JP2011063839A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2011063839A
JP2011063839A JP2009214711A JP2009214711A JP2011063839A JP 2011063839 A JP2011063839 A JP 2011063839A JP 2009214711 A JP2009214711 A JP 2009214711A JP 2009214711 A JP2009214711 A JP 2009214711A JP 2011063839 A JP2011063839 A JP 2011063839A
Authority
JP
Japan
Prior art keywords
plating
plating film
sliding
crmo
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009214711A
Other languages
Japanese (ja)
Inventor
Shinji Kadoshima
信司 角島
Nobuo Sakate
宣夫 坂手
Yasuo Uosaki
靖夫 魚崎
Yoshio Tanida
芳夫 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009214711A priority Critical patent/JP2011063839A/en
Publication of JP2011063839A publication Critical patent/JP2011063839A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a sliding member so that wear resistance and low-friction property are obtained even under severe lubricating conditions. <P>SOLUTION: The sliding member is obtained by combining a first member and a second member having sliding surfaces which slide to each other. The sliding surface of the first member is formed with a plated film containing a Cr component, wherein the plated film is formed by electrolytic deposition from a plating bath containing the Cr-component and an organic sulfonic acid. The sliding surface of the second member is formed with silicon nitride. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐摩耗性及び低摩擦性に優れた摺動部材に関する。   The present invention relates to a sliding member excellent in wear resistance and low friction.

自動車、その他の機器の摺動面に、その耐摩耗性向上のために、Cr成分及び有機スルフォン酸を含有するメッキ浴から電解析出させたCr含有メッキ皮膜を形成することは知られている。例えば特許文献1には、有機スルフォン酸を含有するメッキ浴を用いてワークにCrMoメッキ皮膜を形成し、このメッキ皮膜にエッチング処理によって長さ1cmあたり400本以上1300本以下のクラックを形成した後、このメッキ皮膜の表面を研削加工することにより、潤滑性が高い低摩擦の摺動面とすることが記載されている。特許文献2には、有機スルフォン酸を含有するメッキ浴を用いてワークにCrMoメッキ皮膜を形成するにあたり、有機スルフォン酸の添加量を調整することにより、CrMoメッキ層表面での(222)配向結晶の該存在率を60%以上80%以下とし、耐摩耗性と低摩擦性とを有するメッキ皮膜とすることが記載されている。   It is known to form a Cr-containing plating film electrolytically deposited from a plating bath containing a Cr component and an organic sulfonic acid on a sliding surface of an automobile or other equipment in order to improve its wear resistance. . For example, in Patent Document 1, a CrMo plating film is formed on a workpiece using a plating bath containing an organic sulfonic acid, and 400 to 1300 cracks per 1 cm in length are formed on the plating film by etching treatment. In addition, it is described that the surface of the plating film is ground to form a low friction sliding surface with high lubricity. In Patent Document 2, when a CrMo plating film is formed on a work using a plating bath containing organic sulfonic acid, the amount of organic sulfonic acid is adjusted to adjust the (222) oriented crystal on the surface of the CrMo plating layer. It is described that the abundance ratio is 60% or more and 80% or less, and a plating film having wear resistance and low friction is obtained.

特開2006−219756号公報JP 2006-219756 A 特開2007−291423号公報JP 2007-291423 A

摺動部材には一般に耐摩耗性及び低摩擦性が要求され、例えば自動車エンジンのピストンや動弁系の摺動部材では、エンジンの信頼性を確保するために耐摩耗性に優れていること、燃費性能向上のために低い摩擦係数を発現することが求められる。ロータリピストンエンジンの例で言えば、その作動室を形成するロータハウジングのトロコイド面に硬質CrMoメッキ皮膜が形成され、このトロコイド面を摺動するアペックスシールにはチル鋳鉄が採用されて、上記要求を満たすようにされている。   The sliding member is generally required to have wear resistance and low friction. For example, a sliding member of a piston or a valve train of an automobile engine has excellent wear resistance to ensure engine reliability. A low coefficient of friction is required to improve fuel efficiency. In the example of a rotary piston engine, a hard CrMo plating film is formed on the trochoid surface of the rotor housing that forms the working chamber, and chill cast iron is adopted for the apex seal that slides on the trochoid surface, so that the above requirements are met. To meet.

しかし、硬質CrMoメッキ皮膜の硬さはHV1000程度であるのに対し、アペックスシールに採用されているチル鋳鉄の硬さはHV650程度であるため、潤滑オイルが極少量であるなど、潤滑条件が厳しい場合には、アペックスシールの摩耗量が一方的に増加していく現象を生ずる場合がある。   However, while the hardness of the hard CrMo plating film is about HV1000, the hardness of the chill cast iron adopted for the apex seal is about HV650, so the lubrication conditions are severe, such as a very small amount of lubricating oil. In some cases, a phenomenon may occur in which the wear amount of the apex seal increases unilaterally.

本発明の課題は、厳しい潤滑条件下においても、耐摩耗性及び低摩擦性が得られるように摺動部材を構成することにある。   An object of the present invention is to configure a sliding member so as to obtain wear resistance and low friction even under severe lubrication conditions.

本発明は、上記課題を解決するために、相互に摺動する2つの部材の摺動面材質として高速Crメッキと窒化ケイ素とを組み合わせた。   In order to solve the above-mentioned problems, the present invention combines high-speed Cr plating and silicon nitride as sliding surface materials for two members that slide on each other.

すなわち、本発明の一つの観点は、相互に摺動する摺動面を有する第1部材と第2部材とが組み合わされてなる摺動部材であって、第1部材の摺動面が、Cr成分及び有機スルフォン酸を含有するメッキ浴から電解析出させてなるCrを含有するメッキ皮膜によって形成され、第2部材の摺動面が、窒化ケイ素によって形成されていることを特徴とする。   That is, one aspect of the present invention is a sliding member formed by combining a first member and a second member having sliding surfaces that slide on each other, and the sliding surface of the first member is Cr. It is formed of a plating film containing Cr formed by electrolytic deposition from a plating bath containing components and organic sulfonic acid, and the sliding surface of the second member is formed of silicon nitride.

第1部材の摺動面を形成するCr含有メッキ皮膜は、有機スルフォン酸がメッキ析出速度を高める触媒として働いて形成されており、いわゆる高速メッキ皮膜である。このCr含有メッキ皮膜は、その硬さは従来の硬質Crメッキと同等レベル(HV1000程度)であるが、メッキ浴への有機スルフォン酸の添加により、ミラー指数(222)の結晶面が皮膜表面側を向いた(222)配向Cr結晶(BCC)の存在率が高くなっており、また、圧縮残留応力も高くなっている。   The Cr-containing plating film that forms the sliding surface of the first member is a so-called high-speed plating film formed by the organic sulfonic acid acting as a catalyst for increasing the plating deposition rate. This Cr-containing plating film has the same level of hardness as that of conventional hard Cr plating (about HV1000), but by adding organic sulfonic acid to the plating bath, the crystal face of the Miller index (222) becomes the film surface side. The abundance of (222) oriented Cr crystals (BCC) facing the surface increases, and the compressive residual stress also increases.

そうして、第1部材の摺動面は、上述の如きCr含有メッキ皮膜によって形成されているから、第2部材の摺動面がHV1500前後の硬い窒化ケイ素で形成されていても、当該摺動による摩耗が少なくなる。また、第2部材の窒化ケイ素によって形成された摺動面も、第1部材の摺動面が上述の如きCr含有メッキ皮膜によって形成されているために、摩耗が少なくなる。また、このようなCr含有メッキ皮膜と窒化ケイ素との組み合わせにより、第1部材の摺動面と第2部材の摺動面との摩擦特性も改善される(摩擦係数が低くなる)。   Thus, since the sliding surface of the first member is formed by the Cr-containing plating film as described above, even if the sliding surface of the second member is formed of hard silicon nitride around HV1500, Less wear due to movement. Further, the sliding surface formed of silicon nitride of the second member is less worn because the sliding surface of the first member is formed of the Cr-containing plating film as described above. In addition, the combination of the Cr-containing plating film and silicon nitride improves the friction characteristics between the sliding surface of the first member and the sliding surface of the second member (lowering the friction coefficient).

好ましい実施形態では、上記メッキ皮膜は、X線回折分析により特定される(222)面が表面側を向いた(222)配向結晶の、該メッキ皮膜表面での存在率が60%以上80%以下である。   In a preferred embodiment, the plating film has a (222) oriented crystal whose surface (222) faces the surface side specified by X-ray diffraction analysis, and the presence rate on the surface of the plating film is 60% or more and 80% or less. It is.

上記(222)面は、Cr結晶の原子が最密充填された結晶面であり、結晶格子間隔が最も狭い。従って、窒化ケイ素摺動面との相対的な摺動によって外力が作用したときに生ずる結晶の歪みが大きくなる。このため、(222)配向のCr結晶の存在率が高い当該メッキ皮膜は、元来高い圧縮残留応力を有するところ、外力によってその内部圧縮応力の高まる度合いが大きい。   The (222) plane is a crystal plane in which Cr crystal atoms are packed most closely, and the crystal lattice spacing is the narrowest. Accordingly, the crystal distortion generated when an external force is applied by sliding relative to the silicon nitride sliding surface increases. For this reason, the plating film having a high abundance of (222) -oriented Cr crystals originally has a high compressive residual stress, but the degree of increase of the internal compressive stress by an external force is large.

そうして、Cr結晶の酸化は、酸素がCrメッキ皮膜表面から内部に拡散することによって生じ、その結果として、このCrメッキ皮膜表面にCr酸化皮膜が形成される。ところが、上述の如く圧縮応力が高いCrメッキ皮膜においては、結晶格子間隔が狭められていることから、酸素の拡散を生じ難くなっている。このため、通常の使用環境で生ずるCr酸化皮膜は薄くなり、該皮膜の表面から内部に向かう内部応力の勾配が急になる。   Thus, the oxidation of the Cr crystal is caused by the diffusion of oxygen from the Cr plating film surface to the inside, and as a result, a Cr oxide film is formed on the Cr plating film surface. However, in the Cr plating film having a high compressive stress as described above, since the crystal lattice spacing is narrowed, it is difficult for oxygen diffusion to occur. For this reason, the Cr oxide film produced in a normal use environment becomes thin, and the gradient of internal stress from the surface of the film to the inside becomes steep.

その結果、第1部材と第2部材との相対的な摺動時に、上記Cr酸化皮膜が剥離し易くなり、或いはCr酸化皮膜内部での劈開を生じて部分的に欠けやすくなり、摩擦力、換言すれば摺動抵抗が小さくなる。すなわち、摺動時にCr酸化皮膜と窒化ケイ素とが部分的に凝着し、その凝着部分をCr酸化皮膜或いはCrメッキ皮膜から剥がすために必要なせん断力が摩擦力となるところ、上述の如くCr酸化皮膜が薄く、剥離ないしは内部劈開を生じ易いことから、固体潤滑剤的な作用を生じて摩擦力が小さくなるものである。   As a result, at the time of relative sliding between the first member and the second member, the Cr oxide film is likely to be peeled off, or the Cr oxide film is cleaved inside, and the chip is likely to be partially chipped. In other words, the sliding resistance is reduced. That is, the Cr oxide film and silicon nitride partially adhere during sliding, and the shearing force required to peel the adhesion part from the Cr oxide film or Cr plating film becomes the frictional force. Since the Cr oxide film is thin and easily peels or cleaves, it acts as a solid lubricant and reduces the frictional force.

なお、当該メッキ皮膜表面における上記(222)配向結晶の存在率が80%を超えると、さらに応力が高まることにより、酸化の進行を抑制するように作用する。その結果、摺動面に形成されるCr酸化皮膜の厚さが過度に薄くなり、相手材との摺動に伴い、これら酸化皮膜の欠落が増加する。これに伴い、下地のメッキ皮膜本体の露出が顕著となり、金属同士の凝着を引き起こすため、好ましくない。   In addition, when the abundance ratio of the (222) oriented crystals on the surface of the plating film exceeds 80%, the stress further increases, thereby acting to suppress the progress of oxidation. As a result, the thickness of the Cr oxide film formed on the sliding surface becomes excessively thin, and the lack of these oxide films increases as the material slides. In connection with this, since the exposure of the base plating film body becomes remarkable and causes adhesion of metals, it is not preferable.

上述の薄く剥離ないしは内部劈開を生じ易いCr酸化皮膜が形成されるようにするためには、上記Cr含有メッキ皮膜の圧縮残留応力を20MPa以上、さらには40MPa以上とすることが好ましい。   In order to form a Cr oxide film that is easily peeled off or easily cleaved as described above, the compressive residual stress of the Cr-containing plating film is preferably 20 MPa or more, and more preferably 40 MPa or more.

また、上記Cr酸化皮膜の厚さは上記(222)配向結晶の平均結晶子径よりも小さくなっていることが好ましい。すなわち、Cr酸化皮膜の厚さが(222)配向結晶子のサイズと略同程度か、それよりも厚くなってしまっている場合、それは、当該(222)配向結晶子全体が酸化されていることに他ならない。そうなると、摺動時に該結晶子が脱落し易くなって、過剰摩耗の原因になってしまう。   The thickness of the Cr oxide film is preferably smaller than the average crystallite diameter of the (222) oriented crystal. That is, when the thickness of the Cr oxide film is approximately the same as or larger than the size of the (222) oriented crystallite, it means that the entire (222) oriented crystallite is oxidized. It is none other than. If so, the crystallites easily fall off during sliding, which causes excessive wear.

但し、Cr酸化皮膜の厚さが当該結晶子径が比して薄くなり過ぎているケースも好ましいものではない。このケースは、当該結晶子径が過度に大きいときに生ずるが、それは、Cr酸化皮膜が一つの結晶子に対して広い面積で結合した状態になっていることを意味し、該Cr酸化皮膜が当該メッキ皮膜から剥離し難くなる、つまり、摩擦係数が大きくなる。従って、Cr酸化皮膜は、上記結晶子径の例えば1/5以上1/1未満の厚さになることが好ましい。   However, the case where the thickness of the Cr oxide film is too thin as compared with the crystallite diameter is not preferable. This case occurs when the crystallite diameter is excessively large, which means that the Cr oxide film is bonded to a single crystallite in a wide area, and the Cr oxide film It becomes difficult to peel from the plating film, that is, the friction coefficient becomes large. Therefore, the Cr oxide film preferably has a thickness of, for example, 1/5 or more and less than 1/1 of the crystallite diameter.

本発明の別の観点は、相互に摺動する摺動面を有する第1部材と第2部材とが組み合わされてなる摺動部材において、第1部材の摺動面が、Crを含有し20MPa以上の圧縮残留応力を有するメッキ皮膜によって形成され、第2部材の摺動面が窒化ケイ素によって形成されていることである。   Another aspect of the present invention is a sliding member formed by combining a first member and a second member having sliding surfaces that slide on each other, wherein the sliding surface of the first member contains Cr and contains 20 MPa. It is formed by the plating film having the above compressive residual stress, and the sliding surface of the second member is formed by silicon nitride.

すなわち、上述の如く、Cr含有メッキ皮膜の圧縮残留応力が高くなると、通常の使用環境で生ずるCr酸化皮膜は薄くなり、該Cr酸化皮膜の剥離性ないし劈開性が高くなる。このため、当該第1部材の圧縮残留応力が高いCr含有メッキ皮膜よりなる摺動面と、第2部材の窒化ケイ素よりなる摺動面との組み合わせにおいては、互いの摺動面の摩耗が少なくなり、低摩擦特性の確保にも有利になる。上記Cr含有メッキ皮膜の圧縮残留応力は40MPa以上であることがさらに好ましい。圧縮残留応力の上限は120MPaとすることが好ましい。   That is, as described above, when the compressive residual stress of the Cr-containing plating film increases, the Cr oxide film generated in a normal use environment becomes thin, and the peelability or cleavage of the Cr oxide film increases. For this reason, in the combination of the sliding surface made of a Cr-containing plating film having a high compressive residual stress of the first member and the sliding surface made of silicon nitride of the second member, the wear of each sliding surface is small. Therefore, it is advantageous for securing low friction characteristics. The compressive residual stress of the Cr-containing plating film is more preferably 40 MPa or more. The upper limit of compressive residual stress is preferably 120 MPa.

このような圧縮残留応力が高いCr含有メッキ皮膜は、上述の有機スルフォン酸を触媒とする高速メッキ法によって得ることができるが、フッ化物など他の触媒をメッキ浴に添加して析出速度を高めることによっても得ることができる。   Such a Cr-containing plating film having a high compressive residual stress can be obtained by the high-speed plating method using the above-described organic sulfonic acid as a catalyst, but other catalysts such as fluoride are added to the plating bath to increase the deposition rate. Can also be obtained.

以上に述べた第1部材の摺動面を形成するCr含有メッキ皮膜は、Crの多結晶体で形成する他、Crを主成分とするCrMo合金メッキで形成するようにしてもよい。Moの添加によりメッキ皮膜の結晶の微細化、強度の向上、耐熱性の向上が図れ、潤滑性の向上、低摩擦化(摩擦係数の低減)、焼き付き防止に有利になる。Mo共析量は0.3%以上1.0%以下が好ましい。   The Cr-containing plating film that forms the sliding surface of the first member described above may be formed by CrMo alloy plating containing Cr as a main component in addition to the Cr polycrystal. Addition of Mo makes it possible to refine the crystal of the plating film, improve strength, and improve heat resistance, and is advantageous for improving lubricity, reducing friction (reducing the friction coefficient), and preventing seizure. The amount of Mo eutectoid is preferably 0.3% or more and 1.0% or less.

本発明によれば、相互に摺動する摺動面を有する第1部材と第2部材とが組み合わされてなる摺動部材において、第1部材の摺動面が、有機スルフォン酸を含有するメッキ浴から電解析出させてなるCr含有メッキ皮膜によって形成され、或いは20MPa以上の圧縮残留応力を有するCr含有メッキ皮膜によって形成され、第2部材の摺動面が窒化ケイ素によって形成されているから、第1部材及び第2部材の摺動面の摩耗が少なくなるとともに、摩擦特性が改善される。   According to the present invention, in the sliding member formed by combining the first member and the second member having sliding surfaces that slide relative to each other, the sliding surface of the first member is plated containing organic sulfonic acid. Since it is formed by a Cr-containing plating film formed by electrolytic deposition from a bath, or by a Cr-containing plating film having a compressive residual stress of 20 MPa or more, and the sliding surface of the second member is formed by silicon nitride, Wear of the sliding surfaces of the first member and the second member is reduced, and the friction characteristics are improved.

本発明を適用したロータリピストンエンジンを概略的に示す断面図である。1 is a cross-sectional view schematically showing a rotary piston engine to which the present invention is applied. 本発明に係る摺動部材のCr含有メッキ皮膜表面部の構造を模式的に示す図である。It is a figure which shows typically the structure of the Cr containing plating film surface part of the sliding member which concerns on this invention. Cr含有メッキ皮膜の(222)面存在率と内部応力との関係を示すグラフ図である。It is a graph which shows the relationship between the (222) plane presence rate and internal stress of a Cr containing plating film. 摩擦摩耗特性試験機を概略的に示す図((a)は平面図,(b)は側面図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure ((a) is a top view, (b) is a side view) which shows a frictional wear characteristic testing machine schematically. 種々の摺動面材質の組み合わせでピンオンディスク摩擦摩耗試験を行なったときのピン高さ摩耗量を示すグラフ図である。It is a graph which shows the pin height abrasion amount when a pin on disk friction abrasion test is done with the combination of various sliding surface materials. 種々の摺動面材質の組み合わせでピンオンディスク摩擦摩耗試験を行なったときのディスク摩耗量を示すグラフ図である。It is a graph which shows the amount of disk wear when performing a pin-on-disk friction and wear test with a combination of various sliding surface materials. 種々の摺動面材質の組み合わせでピンオンディスク摩擦摩耗試験を行なったときの摩擦係数の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of a friction coefficient when a pin-on-disk friction abrasion test is done with the combination of various sliding surface materials.

以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature and is not intended to limit the present invention, its application, or its use.

図1は実施形態に係るロータリーピストンエンジンの簡略図であり、第1部材としてのロータハウジング1のトロコイド面(摺動面)2を、出力軸3を回転させるロータ4の各頂部に装着された第2部材としてのアペックスシール5の頂面(摺動面)が摺動するようになっている。このエンジンでは、吸気口6からオイルを含む燃料が空気と共に作動室7に吸入され、ロータ4の回転に伴って圧縮されつつ矢印8の方向に移動した燃料が点火プラグ9A,9Bにより着火されて膨張し、燃焼ガスの圧力によって出力軸3に回転を与えた後、排気口10から排気される、という一連の行程が繰り返されることになる。   FIG. 1 is a simplified diagram of a rotary piston engine according to an embodiment, and a trochoidal surface (sliding surface) 2 of a rotor housing 1 as a first member is mounted on each top of a rotor 4 that rotates an output shaft 3. The top surface (sliding surface) of the apex seal 5 as the second member is slid. In this engine, fuel containing oil is sucked into the working chamber 7 together with air from the intake port 6, and the fuel moved in the direction of the arrow 8 while being compressed as the rotor 4 rotates is ignited by the spark plugs 9 </ b> A and 9 </ b> B. A series of steps of expanding and exhausting from the exhaust port 10 after the output shaft 3 is rotated by the pressure of the combustion gas is repeated.

ロータハウジング1は、トロコイド面2が形成された例えば高張力鋼板製のライナーをアルミ合金に鋳ぐるむなどして製作される。そのトロコイド面2は、アペックスシール5が摺動するため、高い耐熱性、耐摩耗性、低摩擦性が要求される。そのため、トロコイド面2には高速メッキ法によるCr含有メッキ皮膜が形成されている。一方、アペックスシール5は、窒化ケイ素によって形成されている。   The rotor housing 1 is manufactured by casting a liner made of, for example, a high-strength steel plate having a trochoidal surface 2 formed on an aluminum alloy. Since the apex seal 5 slides on the trochoidal surface 2, high heat resistance, wear resistance, and low friction are required. Therefore, a Cr-containing plating film is formed on the trochoid surface 2 by a high-speed plating method. On the other hand, the apex seal 5 is made of silicon nitride.

図2はCr含有メッキ皮膜10を模式的に示すものであり、同図において、11はX線回折分析により特定される(222)面が皮膜表面側を向いた(222)配向Cr結晶、12は結晶配向が異なるその他のCr結晶である。このCr含有メッキ皮膜10の表面に、(222)配向Cr結晶11及び他のCr結晶12の部位に生成した酸化物11a,12aよりなるCr酸化皮膜13が形成されている。Cr含有メッキ皮膜10の表面における(222)配向Cr結晶11の存在率は60%以上80%以下であり、また、Cr含有メッキ皮膜10は20MPa以上の圧縮残留応力を有する。   FIG. 2 schematically shows a Cr-containing plating film 10, in which 11 is a (222) oriented Cr crystal whose (222) plane is directed to the film surface side specified by X-ray diffraction analysis, 12 Are other Cr crystals with different crystal orientations. On the surface of the Cr-containing plating film 10, a Cr oxide film 13 made of oxides 11 a and 12 a formed at the sites of (222) oriented Cr crystal 11 and other Cr crystals 12 is formed. The abundance of the (222) oriented Cr crystal 11 on the surface of the Cr-containing plating film 10 is 60% or more and 80% or less, and the Cr-containing plating film 10 has a compressive residual stress of 20 MPa or more.

このようなCr含有メッキ皮膜10は、メッキ浴及びメッキ条件の調整により形成することができる。   Such a Cr-containing plating film 10 can be formed by adjusting a plating bath and plating conditions.

<Cr含有メッキ皮膜の形成方法>
Cr成分、硫酸及び触媒としての有機スルフォン酸を含み、さらに必要に応じてMo成分を含むメッキ浴にライナーを入れて所定温度に予熱し、数分間の逆電処理によってライナー表面を洗浄した後、数分間のストライクメッキ処理(正電処理)及び所定時間の本メッキ処理(正電処理)を順に行なうことによって、トロコイド面にCr含有メッキ皮膜を形成する。
<Method for forming Cr-containing plating film>
After containing a Cr component, sulfuric acid and organic sulfonic acid as a catalyst, and if necessary, a liner is put in a plating bath containing a Mo component and preheated to a predetermined temperature, and after cleaning the liner surface by reverse electric treatment for several minutes, A Cr-containing plating film is formed on the trochoidal surface by sequentially performing a strike plating process (positive electric process) for several minutes and a main plating process (positive electric process) for a predetermined time.

Cr成分としては、無水クロム酸CrOが好ましく、必要に応じてCrを添加する。Mo成分としては、モリブデン酸ナトリウムやモリブデン酸アンモニウムを採用することができる。有機スルフォン酸としては、HSORで表され、Rが、メチル基、エチル基等の炭素数10以下の脂肪族炭化水素基、パラ位置にメチル基を有するトルエン、不飽和炭化水素基を有するスチレンなど1つの芳香環に非環式炭化水素が結合した芳香族炭化水素基であることが好ましい。Rは他の芳香族炭化水素基であってもよいし、スルフォン酸基(HSO)は複数個あってもよい。具体的にはメタンスルフォン酸、メタンジスルフォン酸等が挙げられる。 As the Cr component, anhydrous chromic acid CrO 3 is preferable, and Cr 2 O 3 is added as necessary. As the Mo component, sodium molybdate or ammonium molybdate can be employed. The organic sulfonic acid is represented by HSO 3 R, and R has an aliphatic hydrocarbon group having 10 or less carbon atoms such as a methyl group and an ethyl group, toluene having a methyl group at the para position, and an unsaturated hydrocarbon group. An aromatic hydrocarbon group in which an acyclic hydrocarbon is bonded to one aromatic ring such as styrene is preferable. R may be another aromatic hydrocarbon group or a plurality of sulfonic acid groups (HSO 3 ). Specific examples include methanesulfonic acid and methanedisulfonic acid.

メッキ浴は、例えば、無水クロム酸を240g/L以上280g/L以下、硫酸イオン量を2.5g/L以上3.3g/L以下、有機スルフォン酸量を10ml/L以上35ml/L以下、モリブデン酸ナトリウム量を50g/L以上65g/L以下とすればよい。メッキ浴温度は例えば50℃以上60℃以下に調整する。   The plating bath is, for example, 240 g / L to 280 g / L of chromic anhydride, 2.5 g / L to 3.3 g / L of sulfate ion, 10 ml / L to 35 ml / L of organic sulfonic acid, The amount of sodium molybdate may be 50 g / L or more and 65 g / L or less. The plating bath temperature is adjusted to, for example, 50 ° C. or more and 60 ° C. or less.

洗浄用逆電処理の電流密度は、50A/dm以上60A/dm以下、ストライクメッキ処理の電流密度は40A/dm以上55A/dm以下、本メッキ処理の電流密度は30A/dm以上40A/dm以下とすればよい。仕上げ研削加工はホーニング等により行ない、メッキ皮膜表面が例えばRa2.0μm以下となるようにすることが好ましい。 The current density of the reverse current treatment for cleaning is 50 A / dm 2 or more and 60 A / dm 2 or less, the current density of the strike plating treatment is 40 A / dm 2 or more and 55 A / dm 2 or less, and the current density of the plating treatment is 30 A / dm 2. It may be 40 A / dm 2 or less. The finish grinding is preferably performed by honing or the like so that the surface of the plating film is, for example, Ra 2.0 μm or less.

Cr含有メッキ皮膜における(222)配向結晶の存在率及び圧縮残留応力は上記有機スルフォン酸の添加量によって調整することができる。   The abundance of (222) -oriented crystals and compressive residual stress in the Cr-containing plating film can be adjusted by the amount of the organic sulfonic acid added.

すなわち、有機スルフォン酸をメッキ浴に添加すると、メッキ析出速度が高まるとともに、(222)配向結晶の存在率が高くなり、また、圧縮残留応力が高くなる。これは、有機スルフォン酸は極性が強いことから、ワーク表面に吸着し易く、そのことによって、Crの析出ポイントが従来とは異なるものになり、Cr含有メッキの結晶配向性が(222)面を増加させるように働くと考えられる。有機スルフォン酸の濃度が高くなるほど、(222)配向結晶の割合は増加する。それに伴って、Cr含有メッキ皮膜の圧縮残留応力が増大する。   That is, when organic sulfonic acid is added to the plating bath, the plating deposition rate is increased, the abundance of (222) oriented crystals is increased, and the compressive residual stress is increased. This is because organic sulfonic acid has a strong polarity and is easily adsorbed on the workpiece surface, which makes the Cr precipitation point different from the conventional one, and the crystal orientation of the Cr-containing plating is (222) plane. It seems to work to increase. The higher the concentration of organic sulfonic acid, the higher the proportion of (222) oriented crystals. Along with this, the compressive residual stress of the Cr-containing plating film increases.

<実施例及び比較例>
メッキ浴における触媒(有機スルフォン酸)の添加量を変化させて鋼製ワークの表面にCrMoメッキ皮膜を形成した。メッキ浴組成は表1の通りであり、触媒添加量を0ml/Lから30ml/Lで変化させた。触媒、すなわち、有機スルフォン酸としては、アトテック社製のHeef25−Rを用いた。メッキ条件は表2に示す通りである。表2において、「A/dm2 」は電流密度、時間は処理時間を表している。
<Examples and Comparative Examples>
A CrMo plating film was formed on the surface of the steel workpiece by changing the amount of the catalyst (organic sulfonic acid) added in the plating bath. The plating bath composition is as shown in Table 1, and the amount of catalyst added was changed from 0 ml / L to 30 ml / L. As a catalyst, that is, organic sulfonic acid, Heef25-R manufactured by Atotech was used. The plating conditions are as shown in Table 2. In Table 2, “A / dm 2 ” represents current density, and time represents processing time.

Figure 2011063839
Figure 2011063839

Figure 2011063839
Figure 2011063839

−触媒添加量と(222)配向結晶の存在率との関係−
上記触媒添加量が異なる各CrMoメッキ皮膜の、表面側を向いた各結晶面の存在率をX線回折分析によって測定した。測定は、供試材のCrMoメッキ面の仕上げ研削加工後に理学電機株式会社製X線回折装置RU−200を用いて表3に示す条件で行なった。結果を表4に示す。
-Relationship between the amount of catalyst added and the abundance of (222) oriented crystals-
The abundance ratio of each crystal face facing the surface side of each CrMo plating film having a different catalyst addition amount was measured by X-ray diffraction analysis. The measurement was performed under conditions shown in Table 3 using an X-ray diffractometer RU-200 manufactured by Rigaku Corporation after finish grinding of the CrMo plated surface of the test material. The results are shown in Table 4.

Figure 2011063839
Figure 2011063839

Figure 2011063839
Figure 2011063839

表4によれば、触媒として有機スルフォン酸を添加した実施例1〜3では、同触媒を添加していない比較例よりも、(222)配向結晶の存在率が高くなり(60%以上)、また、触媒添加量が多くなるに従って(222)配向結晶の存在率が高くなっている。     According to Table 4, in Examples 1 to 3 in which organic sulfonic acid was added as a catalyst, the abundance of (222) oriented crystals was higher (60% or more) than in Comparative Examples in which the catalyst was not added, In addition, as the amount of catalyst added increases, the abundance of (222) oriented crystals increases.

−触媒添加量と内部応力及び平均結晶子径との関係−
上記実施例1〜3及び比較例各々について、上記研削加工後のCrMoメッキ皮膜の内部応力をX線応力測定法によって測定した。その測定は、理学電機株式会社製ストレインフレックスPSPC/MSF−2Mを用いて表5に示す条件で行なった。CrMoメッキ皮膜平均結晶子径については、上記X線回折装置によって得られたX線回折パターンに基いて、シェラーの式(結晶子径D(hkl)=0.9λ/(β1/2・cosθ),ここで、hklはミラー指数、λは特性X線の波長(オングストローム)、β1/2は(hkl)面の半価幅(ラジアン)、θはX線反射角度である。)により求めた。結果を(222)配向結晶の存在率と共に表6に示す。
-Relationship between catalyst loading, internal stress and average crystallite size-
For each of Examples 1 to 3 and Comparative Example, the internal stress of the CrMo plating film after the grinding was measured by an X-ray stress measurement method. The measurement was performed under the conditions shown in Table 5 using a strain flex PSPC / MSF-2M manufactured by Rigaku Corporation. Regarding the average crystallite diameter of the CrMo plating film, Scherrer's formula (crystallite diameter D (hkl) = 0.9λ / (β 1/2 · cos θ) based on the X-ray diffraction pattern obtained by the X-ray diffraction apparatus. ), Where hkl is the Miller index, λ is the characteristic X-ray wavelength (angstrom), β 1/2 is the half width (radian) of the (hkl) plane, and θ is the X-ray reflection angle. It was. The results are shown in Table 6 together with the abundance of (222) oriented crystals.

Figure 2011063839
Figure 2011063839

Figure 2011063839
Figure 2011063839

表6の内部応力に関し、プラス値は引張応力であり、マイナス値は圧縮応力である。表6によれば、実施例1〜3ではCrMoメッキ皮膜が圧縮残留応力を有し、触媒添加量が多くなるほど圧縮残留応力が大きくなることがわかる。圧縮残留応力が高くなると、メッキ皮膜表面から内部への酸素の拡散を生じ難くなるため、メッキ皮膜表面に形成されるCr酸化皮膜は薄くなる。   Regarding the internal stress in Table 6, a positive value is a tensile stress and a negative value is a compressive stress. According to Table 6, it can be seen that in Examples 1 to 3, the CrMo plating film has compressive residual stress, and the compressive residual stress increases as the amount of catalyst added increases. When the compressive residual stress becomes high, it becomes difficult for oxygen to diffuse from the surface of the plating film to the inside, so that the Cr oxide film formed on the surface of the plating film becomes thin.

すなわち、実施例の場合、有機スルフォン酸の添加により、表4に示すようにCr結晶(BCC)の原子が最密充填され結晶格子間隔が狭い(222)面の存在率が高く、CrMoメッキ皮膜の圧縮残留応力が高くなっている。また、研削加工によってCrMoメッキ皮膜に対してその表面に沿う方向の外力が加わると、Cr結晶格子に歪みを生ずるが、(222)面は結晶格子間隔が狭いことから、その格子が変形されて生ずる結晶の歪みが大きくなり、そのことによって、圧縮残留応力がさらに高まる。そうして、Cr酸化皮膜は、酸素がCrメッキ層表面から内部に拡散することによって生ずるが、上述の如く圧縮応力が高い実施例のCrメッキ層においては、結晶格子間隔が狭められて酸素の拡散を生じ難くなっているから、Cr酸化皮膜の厚さが薄くなるものである。   That is, in the case of the example, by adding organic sulfonic acid, as shown in Table 4, the Cr crystal (BCC) atoms are closely packed and the crystal lattice spacing is narrow (222) plane is high, CrMo plating film The compressive residual stress of is high. In addition, when an external force in the direction along the surface is applied to the CrMo plating film by grinding, the Cr crystal lattice is distorted, but since the (222) plane has a narrow crystal lattice spacing, the lattice is deformed. The resulting crystal distortion increases, which further increases the compressive residual stress. Thus, the Cr oxide film is formed by oxygen diffusing from the surface of the Cr plating layer to the inside. However, in the Cr plating layer of the embodiment having a high compressive stress as described above, the crystal lattice spacing is narrowed to reduce the oxygen content. Since the diffusion is difficult to occur, the thickness of the Cr oxide film is reduced.

透過電子顕微鏡による観察によれば、実施例3では、Cr酸化皮膜は、厚さが6.6nm、層数が79層であり、表面が平滑になっていた。これに対して、比較例では、Cr酸化皮膜は、厚さが52.9nm、層数が634層であり、表面が凸凹になっていた。なお、層数は、上記X線回折分析で観測された(222)面の回折角度から、ブラッグの式(2dsinθ=nλ,ここで、d;格子面間隔,θ;回折角度,λ;Mo-Kαの波長,n=1)により、結晶格子面間隔0.0834nmを求め、Cr酸化皮膜の厚みをこの結晶格子面間隔で除して得た。   According to observation by a transmission electron microscope, in Example 3, the Cr oxide film had a thickness of 6.6 nm, the number of layers was 79, and the surface was smooth. On the other hand, in the comparative example, the Cr oxide film had a thickness of 52.9 nm, the number of layers was 634 layers, and the surface was uneven. The number of layers is determined from the diffraction angle of the (222) plane observed by the X-ray diffraction analysis. Bragg's equation (2 dsin θ = nλ, where d: lattice spacing, θ: diffraction angle, λ; Mo − The crystal lattice plane spacing of 0.0834 nm was obtained from the wavelength of Kα, n = 1), and the thickness of the Cr oxide film was divided by this crystal lattice plane spacing.

また、実施例3及び比較例の(222)配向の結晶子径は15nm程度であり、実施例3の場合、Cr酸化皮膜は結晶子径の半分以下の厚さになっている。これに対して、比較例ではCr酸化皮膜の厚さは当該結晶子径の数倍の厚さになっている。   Moreover, the crystallite diameter of (222) orientation of Example 3 and the comparative example is about 15 nm, and in the case of Example 3, the Cr oxide film has a thickness of half or less of the crystallite diameter. On the other hand, in the comparative example, the thickness of the Cr oxide film is several times the crystallite diameter.

図3は(222)配向結晶の存在率と内部応力との関係をグラフ化したものである。CrMoメッキ皮膜の(222)配向結晶の存在率が高くなるに従って、その圧縮残留応力が高くなること、(222)面の存在率を60%以上にすると、圧縮残留応力が20MPa以上になることがわかる。   FIG. 3 is a graph showing the relationship between the abundance of (222) oriented crystals and internal stress. As the abundance of (222) oriented crystals in the CrMo plating film increases, the compressive residual stress increases, and when the abundance of the (222) plane exceeds 60%, the compressive residual stress may increase to 20 MPa or more. Recognize.

<摩擦摩耗特性評価試験>
相互に摺動する2つの部材の摺動面に適用する種々の摺動面材質の組み合わせについて、図4に示すピンオンディスク摩擦摩耗試験機を用いて、摩擦摩耗特性を評価した。図4において、21は回転台22に支持されたディスク、23はディスク21の周方向に120度の角度間隔をおいてディスク21の上に配置されたピンである。
<Friction and wear characteristics evaluation test>
The friction and wear characteristics of the combinations of various sliding surface materials applied to the sliding surfaces of the two members sliding with each other were evaluated using a pin-on-disk friction and wear tester shown in FIG. In FIG. 4, reference numeral 21 denotes a disk supported on the turntable 22, and 23 denotes pins arranged on the disk 21 at an angular interval of 120 degrees in the circumferential direction of the disk 21.

ディスク21には、3個のピン23に対応する位置を巡るように高速CrMoメッキ皮膜又は普通CrMoメッキ皮膜を環状に形成した。ここに、高速CrMoメッキ皮膜は、上記実施例3のメッキ条件(有機スルフォン酸添加量30ml/L)に係るものであり、普通CrMoメッキ皮膜は、上記比較例3のメッキ条件(有機スルフォン酸添加量0ml/L)に係るものである。ピン23は、窒化ケイ素、チル鋳鉄、ジルコニア(PSZ)、炭化ケイ素又は超硬(WC−Co)にて形成した。   A high-speed CrMo plating film or a normal CrMo plating film was formed in an annular shape on the disk 21 so as to go around positions corresponding to the three pins 23. Here, the high-speed CrMo plating film is related to the plating conditions of Example 3 (addition amount of organic sulfonic acid 30 ml / L), and the normal CrMo plating film is the plating conditions of Comparative Example 3 (addition of organic sulfonic acid). Volume 0 ml / L). The pin 23 was formed of silicon nitride, chilled cast iron, zirconia (PSZ), silicon carbide, or carbide (WC-Co).

摩擦摩耗試験は、潤滑状態で行ない、荷重は540N、ピン23の周速は1m/秒、時間は60分とし、潤滑油としては無添加タービン油を用いた。   The frictional wear test was performed in a lubricated state, the load was 540 N, the peripheral speed of the pin 23 was 1 m / second, the time was 60 minutes, and additive-free turbine oil was used as the lubricating oil.

図5はピン摩耗量の試験結果を示す。ピンを窒化ケイ素で形成した場合は、ディスクのメッキが高速CrMoメッキ及び普通CrMoメッキのいずれであっても、チル鋳鉄やジルコニア(PSZ)の場合よりも、ピン摩耗量が格段に少ない。さらに、窒化ケイ素−高速CrMoメッキの組み合わせの方が、窒化ケイ素−普通CrMoメッキの組み合わせの場合よりも、ピン摩耗量が少ない。   FIG. 5 shows the test results of the amount of pin wear. When the pin is formed of silicon nitride, the wear amount of the pin is remarkably smaller than that of chill cast iron or zirconia (PSZ), regardless of whether the disk is plated at high speed CrMo or normal CrMo. Furthermore, the amount of pin wear is smaller in the combination of silicon nitride and high-speed CrMo plating than in the combination of silicon nitride and ordinary CrMo plating.

図6はディスクのメッキ摩耗量の試験結果を示す。窒化ケイ素−高速CrMoメッキの組み合わせでは、チル鋳鉄−高速CrMoメッキ、チル鋳鉄−普通CrMoメッキ、及びジルコニア(PSZ)−高速CrMoメッキの各組み合わせと同程度に、メッキ摩耗量が少なく、窒化ケイ素−普通CrMoメッキの組み合わせのみが極端にメッキ摩耗量が多いという結果になっている。   FIG. 6 shows a test result of the plating wear amount of the disk. In the combination of silicon nitride and high-speed CrMo plating, the amount of plating wear is as small as each combination of chill cast iron-high-speed CrMo plating, chill cast iron-ordinary CrMo plating, and zirconia (PSZ) -high-speed CrMo plating. Only the combination of ordinary CrMo plating results in an extremely large amount of plating wear.

なお、炭化ケイ素−高速CrMoメッキ、及び超硬(WC−Co)−高速CrMoメッキの各組み合わせでは、スカッフ(焼き付き)発生のために摩耗試験を中止した。   In addition, in each combination of silicon carbide-high speed CrMo plating and carbide (WC-Co) -high speed CrMo plating, the wear test was stopped due to scuffing.

図7は各種の摺動面材質の組み合わせでの摩擦係数の経時変化を示す。チル鋳鉄−普通CrMoメッキ、チル鋳鉄−高速CrMoメッキの各組み合わせでは、試験開始から数分ないし十数分で摩擦係数が比較的高い値になっている。窒化ケイ素−普通CrMoメッキの組み合わせでは、摩擦係数は試験開始後しばらくは低いものの、20分を経過した頃から上昇し始めている。これに対して、窒化ケイ素−高速CrMoメッキの組み合わせでは、試験開始から摩擦係数が比較的低い値を保った試験終了に至っている。   FIG. 7 shows the change over time in the coefficient of friction for various combinations of sliding surface materials. In each combination of chill cast iron-ordinary CrMo plating and chill cast iron-high speed CrMo plating, the friction coefficient becomes a relatively high value within minutes to tens of minutes from the start of the test. In the combination of silicon nitride and ordinary CrMo plating, the friction coefficient is low for a while after the start of the test, but starts to increase after about 20 minutes. On the other hand, in the combination of silicon nitride and high-speed CrMo plating, the test was completed with a relatively low friction coefficient from the start of the test.

なお、ジルコニア(PSZ)−高速CrMoメッキの組み合わせでは、摩擦係数が低くなっているが、これは、図5からわかるように、ピンが多量に摩耗して面圧が下がった結果である。また、炭化ケイ素−高速CrMoメッキ、及び超硬(WC−Co)−高速CrMoメッキの各組み合わせでは、スカッフ発生のために摩擦試験を中止した。   In addition, in the combination of zirconia (PSZ) -high-speed CrMo plating, the friction coefficient is low, but this is a result of a reduction in surface pressure due to a large amount of wear of the pins as can be seen from FIG. Further, in each combination of silicon carbide-high speed CrMo plating and carbide (WC-Co) -high speed CrMo plating, the friction test was stopped due to scuffing.

以上のように、窒化ケイ素−高速CrMoメッキの組み合わせによれば、ピン摩耗量及びディスクのメッキ摩耗量が共に少なく、また、良好な低摩擦特性を示すことから、エンジンなど各種機器の摺動部材に当該組み合わせを採用すると、厳しい潤滑条件下でも、機器の作動に高い信頼性が得られることがわかる。   As described above, according to the combination of silicon nitride and high-speed CrMo plating, both the pin wear amount and the disk plating wear amount are small, and since it exhibits good low friction characteristics, it is a sliding member for various devices such as engines. When this combination is adopted, it can be seen that high reliability of operation of the device can be obtained even under severe lubrication conditions.

1 ロータハウジング(第1部材)
2 トロコイド面(摺動面)
5 アペックスシール(第2部材)
10 Cr含有メッキ皮膜
1 Rotor housing (first member)
2 Trochoidal surface (sliding surface)
5 Apex seal (second member)
10 Cr-containing plating film

Claims (4)

摺動面がCr成分及び有機スルフォン酸を含有するメッキ浴から電解析出させてなるCrを含有するメッキ皮膜によって形成された第1部材と、該第1部材との摺動面が窒化ケイ素によって形成された第2部材とが組み合わされてなることを特徴とする摺動部材。   A sliding surface between the first member formed of a plating film containing Cr formed by electrolytic deposition from a plating bath containing a Cr component and an organic sulfonic acid, and the sliding surface between the first member is made of silicon nitride A sliding member comprising a combination of the formed second member. 請求項1において、
上記メッキ皮膜は、X線回折分析により特定される(222)面が表面側を向いた(222)配向結晶の、該メッキ皮膜表面での存在率が60%以上80%以下であることを特徴とする摺動部材。
In claim 1,
The plating film is characterized in that the (222) oriented crystal whose (222) plane is directed to the surface side specified by X-ray diffraction analysis has an abundance ratio on the surface of the plating film of 60% or more and 80% or less. A sliding member.
摺動面がCrを含有し20MPa以上の圧縮残留応力を有するメッキ皮膜によって形成された第1部材と、該第1部材との摺動面が窒化ケイ素によって形成された第2部材とが組み合わされてなることを特徴とする摺動部材。   A first member formed by a plating film having a sliding surface containing Cr and having a compressive residual stress of 20 MPa or more is combined with a second member in which the sliding surface with the first member is formed by silicon nitride. A sliding member characterized by comprising: 請求項1乃至請求項3のいずれか一において、
上記メッキ被膜は、Crを主成分とするCrMo合金によって形成されていることを特徴とする摺動部材。
In any one of Claim 1 thru | or 3,
The sliding member, wherein the plating film is made of a CrMo alloy containing Cr as a main component.
JP2009214711A 2009-09-16 2009-09-16 Sliding member Pending JP2011063839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214711A JP2011063839A (en) 2009-09-16 2009-09-16 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214711A JP2011063839A (en) 2009-09-16 2009-09-16 Sliding member

Publications (1)

Publication Number Publication Date
JP2011063839A true JP2011063839A (en) 2011-03-31

Family

ID=43950384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214711A Pending JP2011063839A (en) 2009-09-16 2009-09-16 Sliding member

Country Status (1)

Country Link
JP (1) JP2011063839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519219A (en) * 2013-04-17 2016-06-30 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Functional chromium layer with improved corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519219A (en) * 2013-04-17 2016-06-30 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Functional chromium layer with improved corrosion resistance

Similar Documents

Publication Publication Date Title
JP6062357B2 (en) piston ring
JP5976328B2 (en) piston ring
JP2008286354A (en) Sliding member
JP4650157B2 (en) Plating film for sliding part and method for forming the same
JP5141654B2 (en) Sliding parts
EP2162561B1 (en) Piston ring with a sulphonitriding treatment
JP2008069372A (en) Member with hard carbon film
JPH11189860A (en) Sliding member
JP2020200803A (en) piston ring
JP2022109981A (en) piston ring
JP2011063839A (en) Sliding member
JP2014519552A (en) Element with at least one sliding surface for an internal combustion engine
JP2011246792A (en) Slide part
JP4507028B2 (en) Coating composition for sliding member and piston ring for internal combustion engine
CN206503710U (en) A kind of scroll compressor thermomechanical components and scroll compressor
JP4840109B2 (en) Sliding member and manufacturing method thereof
Xu et al. Tribological performance of surface treated piston assembly with infiltrated layer
WO2019130553A1 (en) Low-friction sliding mechanism
JP4203971B2 (en) Low friction carbon thin film
JP2016216821A (en) piston ring
JP2006207691A (en) Hard film coated sliding member
JP2011012336A (en) Multilayer-film-coated member and method for manufacturing the same
JP4925868B2 (en) piston ring
WO2021153425A1 (en) Piston ring, and method for manufacturing same
JP6938807B1 (en) Sliding members and piston rings