a silicone emulsion, a water-soluble copper compound, and water. is there.

また、本発明の建築外装用コーティング液は、光触媒性酸化チタン粒子と、酸化セリウム粒子と、シリコーンエマルジョンと、水溶性の銅化合物と、水とを備えていることを特徴とする光触媒水性コーティング液である。   Moreover, the coating liquid for architectural exterior of the present invention is provided with photocatalytic titanium oxide particles, cerium oxide particles, silicone emulsion, water-soluble copper compound, and water. It is.

建築用外装材
本発明の建築用外装材は、基材と、前記基材上に設けられた光触媒層とを備えた建築用外装材であって、前記光触媒層は、光触媒コーティング液を塗布後乾燥することにより得られ、前記光触媒コーティング液は、光触媒性酸化チタン粒子と、酸化セリウム粒子と、シリコーンエマルジョンと、水溶性の銅化合物と、水とを備えていることを特徴とする建築用外装材である。
このような構成にすることにより、基材の劣化を抑制しつつ有害ガス分解性および防カビ・防藻性にも優れた建築用外装材を提供することが可能となる。
その理由は以下のように考えられる。光触媒性酸化チタン粒子および酸化セリウム粒子は水との親和性があり、かつエマルジョンより粒径を小さくしているために水が表面に拡散し蒸発する際に、表面に移動しやすい。従って、光触媒コーティング液を基材に塗布した後に乾燥するとき、水の蒸発に伴い、光触媒性酸化チタン粒子は水とともに表面への移動するが、それとともに、水に溶解している水溶性の銅化合物は表面へ移動する。
それにより、硬化完了後には、基材側ではシリコーンエマルジョンが高濃度となって基材と密着し、表面側では光触媒性酸化チタン粒子と酸化セリウム粒子と銅化合物とが高濃度に存在するようになる。したがって、表面側は光触媒性酸化チタン粒子および酸化セリウム粒子により粒子リッチとなりガス透過性が良好になり、かつ、光触媒性酸化チタン粒子と銅化合物とは高濃度に互いに離間しつつ存在するようになり(ここで、本発明では光触媒性酸化チタン粒子が酸化力が還元力よりも強い光触媒性酸化チタン粒子であるので)、銅化合物が適度に離間して存在することで、銅の光還元作用をほとんど生じることなく、光触媒と銅との相互作用により光触媒酸化力を強めることができる。これらの相互作用により、有害ガス分解性および防カビ・防藻性の双方に優れるようになると考えられる。
かつ、上記塗装体では、上記光触媒性酸化チタン粒子が基材側ではなく、表面側に高濃度に存在するので、光触媒と基材との界面での反応をも抑制できるようになる。
Architectural exterior material The architectural exterior material of the present invention is an architectural exterior material comprising a base material and a photocatalyst layer provided on the base material, and the photocatalyst layer is coated with a photocatalyst coating liquid. The photocatalytic coating liquid obtained by drying comprises photocatalytic titanium oxide particles, cerium oxide particles, silicone emulsion, water-soluble copper compound, and water. It is a material.
By adopting such a configuration, it is possible to provide a building exterior material that is excellent in harmful gas decomposability and antifungal / algae resistance while suppressing deterioration of the base material.
The reason is considered as follows. The photocatalytic titanium oxide particles and cerium oxide particles have an affinity for water and have a particle size smaller than that of the emulsion, so that when water diffuses and evaporates on the surface, it easily moves to the surface. Therefore, when the photocatalyst coating liquid is applied to the substrate and dried, the photocatalytic titanium oxide particles move to the surface together with the water as the water evaporates. The compound moves to the surface.
As a result, after curing is complete, the silicone emulsion has a high concentration on the substrate side and adheres to the substrate, and on the surface side, the photocatalytic titanium oxide particles, the cerium oxide particles, and the copper compound are present in a high concentration. Become. Therefore, the surface side becomes rich due to the photocatalytic titanium oxide particles and cerium oxide particles, the gas permeability is good, and the photocatalytic titanium oxide particles and the copper compound are present at a high concentration while being separated from each other. (Here, in the present invention, the photocatalytic titanium oxide particles are photocatalytic titanium oxide particles whose oxidizing power is stronger than the reducing power), so that the copper compound is present at an appropriate distance so that the photoreducing action of copper can be achieved. Almost no photocatalytic oxidation power can be strengthened by the interaction between the photocatalyst and copper. These interactions are considered to be excellent in both harmful gas decomposability and mold / algae resistance.
And in the said coating body, since the said photocatalytic titanium oxide particle exists not in the base material side but in the surface side at high concentration, it becomes possible to also suppress the reaction in the interface of a photocatalyst and a base material.

本発明の好ましい形態によれば、前記建築用外装材には、さらに、シリカ粒子が添加されているようにする。
そうすることで膜強度が向上する。
According to a preferred embodiment of the present invention, silica particles are further added to the building exterior material.
By doing so, the film strength is improved.

本発明の好ましい形態によれば、前記光触媒コーティング液中に含有される硬化性シリコーンエマルジョンは、その硬化物が、前記光触媒コーティング液の乾燥物に対して85質量%以上、好ましくは90質量%以上含有されるようにする。
85質量%以上にすることにより、2μmをこえる厚膜のような、表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
さらに、90質量%以上にすることにより、5μmをこえる厚膜のような、表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
According to a preferred embodiment of the present invention, the curable silicone emulsion contained in the photocatalyst coating solution has a cured product of 85% by mass or more, preferably 90% by mass or more, based on the dried product of the photocatalyst coating solution. To be contained.
By making the content 85% by mass or more, a high photocatalytic decomposition activity can be obtained even in a film having a long transfer process on the surface, such as a thick film exceeding 2 μm, and a transparent photocatalyst when no colorant is added. A layer can be formed.
Furthermore, by setting it to 90% by mass or more, it is possible to obtain a high photocatalytic decomposition activity even in a film having a long moving process on the surface, such as a thick film exceeding 5 μm, and transparent when no colorant is added. A simple photocatalytic layer can be formed.

本発明の好ましい形態によれば、前記光触媒層中に含有される光触媒性酸化チタン粒子は、前記光触媒コーティング液の乾燥物に対して0質量%をこえ5質量%未満であるようにする。
そうすることにより、基材の劣化を抑制できる。
According to a preferred embodiment of the present invention, the photocatalytic titanium oxide particles contained in the photocatalyst layer are more than 0% by mass and less than 5% by mass with respect to the dried product of the photocatalyst coating liquid.
By doing so, deterioration of the substrate can be suppressed.

本発明の好ましい形態によれば、前記光触媒層の膜厚は、2μmをこえ20μm未満、好ましくは5μmをこえ20μm未満であるようにする。
そうすることで、基材への紫外線の影響を低めることができ、紫外線による基材の劣化を有効に抑制できる。
According to a preferred embodiment of the present invention, the film thickness of the photocatalyst layer is more than 2 μm and less than 20 μm, preferably more than 5 μm and less than 20 μm.
By doing so, the influence of the ultraviolet-ray to a base material can be lowered | hung and degradation of the base material by an ultraviolet-ray can be suppressed effectively.

本発明の好ましい形態によれば、前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性酸化チタン粒子および前記酸化セリウム粒子の平均粒径よりも大きいようにする。
そうすることで、光触媒性酸化チタン粒子および前記酸化セリウム粒子の表面への移動が顕著になる。
従って、光触媒性酸化チタン粒子が表面に移動しやすくなり、2μmをこえる厚膜のような表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な建築用外装材を提供することがより容易となるとともに、光触媒性酸化チタン粒子および前記酸化セリウム粒子がガスやカビ・藻と接触しやすい表面に高濃度に存在しやすくなる。
According to a preferred embodiment of the present invention, the average particle size of the curable silicone emulsion is larger than the average particle size of the photocatalytic titanium oxide particles and the cerium oxide particles.
By doing so, the movement of the photocatalytic titanium oxide particles and the cerium oxide particles to the surface becomes remarkable.
Accordingly, the photocatalytic titanium oxide particles can easily move to the surface, and a building exterior material capable of obtaining a high degree of photocatalytic decomposition activity even in a film having a long moving process on a surface such as a thick film exceeding 2 μm is provided. This makes it easier for the photocatalytic titanium oxide particles and the cerium oxide particles to be present at a high concentration on the surface that easily comes into contact with gas, mold, or algae.

本発明の好ましい形態によれば、前記光触媒層は透明であるようにする。
そうすることで、基材がエナメル塗装やクリア塗装の場合、その意匠性を有効に活かしつつ2μmをこえる厚膜のような、表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な建築用外装材を提供することがより容易となる。
According to a preferred embodiment of the present invention, the photocatalyst layer is transparent.
By doing so, when the base material is enamel coating or clear coating, high photocatalytic degradation activity can be obtained even for a film with a long travel distance on the surface, such as a thick film exceeding 2 μm while effectively utilizing its design properties. It is easier to provide a building exterior material that can be used.

ここで、「透明」の度合いとしては、波長550nmにおいての光触媒層の直線透過率を70%以上、より好ましくは80%以上確保するとより好ましい。そうすることで下地の色味、意匠を損なうことなく表現することが可能となる。また透明度の高いガラスやプラスチックなどにコーティングしても透明性を損なわずに済む。また、ヒドロキシフェニルトリアジンは銅化合物と共存させても反応しないのでそれに基づき変色することもなく、透明性を長期に亘り維持できる。   Here, as the degree of “transparency”, it is more preferable to secure the linear transmittance of the photocatalyst layer at a wavelength of 550 nm of 70% or more, more preferably 80% or more. By doing so, it becomes possible to express without impairing the color and design of the groundwork. Moreover, even if it is coated on highly transparent glass or plastic, the transparency is not impaired. Further, since hydroxyphenyltriazine does not react even if it coexists with a copper compound, it does not change color based on it and can maintain transparency for a long time.

本発明の好ましい形態によれば、光触媒性酸化チタン粒子としては、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンの粒子や、これら粒子を複数種複合させた粒子や、これらの粒子を部分的にシリカ、アルミナ等で被覆した粒子等が好適に利用可能である。   According to a preferred embodiment of the present invention, the photocatalytic titanium oxide particles include anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide particles, particles obtained by combining a plurality of these particles, and these particles. Particles partially coated with silica, alumina or the like can be suitably used.

本発明の好ましい形態によれば、光触媒性酸化チタン粒子および酸化セリウム粒子は10nm以上100nm未満の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。   According to a preferred embodiment of the present invention, the photocatalytic titanium oxide particles and cerium oxide particles preferably have an average particle size of 10 nm or more and less than 100 nm, and more preferably 10 nm or more and 60 nm or less. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.

粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(透明性、塗膜強度等)が効率良く発揮される。   As the shape of the particle, a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2). Within this range, weather resistance, harmful gas decomposability, and various desired coating properties (transparency, coating strength, etc.) are efficiently exhibited.

また、本発明の好ましい態様によれば、光触媒性酸化チタン粒子および酸化セリウム粒子は3nm以上30nm未満の平均結晶子径を有するのが好ましく、より好ましくは5nm以上20nm以下である。なお、この平均粒径は、粉末X線回折法により得られるX線プロファイルの3強線の積分幅からシェラー式により算出される。   According to a preferred embodiment of the present invention, the photocatalytic titanium oxide particles and cerium oxide particles preferably have an average crystallite size of 3 nm or more and less than 30 nm, more preferably 5 nm or more and 20 nm or less. The average particle diameter is calculated by the Scherrer equation from the integral width of the three strong lines of the X-ray profile obtained by the powder X-ray diffraction method.

本発明の水溶性の銅化合物としては、銅(II)化合物の好ましい例としては、グルコン酸塩、硫酸塩、リンゴ酸塩、乳酸塩、塩化物、硫酸塩、硝酸塩、ギ酸塩、酢酸塩、キレート等が好適に利用できる。   As the water-soluble copper compound of the present invention, preferred examples of the copper (II) compound include gluconate, sulfate, malate, lactate, chloride, sulfate, nitrate, formate, acetate, Chelates can be suitably used.

硬化性シリコーンエマルジョンとは、基材に塗布し乾燥する際に、シリコーンエマルジョン中に存在する官能基により硬化重合反応を生じ、それに伴い硬化膜を生成しうるシリコーンエマルジョンをいう。
ここで、硬化反応には、加水分解・縮合反応、光重合反応等が好適に利用できる。
硬化反応が加水分解・縮合反応の場合には、官能基としてアルコキシド基を有し、加水分解・縮合反応によりシロキサン結合を生成する硬化性シリコーンエマルジョンが好適に利用できる。
The curable silicone emulsion refers to a silicone emulsion that, when applied to a substrate and dried, causes a curing polymerization reaction due to a functional group present in the silicone emulsion, thereby forming a cured film.
Here, a hydrolysis / condensation reaction, a photopolymerization reaction, or the like can be suitably used for the curing reaction.
When the curing reaction is a hydrolysis / condensation reaction, a curable silicone emulsion having an alkoxide group as a functional group and generating a siloxane bond by the hydrolysis / condensation reaction can be suitably used.

硬化性シリコーンエマルジョンには、上記硬化反応を生じる官能基の他に、乳化重合による有機架橋部と、水に分散するための表面部分が存在する。
有機架橋部は、ビニル基とビニル基が重合したエチレン架橋部のようなラジカル重合により生成した架橋部が好適に利用できる。ラジカル重合により生成した架橋部であれば、特に炭化水素基に限定されず、種々の変性基の組合せが好適に利用可能である。
表面部分は、例えば、界面活性剤等の乳化剤が固定され水に分散可能に形成されている。
In addition to the functional group that causes the curing reaction, the curable silicone emulsion has an organic cross-linked portion by emulsion polymerization and a surface portion for dispersion in water.
As the organic crosslinking part, a crosslinking part produced by radical polymerization such as an ethylene crosslinking part in which a vinyl group and a vinyl group are polymerized can be suitably used. Any cross-linked portion generated by radical polymerization is not particularly limited to a hydrocarbon group, and a combination of various modifying groups can be suitably used.
The surface portion is formed so that, for example, an emulsifier such as a surfactant is fixed and can be dispersed in water.

硬化性シリコーンエマルジョンには、上記硬化反応を生じる官能基、有機架橋部以外に珪素原子に結合する有機基が存在してもよい。ここで、有機基としては、アルキル基、フェニル基、シクロアルキル基等の炭化水素基や、その水素の一部が変性基に置換された有機基が挙げられる。ここで、変性基としては、アミノ基、カルボキシル基、メルカプト基、アクリル基、エポキシ基等が好適に利用できる。   In the curable silicone emulsion, an organic group bonded to a silicon atom may be present in addition to the functional group causing the curing reaction and the organic cross-linking portion. Here, examples of the organic group include hydrocarbon groups such as an alkyl group, a phenyl group, and a cycloalkyl group, and organic groups in which a part of the hydrogen is substituted with a modifying group. Here, as the modifying group, an amino group, a carboxyl group, a mercapto group, an acrylic group, an epoxy group, or the like can be suitably used.

次に、エマルジョンの乳化剤として使用される界面活性剤について述べる。界面活性剤としては、従来公知のノニオン系、カチオン系、アニオン系各種界面活性剤、及びラジカル重合可能な官能基を含有する反応性乳化剤が適用可能である。更に、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンカルボン酸エステル、ソルビタンエステル、ポリオキシエチレンソルビタンエステルなどのノニオン系界面活性剤、アルキルトリメチルアンモニウムクロライド、アルキルベンジルアンモニウムクロライドなどのカチオン系界面活性剤、アルキル又はアルキルアリル硫酸塩、アルキル又はアルキルアリルスルフォン酸塩、ジアルキルスルフォコハク酸塩などのアニオン系界面活性剤、アミノ酸型、ベタイン型などの両性イオン型界面活性剤、特開平8−27347号公報中に記されている分子中にスルフォン酸塩、ポリオキシエチレン鎖、第4級アンモニウム塩などの基を含有するラジカル重合可能な(メタ)アクリレート、スチレン、マレイン酸エステル化合物などの誘導体を含む各種反応性界面活性剤を示すことができる。   Next, the surfactant used as an emulsifier for the emulsion will be described. As the surfactant, conventionally known nonionic, cationic, and anionic surfactants and reactive emulsifiers containing functional groups capable of radical polymerization can be applied. Furthermore, nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene carboxylic acid ester, sorbitan ester, polyoxyethylene sorbitan ester, and cations such as alkyltrimethylammonium chloride and alkylbenzylammonium chloride Surfactants, alkyl or alkyl allyl sulfates, anionic surfactants such as alkyl or alkyl allyl sulfonates, dialkyl sulphosuccinates, zwitterionic surfactants such as amino acid types and betaine types, Radically polymerizable (meth) acrylate containing a group such as sulfonate, polyoxyethylene chain, quaternary ammonium salt in the molecule described in JP-A-8-27347, Styrene, can exhibit various reactive surfactants containing derivatives such as maleic acid ester compound.

これらの界面活性剤は1種又は2種以上を使用してもよい。界面活性剤は、エマルジョン中の樹脂固形分の0.5〜15重量%使用するのが好ましく、特には1〜10重量%使用するのがよい。   These surfactants may be used alone or in combination of two or more. The surfactant is preferably used in an amount of 0.5 to 15% by weight, particularly 1 to 10% by weight, based on the resin solid content in the emulsion.

光触媒層中に、紫外線吸収剤を配合させてもよい。紫外線吸収剤の含有量は、光触媒活性及び/又は親水性の発現を阻害せずに耐候性を向上できる量であれば制限はないが、例えば、光触媒体に0.001〜10質量%、好ましくは0.01〜5質量%含有させることが好ましい。   You may mix | blend a ultraviolet absorber in a photocatalyst layer. The content of the ultraviolet absorber is not limited as long as the weather resistance can be improved without inhibiting the photocatalytic activity and / or the expression of hydrophilicity. For example, the photocatalyst is 0.001 to 10% by mass, preferably Is preferably contained in an amount of 0.01 to 5% by mass.

本発明に使用できる紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系紫外線吸収剤を好適に例示することができる。   Preferred examples of the ultraviolet absorber that can be used in the present invention include benzophenone-based, benzotriazole-based, and triazine-based ultraviolet absorbers.

とりわけ、トリアジン系紫外線吸収剤が化学的に安定なため好ましい。トリアジン系紫外線吸収剤として具体的には、ヒドロキシフェニルトリアジンまたはその誘導体が好適に利用できる。   In particular, a triazine ultraviolet absorber is preferable because it is chemically stable. Specifically, hydroxyphenyltriazine or a derivative thereof can be suitably used as the triazine-based ultraviolet absorber.

上記ベンゾフェノン系の紫外線吸収剤としては、具体的には、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、4−ドデシルオキシ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−ステアリルオキシベンゾフェノン、オクタベンゾン、及び2−ヒドロキシ−4−アクリロキシベンゾフェノン、2−ヒドロキシ−4−メタクリロキシベンゾフェノン、2−ヒドロキシ−5−アクリロキシベンゾフェノン、2−ヒドロキシ−5−メタクリロキシベンゾフェノン、2−ヒドロキシ−4−(アクリロキシ−エトキシ)ベンゾフェノン、2−ヒドロキシ−4−(メタクリロキシ−エトキシ)ベンゾフェノン、2−ヒドロキシ−4−(メタクリロキシ−ジエトキシ)ベンゾフェノン、2−ヒドロキシ−4−(アクリロキシ−トリエトキシ)ベンゾフェノン等の重合性のベンゾフェノン系紫外線吸収剤やそれらの(共)重合物などが挙げられる。   Specific examples of the benzophenone-based ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, and 2-hydroxy-4. -N-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2,2 ' -Dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 2-hydroxy- 4-methoxy-2'- Ruboxybenzophenone, 2-hydroxy-4-stearyloxybenzophenone, octabenzone, and 2-hydroxy-4-acryloxybenzophenone, 2-hydroxy-4-methacryloxybenzophenone, 2-hydroxy-5-acryloxybenzophenone, 2-hydroxy -5-methacryloxybenzophenone, 2-hydroxy-4- (acryloxy-ethoxy) benzophenone, 2-hydroxy-4- (methacryloxy-ethoxy) benzophenone, 2-hydroxy-4- (methacryloxy-diethoxy) benzophenone, 2-hydroxy- Examples thereof include polymerizable benzophenone-based ultraviolet absorbers such as 4- (acryloxy-triethoxy) benzophenone and (co) polymers thereof.

また、上記ベンゾトリアゾール系の紫外線吸収剤として具体的には、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−オクチルフェニル)ベンゾトリアゾール、2−〔2’−ヒドロキシ−3’,5’−ビス(α,α’−ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル−3−〔3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(チバジャパン(株)製、製品名:TINUVIN−1130)、イソオクチル−3−〔3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル〕プロピオネート(チバジャパン(株)製、製品名:TINUVIN−384)、2−(3−ドデシル−5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール(チバジャパン(株)製、製品名:TINUVIN−571)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−4’−オクトキシフェニル)ベンゾトリアゾール、2−〔2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラヒドロフタルイミドメチル)−5’−メチルフェニル 〕ベンゾトリアゾール、2,2−メチレンビス〔4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール〕、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(チバジャパン(株)製、製品名:TINUVIN−900)、及び2−(2’−ヒドロキシ−5’−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾール(大塚化学(株)製、製品名:RUVA−93)、2−(2’−ヒドロキシ−5’−メタクリロキシエチル−3−tert−ブチルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリリルオキシプロピル−3−tert−ブチルフェニル)−5−クロロ−2H−ベンゾトリアゾール、3−メタクリロイル−2−ヒドロキシプロピル−3−〔3’−(2”−ベンゾトリアゾリル)−4−ヒドロキシ−5−tert−ブチル〕フェニルプロピオネート(チバジャパン(株)製、製品名:CGL−104)等の重合性のベンゾトリアゾール系紫外線吸収剤やそれらの(共)重合物の他、TINUVIN−384−2(製品名、チバジャパン(株)製)、TINUVIN−99−2(製品名、チバジャパン(株)製)、TINUVIN−109(製品名、チバジャパン(株)製)、TINUVIN−328(製品名、チバジャパン(株)製)、TINUVIN−928(製品名、チバジャパン(株)製)などが挙げられる。   Specific examples of the benzotriazole-based UV absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-5′-tert-butylphenyl) benzo. Triazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy- 3,5-di-tert-octylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α′-dimethylbenzyl) phenyl] benzotriazole), methyl-3- [3 -Tert-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate Condensate with polyethylene glycol (molecular weight 300) (product name: TINUVIN-1130, manufactured by Ciba Japan Co., Ltd.), isooctyl-3- [3- (2H-benzotriazol-2-yl) -5-tert-butyl- 4-hydroxyphenyl] propionate (manufactured by Ciba Japan Co., Ltd., product name: TINUVIN-384), 2- (3-dodecyl-5-methyl-2-hydroxyphenyl) benzotriazole (manufactured by Ciba Japan Co., Ltd., product name) : TINUVIN-571), 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-) tert-amylphenyl) benzotriazole, 2- (2'-hydroxy-4'-octoxyphenyl) benzo Riazole, 2- [2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl] benzotriazole, 2,2-methylenebis [4- (1 , 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-phenylethyl) phenol (manufactured by Ciba Japan Co., Ltd., product name: TINUVIN-900), and 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole (Otsuka Chemical Co., Ltd.) Product name: RUVA-93), 2- (2′-hydroxy-5′-methacryloxyethyl-3-tert-butylphenyl) -2H-benzotriazo 2- (2′-hydroxy-5′-methacrylyloxypropyl-3-tert-butylphenyl) -5-chloro-2H-benzotriazole, 3-methacryloyl-2-hydroxypropyl-3- [3 ′ Polymerizable benzotriazole-based ultraviolet absorbers such as-(2 "-benzotriazolyl) -4-hydroxy-5-tert-butyl] phenylpropionate (manufactured by Ciba Japan Co., Ltd., product name: CGL-104) And TINUVIN-384-2 (product name, manufactured by Ciba Japan), TINUVIN-99-2 (product name, manufactured by Ciba Japan), TINUVIN-109 (product) Name, manufactured by Ciba Japan), TINUVIN-328 (product name, manufactured by Ciba Japan), TINUVIN-928 (product name, Ciba) Made Yapan Co., Ltd.), and the like.

また、本発明の光触媒層において、ヒンダードアミン系及び/又はヒンダードフェノール系等の光安定剤を更に含有するものは、上記紫外線吸収剤との相乗効果により、本発明の光触媒層は卓越した耐候性、耐光性を示すため好ましい。   Further, in the photocatalyst layer of the present invention, those further containing a hindered amine-based and / or hindered phenol-based light stabilizer, the photocatalyst layer of the present invention has excellent weather resistance due to a synergistic effect with the ultraviolet absorber. In view of light resistance, it is preferable.

特に、本発明の好ましい形態によれば、紫外線吸収剤としてヒドロキシフェニルトリアジン化合物を、光安定剤としてヒンダードアミン化合物を配合させるとよい。そうすることで、光触媒層による380nm未満の短波長の紫外線の吸収性能が安定する。   In particular, according to a preferred embodiment of the present invention, a hydroxyphenyl triazine compound may be blended as an ultraviolet absorber and a hindered amine compound as a light stabilizer. By doing so, the absorption performance of ultraviolet rays having a short wavelength of less than 380 nm by the photocatalyst layer is stabilized.

本発明の光触媒層中の光安定剤の含有量は、光触媒活性及び/又は親水性の発現を阻害せずに耐候性を向上できる量であれば制限はないが、例えば光触媒層に0.001〜10質量%、好ましくは0.01〜5質量%含有させることが好ましい。
ヒンダードアミン系光安定剤の具体例としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)サクシネート、ビス(2,2,6,6−テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)2−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−2−ブチルマロネート、1−〔2−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピニルオキシ〕エチル〕−4−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピニルオキシ〕−2,2,6,6−テトラメチルピペリジン、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートとメチル−1,2,2,6,6−ペンタメチル−4−ピペリジル−セバケートの混合物(チバジャパン(株)製、製品名:TINUVIN−292)、ビス(1−オクトキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、TINUVIN−123(製品名、チバジャパン(株)製)、TINUVIN−111FDL(製品名、チバジャパン(株)製)、TINUVIN292(製品名、チバジャパン(株)製)、及び1,2,2,6,6−ペンタメチル−4−ピペリジルメタクリレート、1,2,2,6,6−ペンタメチル−4−ピペリジルアクリレート、2,2,6,6−テトラメチル−4−ピペリジルメタクリレート、2,2,6,6−テトラメチル−4−ピペリジルアクリレート、1,2,2,6,6−ペンタメチル−4−イミノピペリジルメタクリレート、2,2,6,6,−テトラメチル−4−イミノピペリジルメタクリレート、4−シアノ−2,2,6,6−テトラメチル−4−ピペリジルメタクリレート、4−シアノ−1,2,2,6,6−ペンタメチル−4−ピペリジルメタクリレートなどの重合性のヒンダードアミン系紫外線吸収剤やそれらの(共)重合物を挙げることができる。
The content of the light stabilizer in the photocatalyst layer of the present invention is not limited as long as the weather resistance can be improved without inhibiting the photocatalytic activity and / or the expression of hydrophilicity. -10% by mass, preferably 0.01-5% by mass.
Specific examples of the hindered amine light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (2,2,6,6-tetramethylpiperidyl) sebacate, bis (1, 2,2,6,6-pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate, 1- [2- [3- (3 5-Di-tert-butyl-4-hydroxyphenyl) propynyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propynyloxy] -2,2,6 6-tetramethylpiperidine, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl-sebake Mixture (product name: TINUVIN-292, manufactured by Ciba Japan Co., Ltd.), bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, TINUVIN-123 (product name, Ciba Japan Co., Ltd.), TINUVIN-111FDL (product name, manufactured by Ciba Japan Co., Ltd.), TINUVIN 292 (product name, manufactured by Ciba Japan Co., Ltd.), and 1,2,2,6,6-pentamethyl-4- Piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl acrylate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl Acrylate, 1,2,2,6,6-pentamethyl-4-iminopiperidyl methacrylate, 2,2,6,6, -tetramethyl Such as ru-4-iminopiperidyl methacrylate, 4-cyano-2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4-cyano-1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, etc. Examples thereof include polymerizable hindered amine ultraviolet absorbers and their (co) polymers.

また、ヒンダードフェノール系光安定剤の具体例としては、ビス(3,5−tert−ブチル)−4−ヒドロキシトルエン、TINUVIN−144(製品名、チバジャパン(株)製)等を挙げることができる。   Specific examples of the hindered phenol light stabilizer include bis (3,5-tert-butyl) -4-hydroxytoluene, TINUVIN-144 (product name, manufactured by Ciba Japan Co., Ltd.), and the like. it can.

光触媒層には、有機防カビ剤が配合されていてもよい。例として、有機窒素硫黄系化合物、ピリチオン系化合物、有機ヨウ素系化合物、トリアジン系化合物、イソチアゾリン系化合物、イミダゾール系化合物、ピリジン系化合物、ニトリル系化合物、チオカーバメート系化合物、チアゾール系化合物、有機よう素化合物、ジスルフィド系化合物が挙げられ、単独もしくは混合物として用いられる。防カビ剤は一般に藻を防ぐ効果も合わせ持つものが多いことから、防カビ剤を添加することによって、カビと藻の両方を抑制することも期待できる。   An organic antifungal agent may be blended in the photocatalyst layer. Examples include organic nitrogen sulfur compounds, pyrithione compounds, organic iodine compounds, triazine compounds, isothiazoline compounds, imidazole compounds, pyridine compounds, nitrile compounds, thiocarbamate compounds, thiazole compounds, and organic iodine. Compounds and disulfide compounds may be mentioned and used alone or as a mixture. Since many antifungal agents generally have an effect of preventing algae, addition of the antifungal agent can be expected to suppress both mold and algae.

本発明の好ましい形態によれば、光触媒コーティング液にはノニオン性界面活性剤またはアニオン性界面活性剤が、エマルジョンの製造過程で添加される乳化剤とは別に添加されてもよい。
ノニオン性界面活性剤としては、HLB値が10〜20の界面活性剤が好ましい。その種類としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンラウラート、ポリオキシエチレンステアレート、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンオレエート、ソルビタンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル、ポリエーテル変性シリコーン、ポリエステル変性シリコーン、ソルビタンラウラート、ソルビタンステアレート、ソルビタンパルミテート、ソルビタンオレエート、ソルビタンセスキオレエート、ポリオキシエチレンソルビタンラウラート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンオレエート、グリセロールステアレート、ポリグリセリン脂肪酸エステル、アルキルアルキロールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、オキシエチレンドデシルアミン、ポリオキシエチレンドデシルアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンオクタデシルアミン、ポリオキシエチレンアルキルプロピレンジアミン、ポリオキシエチレンオキシプロピレンブロックポリマー、ポリオキシエチレンステアレート等が好適に利用できる。
アニオン性界面活性剤としては、スルホン酸ポリオキシエチレンアルキルフェニルエーテルアンモニウム塩、スルホン酸ポリオキシエチレンアルキルフェニルエーテルナトリウム塩、脂肪酸ナトリウムセッケン、脂肪酸カリセッケン、ジオクチルスルホコハク酸ナトリウム、アルキルサルフェート、アルキルエーテルサルフェート、アルキルサルフェートソーダ塩、アルキルエーテルサルフェートソーダ塩、ポリオキシエチレンアルキルエーテルサルフェート、ポリオキシエチレンアルキルエーテルサルフェートソーダ塩、アルキルサルフェートTEA塩、ポリオキシエチレンアルキルエーテルサルフェートTEA塩、2−エチルヘキシルアルキル硫酸エステルナトリウム塩、アシルメチルタウリン酸ナトリウム、ラウロイルメチルタウリン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ラウリル2ナトリウム、ポリオキシエチレンスルホコハク酸ラウリル2ナトリウム、ポリカルボン酸、オレオイルザルコシン、アミドエーテルサルフェート、ラウロイルザルコシネート、スルホFAエステルナトリウム塩等が好適に利用可能である。
According to a preferred embodiment of the present invention, a nonionic surfactant or an anionic surfactant may be added to the photocatalyst coating liquid separately from the emulsifier added during the emulsion production process.
As the nonionic surfactant, a surfactant having an HLB value of 10 to 20 is preferable. As the type, for example, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, Polyoxyethylene alkyl phenol ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene laurate, polyoxyethylene stearate, polyoxyethylene alkyl phenyl ether, polyoxyethylene oleate, sorbitan alkyl ester, poly Oxyethylene sorbitan alkyl ester, polyether modified silicone, polyester modified Ricone, sorbitan laurate, sorbitan stearate, sorbitan palmitate, sorbitan oleate, sorbitan sesquioleate, polyoxyethylene sorbitan laurate, polyoxyethylene sorbitan stearate, polyoxyethylene sorbitan palmitate, polyoxyethylene sorbitan oleate , Glycerol stearate, polyglycerin fatty acid ester, alkylalkylolamide, lauric acid diethanolamide, oleic acid diethanolamide, oxyethylene dodecylamine, polyoxyethylene dodecylamine, polyoxyethylene alkylamine, polyoxyethylene octadecylamine, polyoxy Ethylene alkylpropylenediamine, polyoxyethyleneoxypropylene block polymer Mer, polyoxyethylene stearate and the like can be suitably used.
Examples of the anionic surfactant include polyoxyethylene alkylphenyl ether ammonium salt of sulfonic acid, sodium salt of polyoxyethylene alkylphenyl ether of sulfonic acid, fatty acid sodium soap, fatty acid potassium soap, dioctyl sodium sulfosuccinate, alkyl sulfate, alkyl ether sulfate, alkyl Sulfate salt, alkyl ether sulfate soda salt, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether sulfate soda salt, alkyl sulfate TEA salt, polyoxyethylene alkyl ether sulfate TEA salt, 2-ethylhexyl alkyl sulfate sodium salt, acyl Sodium methyl taurate, sodium lauroyl methyl taurate , Sodium dodecylbenzenesulfonate, disodium lauryl sulfosuccinate, disodium lauryl polyoxyethylene sulfosuccinate, polycarboxylic acid, oleoyl sarcosine, amide ether sulfate, lauroyl sarcosinate, sulfo FA ester sodium salt, etc. Is available.

本発明の好ましい形態によれば、シリカ粒子は、好ましくは10nmを超え200nm以下、より好ましくは20nmを超え100nm以下の平均粒径を有する。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。   According to a preferred embodiment of the present invention, the silica particles preferably have an average particle size of more than 10 nm and 200 nm or less, more preferably more than 20 nm and 100 nm or less. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the shape of the particle, a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).

本発明では光触媒層中にシリカ粒子以外の無機酸化物粒子が含まれていてもよい。無機酸化物粒子は、光触媒性酸化チタン粒子及び酸化セリウム粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、あらゆる種類の無機酸化物の粒子が使用可能である。そのような無機酸化物粒子の例としては、アルミナ、セリア、イットリア、酸化鉄、酸化マンガン、酸化ニッケル、酸化コバルト、ハフニア等の単一酸化物の粒子;およびチタン酸バリウム、ケイ酸カルシウム、ホウ酸アルミニウム、チタン酸カリウム等の複合酸化物の粒子が挙げられる。   In the present invention, the photocatalyst layer may contain inorganic oxide particles other than silica particles. The inorganic oxide particles are not particularly limited as long as they are inorganic oxide particles capable of forming a layer together with photocatalytic titanium oxide particles and cerium oxide particles, and all kinds of inorganic oxide particles can be used. Examples of such inorganic oxide particles include alumina, ceria, yttria, iron oxide, manganese oxide, nickel oxide, cobalt oxide, hafnia and other single oxide particles; and barium titanate, calcium silicate, boron Examples thereof include particles of composite oxides such as aluminum oxide and potassium titanate.

建築外装用コーティング液
本発明の建築外装用コーティング液は、光触媒性酸化チタン粒子と、酸化セリウム粒子と、シリコーンエマルジョンと、水溶性の銅化合物と、水とを備えていることを特徴とする光触媒水性コーティング液である。
このような構成にすることにより、基材の劣化を抑制しつつ有害ガス分解性および防カビ・防藻性にも優れた光触媒水性コーティング液を提供することが可能となる。
その理由は以下のように考えられる。光触媒性酸化チタン粒子および酸化セリウム粒子は水との親和性があり、かつエマルジョンより粒径を小さくしているために水が表面に拡散し蒸発する際に、表面に移動しやすい。従って、建築外装用コーティング液を基材に塗布した後に乾燥するとき、水の蒸発に伴い、光触媒性酸化チタン粒子は水とともに表面への移動するが、それとともに、水に溶解している水溶性の銅化合物は表面へ移動する。
それにより、硬化完了後には、基材側ではシリコーンエマルジョンが高濃度となって基材と密着し、表面側では光触媒性酸化チタン粒子と酸化セリウム粒子と銅化合物とが高濃度に存在するようになる。したがって、表面側は光触媒性酸化チタン粒子および酸化セリウム粒子により粒子リッチとなりガス透過性が良好になり、かつ、光触媒性酸化チタン粒子と銅化合物とは高濃度に互いに離間しつつ存在するようになり(ここで、本発明では光触媒性酸化チタン粒子が酸化力が還元力よりも強い光触媒性酸化チタン粒子であるので)、銅化合物が適度に離間して存在することで、銅の光還元作用をほとんど生じることなく、光触媒と銅との相互作用により光触媒酸化力を強めることができる。これらの相互作用により、有害ガス分解性および防カビ・防藻性の双方に優れるようになると考えられる。
かつ、上記塗装体では、上記光触媒性酸化チタン粒子が基材側ではなく、表面側に高濃度に存在するので、光触媒と基材との界面での反応をも抑制できるようになる。
Coating liquid for building exterior The coating liquid for building exterior of the present invention comprises photocatalytic titanium oxide particles, cerium oxide particles, silicone emulsion, water-soluble copper compound, and water. It is an aqueous coating solution.
With such a configuration, it is possible to provide a photocatalytic aqueous coating solution that is excellent in harmful gas decomposability and antifungal / algae resistance while suppressing deterioration of the substrate.
The reason is considered as follows. The photocatalytic titanium oxide particles and cerium oxide particles have an affinity for water and have a particle size smaller than that of the emulsion, so that when water diffuses and evaporates on the surface, it easily moves to the surface. Therefore, when the coating liquid for building exterior is applied and dried after drying, the photocatalytic titanium oxide particles move to the surface together with the water as the water evaporates. The copper compound moves to the surface.
As a result, after curing is complete, the silicone emulsion has a high concentration on the substrate side and adheres to the substrate, and on the surface side, the photocatalytic titanium oxide particles, the cerium oxide particles, and the copper compound are present in a high concentration. Become. Therefore, the surface side becomes rich due to the photocatalytic titanium oxide particles and cerium oxide particles, the gas permeability is good, and the photocatalytic titanium oxide particles and the copper compound are present at a high concentration while being separated from each other. (Here, in the present invention, the photocatalytic titanium oxide particles are photocatalytic titanium oxide particles whose oxidizing power is stronger than the reducing power), so that the copper compound is present at an appropriate distance so that the photoreducing action of copper can be achieved. Almost no photocatalytic oxidation power can be strengthened by the interaction between the photocatalyst and copper. These interactions are considered to be excellent in both harmful gas decomposability and mold / algae resistance.
And in the said coating body, since the said photocatalytic titanium oxide particle exists not in the base material side but in the surface side at high concentration, it becomes possible to also suppress the reaction in the interface of a photocatalyst and a base material.

本発明の好ましい形態によれば、前記建築外装用コーティング液には、さらに、シリカ粒子が添加されているようにする。
そうすることで膜強度が向上する。
According to the preferable form of this invention, the silica particle is further added to the said coating liquid for building exteriors.
By doing so, the film strength is improved.

本発明の好ましい形態によれば、前記建築外装用コーティング液中に含有される硬化性シリコーンエマルジョンは、その硬化物が、前記光触媒コーティング液の乾燥物に対して85質量%以上、好ましくは90質量%以上含有されるようにする。
85質量%以上にすることにより、2μmをこえる厚膜のような、表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
さらに、90質量%以上にすることにより、5μmをこえる厚膜のような、表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
According to a preferred embodiment of the present invention, the curable silicone emulsion contained in the architectural exterior coating solution has a cured product of 85% by mass or more, preferably 90% by mass, based on the dried product of the photocatalyst coating solution. % Content or more.
By making the content 85% by mass or more, a high photocatalytic decomposition activity can be obtained even in a film having a long transfer process on the surface, such as a thick film exceeding 2 μm, and a transparent photocatalyst when no colorant is added. A layer can be formed.
Furthermore, by setting it to 90% by mass or more, it is possible to obtain a high photocatalytic decomposition activity even in a film having a long moving process on the surface, such as a thick film exceeding 5 μm, and transparent when no colorant is added. A simple photocatalytic layer can be formed.

本発明の好ましい形態によれば、前記光触媒層中に含有される光触媒性酸化チタン粒子は、前記光触媒コーティング液の乾燥物に対して0質量%をこえ5質量%未満であるようにする。
そうすることにより、基材の劣化を抑制できる。
According to a preferred embodiment of the present invention, the photocatalytic titanium oxide particles contained in the photocatalyst layer are more than 0% by mass and less than 5% by mass with respect to the dried product of the photocatalyst coating liquid.
By doing so, deterioration of the substrate can be suppressed.

本発明の好ましい形態によれば、前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性酸化チタン粒子の平均粒径よりも大きいようにする。
そうすることで、光触媒性酸化チタン粒子の表面に移動が顕著になる。
従って、光触媒性酸化チタン粒子がシリコーンエマルジョンに束縛されずに表面に移動しやすくなり、2μmをこえる厚膜のような、表面に移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な光触媒コーティング組成物を提供することがより容易となる。
According to a preferred embodiment of the present invention, the average particle size of the curable silicone emulsion is made larger than the average particle size of the photocatalytic titanium oxide particles.
By doing so, movement becomes remarkable on the surface of the photocatalytic titanium oxide particles.
Accordingly, the photocatalytic titanium oxide particles can easily move to the surface without being bound by the silicone emulsion, and even in a film having a long moving process on the surface, such as a thick film exceeding 2 μm, high photocatalytic decomposition activity can be obtained. It becomes easier to provide a possible photocatalytic coating composition.

建築外装用コーティング液には、上記「光触媒性酸化チタン粒子」、「酸化セリウム粒子」、「水溶性の銅化合物」、「硬化性シリコーンエマルジョン」の他、下記に限定されないが、「シリカ粒子」、「シリカ粒子以外の無機酸化物粒子」、「界面活性剤」「金属または金属化合物」、「紫外線吸収剤」、「光安定剤」、「有機防カビ剤」等を配合させることができる。
尚、「光触媒性酸化チタン粒子」、「酸化セリウム粒子」、「水溶性の銅化合物」、「硬化性シリコーンエマルジョン」に関連する事項、「シリカ粒子」、「シリカ粒子以外の無機酸化物粒子含有」、「金属または金属化合物添加」、「界面活性剤の配合」、、「紫外線吸収剤の配合」、「光安定剤の配合」、「防藻剤の配合」については、「建築用外装材」の項で述べた全ての内容が好適に利用できる。
In addition to the above “photocatalytic titanium oxide particles”, “cerium oxide particles”, “water-soluble copper compound”, “curable silicone emulsion”, the coating liquid for building exterior is not limited to the following, but “silica particles” , “Inorganic oxide particles other than silica particles”, “surfactant”, “metal or metal compound”, “ultraviolet absorber”, “light stabilizer”, “organic antifungal agent”, and the like.
Matters related to “photocatalytic titanium oxide particles”, “cerium oxide particles”, “water-soluble copper compounds”, “curable silicone emulsion”, “silica particles”, “containing inorganic oxide particles other than silica particles” ”,“ Addition of metal or metal compound ”,“ Surfactant formulation ”,“ Ultraviolet absorber formulation ”,“ Light stabilizer formulation ”,“ Algae formulation formulation ” All the contents described in the section “can be suitably used.

本発明の建築外装用コーティング液においては、水に可溶又は水と均一分散可能な沸点が100℃以上の被膜形成助剤を配合することができる。この被膜形成助剤は大部分の水分が気化した後も被膜中に残存し、完全硬化するまで被膜に流動性を付与することにより気化時に荒れた被膜の修復を行い、特に被膜に均一性を付与するものである。良好な被膜を得るためには、非反応性の被膜形成助剤は最終的には硬化被膜から消失することが必要であり、エステル交換反応によりケイ素原子と結合する可能性のある水酸基は含まないことが好ましい。そのため、被膜形成助剤は100℃以上、好ましくは100〜250℃、特に100〜200℃の沸点の有機溶剤であることが好ましい。沸点が高すぎると被膜中に残存しやすくなることがある。具体的には、1−ブタノール、イソブチルアルコール、2−ペンタノール、3−ペンタノール、イソペンチルアルコール、乳酸メチル、乳酸エチル、3−メチル−3−メトキシブタノール等のアルコール類、1,2−プロパンジオール、1,3−ブタンジオール1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、グリセリン、トリメチロールプロパン等のポリオール類、2−ブトキシエタノール、2−フェノキシエタノール、2−エトキシエチルアセタート、2−ブトキシエチルアセタート、ジエチレングリコールモノブチルエーテルアセタート等のエチレングリコール誘導体、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−メトキシ−2−メチルエチルアセタート、1−エトキシ−2−メチルエチルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテルアセタート等のプロピレングリコール誘導体、3−メトキシブチルアセタート等のブチレングリコール誘導体、シクロヘキサノン等のケトン類、酢酸ブチル、酢酸イソブチル、γ−ブチロラクトン、炭酸プロピレン、ジブチルフタレート等のエステル類等を例示することができる。特に、2−エトキシエチルアセタート、2−ブトキシエチルアセタート、ジエチレングリコールモノブチルエーテルアセタート、1−エトキシ−2−メチルエチルアセタート、ジプロピレングリコールモノメチルエーテルアセタート等のアルキレングリコール誘導体がレベリング性の点から好ましい。これらの有機溶剤は、メタノールやエタノール等の低沸点アルコール類と比較して水溶性に劣るため、エマルジョンの安定性を損なわず、均一な被膜の形成にのみ寄与する。   In the coating liquid for exterior building of the present invention, a film forming aid having a boiling point of 100 ° C. or higher that is soluble in water or can be uniformly dispersed in water can be blended. This film-forming aid remains in the film even after most of the water has evaporated, and it provides fluidity to the film until it is completely cured, thereby repairing the film that was rough at the time of vaporization. It is given. In order to obtain a good film, the non-reactive film-forming aid must eventually disappear from the cured film, and does not contain hydroxyl groups that can be bonded to silicon atoms by transesterification. It is preferable. Therefore, the film forming aid is preferably an organic solvent having a boiling point of 100 ° C. or higher, preferably 100 to 250 ° C., particularly 100 to 200 ° C. If the boiling point is too high, it may easily remain in the film. Specifically, alcohols such as 1-butanol, isobutyl alcohol, 2-pentanol, 3-pentanol, isopentyl alcohol, methyl lactate, ethyl lactate, and 3-methyl-3-methoxybutanol, 1,2-propane Polyols such as diol, 1,3-butanediol 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, glycerin, trimethylolpropane, Ethylene glycol derivatives such as 2-butoxyethanol, 2-phenoxyethanol, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, diethylene glycol monobutyl ether acetate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-methoxy-2 Propylene glycol derivatives such as methyl ethyl acetate, 1-ethoxy-2-methyl ethyl acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, 3-methoxybutyl Examples include butylene glycol derivatives such as acetate, ketones such as cyclohexanone, esters such as butyl acetate, isobutyl acetate, γ-butyrolactone, propylene carbonate, and dibutyl phthalate. In particular, alkylene glycol derivatives such as 2-ethoxyethyl acetate, 2-butoxyethyl acetate, diethylene glycol monobutyl ether acetate, 1-ethoxy-2-methylethyl acetate, dipropylene glycol monomethyl ether acetate are leveling properties. To preferred. Since these organic solvents are inferior in water solubility as compared with low boiling alcohols such as methanol and ethanol, they do not impair the stability of the emulsion and contribute only to the formation of a uniform film.

上記被膜形成助剤の添加量は、シリコーン樹脂100重量部に対して0〜20重量部、特に1〜15重量部とすることが好ましい。20重量部を超えて添加すると、硬化終了後も被膜中に残存する被膜形成助剤の量が多くなるため、被膜の特性が不十分なものとなることがある。   The amount of the film forming aid added is preferably 0 to 20 parts by weight, particularly 1 to 15 parts by weight, based on 100 parts by weight of the silicone resin. If added in excess of 20 parts by weight, the amount of the film-forming auxiliary agent remaining in the film even after the completion of curing increases, so that the characteristics of the film may be insufficient.

本発明の建築外装用コーティング液の溶媒は、主として水である。それにより塗膜形成時に有機物の揮発、蒸発に伴う異臭、環境汚染を有効に防止できる。   The solvent of the architectural exterior coating liquid of the present invention is mainly water. As a result, it is possible to effectively prevent the odor and environmental pollution associated with the volatilization and evaporation of organic substances during coating film formation.

また、建築外装用コーティング液の固形分濃度は特に限定されないが、10〜60質量%とするのが塗布し易い点で好ましい。建築外装用コーティング液なお、建築外装用コーティング液中の構成成分の分析は、コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。   Moreover, the solid content concentration of the coating liquid for building exterior is not particularly limited, but is preferably 10 to 60% by mass because it is easy to apply. In addition, the analysis of the constituents in the coating solution for building exteriors is performed by separating the coating solution into particle components and filtrate by ultrafiltration, and analyzing each of them by infrared spectroscopy, gel permeation chromatography, fluorescent X It can be evaluated by analyzing by spectrum analysis etc. and analyzing the spectrum.

なお、上記「建築用外装材」「建築外装用コーティング液」の項で述べた内容は、任意に組合わせることが可能である。   It should be noted that the contents described in the above-mentioned sections “architectural exterior material” and “architectural exterior coating liquid” can be arbitrarily combined.

建築用外装材の製造方法
本発明の建築用外装材は、上記光触媒コーティング液を、基材上に塗布することにより簡単に製造することができる。光触媒層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよい。
Manufacturing method of building exterior material The building exterior material of the present invention can be easily manufactured by applying the photocatalyst coating liquid onto a substrate. As a method for coating the photocatalyst layer, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, and screen printing can be used. After applying the coating liquid to the substrate, it may be dried at room temperature, or may be heat-dried as necessary.

基材
本発明に用いる基材は、無機材料、有機材料、複層材料を問わず種々の材料であってよく、その形状も限定されない。材料の観点からみた基材の好ましい例としては、金属、セラミック、ガラス、プラスチック、ゴム、石、セメント、コンクリ−ト、繊維、布帛、木、紙、それらの組合せ、それらの積層体、それらの表面に少なくとも一層の被膜を有するものが挙げられる。用途の観点からみた基材の好ましい例としては、外壁、外壁用建材、屋根、屋根ふき、屋根材、屋根ふき材、雨樋、雨樋用建材、ベランダ柵、ベランダ柵用建材、ベランダ支柱、ベランダ支柱用建材、窓サッシ等が挙げられる。
特に、本発明の建築用外装材は、太陽光に晒され、太陽光に含まれる紫外線により光触媒が光励起され、ガス分解や防カビ等の光酸化作用を生じるとともに、その紫外線により基材の劣化が生じるおそれのある利用形態で用いられるのが、特に好ましい。
特に好適には、表面がエナメル塗装或いはクリア塗装されている基材が本発明の効果を充分に享受できるので最も好ましい。
Base Material The base material used in the present invention may be various materials regardless of inorganic materials, organic materials, and multilayer materials, and the shape thereof is not limited. Preferred examples of the substrate from the viewpoint of materials include metals, ceramics, glass, plastics, rubber, stones, cement, concrete, fibers, fabrics, wood, paper, combinations thereof, laminates thereof, Examples thereof include those having at least one layer of coating on the surface. As a preferable example of the base material from the viewpoint of application, outer wall, building material for outer wall, roof, roofing, roofing material, roofing material, gutter, building material for gutter, veranda fence, building material for veranda fence, veranda support, For example, building materials for veranda posts and window sashes.
In particular, the building exterior material of the present invention is exposed to sunlight, and the photocatalyst is photoexcited by ultraviolet rays contained in the sunlight, causing photooxidation action such as gas decomposition and mold prevention, and deterioration of the substrate by the ultraviolet rays. It is particularly preferable to use it in a form of use that may cause
Particularly preferably, a substrate whose surface is enamel-coated or clear-coated is most preferable because the effect of the present invention can be fully enjoyed.

本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.

実施例1.
アナターゼ型酸化チタン粒子(平均結晶子径10nm)1.3質量部、酸化セリウム粒子(平均結晶子径10nm)1.3質量部、3官能性シランで5%表面被覆したシリカ粒子(平均粒径50nm)7.4質量部、メチル基およびフェニル基を含有する硬化性シリコーンエマルジョン90質量部、銅のアミン錯体0.007質量部、銀のアミン錯体0.003質量部を配合した固形分濃度25質量%の光触媒水性コーティング液を調製し、透明なアクリル基材上に150℃×5分乾燥し、光触媒塗装体を得た。
得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約3μmであり、アナターゼ型酸化チタン粒子と酸化セリウム粒子とシリカ粒子が表面に高濃度に存在する様子が観察された。
また、光触媒塗装体の表面から観察したところ、塗装体を載置していた実験台が透けてみえた。
この光触媒塗装体について、光触媒による有害物質除去性能を、NOx分解性能を調べることにより確認した。ここで、光触媒によるNOx分解機能は、JISR1701−1「光触媒材料の空気浄化性能試験方法−第1部:窒素酸化物の除去性能」の試験法で行った。その結果、ΔNOxが0.5μmolを上回り、良好な結果を示した。
さらに、この光触媒塗装体について、抗カビ性能を確認した。前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。 こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。その結果、対数値は1を上回り、良好な結果を示した。
また、茅ヶ崎市において、屋外に1ヶ月暴露したが、外観の変化は生じなかった。
Example 1.
Anatase-type titanium oxide particles (average crystallite size 10 nm) 1.3 parts by mass, cerium oxide particles (average crystallite size 10 nm) 1.3 parts by mass, silica particles 5% coated with trifunctional silane (average particle size) 50 nm) 7.4 parts by mass, 90 parts by mass of a curable silicone emulsion containing a methyl group and a phenyl group, 0.007 parts by mass of a copper amine complex, and 0.003 parts by mass of a silver amine complex. A photocatalyst coating body was obtained by preparing a photocatalyst aqueous coating solution of mass% and drying it on a transparent acrylic substrate at 150 ° C. for 5 minutes.
When a cross-sectional observation of the photocatalyst layer of the obtained photocatalyst-coated body was performed, the film thickness was about 3 μm, and it was observed that anatase-type titanium oxide particles, cerium oxide particles, and silica particles were present at a high concentration on the surface.
Moreover, when it observed from the surface of the photocatalyst coating body, the experimental stand which mounted the coating body was seen through.
About this photocatalyst coating body, the harmful substance removal performance by a photocatalyst was confirmed by investigating NOx decomposition performance. Here, the NOx decomposition function by the photocatalyst was performed by the test method of JIS R1701-1 “Testing method for air purification performance of photocatalytic material—Part 1: Nitrogen oxide removal performance”. As a result, ΔNOx exceeded 0.5 μmol, indicating a good result.
Furthermore, antifungal performance was confirmed about this photocatalyst coating body. As a pretreatment, 1 mW / cm 2 of BLB light was irradiated for 24 hours, and then the antifungal test described below was performed. About the photocatalyst coating body of a magnitude | size of 50x50 mm obtained in this way, antifungal evaluation was performed as follows. Aspergillus niger (NBRC6341) pre-cultured at 25 ° C. for 7 to 14 days on a potato dextrose agar medium as a test bacterium, this was dispersed in physiological saline containing 0.005 wt% dioctyl sodium sulfosuccinate, and a spore suspension It was created. The spore suspension was dropped onto the photocatalyst-coated body obtained by the above method so as to be 4 to 6 × 10 5 pieces / mL per test piece to obtain an anti-mold test piece. In accordance with the film adhesion method described in JIS R1702 (2006), the test piece was covered with an adhesion film, placed in a petri dish capable of moisture retention, and moisturized glass was placed and used for the test. The test piece was placed together with the petri dish under BLB light irradiation, and irradiated with BLB light for 24 hours so that the photocatalyst-coated body surface was 0.4 mW / cm 2 . After 24 hours of irradiation, the spore suspension was collected and cultured on a potato dextrose agar medium, and the number of surviving bacteria was counted. The antifungal property was obtained by calculating the difference between the logarithmic value of the number of surviving bacteria obtained and the logarithmic value of the number of surviving bacteria of the photocatalyst untreated specimen. As a result, the logarithmic value exceeded 1 and showed a good result.
Moreover, in Chigasaki City, it was exposed outdoors for one month, but its appearance did not change.

実施例2.
アナターゼ型酸化チタン粒子(平均結晶子径10nm)1.3質量部、酸化セリウム粒子(平均結晶子径10nm)1.3質量部、3官能性シランで5%表面被覆したシリカ粒子(平均粒径50nm)7.4質量部、メチル基およびフェニル基を含有する硬化性シリコーンエマルジョン90質量部、銅のアミン錯体0.01質量部を配合した固形分濃度25質量%の光触媒水性コーティング液を調製し、透明なアクリル基材上に150℃×5分乾燥し、光触媒塗装体を得た。
得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約3μmであり、アナターゼ型酸化チタン粒子と酸化セリウム粒子とシリカ粒子が表面に高濃度に存在する様子が観察された。
また、光触媒塗装体の表面から観察したところ、塗装体を載置していた実験台が透けてみえた。
この光触媒塗装体について、光触媒分解活性を、NOx分解性能を調べることにより確認した。ここで、光触媒によるNOx分解機能は、JISR1701−1「光触媒材料の空気浄化性能試験方法−第1部:窒素酸化物の除去性能」の試験法で行った。その結果、ΔNOxが0.5μmolを上回り、良好な結果を示した。
さらに、この光触媒塗装体について、抗カビ性能を確認した。前処理として1mW/cm2のBLB光を24時間照射したのち、下記した抗カビ性試験を行った。 こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。その結果、対数値は1を上回り、良好な結果を示した。
また、茅ヶ崎市において、屋外に1ヶ月暴露したが、外観の変化は生じなかった。
Example 2
Anatase-type titanium oxide particles (average crystallite size 10 nm) 1.3 parts by mass, cerium oxide particles (average crystallite size 10 nm) 1.3 parts by mass, silica particles 5% coated with trifunctional silane (average particle size) 50 nm) 7.4 parts by mass, 90 parts by mass of a curable silicone emulsion containing a methyl group and a phenyl group, and 0.01 parts by mass of a copper amine complex were prepared. Then, it was dried on a transparent acrylic substrate at 150 ° C. for 5 minutes to obtain a photocatalyst-coated body.
When a cross-sectional observation of the photocatalyst layer of the obtained photocatalyst-coated body was performed, the film thickness was about 3 μm, and it was observed that anatase-type titanium oxide particles, cerium oxide particles, and silica particles were present at a high concentration on the surface.
Moreover, when it observed from the surface of the photocatalyst coating body, the experimental stand which mounted the coating body was seen through.
About this photocatalyst coating body, the photocatalytic decomposition activity was confirmed by investigating NOx decomposition | disassembly performance. Here, the NOx decomposition function by the photocatalyst was performed by the test method of JIS R1701-1 “Testing method for air purification performance of photocatalytic material—Part 1: Nitrogen oxide removal performance”. As a result, ΔNOx exceeded 0.5 μmol, indicating a good result.
Furthermore, antifungal performance was confirmed about this photocatalyst coating body. As a pretreatment, 1 mW / cm 2 of BLB light was irradiated for 24 hours, and then the antifungal test described below was performed. About the photocatalyst coating body of a magnitude | size of 50x50 mm obtained in this way, antifungal evaluation was performed as follows. Aspergillus niger (NBRC6341) previously cultured at 25 ° C. for 7 to 14 days on a potato dextrose agar medium as a test bacterium, this was dispersed in physiological saline containing 0.005% by weight of dioctyl sodium sulfosuccinate, and a spore suspension It was created. The spore suspension was dropped onto the photocatalyst-coated body obtained by the above method so as to be 4 to 6 × 10 5 pieces / mL per test piece to obtain an anti-mold test piece. In accordance with the film adhesion method described in JIS R1702 (2006), the test piece was covered with an adhesion film, placed in a petri dish capable of moisture retention, and moisturized glass was placed and used for the test. The test piece was placed together with the petri dish under BLB light irradiation, and irradiated with BLB light for 24 hours so that the photocatalyst-coated body surface was 0.4 mW / cm 2 . After 24 hours of irradiation, the spore suspension was collected and cultured on a potato dextrose agar medium, and the number of surviving bacteria was counted. The antifungal property was obtained by calculating the difference between the logarithmic value of the number of surviving bacteria obtained and the logarithmic value of the number of surviving bacteria of the photocatalyst untreated specimen. As a result, the logarithmic value exceeded 1 and showed a good result.
Moreover, in Chigasaki City, it was exposed outdoors for one month, but its appearance did not change.

Claims (12)

基材と、前記基材上に設けられた光触媒層とを備えた建築用外装材であって、
前記光触媒層は、光触媒コーティング液を塗布後乾燥することにより得られ、
前記光触媒コーティング液は、光触媒性酸化チタン粒子と、酸化セリウム粒子と、シリコーンエマルジョンと、水溶性の銅化合物と、水とを備えていることを特徴とする建築用外装材。
A building exterior material comprising a base material and a photocatalyst layer provided on the base material,
The photocatalyst layer is obtained by applying a photocatalyst coating liquid and then drying,
The photocatalyst coating liquid comprises photocatalytic titanium oxide particles, cerium oxide particles, a silicone emulsion, a water-soluble copper compound, and water.
前記建築用外装材には、さらに、シリカ粒子が添加されていることを特徴とする請求項1に記載の建築用外装材。   The building exterior material according to claim 1, wherein silica particles are further added to the building exterior material. 前記光触媒コーティング液中に含有される硬化性シリコーンエマルジョンの硬化物は、前記光触媒層中に85質量%以上含有されることを特徴とする請求項1または2のいずれか1項に記載の建築用外装材。   The hardened | cured material of the curable silicone emulsion contained in the said photocatalyst coating liquid is contained 85 mass% or more in the said photocatalyst layer, The architectural use of any one of Claim 1 or 2 characterized by the above-mentioned. Exterior material. 前記光触媒層中に含有される光触媒性酸化チタン粒子は、0質量%をこえ5質量%未満であることを特徴とする請求項1〜3のいずれか1項に記載の建築用外装材。   The building exterior material according to any one of claims 1 to 3, wherein the photocatalytic titanium oxide particles contained in the photocatalyst layer are more than 0% by mass and less than 5% by mass. 前記光触媒層の膜厚は、2μmをこえ20μm未満であることを特徴とする請求項1〜4のいずれか1項に記載の建築用外装材。   The building exterior material according to any one of claims 1 to 4, wherein the thickness of the photocatalyst layer is more than 2 µm and less than 20 µm. 前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性酸化チタン粒子および前記酸化セリウム粒子の平均粒径よりも大きいことを特徴とする請求項1〜5のいずれか1項に記載の建築用外装材。   6. The architectural exterior according to claim 1, wherein an average particle size of the curable silicone emulsion is larger than an average particle size of the photocatalytic titanium oxide particles and the cerium oxide particles. Wood. 前記光触媒層は透明であることを特徴とする請求項1〜6のいずれか1項に記載の建築用外装材。   The building exterior material according to claim 1, wherein the photocatalyst layer is transparent. 光触媒性酸化チタン粒子と、
酸化セリウム粒子と、
シリコーンエマルジョンと、
水溶性の銅化合物と、
水とを備えていることを特徴とする建築外装用コーティング液。
Photocatalytic titanium oxide particles,
Cerium oxide particles,
Silicone emulsion,
A water-soluble copper compound,
A coating liquid for exterior building, characterized by comprising water.
さらに、シリカ粒子が添加されていることを特徴とする請求項8に記載の建築外装用コーティング液。   Furthermore, the silica particle is added, The coating liquid for building exteriors of Claim 8 characterized by the above-mentioned. 前記建築外装用コーティング液中に含有される硬化性シリコーンエマルジョンの硬化物は、前記光触媒層中に85質量%以上含有されることを特徴とする請求項8または9のいずれか1項に記載の建築外装用コーティング液。   The hardened | cured material of the curable silicone emulsion contained in the said coating liquid for building exteriors is contained 85 mass% or more in the said photocatalyst layer, The any one of Claim 8 or 9 characterized by the above-mentioned. Coating liquid for building exterior. 前記光触媒層中に含有される光触媒性酸化チタン粒子は、0質量%をこえ5質量%未満であることを特徴とする請求項8〜10のいずれか1項に記載の建築外装用コーティング液。   The coating liquid for building exterior according to any one of claims 8 to 10, wherein the photocatalytic titanium oxide particles contained in the photocatalytic layer are more than 0% by mass and less than 5% by mass. 前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性酸化チタン粒子および前記酸化セリウム粒子の平均粒径よりも大きいことを特徴とする請求項8〜11のいずれか1項に記載の建築外装用コーティング液。   The average particle diameter of the said curable silicone emulsion is larger than the average particle diameter of the said photocatalytic titanium oxide particle and the said cerium oxide particle, It is for building exteriors of any one of Claims 8-11 characterized by the above-mentioned. Coating liquid.
JP2009213464A 2009-09-15 2009-09-15 Building external facing material and coating liquid for building external facing Pending JP2011063950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213464A JP2011063950A (en) 2009-09-15 2009-09-15 Building external facing material and coating liquid for building external facing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213464A JP2011063950A (en) 2009-09-15 2009-09-15 Building external facing material and coating liquid for building external facing

Publications (1)

Publication Number Publication Date
JP2011063950A true JP2011063950A (en) 2011-03-31

Family

ID=43950464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213464A Pending JP2011063950A (en) 2009-09-15 2009-09-15 Building external facing material and coating liquid for building external facing

Country Status (1)

Country Link
JP (1) JP2011063950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188769B1 (en) * 2020-07-27 2020-12-08 김나영 Acid-resistant epoxy paint composition for concrete structures, and construction method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188769B1 (en) * 2020-07-27 2020-12-08 김나영 Acid-resistant epoxy paint composition for concrete structures, and construction method using the same

Similar Documents

Publication Publication Date Title
JP2011063977A (en) Building external facing material and coating liquid for building external facing
JP2011063973A (en) Building external facing material and coating liquid for building external facing
JP2011057933A (en) Photocatalyst coated body and photocatalyst coating liquid
JP2011057934A (en) Photocatalyst coated body and photocatalyst coating liquid
JP2011056473A (en) Photocatalyst coated object, and photocatalyst coating solution
JP2011056471A (en) Photocatalyst coated object, and photocatalyst coating solution
JP2011063950A (en) Building external facing material and coating liquid for building external facing
JP2011063978A (en) Building external facing material and coating liquid for building external facing
JP2011063949A (en) Building external facing material and coating liquid for building external facing
JP2011063948A (en) Building external facing material and coating liquid for building external facing
JP2011062602A (en) External structure and coating fluid for external structure
JP2011062623A (en) External structure and coating fluid for external structure
JP2011062624A (en) External structure and coating fluid for external structure
JP2011056468A (en) Photocatalyst coated object, and photocatalyst coating solution
JP2011056470A (en) Photocatalyst coated object, and photocatalyst coating solution
JP2011056469A (en) Photocatalyst coated object, and photocatalyst coating solution
JP2011056472A (en) Photocatalyst coated object, and photocatalyst coating solution
JP2011063976A (en) Building external facing material and coating liquid for building external facing
JP2011063975A (en) Building external facing material and coating liquid for building external facing
JP2011063649A (en) Exterior material for building and coating liquid for building exterior
JP2011062601A (en) Exterior material for building and coating fluid for building exterior
JP2011063974A (en) Building external facing material and coating liquid for building external facing
JP2011062626A (en) Exterior material for building and coating fluid for building exterior
JP2011062605A (en) External structure and coating fluid for external structure
JP2011062604A (en) External structure and coating fluid for external structure