JP2011062693A - Method for producing adsorbing material having heat accumulation function, adsorbing material having heat accumulation function and canister - Google Patents

Method for producing adsorbing material having heat accumulation function, adsorbing material having heat accumulation function and canister Download PDF

Info

Publication number
JP2011062693A
JP2011062693A JP2010240029A JP2010240029A JP2011062693A JP 2011062693 A JP2011062693 A JP 2011062693A JP 2010240029 A JP2010240029 A JP 2010240029A JP 2010240029 A JP2010240029 A JP 2010240029A JP 2011062693 A JP2011062693 A JP 2011062693A
Authority
JP
Japan
Prior art keywords
heat storage
adsorbent
storage capsule
heat
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010240029A
Other languages
Japanese (ja)
Other versions
JP5462765B2 (en
Inventor
Kenji Seki
建司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010240029A priority Critical patent/JP5462765B2/en
Publication of JP2011062693A publication Critical patent/JP2011062693A/en
Application granted granted Critical
Publication of JP5462765B2 publication Critical patent/JP5462765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbing material having a heat accumulation function, in which a heat storage material including a heat storage capsule and an adsorbing material are mixed, and to provide a technique for allowing the heat storage capsule to be hardly broken by increasing the strength thereof and ensuring excellent adsorption-desorption performance so that the heat accumulation performance is not deteriorated even under such a condition that moisture exists and even under such a condition that an organic solvent exists. <P>SOLUTION: A method for producing the adsorbing material 10 having the heat accumulation function, in which the heat storage material 4 including the heat storage capsule 3, that is obtained by encapsulating a phase change substance 1 for absorbing/radiating latent heat according to a temperature change in an outer shell, and the adsorbing material 5 are mixed, comprises the steps of: drying a dispersion liquid 3a including the heat storage capsule 3 to obtain powdery heat storage capsule 3b; and performing post-heat treatment for reheating the powdery heat storage capsule 3b within 110-140°C in order to again advance a polymerization reaction of a polymer compound 2 constituting the outer shell of the powdery heat storage capsule 3b. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を外郭中に封入してなる蓄熱カプセルを含んで構成される蓄熱材と、吸着材とを混合してなる蓄熱機能付吸着材の製造方法および当該製造方法により製造された蓄熱機能付吸着材、並びに当該蓄熱機能付吸着材を充填したキャニスターに関する。   The present invention has a heat storage function comprising a heat storage material including a heat storage capsule formed by encapsulating a phase change material that absorbs and releases latent heat in response to a temperature change, and an adsorbent. The present invention relates to an adsorbent manufacturing method, an adsorbent with a heat storage function manufactured by the manufacturing method, and a canister filled with the adsorbent with a heat storage function.

温度変化に応じて潜熱の吸収および放出を生じる相変化物質を外郭中に封入してなる蓄熱カプセルを含んで構成される蓄熱材と、吸着材とを混合してなる蓄熱機能付吸着材の製造方法については、例えば、特許文献1に記載されている。
上記蓄熱機能付吸着材によれば、吸着材の吸脱着熱による温度の上昇および下降を蓄熱材の蓄熱機能により防止して、吸着材の吸着・脱着性能の低下を防止することができる。
Production of an adsorbent with a heat accumulating function by mixing an adsorbent with a heat accumulator comprising a heat accumulator encapsulating a phase change material that absorbs and releases latent heat in response to temperature changes. The method is described in Patent Document 1, for example.
According to the adsorbent with a heat storage function, the temperature increase and decrease due to the heat of adsorption and desorption of the adsorbent can be prevented by the heat storage function of the heat storage material, and the adsorption / desorption performance of the adsorbent can be prevented from being lowered.

すなわち、一般に、吸着材の吸着性能は吸着材の温度が高くなると低くなり、吸着材の脱着性能は吸着材の温度が低くなると低くなる。従って、吸着材にガス等が吸着されたときに発生する吸着熱により吸着材の温度が上昇すると吸着性能の低下につながる。一方、吸着材からガス等が脱着されたときは脱着による吸熱が起こり、吸着材の温度が下降すると脱着性能の低下につながる。このような吸着・脱着性能の低下は、吸脱着熱による吸着材の温度変化に起因することから、蓄熱材を、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を外郭中に封入してなる蓄熱カプセル(マイクロカプセル、以下において同じ)を含んで構成することにより、当該相変化物質が相変化する際に潜熱の吸収若しくは放出を行って、吸着材の温度変化を最小限に抑制することができ、蓄熱材を備えないものより高い吸着・脱着性能を得ることができる。   That is, in general, the adsorption performance of the adsorbent decreases as the temperature of the adsorbent increases, and the desorption performance of the adsorbent decreases as the temperature of the adsorbent decreases. Therefore, when the temperature of the adsorbent rises due to the heat of adsorption generated when gas or the like is adsorbed on the adsorbent, the adsorption performance is reduced. On the other hand, when gas or the like is desorbed from the adsorbent, heat absorption due to desorption occurs, and when the temperature of the adsorbent decreases, the desorption performance is reduced. Such a decrease in adsorption / desorption performance is due to the temperature change of the adsorbent due to heat of adsorption / desorption. Therefore, a heat storage material is enclosed in a shell that contains a phase change substance that absorbs and releases latent heat according to the temperature change. The heat storage capsule (micro capsule, the same in the following) is configured to absorb or release latent heat when the phase change material undergoes a phase change, minimizing the temperature change of the adsorbent. Therefore, it is possible to obtain higher adsorption / desorption performance than those without a heat storage material.

従来、上記蓄熱カプセルは、一般に、70℃〜80℃程度の媒体中においてカプセル化を行い、その後、この媒体を乾燥させて固体化することにより得られる。このような固体化した蓄熱カプセルは、取り扱いが容易で、使い勝手がよいものとして広範囲の用途に用いられている。   Conventionally, the above heat storage capsule is generally obtained by encapsulating in a medium of about 70 ° C. to 80 ° C., and then drying and solidifying the medium. Such solidified heat storage capsules are easy to handle and easy to use, and are used in a wide range of applications.

特開2001−145832号公報JP 2001-145832 A

しかしながら、一般に、70℃〜80℃の媒体中においてカプセル化を行った場合には、蓄熱カプセルの外郭を構成する高分子化合物(例えば、メラミン樹脂)の重合がある程度進むが、重合度は比較的低く、高分子化合物の未反応基が相当数存在し、用途によっては蓄熱カプセルの強度が充分だとは言い切れない。このような蓄熱カプセルを水スラリー中で使用する際には、蓄熱カプセルが破壊されるおそれをほぼ考慮する必要がなかったが、当該蓄熱カプセルを乾燥させて固体化した蓄熱カプセルとして利用しようとすると、当該固体化した蓄熱カプセルを比較的強度の高い吸着材等と混合した場合などにおいて、蓄熱カプセルの破壊を生じるおそれがあり、蓄熱カプセルの破壊に伴って蓄熱性能が低下して、吸着・脱着性能が低下するおそれがある。   However, generally, when encapsulation is performed in a medium at 70 ° C. to 80 ° C., polymerization of a polymer compound (for example, melamine resin) constituting the outer shell of the heat storage capsule proceeds to some extent, but the degree of polymerization is relatively high. It is low and there are a large number of unreacted groups of the polymer compound, and it cannot be said that the heat storage capsule has sufficient strength depending on the application. When using such a heat storage capsule in the water slurry, there was almost no need to consider the possibility of destruction of the heat storage capsule, but when trying to use the heat storage capsule as a heat storage capsule solidified by drying it When the solidified heat storage capsule is mixed with an adsorbent with relatively high strength, etc., the heat storage capsule may be destroyed, and the heat storage performance is reduced due to the destruction of the heat storage capsule. Performance may be reduced.

また、このような固体化した蓄熱カプセルと吸着材とを混合した蓄熱機能付吸着材を、例えば、キャニスターのケース内に充填した場合などには、当該ケース内の吸着材に吸着されるガソリンなどの蒸散燃料(有機溶剤)が蓄熱カプセルの外郭を破壊あるいは透過して、当該外郭内に封入された相変化物質を外部に漏出させてしまうおそれがある。
ここで、キャニスターとは、一般に、車両等の内燃機関に供給される蒸散燃料(ガソリン等)が外部(大気中など)に放出されるのを防止するために、車両の停車時等には余剰の蒸散燃料をケース内の吸着材に吸着し、走行時等にはケース内に大気をパージガスとして導入して、吸着された蒸散燃料を脱着し、改めて内燃機関等に供給するものである。
さらに、このような固体化した蓄熱カプセルと吸着材とを混合した蓄熱機能付吸着材を、例えば、上記キャニスターのケース内に充填した場合などには、当該ケース内に存在する湿気や水分等が蓄熱カプセルの外郭を劣化させて、当該外郭を破壊し、当該外郭内に封入された相変化物質を外部に漏出させてしまうおそれがある。
このような相変化物質の外部への漏出は、蓄熱機能を低下させるとともに、吸着・脱着性能の低下を招くおそれがある。
In addition, when the adsorbent with a heat storage function in which the solidified heat storage capsule and the adsorbent are mixed is filled in a canister case, for example, gasoline adsorbed by the adsorbent in the case The vaporized fuel (organic solvent) may destroy or permeate the outer shell of the heat storage capsule and leak the phase change material enclosed in the outer shell to the outside.
Here, the canister is generally a surplus when the vehicle is stopped in order to prevent the vaporized fuel (gasoline etc.) supplied to the internal combustion engine of the vehicle etc. from being released to the outside (in the atmosphere etc.). The vaporized fuel is adsorbed by the adsorbent in the case, and the air is introduced into the case as a purge gas during traveling, and the adsorbed vaporized fuel is desorbed and supplied again to the internal combustion engine or the like.
Further, when the adsorbent with a heat storage function in which the solidified heat storage capsule and the adsorbent are mixed, for example, in the case of the canister, moisture or moisture present in the case is removed. There is a possibility that the outer shell of the heat storage capsule is deteriorated, the outer shell is destroyed, and the phase change material enclosed in the outer shell is leaked to the outside.
Such leakage of the phase change material to the outside may reduce the heat storage function and may cause a decrease in adsorption / desorption performance.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、蓄熱カプセルを含んで構成される蓄熱材と吸着材とを混合した蓄熱機能付吸着材において、当該蓄熱カプセルの強度を上げて破壊されにくく、湿気や水分が存在する条件下および有機溶剤が存在する条件下でも蓄熱性能が低下せず、良好な吸着・脱着性能を確保することができる技術を提供する点にある。   The present invention has been made in view of the above-described problems, and its purpose is to provide a heat storage function-adsorbing material in which a heat storage material including an heat storage capsule and an adsorbent are mixed, and the strength of the heat storage capsule is reduced. Therefore, the present invention is to provide a technique capable of ensuring good adsorption / desorption performance without deteriorating heat storage performance even under conditions where moisture and moisture are present and conditions where an organic solvent is present.

上記目的を達成するための本発明に係る蓄熱機能付吸着材の製造方法は、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を外郭中に封入してなる蓄熱カプセルを含んで構成される蓄熱材と、吸着材とを混合してなる蓄熱機能付吸着材の製造方法であって、その第1特徴手段は、前記蓄熱カプセルが含まれる分散液を乾燥して、粉末状の蓄熱カプセルを完成した後に、
前記粉末状の蓄熱カプセルの外郭を構成する高分子化合物の重合反応を再促進させる反応再促進処理として、前記粉末状の蓄熱カプセルを、110℃以上140℃以下の範囲の加熱温度で再加熱する後加熱処理を行う点にある。
In order to achieve the above object, a method for producing an adsorbent with a heat storage function according to the present invention includes a heat storage capsule in which a phase change material that absorbs and releases latent heat according to a temperature change is enclosed in an outer shell. A method for producing an adsorbent with a heat storage function formed by mixing an adsorbent and a heat storage material, wherein the first characteristic means is to dry the dispersion containing the heat storage capsule to obtain a powdered heat storage After completing the capsule,
As a reaction re-promoting treatment for re-promoting the polymerization reaction of the polymer compound that forms the outer shell of the powder heat storage capsule, the powder heat storage capsule is reheated at a heating temperature in the range of 110 ° C. to 140 ° C. It is in the point which performs a post-heating process.

上記第1特徴手段によれば、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を外郭中に封入してなる蓄熱カプセルを含んで構成される蓄熱材と、吸着材とを混合してなる蓄熱機能付吸着材を製造するにあたって、当該蓄熱カプセルの外郭を構成する高分子化合物に対して重合反応を再促進させる反応再促進処理を行うものとする。   According to the first feature means, the adsorbent is mixed with a heat storage material configured to include a heat storage capsule formed by enclosing a phase change material that absorbs and releases latent heat in response to a temperature change. When the adsorbent with a heat storage function is manufactured, a reaction re-promoting process for re-promoting the polymerization reaction is performed on the polymer compound constituting the outer shell of the heat storage capsule.

これにより、蓄熱カプセルの外郭を構成する高分子化合物の重合反応は再促進され、重合度を上昇させ、当該外郭(蓄熱カプセル)の強度を上昇させることができる。
すなわち、蓄熱カプセルの外郭は、相変化物質の周りに高分子化合物が膜を作り、この膜の重合度が重合反応により高められて形成されるが、重合度が低い場合には膜に微小な孔が残存した状態となっている場合もあり、この孔の存在により膜の強度が充分ではない場合もある。すなわち、膜の重合度に応じて外郭の強度が決定されるが、当該重合度を上昇させることにより(孔を減少させて)蓄熱カプセルの強度を上昇させることができる。
このような強度の上昇した蓄熱カプセルは、比較的硬い吸着材と混合しても破壊されにくく、蓄熱性能の低下が生じにくいため、上記蓄熱機能付吸着材の吸着・脱着性能の低下を防止することができる。
また、実質的には上記膜に存在する孔が減少しているので、有機溶剤が存在する条件下において蓄熱カプセルの外郭を破壊あるいは透過して、当該外郭内に封入された相変化物質が外部へ漏出することを防止できるとともに、湿気や水分等が存在する条件下においても蓄熱カプセルの外郭が劣化させられて破壊され、当該外郭内に封入された相変化物質が外部へ漏出することを防止できる。
Thereby, the polymerization reaction of the polymer compound constituting the outer shell of the heat storage capsule is re-promoted, the degree of polymerization can be increased, and the strength of the outer shell (heat storage capsule) can be increased.
That is, the outer shell of the heat storage capsule is formed by forming a film of a polymer compound around the phase change material, and the degree of polymerization of the film is increased by the polymerization reaction. In some cases, pores remain, and the presence of the pores may not provide sufficient film strength. That is, the strength of the outer shell is determined according to the degree of polymerization of the membrane, but the strength of the heat storage capsule can be increased by increasing the degree of polymerization (reducing the pores).
Such a heat storage capsule with increased strength is difficult to break even when mixed with a relatively hard adsorbent, and the heat storage performance is unlikely to deteriorate, thus preventing a decrease in the adsorption / desorption performance of the adsorbent with the heat storage function. be able to.
In addition, since the pores existing in the membrane are substantially reduced, the outer shell of the heat storage capsule is destroyed or permeated under the condition where the organic solvent is present, and the phase change material enclosed in the outer shell is externally exposed. In addition, the outer shell of the heat storage capsule is deteriorated and destroyed even under conditions where moisture, moisture, etc. are present, and the phase change material enclosed in the outer shell is prevented from leaking to the outside. it can.

さらに、蓄熱カプセルが含まれる分散液を乾燥して、粉末状の蓄熱カプセルを完成した後に、カプセル化処理後の粉末状の蓄熱カプセルを後加熱処理するので、カプセル化処理が終了した段階において、完成している蓄熱カプセルの重合度が低い場合であっても、当該蓄熱カプセルを後加熱処理することで外郭を構成する高分子化合物の重合度をさらに上昇させることができ、蓄熱カプセルの強度を上昇させることができる。
すなわち、固体状の蓄熱カプセルが完成している場合において、当該蓄熱カプセルをそのまま利用すれば強度不足となり、蓄熱カプセルの破壊等が生じて蓄熱性能が低下するときでも、当該蓄熱カプセルを後加熱処理することで当該蓄熱カプセルの強度をさらに上昇させることができ、蓄熱カプセルの破壊等に伴う蓄熱性能の低下を防止して、蓄熱機能付吸着材の吸着・脱着性能の低下を防止することができる。
この場合、特に、図6に示すように、固体状(粉末状)の蓄熱カプセル(外郭はメラミン樹脂)を後加熱処理した場合には、後加熱処理を行わない場合と比較して、蓄熱カプセルの重量減少割合が減少することとなる。すなわち、当該後加熱処理を行うことにより、蓄熱カプセルの外郭を構成する高分子化合物(図6では熱硬化性樹脂であるメラミン樹脂)の重合度が上昇して、外郭中に封入された相変化物質が外部に漏出せず、蓄熱カプセルの重量減少が起こりにくくなる。よって、蓄熱性能の低下を防止することができるとともに、吸着・脱着性能の低下を防止することができる。
また、蓄熱カプセルの強度が上昇しているため、重合度が低い場合に残存する微小な孔が減少しており、有機溶剤が存在する条件下において蓄熱カプセルの外郭を破壊あるいは透過して、当該外郭内に封入された相変化物質が外部へ漏出することをより効果的に防止できるとともに、湿気や水分等が存在する条件下においても蓄熱カプセルの外郭が劣化させられて破壊され、当該外郭内に封入された相変化物質が外部へ漏出することをより効果的に防止できる。
Furthermore, after drying the dispersion liquid containing the heat storage capsule and completing the powdered heat storage capsule, the powdered heat storage capsule after the encapsulation treatment is post-heat treated, so at the stage where the encapsulation process is completed, Even when the degree of polymerization of the completed heat storage capsule is low, the degree of polymerization of the polymer compound constituting the outer shell can be further increased by post-heating the heat storage capsule, and the strength of the heat storage capsule can be increased. Can be raised.
That is, when a solid heat storage capsule is completed, if the heat storage capsule is used as it is, the strength becomes insufficient, and even when the heat storage performance is deteriorated due to destruction of the heat storage capsule, the heat storage capsule is post-heat treated. By doing so, it is possible to further increase the strength of the heat storage capsule, to prevent a decrease in heat storage performance due to the destruction of the heat storage capsule, and to prevent a decrease in adsorption / desorption performance of the adsorbent with a heat storage function .
In this case, in particular, as shown in FIG. 6, when a solid (powder) thermal storage capsule (the outer shell is a melamine resin) is post-heat treated, the thermal storage capsule is compared with a case where no post-heating treatment is performed. The weight reduction rate of will decrease. That is, by performing the post-heating treatment, the degree of polymerization of the polymer compound (melamine resin, which is a thermosetting resin in FIG. 6) constituting the outer shell of the heat storage capsule is increased, and the phase change enclosed in the outer shell is increased. The substance does not leak to the outside, and the weight reduction of the heat storage capsule hardly occurs. Therefore, the heat storage performance can be prevented from being lowered, and the adsorption / desorption performance can be prevented from being lowered.
In addition, since the strength of the heat storage capsule is increased, the number of minute pores remaining when the degree of polymerization is low is reduced, and the outer shell of the heat storage capsule is destroyed or permeated in the presence of an organic solvent, The phase change material enclosed in the outer shell can be more effectively prevented from leaking to the outside, and the outer shell of the heat storage capsule is deteriorated and destroyed even under conditions where moisture, moisture, etc. exist, It is possible to more effectively prevent the phase change material enclosed in the liquid from leaking outside.

さらに、前記再加熱処理における加熱温度を、110℃以上140℃以下の範囲内とすることができるので、高分子化合物の重合度を十分に上昇させつつ、高分子化合物が熱により破壊されない程度に再加熱することができ、蓄熱性能の低下を防止することができる。ここで、加熱温度を110℃以上とするのは、更なる重合反応を十分に進めるためであり、一方、140℃以下とするのは、蓄熱カプセルの外郭を構成する高分子化合物の熱分解を抑制するためである。   Furthermore, since the heating temperature in the reheating treatment can be set within a range of 110 ° C. or more and 140 ° C. or less, the polymer compound is sufficiently destroyed while the polymer compound is not destroyed by heat. It can reheat and can prevent the heat storage performance from deteriorating. Here, the heating temperature is set to 110 ° C. or higher in order to sufficiently advance the further polymerization reaction, while the heating temperature is set to 140 ° C. or lower in order to thermally decompose the polymer compound constituting the outer shell of the heat storage capsule. It is for suppressing.

本発明に係る蓄熱機能付吸着材の製造方法の第2特徴手段は、前記蓄熱材を、前記粉末状の蓄熱カプセルをバインダーにより粒状に成形した粒状蓄熱材とする点にある。   The 2nd characteristic means of the manufacturing method of the adsorbent with a heat storage function which concerns on this invention exists in the point which makes the said heat storage material the granular heat storage material which shape | molded the said powder-like heat storage capsule into the particle shape with the binder.

上記第2特徴手段によれば、複数の蓄熱カプセルをバインダーにより粒状に成形して粒状蓄熱材として蓄熱材を構成することができる。
これにより、吸着材と混合する前に複数の蓄熱カプセルをバインダーにより粒状に成形しておくことで、比較的硬い吸着材と混合する際の破壊を低減することができ、蓄熱性能の低下を防止して、吸着・脱着性能の低下を防止できる蓄熱機能付吸着材を製造することができる。
According to the said 2nd characteristic means, a some heat storage capsule can be shape | molded to a granule with a binder, and a heat storage material can be comprised as a granular heat storage material.
This makes it possible to reduce the breakage when mixing with a relatively hard adsorbent by forming a plurality of heat storage capsules in a granular form with a binder before mixing with the adsorbent, preventing deterioration of the heat storage performance Thus, it is possible to manufacture an adsorbent with a heat storage function that can prevent a decrease in adsorption / desorption performance.

本発明に係る蓄熱機能付吸着材の製造方法の第3特徴手段は、前記蓄熱機能付吸着材を、前記蓄熱材と前記吸着材とをバインダーとともに混合して一体成形した一体成形蓄熱機能付吸着材とする点にある。   The third characteristic means of the method for producing an adsorbent with a heat storage function according to the present invention is the adsorption with an integrally formed heat storage function in which the adsorbent with the heat storage function is integrally formed by mixing the heat storage material and the adsorbent together with a binder. It is in the point to use as a material.

上記第3特徴手段によれば、蓄熱材と吸着材とをバインダーとともに混合して一体成形した一体成形蓄熱機能付吸着材を得ることができる。
これにより、蓄熱材と吸着材とを単に混合した場合などにおいて、使用条件等により蓄熱材と吸着材とが分離・分級して、吸着材からの吸脱着熱を適切に蓄熱できないことによる吸着性能の低下を防止することができ、高い吸脱着性能を維持可能な一体成形蓄熱機能付吸着材を得ることができる。
According to the said 3rd characteristic means, the heat storage material and the adsorbent are mixed with the binder, and the integrally formed heat storage function-equipped adsorbent can be obtained.
As a result, when the heat storage material and the adsorbent are simply mixed, the heat storage material and the adsorbent are separated and classified according to usage conditions, etc., and the adsorption performance due to the inability to properly store the heat of adsorption and desorption from the adsorbent. Can be prevented, and an integrally formed heat storage function-equipped adsorbent capable of maintaining high adsorption / desorption performance can be obtained.

上記目的を達成するための本発明に係る蓄熱機能付吸着材の第1特徴構成は、第1〜第3特徴手段の何れか一つの蓄熱機能付吸着材の製造方法により製造された蓄熱機能付吸着材である点にある。   The first characteristic configuration of the adsorbent with a heat storage function according to the present invention for achieving the above object is the one with a heat storage function manufactured by the method for manufacturing an adsorbent with a heat storage function according to any one of the first to third characteristic means. It is an adsorbent.

上記第1特徴構成によれば、蓄熱カプセルの強度が向上している蓄熱材と吸着材とを混合した蓄熱機能付吸着材を得ることができ、吸着材がガス等を吸着・脱着する際の吸脱着熱を適切に蓄熱できることで、吸着性能の低下を適切に防止することができる。   According to the first characteristic configuration, it is possible to obtain an adsorbent with a heat storage function in which an adsorbent is mixed with a heat storage material in which the strength of the heat storage capsule is improved, and when the adsorbent adsorbs / desorbs gas or the like. Since the heat of adsorption / desorption can be stored appropriately, a decrease in adsorption performance can be appropriately prevented.

上記目的を達成するための本発明に係るキャニスターの第2特徴構成は、第1〜第3特徴手段の何れか一つの蓄熱機能付吸着材の製造方法により製造された蓄熱機能付吸着材を、ケース内に充填してなる点にある。   To achieve the above object, the second characteristic configuration of the canister according to the present invention is an adsorbent with a heat storage function manufactured by the method for manufacturing an adsorbent with a heat storage function according to any one of the first to third characteristic means. The point is that it is filled in the case.

上記第2特徴構成によれば、蓄熱カプセルの強度が向上している上記蓄熱機能付吸着材をキャニスターのケース内に充填することにより、当該ケース内の吸着材に吸着されるガソリンなどの蒸散燃料が蓄熱カプセルの外郭を破壊あるいは透過して、当該外郭内に封入された相変化物質が外部に漏出することを防止でき、また当該ケース内に存在する湿気や水分等が蓄熱カプセルの外郭を劣化させて、当該外郭を破壊し、当該外郭内に封入された相変化物質が外部に漏出するのを防止することができる。   According to the second characteristic configuration, by filling the adsorbent with the heat storage function in which the strength of the heat storage capsule is improved in the case of the canister, the transpiration fuel such as gasoline adsorbed by the adsorbent in the case Breaks or permeates the outer shell of the heat storage capsule and prevents the phase change material enclosed in the outer shell from leaking to the outside, and moisture or moisture present in the case deteriorates the outer shell of the heat storage capsule. Thus, the outer shell can be destroyed and the phase change material sealed in the outer shell can be prevented from leaking to the outside.

これにより、吸着・脱着性能を高く維持して上記キャニスターにおける蒸散燃料の処理量を向上させるとともに、内燃機関内部に相変化物質や高分子化合物が侵入し、不具合を生じるおそれを低下させることができる。   As a result, the adsorption / desorption performance can be maintained at a high level to improve the throughput of the vaporized fuel in the canister, and the possibility that a phase change material or a polymer compound enters the internal combustion engine to cause a malfunction can be reduced. .

第1実施形態における蓄熱機能付吸着材を製造する過程を示した概略図Schematic showing the process of manufacturing an adsorbent with a heat storage function in the first embodiment 本方法における後加熱処理の概略を示す図The figure which shows the outline of the post-heating process in this method 本方法とは別の後加熱処理の概略を示す図The figure which shows the outline of post-heating processing different from this method 参考例における酸処理の概略を示す図The figure which shows the outline of the acid treatment in a reference example 参考例における酸処理の概略を示す図The figure which shows the outline of the acid treatment in a reference example 後加熱処理の温度と重量減少割合との関係を示すグラフ図Graph showing the relationship between post-heating temperature and weight loss rate E10ガソリン浸漬時間と蓄熱可能な熱量との関係を示すグラフ図Graph showing the relationship between E10 gasoline immersion time and the amount of heat that can be stored

本発明に係る蓄熱機能付吸着材10の製造方法(以下、本方法と略称する)の実施形態について、図面に基づいて説明する。
〔第1実施形態〕
本方法は、図1に示すように、温度変化に応じて潜熱の吸収および放出を生じる相変化物質1を外郭中に封入してなる蓄熱カプセル3を含んで構成される蓄熱材4と、吸着材5とを混合して蓄熱機能付吸着材10を製造する方法であり、さらに図2〜5に示すように、蓄熱カプセル3に対して、蓄熱カプセル3の外郭を構成する高分子化合物2の重合反応を再促進させる反応再促進処理を行うものである。
An embodiment of a method for producing an adsorbent 10 with a heat storage function according to the present invention (hereinafter abbreviated as the present method) will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, this method includes a heat storage material 4 including a heat storage capsule 3 formed by enclosing a phase change material 1 that absorbs and releases latent heat in response to a temperature change in an outer shell, and an adsorption This is a method for producing the adsorbent 10 with a heat storage function by mixing the material 5, and, as shown in FIGS. 2 to 5, the polymer compound 2 constituting the outer shell of the heat storage capsule 3 with respect to the heat storage capsule 3. A reaction re-promoting treatment for re-promoting the polymerization reaction is performed.

図1は、蓄熱カプセル3を製造して蓄熱材4とし、吸着材5とともに混合して蓄熱機能付吸着材10を製造する過程を示した概略図であり、大きく分けると、蓄熱カプセル3の製造段階、粒状蓄熱材4aの製造段階、蓄熱機能付吸着材10の製造段階がある。   FIG. 1 is a schematic view showing a process of manufacturing a heat storage capsule 3 to produce a heat storage material 4 and mixing with the adsorbent 5 to manufacture an adsorbent 10 with a heat storage function. There are a stage, a manufacturing stage of the granular heat storage material 4a, and a manufacturing stage of the adsorbent 10 with a heat storage function.

[蓄熱カプセル3]
蓄熱カプセル3は、図1に示すように、温度変化に応じて潜熱の吸収および放出を生じる相変化物質1を外郭中に封入してなるマイクロカプセルにより構成される。
上記相変化物質1としては、相変化に伴って潜熱の吸収および放出を生じる化合物であれば、特に制限されないが、蓄熱機能付吸着材10の用途に対応して相変化を生じる温度(例えば融点、凝固点など)に応じて化合物を選択することができ、例えば、融点が−150℃〜100℃程度、キャニスター30用として好ましくは、0℃〜50℃程度の有機化合物および無機化合物からなる。具体的に例示すると、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンイコサン、ドコサンなどの直鎖の脂肪族炭化水素、天然ワックス、石油ワックス、LiNO3・3H2O、Na2SO4・10H2O、Na2HPO4・12H2Oなどの無機化合物の水和物、カプリン酸、ラウリン酸等の脂肪酸、炭素数が12〜15の高級アルコール、パルミチン酸メチル等のエステル化合物などを用いることができる。なお、相変化としては、固体−液体間等の相変化を例示することができる。
上記相変化物質1は、上記から選ばれる2種以上の化合物を併用してもよい。2種以上の相変化物質1を併用する場合、各相変化物質1の相変化を生じる温度の差が、0℃〜100℃程度、キャニスター用として好ましくは、0℃〜15℃となるような組み合わせが好ましい。
また、相変化物質1の過冷却現象を防止するために、必要に応じて相変化物質1の融点より高融点の化合物を添加して用いてもよい。
[Heat storage capsule 3]
As shown in FIG. 1, the heat storage capsule 3 is configured by a microcapsule in which a phase change material 1 that absorbs and releases latent heat according to a temperature change is enclosed in an outer shell.
The phase change material 1 is not particularly limited as long as it is a compound that absorbs and releases latent heat in accordance with the phase change, but the temperature at which the phase change occurs corresponding to the use of the adsorbent 10 with a heat storage function (for example, the melting point). The compound can be selected according to the freezing point and the like. For example, the compound is composed of an organic compound and an inorganic compound having a melting point of about −150 ° C. to 100 ° C. and preferably for the canister 30 of about 0 ° C. to 50 ° C. Specific examples include straight-chain aliphatic hydrocarbons such as tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosane, heikosan, docosan, natural wax, petroleum wax, LiNO 3 .3H 2 O, Na 2 SO 4.・ Hydrates of inorganic compounds such as 10H 2 O and Na 2 HPO 4 · 12H 2 O, fatty acids such as capric acid and lauric acid, higher alcohols having 12 to 15 carbon atoms, ester compounds such as methyl palmitate, etc. Can be used. In addition, as a phase change, phase changes, such as between solid-liquid, can be illustrated.
The phase change material 1 may be used in combination of two or more compounds selected from the above. When two or more kinds of phase change materials 1 are used in combination, the difference in temperature causing the phase change of each phase change material 1 is about 0 ° C. to 100 ° C., preferably 0 ° C. to 15 ° C. for canisters. A combination is preferred.
Further, in order to prevent the supercooling phenomenon of the phase change material 1, a compound having a melting point higher than that of the phase change material 1 may be added as necessary.

そして、これらを芯材料として、例えば、コアセルベーション法、in−situ法(界面反応法)等の公知の方法により、マイクロカプセルとしたものを蓄熱カプセル3として用いることができる。例えば、相変化物質1を媒体中で界面活性剤等の乳化剤を用いて乳化し、これに後述する所望の高分子化合物2(樹脂等)に対応する初期縮合物(プレポリマー)を添加した後、70℃程度に加熱し、重合反応を進めることにより、外郭(樹脂壁等)を有し、相変化物質1を外郭中に封入した蓄熱カプセル3の分散液(スラリー)3aを調整することができる。例えば、この蓄熱カプセル分散液3aを乾燥させれば、蓄熱カプセル3の固形物(粉末状の蓄熱カプセル3b)を得ることができる。   And these can be used as the heat storage capsule 3 by using microcapsules as a core material by a known method such as a coacervation method or an in-situ method (interface reaction method). For example, after the phase change material 1 is emulsified in a medium using an emulsifier such as a surfactant, and an initial condensate (prepolymer) corresponding to a desired polymer compound 2 (resin etc.) described later is added thereto The dispersion (slurry) 3a of the heat storage capsule 3 having the outer shell (resin wall, etc.) and enclosing the phase change material 1 in the outer shell can be adjusted by heating to about 70 ° C. and proceeding the polymerization reaction. it can. For example, if this heat storage capsule dispersion liquid 3a is dried, a solid material of the heat storage capsule 3 (powdered heat storage capsule 3b) can be obtained.

蓄熱カプセル3(マイクロカプセル)の外郭としては、公知の高分子化合物2を特に制限なく用いることができるが、例えば、ホルムアルデヒド−メラミン樹脂、メラミン樹脂、ホルムアルデヒド−尿素樹脂、尿素樹脂、尿素−ホルムアルデヒド−ポリアクリル酸共重合体、ポリスチレン、ポリ酢酸ビニル、ポリアクリロニトリル、ポリエチレン、ポリブチルメタクリレート、ゼラチン等を用いることができる。好ましくは、熱硬化性樹脂、特にメラミン樹脂を用いるとよい。
蓄熱カプセル3の外郭と相変化物質1との重量比(外郭:相変化物質1)は、特に制限されないが、通常40:60〜5:95程度、好ましくは30:70〜10:90程度である。
蓄熱カプセル3の平均粒子径は、必要な蓄熱量、カプセル強度から適宜選択することができるが、所望の蓄熱性能を確保しつつ、蓄熱カプセル3の破壊を防止することができる、数μm〜数十μm程度の平均粒子径が好ましい。
As the outer shell of the heat storage capsule 3 (microcapsule), the known polymer compound 2 can be used without particular limitation. For example, formaldehyde-melamine resin, melamine resin, formaldehyde-urea resin, urea resin, urea-formaldehyde- Polyacrylic acid copolymer, polystyrene, polyvinyl acetate, polyacrylonitrile, polyethylene, polybutyl methacrylate, gelatin and the like can be used. Preferably, a thermosetting resin, particularly a melamine resin is used.
The weight ratio of the outer shell of the heat storage capsule 3 to the phase change material 1 (outer shell: phase change material 1) is not particularly limited, but is usually about 40:60 to 5:95, preferably about 30:70 to 10:90. is there.
The average particle diameter of the heat storage capsule 3 can be appropriately selected from the necessary heat storage amount and capsule strength, but it can prevent destruction of the heat storage capsule 3 while ensuring the desired heat storage performance. An average particle size of about 10 μm is preferred.

[蓄熱材4(粒状蓄熱材4a)]
図1に示すように、蓄熱材4は、上記蓄熱カプセル3を含んで構成され、吸着材5と混合できればよく、本実施形態の場合、粉末状の蓄熱カプセル3bを用いる。すなわち、蓄熱カプセル3を含む分散液3aを乾燥させることにより粉末状の蓄熱カプセル3bを得ることができ、さらに、粉末状の蓄熱カプセル3bをバインダー6と混錬して公知の造粒機により粒状の蓄熱材4aとすることができる。
バインダー6としては、公知のバインダー(熱可塑性樹脂、熱硬化性樹脂)を用いることができるが、蓄熱機能付吸着材10の使用用途、条件に応じて、適宜選択することができ、例えば、メチルセルロース、カルボキシルメチルセルロース等のセルロース、フェノール樹脂、ポリビニルアルコール、酢酸ビニル、アミドエステル等を用いることができる。特に、当該蓄熱機能付吸着材10をキャニスター30に用いる場合には、耐溶剤性(耐蒸散燃料性)、耐水性が要求されるため、この要求を満たすバインダー6を用いることが必要である。例えば、フェノール系、アクリル系、イソシアネート系、メラミン系、ウレタン系、アミドエステル系等の熱硬化性樹脂で、粒状蓄熱材4のJIS硬度(JIS K 1474)が90%以上となる熱硬化性樹脂が好ましい。
粒状蓄熱材4aの形状は、特に制限されないが、ペレット(円柱状、球状)、ディスク、ブロック、ハニカム等の任意の形状に成型することができる。また、平均粒子径は、特に制限されないが、通常、0.1mm〜4mm程度、好ましくは0.3mm〜3.5mm程度、より好ましくは0.5mm〜2.5mm程度から選択することができる。なお、後述する一体成型蓄熱機能付吸着材10a(蓄熱材4と吸着材5とをバインダー6とともに混合して、一体成型した吸着材)との関係では、粒状蓄熱材4aの平均粒子径よりも一体成型蓄熱機能付吸着材10aの平均粒子径の方が大きく成型される。
[Heat storage material 4 (granular heat storage material 4a)]
As shown in FIG. 1, the heat storage material 4 is configured to include the heat storage capsule 3 as long as it can be mixed with the adsorbent 5. In the case of the present embodiment, a powdered heat storage capsule 3 b is used. That is, the powdery heat storage capsule 3b can be obtained by drying the dispersion 3a containing the heat storage capsule 3, and the powdery heat storage capsule 3b is kneaded with the binder 6 and granulated by a known granulator. The heat storage material 4a can be obtained.
As the binder 6, a known binder (thermoplastic resin, thermosetting resin) can be used, and can be appropriately selected depending on the usage and conditions of the adsorbent 10 with a heat storage function. For example, methyl cellulose Cellulose such as carboxymethyl cellulose, phenol resin, polyvinyl alcohol, vinyl acetate, amide ester and the like can be used. In particular, when the adsorbent 10 with a heat storage function is used for the canister 30, solvent resistance (transpiration resistance) and water resistance are required, and therefore it is necessary to use a binder 6 that satisfies this requirement. For example, a thermosetting resin such as phenol, acrylic, isocyanate, melamine, urethane, amide ester, etc., in which the granular heat storage material 4 has a JIS hardness (JIS K 1474) of 90% or more. Is preferred.
The shape of the granular heat storage material 4a is not particularly limited, but can be formed into an arbitrary shape such as a pellet (cylindrical or spherical), a disk, a block, or a honeycomb. Further, the average particle diameter is not particularly limited, but can be generally selected from about 0.1 mm to 4 mm, preferably about 0.3 mm to 3.5 mm, more preferably about 0.5 mm to 2.5 mm. In addition, in the relationship with the adsorbent 10a with an integrally-molded heat storage function to be described later (the adsorbent obtained by mixing the heat storage material 4 and the adsorbent 5 together with the binder 6 and integrally molded), it is more than the average particle diameter of the granular heat storage material 4a. The average particle diameter of the integrally molded adsorbent with heat storage function 10a is molded larger.

[吸着材5]
吸着材5は、ガス等を吸着することができる公知の吸着材、キャニスター30の場合には蒸散燃料を吸着することができる公知の吸着材を用いることができるが、例えば、活性炭、ゼオライト、シリカゲル、有機金属錯体(フマル酸銅、テレフタル酸銅、シクロヘキサンジカルボン酸銅など)など、またはこれらの混合物を用いることができる。
吸着材5が吸着対象とするガス等としては、メタン、メタンを主成分とするガス(天然ガス、消化ガスなど)、エタン、プロパン、ジメチルエーテル、CO2、硫化水素、酸素、窒素、NOX、SOX、CO、アセチレン、エチレン、アンモニア、メタノール、エタノール、水、クロロホルム、アルデヒドなどが例示されるが、吸着材5がキャニスター30のケース31内に充填される場合には、蒸散燃料、特に、ガソリンとなる。
吸着材5は、活性炭等を破砕したものを用いてもよいし、破砕したものを粒状に成型して粒状吸着材5aとして用いてもよい。この成型については、粒状蓄熱材4aの場合と同様にバインダー6と混錬して行う。
[Adsorbent 5]
The adsorbent 5 can be a known adsorbent capable of adsorbing gas or the like, and in the case of the canister 30, a known adsorbent capable of adsorbing a vaporized fuel can be used. For example, activated carbon, zeolite, silica gel , Organometallic complexes (copper fumarate, copper terephthalate, copper cyclohexanedicarboxylate, etc.) or a mixture thereof can be used.
Examples of the gas that is adsorbed by the adsorbent 5 include methane, methane-based gas (natural gas, digestion gas, etc.), ethane, propane, dimethyl ether, CO 2 , hydrogen sulfide, oxygen, nitrogen, NO x , SO x , CO, acetylene, ethylene, ammonia, methanol, ethanol, water, chloroform, aldehyde, etc. are exemplified, but when the adsorbent 5 is filled in the case 31 of the canister 30, a vaporized fuel, in particular, It becomes gasoline.
The adsorbent 5 may be obtained by crushing activated carbon or the like, or may be used as the granular adsorbent 5a by molding the crushed material into granules. About this shaping | molding, it knead | mixes with the binder 6 similarly to the case of the granular heat storage material 4a.

[蓄熱機能付吸着材10(一体成型蓄熱機能付吸着材10a)]
蓄熱機能付吸着材10は、蓄熱材4と吸着材5とを混合して構成されるが、混合の方法は特に制限されない。例えば、蓄熱材4、吸着材5のそれぞれの粉末を単に混ぜ合わせてもよいし、蓄熱カプセル3の分散液3aを吸着材5の粉末にスプレーしてもよく、また、粒状蓄熱材4aと粒状吸着材5aとを均一に混ぜ合わせるだけでもよい。さらに、図1の蓄熱機能付吸着材10の製造段階において示すように、粒状蓄熱材4aと粒状吸着材5aとを混ぜ合わせた上、バインダー6により一体化して一体成型蓄熱機能付吸着材10aとしてもよい。
一体成型蓄熱機能付吸着材10aは、上記のように粒状蓄熱材4aと粒状吸着材5aとを混ぜ合わせた上、バインダー6により一体化して構成されるが、その形状に特に制限はなく、例えば、ペレット(円柱状、球状)、ディスク、ブロック、ハニカム等の任意の形状に成型することができる。平均粒子径は、特に制限されないが、通常、キャニスター30に用いる場合には、0.5mm〜4mm程度、好ましくは0.5mm〜3.6mm程度、より好ましくは1mm〜3mm程度である。
なお、上記バインダー6としては、粒状蓄熱材4aの場合と同様に、特に制限されず、公知のバインダーを用いることができるが、特にキャニスター30に用いる場合には、耐有機溶剤性、耐水性を有するバインダー6を用いることが好ましい。
[Adsorbent with heat storage function 10 (Adsorbent with integral molding heat storage function 10a)]
Although the heat storage function-equipped adsorbent 10 is configured by mixing the heat storage material 4 and the adsorbent 5, the mixing method is not particularly limited. For example, the respective powders of the heat storage material 4 and the adsorbent 5 may be simply mixed, or the dispersion liquid 3a of the heat storage capsule 3 may be sprayed on the powder of the adsorbent 5, and the granular heat storage material 4a and the granular material It is only necessary to uniformly mix the adsorbent 5a. Furthermore, as shown in the manufacturing stage of the adsorbent 10 with a heat storage function of FIG. 1, after mixing the granular heat storage material 4a and the granular adsorbent 5a, they are integrated by a binder 6 to form an integrally formed adsorbent 10a with a heat storage function. Also good.
The integrally molded adsorbent with heat storage function 10a is configured by mixing the granular heat storage material 4a and the granular adsorbent 5a as described above and then integrated with the binder 6, but there is no particular limitation on the shape thereof. , Pellets (columnar, spherical), disks, blocks, honeycombs, etc. The average particle diameter is not particularly limited, but usually, when used for the canister 30, it is about 0.5 mm to 4 mm, preferably about 0.5 mm to 3.6 mm, more preferably about 1 mm to 3 mm.
The binder 6 is not particularly limited as in the case of the granular heat storage material 4a, and a known binder can be used, but particularly when used for the canister 30, the organic solvent resistance and water resistance are improved. It is preferable to use the binder 6 that is included.

[反応再促進処理]
本願にあっては、図1に示す、蓄熱カプセル3の製造段階において、反応再促進処理を施す。以下この処理について説明する。
反応再促進処理としては、高分子化合物2の重合反応を再促進する処理である再加熱処理を行う。
[Reaction promotion process]
In the present application, a reaction re-promotion process is performed in the manufacturing stage of the heat storage capsule 3 shown in FIG. This process will be described below.
As the reaction re-promoting process, a reheating process that is a process for re-promoting the polymerization reaction of the polymer compound 2 is performed.

再加熱処理としては、蓄熱カプセル3の製造段階における、後加熱処理(図2)を例示することができ、これについて以下に説明する。   As the reheating treatment, a post-heating treatment (FIG. 2) in the manufacturing stage of the heat storage capsule 3 can be exemplified, and this will be described below.

〈反応再促進処理I(後加熱処理)〉
図2に示すように、後加熱処理は、蓄熱カプセル3のカプセル化処理後、すなわち、相変化物質1を乳化して初期縮合物を添加し、乾燥して固体化した蓄熱カプセル3を完成した後に、この完成した蓄熱カプセル3に対し再加熱を行う。
これにより、完成している固体化した蓄熱カプセル3における高分子化合物2の未反応基同士の重合反応が進み、緻密な膜が形成され、重合度が向上して、より強度の高い蓄熱カプセル3を得ることができる。
具体的には、図2に示すように、完成した蓄熱カプセル3の分散液3aを乾燥させて粉末状の蓄熱カプセル3bを製造し、この粉末状の蓄熱カプセル3bを後加熱処理することにより、より強度の高い蓄熱カプセル3を得ることができる。
なお、図3に示すように、粉末状の蓄熱カプセル3bをバインダーにより粒状蓄熱材4aとして、この粒状蓄熱材4aに含まれる蓄熱カプセル3を後加熱処理してもよく、また、図示はしないが、粒状蓄熱材4aと粒状吸着材5aとをバインダー6により一体化した一体成型蓄熱機能付吸着材10aに含まれる蓄熱カプセル3を後加熱処理してもよい。
<Reaction promotion treatment I (post-heating treatment)>
As shown in FIG. 2, the post-heat treatment was performed after the heat storage capsule 3 was encapsulated, that is, the phase change material 1 was emulsified, the initial condensate was added, and dried to solidify the heat storage capsule 3. Later, the completed heat storage capsule 3 is reheated.
Thereby, the polymerization reaction of the unreacted groups of the polymer compound 2 in the completed solidified heat storage capsule 3 proceeds, a dense film is formed, the degree of polymerization is improved, and the heat storage capsule 3 having higher strength. Can be obtained.
Specifically, as shown in FIG. 2, the dispersion liquid 3a of the completed heat storage capsule 3 is dried to produce a powder heat storage capsule 3b, and the powder heat storage capsule 3b is post-heat treated. The heat storage capsule 3 having higher strength can be obtained.
As shown in FIG. 3, the powder heat storage capsule 3b may be used as a granular heat storage material 4a with a binder, and the heat storage capsule 3 contained in the granular heat storage material 4a may be post-heat treated, although not shown. Alternatively, the heat storage capsule 3 included in the adsorbent 10a with an integrated heat storage function in which the granular heat storage material 4a and the granular adsorbent 5a are integrated by the binder 6 may be post-heat treated.

再加熱処理(後加熱処理を含む)は、110℃以上140℃以下の範囲で行う。より好ましくは110℃以上130℃以下である。ここで、加熱温度を110℃以上とするのは、更なる重合反応を十分に進めるためであり、一方、140℃以下とするのは、蓄熱カプセルの外郭を構成する高分子化合物の熱分解を抑制するためである。   The reheating treatment (including post-heating treatment) is performed in the range of 110 ° C. to 140 ° C. More preferably, it is 110 degreeC or more and 130 degrees C or less. Here, the heating temperature is set to 110 ° C. or higher in order to sufficiently advance the further polymerization reaction, while the heating temperature is set to 140 ° C. or lower in order to thermally decompose the polymer compound constituting the outer shell of the heat storage capsule. It is for suppressing.

〈反応再促進処理II、III(酸処理)〉
酸処理としては、後述するような親水基を変化させることで耐水性を向上させることができる酸処理であればよいが、例えば、粒状蓄熱材4aの製造段階において、粒状蓄熱材4aに対し、酸が含まれる溶液中への浸漬、酸が含まれる溶液のスプレー、粒状蓄熱材4a若しくは一体成型蓄熱機能付吸着材10aを成型する際に酸を混合することなどを例示することができる。
すなわち、蓄熱カプセル3のカプセル化の際には、界面活性剤の溶液中に相変化物質1を溶解させて乳化させた後、高分子化合物2の重合反応を行うが、このようにしてカプセル化を行うと当該界面活性剤が蓄熱カプセル3の外郭(高分子化合物2)中に残存する。この残存した界面活性剤は親水性の親水基を有するため、蓄熱カプセル3の外郭が水分と結合し易くなり、この外郭が水分により劣化を生じるおそれがある。そこで、界面活性剤の親水基を酸処理により変化させ、水分との結合を防止して耐水性を向上させることができる。
これにより、蓄熱カプセル3のカプセル化処理の際に使用された界面活性剤が、当該蓄熱カプセル3の外郭に残存する場合であっても、蓄熱カプセル3を酸処理することで当該界面活性剤の親水性を低下させ、蓄熱カプセル3の耐水性を向上させることができる。
<Reaction promotion treatment II, III (acid treatment)>
The acid treatment may be any acid treatment that can improve water resistance by changing a hydrophilic group as described later. For example, in the production stage of the granular heat storage material 4a, for the granular heat storage material 4a, Examples include immersion in a solution containing an acid, spraying of a solution containing an acid, mixing of an acid when molding the granular heat storage material 4a or the adsorbent 10a with an integrally molded heat storage function.
That is, when the heat storage capsule 3 is encapsulated, the phase change material 1 is dissolved in a surfactant solution and emulsified, and then the polymerization reaction of the polymer compound 2 is performed. The surfactant remains in the outer shell of the heat storage capsule 3 (polymer compound 2). Since the remaining surfactant has a hydrophilic hydrophilic group, the outer shell of the heat storage capsule 3 easily binds to moisture, and the outer shell may be deteriorated by moisture. Therefore, it is possible to improve the water resistance by changing the hydrophilic group of the surfactant by acid treatment to prevent binding with moisture.
Thereby, even if the surfactant used in the encapsulation process of the thermal storage capsule 3 remains in the outer shell of the thermal storage capsule 3, the thermal storage capsule 3 can be treated with an acid to treat the surfactant. The hydrophilicity can be reduced and the water resistance of the heat storage capsule 3 can be improved.

このような酸処理は、蓄熱カプセル3のカプセル化処理の後、完成した固体状の蓄熱カプセル3に対して行なうことができる。
例えば、図4に示すように、酸処理は、完成した粉末状の蓄熱カプセル3bをバインダー6とともに成型して粒状蓄熱材4aとする際に、酸を添加することにより行うことができる。
これにより、蓄熱カプセル3の外郭中に残存した界面活性剤の親水基を減少させ、耐水性を向上させた粒状蓄熱材4aを得ることができる。
Such an acid treatment can be performed on the completed solid heat storage capsule 3 after the encapsulation process of the heat storage capsule 3.
For example, as shown in FIG. 4, the acid treatment can be performed by adding acid when the finished powdery heat storage capsule 3 b is molded together with the binder 6 to form the granular heat storage material 4 a.
Thereby, the hydrophilic group of the surfactant remaining in the outer shell of the heat storage capsule 3 can be reduced, and the granular heat storage material 4a with improved water resistance can be obtained.

また、酸処理は、図5に示すように、完成した粉末状の蓄熱カプセル3bをバインダー6とともに成型して粒状蓄熱材4aを成型した後において、当該粒状蓄熱材4aを酸水溶液中に浸漬させることにより行なうことができる。
これにより、蓄熱カプセル3の外郭中に残存した界面活性剤の親水基を減少させ、耐水性を向上させた粒状蓄熱材4aを得ることができる。
In addition, as shown in FIG. 5, the acid treatment is performed by immersing the granular heat storage material 4a in the acid aqueous solution after forming the powdered heat storage capsule 3b with the binder 6 to form the granular heat storage material 4a. Can be done.
Thereby, the hydrophilic group of the surfactant remaining in the outer shell of the heat storage capsule 3 can be reduced, and the granular heat storage material 4a with improved water resistance can be obtained.

酸処理において用いられる酸としては、水溶性の酸であれば特に制限されないが、例えば、酢酸、蟻酸、プロピオン酸、シュウ酸、フタル酸、クエン酸、リン酸等を用いることができる。   The acid used in the acid treatment is not particularly limited as long as it is a water-soluble acid. For example, acetic acid, formic acid, propionic acid, oxalic acid, phthalic acid, citric acid, phosphoric acid and the like can be used.

以下、本方法を、実施例を用いて具体的に説明する。
(実施例1)
メラミン粉末5gに37%ホルムアルデヒド水溶液6.5gと水10gを加え、pHを8に調整した後、約70℃まで加熱しメラミン−ホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整したスチレン無水マレイン酸共重合体のナトリウム塩水溶液100g中に、相変化物質1としてヘキサデカン58gを溶解した混合液を激しく攪拌しながら添加し、粒径が6μm程度になるまで乳化を行った。この乳化された水溶液中に、上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し、70℃で2時間攪拌を行った後、pHを9に調整しカプセル化を行った。このカプセル化処理により、メラミン樹脂からなる外郭中に相変化物質1としてのヘキサデカンが封入された蓄熱カプセル3の分散液3aを得た。反応終了後、蓄熱カプセル3をスプレードライすることにより、約6μmの粒径を有する粉末状の蓄熱カプセル3bを得た。
Hereinafter, this method will be specifically described with reference to examples.
Example 1
6.5 g of 37% formaldehyde aqueous solution and 10 g of water were added to 5 g of melamine powder and the pH was adjusted to 8, followed by heating to about 70 ° C. to obtain a melamine-formaldehyde initial condensate aqueous solution. To 100 g of sodium salt aqueous solution of styrene maleic anhydride copolymer adjusted to pH 4.5, a mixed solution in which 58 g of hexadecane is dissolved as phase change material 1 is added with vigorous stirring, and the particle size becomes about 6 μm. Until the emulsification. The total amount of the melamine-formaldehyde initial condensate aqueous solution was added to the emulsified aqueous solution, and the mixture was stirred at 70 ° C. for 2 hours. Then, the pH was adjusted to 9 and encapsulation was performed. By this encapsulation process, a dispersion 3a of the heat storage capsule 3 in which hexadecane as the phase change material 1 was enclosed in the outer shell made of melamine resin was obtained. After completion of the reaction, the heat storage capsule 3 was spray-dried to obtain a powdered heat storage capsule 3b having a particle size of about 6 μm.

図2に示す蓄熱カプセルの製造段階(後加熱処理)において、得られたカプセル化処理後の粉末状の蓄熱カプセル3bを、図6上横軸に示す各所定の温度(80℃〜130℃まで)にて、後加熱処理として3時間加熱した。その後、熱分析により200℃までの重量減少割合を測定した。当該重量減少割合は、熱分析前の粉末状の蓄熱カプセル3bの重量MOに対する、熱分析後の粉末状の蓄熱カプセル3bの重量Miの重量減少割合((Mi/MO)−1)を示す(図6)。
結果、図6に示すように、粉末状の蓄熱カプセル3bを後加熱処理することにより、熱分析後の粉末状の蓄熱カプセル3bの重量Miは、熱分析前の重量MOからの減少が少なくなり、蓄熱カプセル3の外郭を構成するメラミン樹脂(高分子化合物2)の重合反応が進行して、重合度が高くなり、緻密な膜(外郭)が生成していることが判明した。
In the production stage (post-heating treatment) of the heat storage capsule shown in FIG. 2, the encapsulated powdery heat storage capsule 3b obtained is subjected to each predetermined temperature (from 80 ° C. to 130 ° C.) shown on the horizontal axis in FIG. ) For 3 hours as a post-heating treatment. Thereafter, the weight loss rate up to 200 ° C. was measured by thermal analysis. The weight reduction ratio is the weight reduction ratio ((M i / M O ) −1 of the weight M i of the powdered heat storage capsule 3b after the thermal analysis with respect to the weight M O of the powdered heat storage capsule 3b before the thermal analysis. ) (FIG. 6).
As a result, as shown in FIG. 6, the weight M i of the powdered heat storage capsule 3b after the thermal analysis is reduced from the weight M O before the thermal analysis by post-heating the powdered heat storage capsule 3b. It became clear that the polymerization reaction of the melamine resin (polymer compound 2) constituting the outer shell of the heat storage capsule 3 progressed, the degree of polymerization increased, and a dense film (outer shell) was generated.

(比較例1)
また、実施例1に記載の粉末状の蓄熱カプセル3bを用いて、後加熱処理を行わない当該粉末状の蓄熱カプセル3bに対して熱分析を行った場合の結果は、図6に示すように、熱分析後の粉末状の蓄熱カプセル3bの重量Miが、熱分析前の重量MOから約10%程度減少していることが判明した。
(Comparative Example 1)
Moreover, as shown in FIG. 6, the result of performing a thermal analysis on the powdered heat storage capsule 3b not subjected to post-heating treatment using the powdered heat storage capsule 3b described in Example 1 is as shown in FIG. It was found that the weight M i of the powdered heat storage capsule 3b after the thermal analysis was reduced by about 10% from the weight M O before the thermal analysis.

したがって、上記実施例1及び比較例1の結果から、後加熱処理を行わない場合よりも、後加熱処理を行った場合の方が、熱分析後の重量減少割合が少なく、蓄熱カプセル3の強度が向上しているものと判断できる。
また、後加熱処理の温度が上昇するにつれ、メラミン樹脂の未反応基同士の重合により緻密な外郭が構成され、外郭中に封入されている相変化物質1が外郭の外部に漏出することなく外郭中に留まり、熱分析後の粉末状の蓄熱カプセル3bの重量Miの減少が抑えられているものと判断でき、より強固な外郭が構成されているとともに、蓄熱性能の低下は少ないものと判断できる。
特に、図6に示すように、80℃より高温で粉末状の蓄熱カプセル3bを後加熱処理した場合に重量の減少割合が低下するが、好ましくは、110℃以上140℃以下、より好ましくは110℃以上130℃以下で、後加熱処理をすると重量減少割合が低下してよい。
Therefore, from the results of Example 1 and Comparative Example 1, the weight reduction rate after thermal analysis is smaller when the post-heating treatment is performed than when the post-heating treatment is not performed, and the strength of the heat storage capsule 3 is increased. Can be judged to have improved.
Further, as the temperature of the post-heat treatment rises, a dense outline is formed by polymerization of unreacted groups of the melamine resin, and the phase change material 1 enclosed in the outline is not leaked to the outside of the outline. remain in, be determined that the decrease of the weight M i of powdered heat storage capsule 3b after thermal analysis is suppressed, with stronger shell are configured, determines that reduction of the heat storage performance is small it can.
In particular, as shown in FIG. 6, when the powdered heat storage capsule 3 b is post-heated at a temperature higher than 80 ° C., the weight reduction rate decreases, but preferably 110 ° C. or higher and 140 ° C. or lower, more preferably 110 ° C. When the post-heating treatment is performed at a temperature of not lower than 130 ° C. and not higher than 130 ° C., the weight reduction ratio may be reduced.

(実施例2)
図2に示すように、実施例1と同様にして製造したカプセル化処理後の粉末状の蓄熱カプセル3bを130℃で3時間、後加熱処理した。そして、E10ガソリン90質量%とエタノール10質量%との混合媒体に、当該後加熱処理後の粉末状の蓄熱カプセル3bを所定時間、40℃にて浸漬後、取り出し、ヘキサンにより洗浄して、100℃で真空乾燥し、蓄熱可能な熱量を測定した(図7)。
結果、図7に示すように、E10ガソリンへの浸漬時間が経過しても、蓄熱カプセル3の蓄熱可能な熱量の低下は微小であり、蓄熱性能の低下はほぼ生じていない。これは、後加熱処理を行うことで、メラミン樹脂の未反応基同士の重合により緻密な膜が形成され蓄熱カプセル3の外郭の強度が向上して、E10ガソリン雰囲気下における相変化物質1の漏出が最小限に抑制された結果によるものと判断することができる。
(Example 2)
As shown in FIG. 2, the encapsulated powdered heat storage capsule 3b produced in the same manner as in Example 1 was post-heated at 130 ° C. for 3 hours. Then, the powdered heat storage capsule 3b after the post-heating treatment is immersed in a mixed medium of 90% by mass of E10 gasoline and 10% by mass of ethanol at 40 ° C. for a predetermined time, taken out, washed with hexane, and 100%. It vacuum-dried at 0 degreeC and measured the calorie | heat amount which can be stored (FIG. 7).
As a result, as shown in FIG. 7, even when the immersion time in E10 gasoline elapses, the heat storage capsule 3 has a small decrease in the amount of heat that can be stored, and the heat storage performance does not substantially decrease. This is because by performing post-heating treatment, a dense film is formed by polymerization of unreacted groups of the melamine resin, the strength of the outer shell of the heat storage capsule 3 is improved, and the leakage of the phase change material 1 in the E10 gasoline atmosphere It can be determined that this is due to the result of the minimum suppression.

(比較例2)
実施例1と同様にして製造したカプセル化処理後の粉末状の蓄熱カプセル3bを後加熱処理せずに、E10ガソリン90質量%とエタノール10質量%との混合媒体に、所定時間、40℃にて浸漬後、取り出し、ヘキサンにより洗浄して、100℃で真空乾燥し、蓄熱可能な熱量を測定した(図7)。
結果、図7に示すように、E10ガソリンへの浸漬時間が経過するにつれ、粉末状の蓄熱カプセル3bの蓄熱可能な熱量は相当低下している。
(Comparative Example 2)
The encapsulated powdery heat storage capsule 3b produced in the same manner as in Example 1 was subjected to a mixed medium of 90% by mass of E10 gasoline and 10% by mass of ethanol at 40 ° C. for a predetermined time without post-heating treatment. After immersion, the sample was taken out, washed with hexane, vacuum dried at 100 ° C., and the amount of heat that could be stored was measured (FIG. 7).
As a result, as shown in FIG. 7, as the immersion time in E10 gasoline elapses, the amount of heat that can be stored in the powdered heat storage capsule 3 b is considerably reduced.

したがって、図7に示すように、粉末状の蓄熱カプセル3bを130℃にて3時間、後加熱処理した場合と後加熱処理しない場合とでは、E10ガソリンへの浸漬後の蓄熱可能な熱量に大きく差が生じており、後加熱処理した場合には蓄熱性能が維持されているため、後加熱処理によりE10ガソリンに対する耐性が向上しているものと判断することができる。よって、E10ガソリンに長期間接触しているような条件下においても、蓄熱性能が低下しにくいことから、吸着・脱着性能を長期間維持することができる蓄熱カプセル3を得ることができた。   Therefore, as shown in FIG. 7, the heat storage capsule 3b in powder form has a large amount of heat that can be stored after immersion in E10 gasoline when it is post-heat treated at 130 ° C. for 3 hours and when it is not post-heat treated. Since the difference has arisen and the heat storage performance is maintained when the post-heating process is performed, it can be determined that the resistance to the E10 gasoline is improved by the post-heating process. Therefore, the heat storage capsule 3 that can maintain the adsorption / desorption performance for a long time can be obtained because the heat storage performance is not easily lowered even under the condition of being in contact with E10 gasoline for a long time.

(参考例1)
図4に示すように、粒状蓄熱材4aの製造段階において、実施例1と同様にして製造したカプセル化処理後の粉末状の蓄熱カプセル3bを、1.2質量%酢酸水溶液22、バインダー6としてアミドエステル、水と混合し(酸処理)、直径2mmのペレット(粒状蓄熱材4a)を作成した。このペレットを乾燥後、80℃の水に72時間浸漬後、そのペレットの切断強度を測定した。
結果、切断強度は5Nであった。
(Reference Example 1)
As shown in FIG. 4, in the production stage of the granular heat storage material 4 a, the encapsulated powdered heat storage capsule 3 b manufactured in the same manner as in Example 1 was used as a 1.2 mass% acetic acid aqueous solution 22 and a binder 6. Mixing with amide ester and water (acid treatment), 2 mm diameter pellets (granular heat storage material 4a) were prepared. The pellet was dried and immersed in water at 80 ° C. for 72 hours, and then the cutting strength of the pellet was measured.
As a result, the cutting strength was 5N.

(参考例2)
図5に示すように、粒状蓄熱材4aの製造段階において、実施例1と同様にして製造したカプセル化処理後の粉末状の蓄熱カプセル3bを、バインダー6としてアミドエステル、および水と混合し、直径2mmのペレット(粒状蓄熱材4a)を作成した。このペレットを乾燥後、pH3.3の酢酸水溶液22に室温で3時間浸漬し(酸処理)、取り出して乾燥した。乾燥したペレットを80℃の水に72時間浸漬後、そのペレットの切断強度を測定した。
結果、切断強度は6Nであった。
(Reference Example 2)
As shown in FIG. 5, in the production stage of the granular heat storage material 4a, the powdered heat storage capsule 3b after the encapsulation process manufactured in the same manner as in Example 1 is mixed with an amide ester and water as a binder 6, A 2 mm diameter pellet (granular heat storage material 4a) was prepared. The pellets were dried, then immersed in an acetic acid aqueous solution 22 having a pH of 3.3 at room temperature for 3 hours (acid treatment), taken out, and dried. The dried pellet was immersed in water at 80 ° C. for 72 hours, and then the cutting strength of the pellet was measured.
As a result, the cutting strength was 6N.

(比較例3)
実施例1と同様にして製造したカプセル化処理後の粉末状の蓄熱カプセル3bを、参考例1および2のように、酸処理を行うことなくバインダー6としてアミドエステル、水と混合し、直径2mmのペレットを複数作成した。このペレットを乾燥後、80℃の水に72時間浸漬後、これらペレットの切断強度を測定した。
結果、切断強度は1〜1.5Nであった。
(Comparative Example 3)
The encapsulated powdered heat storage capsule 3b produced in the same manner as in Example 1 was mixed with amide ester and water as binder 6 without performing acid treatment as in Reference Examples 1 and 2, and the diameter was 2 mm. A plurality of pellets were prepared. The pellets were dried and immersed in water at 80 ° C. for 72 hours, and then the cutting strength of these pellets was measured.
As a result, the cutting strength was 1 to 1.5N.

したがって、上記のように酸処理を行った参考例1および2は、酸処理を行わなかった比較例3と比較して、水に長時間浸漬した場合においても、蓄熱カプセル3で構成される蓄熱材4のペレットの強度(切断強度)が向上しており、耐水性が向上しているものと判断できる。具体的には、参考例1および2で用いた粉末状の蓄熱カプセル3b(実施例1において製造した粉末状の蓄熱カプセル3bと同様)には、その製造時に、界面活性剤としてスチレン無水マレイン酸を使用しており、蓄熱カプセル3の製造後には、当該スチレン無水マレイン酸は、マレイン酸のナトリウム塩の状態で蓄熱カプセル3の外郭(高分子化合物2)中に残存している。当該ナトリウム塩に存在する[O−Na]を、上記酸処理により[OH]に変えることにより、蓄熱カプセル3の外郭の親水性を低下させて、蓄熱カプセル3で構成された粉末状の蓄熱カプセル3bの耐水性が向上しているものと考えられる。   Therefore, the reference examples 1 and 2 in which the acid treatment was performed as described above were compared with the comparative example 3 in which the acid treatment was not performed, and the heat storage composed of the heat storage capsule 3 even when immersed in water for a long time. It can be judged that the strength (cutting strength) of the pellets of the material 4 is improved, and the water resistance is improved. Specifically, the powdered heat storage capsule 3b used in Reference Examples 1 and 2 (similar to the powdered heat storage capsule 3b manufactured in Example 1) has styrene maleic anhydride as a surfactant at the time of manufacture. After the heat storage capsule 3 is manufactured, the styrene maleic anhydride remains in the outer shell (polymer compound 2) of the heat storage capsule 3 in the form of sodium salt of maleic acid. [O-Na] present in the sodium salt is changed to [OH] by the above-mentioned acid treatment, thereby reducing the hydrophilicity of the outer shell of the heat storage capsule 3 and forming a powder heat storage capsule composed of the heat storage capsule 3 It is considered that the water resistance of 3b is improved.

〔別実施形態〕
上記第1実施形態では、本方法により製造された蓄熱機能付吸着材10の用途は特に限定していないが、当該蓄熱機能付吸着材10を、特にキャニスター30に用いることもできる。
ここで、キャニスター30とは、一般に、車両等の内燃機関に供給される蒸散燃料(有機溶剤等)が外部(大気中など)に放出されるのを防止するために、車両の停車時等には余剰の蒸散燃料をケース31内の吸着材5に吸着し、走行時等にはケース31内に大気をパージガスとして導入して、吸着された蒸散燃料を脱着し、改めて内燃機関等に供給するものである。
[Another embodiment]
In the first embodiment, the use of the adsorbent with heat storage function 10 manufactured by the present method is not particularly limited, but the adsorbent with heat storage function 10 can also be used particularly for the canister 30.
Here, the canister 30 is generally used when the vehicle is stopped in order to prevent vaporized fuel (organic solvent, etc.) supplied to an internal combustion engine such as a vehicle from being released to the outside (in the atmosphere, etc.). Adsorbs excess vaporized fuel to the adsorbent 5 in the case 31, and introduces the atmosphere into the case 31 as a purge gas during running, etc., desorbs the vaporized fuel adsorbed, and supplies it again to the internal combustion engine or the like. Is.

キャニスター30においては、固体化した蓄熱材4と吸着材5とを混合した蓄熱機能付吸着材10をケース31内に充填して用いることがあるが、この場合、比較的強度の高い吸着材5に固体化した蓄熱材4が破壊されて、蓄熱性能が低下するおそれがある。
また、当該キャニスター30のケース31内に充填された蓄熱機能付吸着材10は、ガソリン等の蒸散燃料に接触するとともに、大気などに含まれる水分に接触することから耐溶剤性(例えば、耐ガソリン性)、耐水性が要求される。
In the canister 30, the adsorbent 10 with a heat storage function in which the solidified heat storage material 4 and the adsorbent 5 are mixed may be used by filling the case 31. In this case, the adsorbent 5 having relatively high strength is used. The solidified heat storage material 4 may be destroyed, and the heat storage performance may be reduced.
In addition, the adsorbent 10 with a heat storage function filled in the case 31 of the canister 30 is in contact with the vaporized fuel such as gasoline and is also in contact with moisture contained in the atmosphere. Property) and water resistance are required.

したがって、第1実施形態において説明した、強度が高く、耐溶剤性、耐水性に優れた蓄熱カプセル3により構成される蓄熱機能付吸着材10を、キャニスター30のケース31に充填して用いると、長期間にわたり、吸着・脱着性能の低下を防止することができるキャニスター30を得ることができる。   Therefore, when the heat storage function adsorbent 10 constituted by the heat storage capsule 3 having high strength, high solvent resistance, and excellent water resistance described in the first embodiment is filled in the case 31 of the canister 30 and used, It is possible to obtain a canister 30 that can prevent a decrease in adsorption / desorption performance over a long period of time.

なお、キャニスター30は、ケース31内にガソリン等の蒸散燃料が流通する流通路が設けられ、当該流通路の一端側の壁には、蒸散燃料が流入する流入口と蒸散燃料が流出する流出口とが設けられ、当該流通路の他端側の壁には、大気が流入する大気流入口が設けられている。
このようなキャニスター30においては、車両停止時等には燃料タンクから流入口を通じて流入した蒸散燃料が、ケース31内の流通路に充填された蓄熱機能付吸着材10に吸着され、車両走行時には当該吸着された蒸散燃料が、大気流入口から流入した大気により脱着させられて、当該蒸散燃料が流出口から内燃機関へ供給され燃焼させられる、という蒸散燃料の吸着・脱着操作が行われる。
The canister 30 is provided with a flow passage through which a vaporized fuel such as gasoline circulates in a case 31, and an inlet into which the vaporized fuel flows in and an outlet through which the vaporized fuel flows out on a wall on one end side of the flow passage. And an air inflow port through which air flows in is provided on the wall on the other end side of the flow passage.
In such a canister 30, the vaporized fuel that has flowed from the fuel tank through the inlet is adsorbed by the adsorbent 10 with a heat storage function filled in the flow passage in the case 31 when the vehicle is stopped, The adsorbed / desorbed operation of the vaporized fuel is performed such that the adsorbed vaporized fuel is desorbed by the air flowing in from the air inlet, and the vaporized fuel is supplied from the outlet to the internal combustion engine and burned.

本発明に係る蓄熱機能付吸着材の製造方法は、蓄熱カプセルを含んで構成される蓄熱材と吸着材とを混合した蓄熱機能付吸着材において、当該蓄熱カプセルの強度を上げて破壊されにくく、湿気や水分が存在する条件下および有機溶剤が存在する条件下でも蓄熱性能が低下せず、良好な吸着・脱着性能を確保することができる技術として有効に利用可能である。   The method for producing an adsorbent with a heat storage function according to the present invention is an adsorbent with a heat storage function in which an adsorbent and a heat storage material configured to include a heat storage capsule are mixed. The heat storage performance does not deteriorate even under conditions where moisture and moisture are present and conditions where an organic solvent is present, and can be effectively used as a technique that can ensure good adsorption / desorption performance.

1:相変化物質
2:高分子化合物(外郭)
3:蓄熱カプセル
3a:分散液
3b:粉末状の蓄熱カプセル
4:蓄熱材
4a:粒状蓄熱材
5:吸着材
6:バインダー
10:蓄熱機能付吸着材
10a:一体成型蓄熱機能付吸着材
30:キャニスター
31:ケース
1: Phase change material 2: Polymer compound (outer)
3: Heat storage capsule 3a: Dispersion liquid 3b: Powdered heat storage capsule 4: Heat storage material 4a: Granular heat storage material 5: Adsorbent material 6: Binder 10: Adsorbent material 10a with a heat storage function: Adsorbent material 30 with an integrated molding heat storage function 30: Canister 31: Case

Claims (5)

温度変化に応じて潜熱の吸収および放出を生じる相変化物質を外郭中に封入してなる蓄熱カプセルを含んで構成される蓄熱材と、吸着材とを混合してなる蓄熱機能付吸着材の製造方法であって、
前記蓄熱カプセルが含まれる分散液を乾燥して、粉末状の蓄熱カプセルを完成した後に、
前記粉末状の蓄熱カプセルの外郭を構成する高分子化合物の重合反応を再促進させる反応再促進処理として、前記粉末状の蓄熱カプセルを、110℃以上140℃以下の範囲の加熱温度で再加熱する後加熱処理を行う蓄熱機能付吸着材の製造方法。
Production of an adsorbent with a heat accumulating function by mixing an adsorbent with a heat accumulator comprising a heat accumulator encapsulating a phase change material that absorbs and releases latent heat in response to temperature changes. A method,
After drying the dispersion containing the heat storage capsules to complete a powdered heat storage capsule,
As a reaction re-promoting treatment for re-promoting the polymerization reaction of the polymer compound that forms the outer shell of the powder heat storage capsule, the powder heat storage capsule is reheated at a heating temperature in the range of 110 ° C. to 140 ° C. A method for producing an adsorbent with a heat storage function that performs post-heating treatment.
前記蓄熱材を、前記粉末状の蓄熱カプセルをバインダーにより粒状に成形した粒状蓄熱材とする請求項1に記載の蓄熱機能付吸着材の製造方法。   The method for producing an adsorbent with a heat storage function according to claim 1, wherein the heat storage material is a granular heat storage material in which the powdery heat storage capsule is formed into a granular shape with a binder. 前記蓄熱機能付吸着材を、前記蓄熱材と前記吸着材とをバインダーとともに混合して一体成形した一体成形蓄熱機能付吸着材とする請求項1又は2に記載の蓄熱機能付吸着材の製造方法。   The method for producing an adsorbent with a heat storage function according to claim 1 or 2, wherein the adsorbent with a heat storage function is an integrally formed adsorbent with a heat storage function obtained by mixing the heat storage material and the adsorbent together with a binder. . 請求項1〜3の何れか一項に記載の蓄熱機能付吸着材の製造方法により製造された蓄熱機能付吸着材。   The adsorbent with a heat storage function manufactured by the manufacturing method of the adsorbent with a heat storage function as described in any one of Claims 1-3. 請求項1〜3の何れか一項に記載の蓄熱機能付吸着材の製造方法により製造された蓄熱機能付吸着材を、ケース内に充填してなるキャニスター。   A canister formed by filling a case with the adsorbent with a heat storage function manufactured by the method for manufacturing an adsorbent with a heat storage function according to any one of claims 1 to 3.
JP2010240029A 2010-10-26 2010-10-26 Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister Active JP5462765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240029A JP5462765B2 (en) 2010-10-26 2010-10-26 Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240029A JP5462765B2 (en) 2010-10-26 2010-10-26 Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006320237A Division JP4861136B2 (en) 2006-11-28 2006-11-28 Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister

Publications (2)

Publication Number Publication Date
JP2011062693A true JP2011062693A (en) 2011-03-31
JP5462765B2 JP5462765B2 (en) 2014-04-02

Family

ID=43949525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240029A Active JP5462765B2 (en) 2010-10-26 2010-10-26 Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister

Country Status (1)

Country Link
JP (1) JP5462765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021059A (en) * 2010-07-13 2012-02-02 Aisan Industry Co Ltd Granulation heat accumulation material and evaporation fuel treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100856A (en) * 1981-12-11 1983-06-15 Fuji Photo Film Co Ltd Manufacture of capsulated toner
JPS58182644A (en) * 1982-04-20 1983-10-25 Fuji Photo Film Co Ltd Preparation of encapsulated toner
JP2006068693A (en) * 2004-09-06 2006-03-16 Osaka Gas Co Ltd Adsorbent for canister, its manufacturing method, and canister for preventing transpiration of fuel
JP2006192428A (en) * 2004-12-16 2006-07-27 Mitsubishi Paper Mills Ltd Solid matter of microcapsule and method for utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100856A (en) * 1981-12-11 1983-06-15 Fuji Photo Film Co Ltd Manufacture of capsulated toner
JPS58182644A (en) * 1982-04-20 1983-10-25 Fuji Photo Film Co Ltd Preparation of encapsulated toner
JP2006068693A (en) * 2004-09-06 2006-03-16 Osaka Gas Co Ltd Adsorbent for canister, its manufacturing method, and canister for preventing transpiration of fuel
JP2006192428A (en) * 2004-12-16 2006-07-27 Mitsubishi Paper Mills Ltd Solid matter of microcapsule and method for utilizing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021059A (en) * 2010-07-13 2012-02-02 Aisan Industry Co Ltd Granulation heat accumulation material and evaporation fuel treatment device

Also Published As

Publication number Publication date
JP5462765B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5002054B2 (en) Manufacturing method of heat storage material, heat storage material, adsorbent with heat storage function, canister
JP6031701B2 (en) Coating heat storage microcapsule manufacturing method, heat storage material manufacturing method, heat storage function adsorbent
JP4508867B2 (en) Latent heat storage type adsorbent for canister and method for producing the same
JP5005613B2 (en) Canister
JP2008069680A (en) Canister
JP2005233106A (en) Canister
JP4674199B2 (en) PSA equipment
JP4526333B2 (en) Canister adsorbent, method for producing the same, and canister for preventing fuel evaporation
JP4861136B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP4956232B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP2003311118A (en) Adsorbent with heat accumulation function and manufacturing method therefor
JP5462765B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP4707683B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP2010142679A (en) Heat storage medium-imparted combined adsorbing material and method for producing the same
WO2021210386A1 (en) Latent heat storage material-integrated active carbon and production method thereof
JP4471700B2 (en) Canister
JP5250060B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP2005282481A (en) Canister
KR100745261B1 (en) Adsorbent of Latent-Heat Storage Type for Canister and Process for Producing the Same
JP2003314796A (en) Adsorption storage device for digestion gas and adsorption storage method
JP2005194879A (en) Evaporating fuel gas adsorbent and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150