JP2011061479A - Optical communication system and optical communication method - Google Patents
Optical communication system and optical communication method Download PDFInfo
- Publication number
- JP2011061479A JP2011061479A JP2009208702A JP2009208702A JP2011061479A JP 2011061479 A JP2011061479 A JP 2011061479A JP 2009208702 A JP2009208702 A JP 2009208702A JP 2009208702 A JP2009208702 A JP 2009208702A JP 2011061479 A JP2011061479 A JP 2011061479A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- failure rate
- side device
- switching
- optical transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Communication System (AREA)
Abstract
Description
本発明は、複数の光送信機を複数のグループに振り分けて収容する通信システム、特に波長分割多重技術又は芯線多重を用いた光通信システム及び光通信方法に関する。 The present invention relates to a communication system in which a plurality of optical transmitters are allocated and accommodated in a plurality of groups, and more particularly to an optical communication system and an optical communication method using wavelength division multiplexing technology or core line multiplexing.
経済的な高速アクセスネットワークを実現するための光ネットワークとしてPON(Passive Optical Network)が知られている。PONはアクセスネットワークで従来用いられているのと同様な安価なSiGe−BiCMOSプロセス、強度変調−直接検波、時分割多重(TDM:Time Division Multiplexing)を想定すると、電子デバイスの制約により10Gbit/sが1つの上限と考えられている。 PON (Passive Optical Network) is known as an optical network for realizing an economical high-speed access network. Assuming a low-cost SiGe-BiCMOS process, intensity modulation-direct detection, and time division multiplexing (TDM) similar to those conventionally used in access networks, PON is 10 Gbit / s due to restrictions on electronic devices. It is considered an upper limit.
そこで、更なる高速化を図るため、ユーザ多重に波長分割多重(WDM:Wavelength Division Multiplexing)や芯線(方路)多重を適用する技術も提案されている。しかし、波長分割多重を用いる技術は、ユーザごとに異なる波長を用いるため、ユーザ側機器であるONU(Optical Network Unit)の更改及びユーザ数分の波長の割当及び制御が必要であり、かつ局側装置であるOLT(Optical Line Terminal)にユーザ数分の光送光受信機(20−1)が必要となるため、コスト上昇という課題が発生する。芯線多重は、芯線分だけ光送光受信機(20−1)と芯線が必要になるため、コスト上昇という課題が発生する。 Therefore, in order to further increase the speed, a technique of applying wavelength division multiplexing (WDM) or core line (route) multiplexing to user multiplexing has been proposed. However, since the technology using wavelength division multiplexing uses different wavelengths for each user, it is necessary to renew the ONU (Optical Network Unit) which is a user side device, and assign and control the number of wavelengths for the number of users, and the station side Since an optical transmission terminal (20-1) corresponding to the number of users is required for an OLT (Optical Line Terminal), which is a device, a problem of cost increase occurs. Core wire multiplexing requires the light transmission / reception receiver (20-1) and the core wire by the amount corresponding to the core wire, which causes a problem of cost increase.
この課題に対し、ユーザ全体に割り当てうる総帯域を拡張する総帯域拡張方式として、ONUを複数グループに分別し、グループ間で波長分割多重し、グループ内で時分割多重するWDM/TDM−PON方式(例えば、非特許文献1参照。)がある。これは、波長を複数のONUで共用することで、総帯域拡張に伴うコスト上昇という課題を解決している。 In response to this problem, a WDM / TDM-PON system that divides ONUs into a plurality of groups, wavelength-division-multiplexes between groups, and time-division-multiplexes within the group as a total band expansion system that extends the total band that can be allocated to the entire user (For example, refer nonpatent literature 1.). This solves the problem of an increase in cost due to the expansion of the total bandwidth by sharing the wavelength among a plurality of ONUs.
また、冗長構成のための予備芯線を現用芯線として利用する方式(例えば、非特許文献2参照。)がある。この方式は、冗長芯線を活用することで、総帯域拡張に伴うコスト上昇という課題を解決している。 There is also a method of using a spare core wire for a redundant configuration as an active core wire (for example, see Non-Patent Document 2). This method solves the problem of an increase in cost due to the expansion of the total bandwidth by utilizing redundant core wires.
しかし、ONUの使用する波長又は芯線を切り替える際、切り替えに要する時間が伝送フレームの間隔よりも長い場合がある。電話やTV放送などのようにリアルタイム性が重要視されるアプリケーションデータの場合、切り替えに要する時間が長いと、受信が瞬断する課題もある。このようなトラフィックの場合、例えば、稼働率99.999%、即ち故障率0.001%が要求される。そのため、切り替えに際して瞬断する回数が多くなると要求される稼働率を満足することはできない課題があった。 However, when switching the wavelength or core used by the ONU, the time required for switching may be longer than the interval between transmission frames. In the case of application data in which real-time property is regarded as important, such as telephone and TV broadcasting, there is a problem that reception is interrupted if the time required for switching is long. In the case of such traffic, for example, an operation rate of 99.999%, that is, a failure rate of 0.001% is required. Therefore, there has been a problem that the required operating rate cannot be satisfied if the number of instantaneous interruptions during switching increases.
図6に、従来の光通信システムにおける故障率の一例を示す。切り替えを行う時刻t1以前は、光通信システム自体の故障率である。切り替えに伴い、故障と看做される瞬断が発生し、見掛けの故障率は上昇する。そして、切り替え後の時間の経過と共に、見掛けの故障率は上昇する。切り替え後の見掛けの故障率が十分に低下する前に切り替えを繰り返すと、徐々に見掛けの故障率は上昇し、ついには許容故障率を超過する。このように、故障率を考慮せずに切り替えた場合、見掛けの故障率が時刻t4に許容故障率を超過する。 FIG. 6 shows an example of the failure rate in the conventional optical communication system. Before the time t1 when switching is performed, the failure rate of the optical communication system itself. Along with the switching, an instantaneous interruption that is considered as a failure occurs, and the apparent failure rate increases. The apparent failure rate increases with the passage of time after switching. If switching is repeated before the apparent failure rate after switching sufficiently decreases, the apparent failure rate gradually increases and eventually exceeds the allowable failure rate. In this way, when switching is performed without considering the failure rate, the apparent failure rate exceeds the allowable failure rate at time t4.
前記課題を解決するために、本発明は、トラフィックに許容される故障率以下に瞬断を抑止する光通信システム及び光通信方法を提供することを目的とする。 In order to solve the above-described problems, an object of the present invention is to provide an optical communication system and an optical communication method that suppress instantaneous interruption below a failure rate allowed for traffic.
上記目的を達成するために、本発明に係る光通信システム及び光通信方法は、切り替えに要する時間が長く、通信が瞬断した時は、当該トラフィックの許容する故障率から通信システムの想定される故障率を差し引いた故障率未満となるように、切り替えを抑止することで、許容する故障率以下に品質劣化を抑制することとした。 In order to achieve the above object, the optical communication system and the optical communication method according to the present invention require a long time for switching, and when the communication is momentarily interrupted, the communication system is assumed from the failure rate allowed by the traffic. By suppressing switching so that the failure rate is less than the failure rate after subtracting the failure rate, it was decided to suppress quality degradation below the allowable failure rate.
具体的には、本発明に係る光通信システムは、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の波長領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信システムであって、前記局側装置は、前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを可能にし、切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを抑止する光通信システムである。 Specifically, the optical communication system according to the present invention shares a time domain and a plurality of wavelength domains between a plurality of optical subscriber-side apparatuses and a single station-side apparatus, and uses a passive optical branch circuit to transmit signal light. The station side device calculates the failure rate for each optical transmitter by monitoring the communication state of the optical transmitter of the subscriber side device, and the failure when switching is performed. If the rate is less than a predetermined value, it is possible to switch the wavelength allocated to the optical transmitter of the subscriber side device, and if the failure rate when switching is greater than or equal to the predetermined value, the subscriber It is an optical communication system which suppresses switching of the wavelength allocated to the optical transmitter of a side apparatus.
故障率が一定値を超えないように、波長の切り替えを抑止させることができる。これにより、トラフィックに許容される故障率以下に瞬断を抑止する光通信システム及び光通信方法を提供することができる。 Wavelength switching can be suppressed so that the failure rate does not exceed a certain value. Thereby, it is possible to provide an optical communication system and an optical communication method that suppress instantaneous interruption below a failure rate allowed for traffic.
本発明に係る光通信システムでは、前記局側装置は、前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる波長の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、通信中における波長の切り替えに起因する故障率を前記光送信機ごとに算出することが好ましい。 In the optical communication system according to the present invention, the station side device determines whether or not the optical transmitter of the subscriber side device is communicating, and a predetermined wavelength to be assigned to the optical transmitter of the subscriber side device. It is preferable to monitor the number of switching times during communication time or the communication interruption time per communication time, and calculate a failure rate due to wavelength switching during communication for each optical transmitter.
具体的には、本発明に係る光通信システムは、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の芯線領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信システムであって、前記局側装置は、前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを可能にし、切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを抑止する光通信システムである。 Specifically, the optical communication system according to the present invention shares a time domain and a plurality of core line areas between a plurality of optical subscriber-side apparatuses and one station-side apparatus, and uses a passive optical branch circuit to transmit signal light. The station side device calculates the failure rate for each optical transmitter by monitoring the communication state of the optical transmitter of the subscriber side device, and the failure when switching is performed. If the rate is less than a predetermined value, it is possible to switch the core line assigned to the optical transmitter of the subscriber side device, and if the failure rate at the time of switching is equal to or greater than the certain value, the subscriber It is an optical communication system which suppresses switching of the core wire allocated to the optical transmitter of a side apparatus.
故障率が一定値を超えないように、芯線の切り替えを抑止させることができる。これにより、トラフィックに許容される故障率以下に瞬断を抑止する光通信システム及び光通信方法を提供することができる。 Switching of the core wire can be suppressed so that the failure rate does not exceed a certain value. Thereby, it is possible to provide an optical communication system and an optical communication method that suppress instantaneous interruption below a failure rate allowed for traffic.
本発明に係る光通信システムでは、前記局側装置は、前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる芯線の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、通信中における芯線の切り替えに起因する故障率を前記光送信機ごとに算出することが好ましい。 In the optical communication system according to the present invention, the station side device determines whether or not the optical transmitter of the subscriber side device is in communication and a predetermined core line assigned to the optical transmitter of the subscriber side device. It is preferable to monitor the number of switching times in communication time or the communication interruption time per communication time, and calculate a failure rate due to switching of the core wire during communication for each optical transmitter.
本発明に係る光通信システムでは、前記予め定められた一定値は、前記加入者側装置の光送信機に許容される故障率から、前記光通信システムで想定される故障率を差し引いた故障率であることが好ましい。 In the optical communication system according to the present invention, the predetermined constant value is a failure rate obtained by subtracting a failure rate assumed in the optical communication system from a failure rate allowed for the optical transmitter of the subscriber side device. It is preferable that
具体的には、本発明に係る光通信方法は、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の波長領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信方法であって、前記局側装置は、前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを可能にし、切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを抑止する光通信方法である。 Specifically, the optical communication method according to the present invention shares a time domain and a plurality of wavelength domains between a plurality of optical subscriber-side apparatuses and one station-side apparatus, and uses a passive optical branch circuit to transmit signal light. The station-side device calculates the failure rate for each optical transmitter by monitoring the communication state of the optical transmitter of the subscriber-side device and switches the failure. If the rate is less than a predetermined value, it is possible to switch the wavelength allocated to the optical transmitter of the subscriber side device, and if the failure rate when switching is greater than or equal to the predetermined value, the subscriber This is an optical communication method that suppresses switching of the wavelength allocated to the optical transmitter of the side device.
故障率が一定値を超えないように、波長の切り替えを抑止させることができる。これにより、トラフィックに許容される故障率以下に瞬断を抑止する光通信システム及び光通信方法を提供することができる。 Wavelength switching can be suppressed so that the failure rate does not exceed a certain value. Thereby, it is possible to provide an optical communication system and an optical communication method that suppress instantaneous interruption below a failure rate allowed for traffic.
本発明に係る光通信方法では、前記局側装置は、前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる波長の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、通信中における波長の切り替えに起因する故障率を前記光送信機ごとに算出することが好ましい。 In the optical communication method according to the present invention, the station side device determines whether or not the optical transmitter of the subscriber side device is communicating and a predetermined wavelength to be assigned to the optical transmitter of the subscriber side device. It is preferable to monitor the number of switching times during communication time or the communication interruption time per communication time, and calculate a failure rate due to wavelength switching during communication for each optical transmitter.
具体的には、本発明に係る光通信方法は、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の芯線領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信方法であって、前記局側装置は、前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを可能にし、切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを抑止する光通信方法である。 Specifically, the optical communication method according to the present invention shares a time domain and a plurality of core line areas between a plurality of optical subscriber-side apparatuses and a single station-side apparatus, and uses a passive optical branch circuit to transmit signal light. The station-side device calculates the failure rate for each optical transmitter by monitoring the communication state of the optical transmitter of the subscriber-side device and switches the failure. If the rate is less than a predetermined value, it is possible to switch the core line assigned to the optical transmitter of the subscriber side device, and if the failure rate at the time of switching is equal to or greater than the certain value, the subscriber This is an optical communication method that suppresses switching of the core wire assigned to the optical transmitter of the side device.
故障率が一定値を超えないように、芯線の切り替えを抑止させることができる。これにより、トラフィックに許容される故障率以下に瞬断を抑止する光通信システム及び光通信方法を提供することができる。 Switching of the core wire can be suppressed so that the failure rate does not exceed a certain value. Thereby, it is possible to provide an optical communication system and an optical communication method that suppress instantaneous interruption below a failure rate allowed for traffic.
本発明に係る光通信方法では、前記局側装置は、前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる芯線の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、通信中における芯線の切り替えに起因する故障率を前記光送信機ごとに算出することが好ましい。 In the optical communication method according to the present invention, the station side device determines whether or not the optical transmitter of the subscriber side device is communicating, and a predetermined core line assigned to the optical transmitter of the subscriber side device. It is preferable to monitor the number of switching times in communication time or the communication interruption time per communication time, and calculate a failure rate due to switching of the core wire during communication for each optical transmitter.
本発明に係る光通信方法では、前記予め定められた一定値は、前記加入者側装置の光送信機に許容される故障率から、前記光通信システムで想定される故障率を差し引いた故障率であることが好ましい。 In the optical communication method according to the present invention, the predetermined constant value is a failure rate obtained by subtracting a failure rate assumed in the optical communication system from a failure rate allowed for the optical transmitter of the subscriber side device. It is preferable that
なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
本発明によれば、トラフィックに許容される故障率以下に瞬断を抑止する光通信システム及び光通信方法を提供することができる。 According to the present invention, it is possible to provide an optical communication system and an optical communication method that suppress instantaneous interruption below a failure rate allowed for traffic.
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.
(実施形態1)
図1は、本実施形態に係る光通信システムの一例を示す構成概略図である。本実施形態に係る光通信システムは、複数の光加入者側装置としてのONU−A(11−1−A)及びONU−B(11−1−B)及びONU−C(11−1−C)と、局側装置としてのOLT(21−1)と、受動光分岐回路としての光スプリッタ12と、を備える。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram illustrating an example of an optical communication system according to the present embodiment. The optical communication system according to the present embodiment includes ONU-A (11-1-A), ONU-B (11-1-B), and ONU-C (11-1-C) as a plurality of optical subscriber side devices. ), An OLT (21-1) as a station side device, and an
本実施形態に係る光通信システムは、ONU−A〜C(11−1−A〜C)とOLT(21−1)間で時間領域及び複数の波長領域を共用し、光スプリッタ12を含む光伝送路を介して信号光を送受信する。光通信システムは、例えば、PONへの適用が代表的であるが、PON以外のパッシブツリーなども適用できる。
The optical communication system according to the present embodiment shares the time domain and the plurality of wavelength domains between the ONU-A to C (11-1-A to C) and the OLT (21-1), and includes the
本実施形態に係る光通信システムは、制御器(不図示)を備え、本実施形態に係る光通信方法を実行する。制御器(不図示)は、光送信機A〜C(10−1−A〜C)の通信状態を監視して光送信機A〜C(10−1−A〜C)ごとの故障率を算出し、切り替えした場合の故障率が予め定められた一定値未満であれば、光送信機A〜C(10−1−A〜C)に割り当てる波長の切り替えを可能にし、切り替えした場合の故障率が一定値以上であれば、光送信機A〜C(10−1−A〜C)に割り当てる波長の切り替えを抑止する。以下、本実施形態に係る光通信システム及び光通信方法について、具体的に説明する。 The optical communication system according to the present embodiment includes a controller (not shown) and executes the optical communication method according to the present embodiment. The controller (not shown) monitors the communication state of the optical transmitters A to C (10-1-A to C) and determines the failure rate for each of the optical transmitters A to C (10-1-A to C). If the failure rate when calculated and switched is less than a predetermined value, switching of wavelengths allocated to the optical transmitters A to C (10-1-A to C) is enabled, and the failure when switched If the rate is equal to or higher than a certain value, switching of wavelengths allocated to the optical transmitters A to C (10-1-A to C) is suppressed. Hereinafter, the optical communication system and the optical communication method according to the present embodiment will be specifically described.
制御器(不図示)は、光送信機A〜C(10−1−A〜C)の通信状態を監視可能な位置に接続されている。例えば、光スプリッタ12とOLT(21−1)との光伝送路に接続される。制御器(不図示)は、例えば、OLT(21−1)に配置される。
The controller (not shown) is connected to a position where the communication states of the optical transmitters A to C (10-1-A to C) can be monitored. For example, it is connected to the optical transmission path between the
ONU−A(11−1−A)は、光送信機A(10−1−A)を備える。ONU−B(11−1−B)及びONU−C(11−1−C)についても同様である。OLT(21−1)は、光合分波器(25)と、受光器a(22−1−a)と、受光器b(22−1−b)と、を備える。光合分波器(25)は、例えば、波長フィルタである。受光器a,b(22−1−a,b)は、例えば、フォトダイオードである。ここでは、ONU−A〜C(11−1−A〜C)に搭載される光受信機(20−1)、OLT(21−1)に搭載される光送信機は省略している。 The ONU-A (11-1-A) includes an optical transmitter A (10-1-A). The same applies to ONU-B (11-1-B) and ONU-C (11-1-C). The OLT (21-1) includes an optical multiplexer / demultiplexer (25), a light receiver a (22-1-a), and a light receiver b (22-1-b). The optical multiplexer / demultiplexer (25) is, for example, a wavelength filter. The light receivers a and b (22-1-a and b) are, for example, photodiodes. Here, the optical receiver (20-1) mounted on the ONU-A to C (11-1-A to C) and the optical transmitter mounted on the OLT (21-1) are omitted.
ONU−A〜C(11−1−A〜C)は、加入者宅に設置されている。光送信機A〜C(10−1−A〜C)は、割り当てられた波長の信号光を出力する。割り当てられた波長は、選択可能な複数の波長のうちの1波長である。出力された信号光は、光ファイバを伝達し、光スプリッタ(12)で結合される。光伝送路は、光送信機A〜C(10−1−A〜C)からの信号光を波長分割多重且つ時分割多重して光受信機(20−1)へ結合する。光合分波器(25)は、光伝送路からの信号光を波長毎に分波して出力する。受光器a,b(22−1−a,b)は、光合分波器(25)からの信号光をそれぞれ受光する。これにより、光受信機(20−1)は、複数の波長毎に光送信機A〜C(10−1−A〜C)からの信号光を受信する。 ONU-A to C (11-1-A to C) are installed in the subscriber's house. The optical transmitters A to C (10-1-A to C) output signal light having an allocated wavelength. The assigned wavelength is one of a plurality of selectable wavelengths. The output signal light is transmitted through the optical fiber and is coupled by the optical splitter (12). The optical transmission line couples the signal light from the optical transmitters A to C (10-1-A to C) to the optical receiver (20-1) by wavelength division multiplexing and time division multiplexing. The optical multiplexer / demultiplexer (25) demultiplexes and outputs the signal light from the optical transmission path for each wavelength. The light receivers a and b (22-1-a, b) respectively receive the signal light from the optical multiplexer / demultiplexer (25). Accordingly, the optical receiver (20-1) receives the signal light from the optical transmitters A to C (10-1-A to C) for each of a plurality of wavelengths.
制御器(不図示)は、光送信機A〜C(10−1−A〜C)に対して信号光を送信できる波長と時間を割り当てる。例えば、光送信機A〜C(10−1−A〜C)は、2波長(λ1、λ2)の中から割り当てられた所定の1波長で信号光を出力する。このように制御器(不図示)が光送信機A〜C(10−1−A〜C)に波長と時間を割り当てることで、割当帯域が決定される。 A controller (not shown) assigns a wavelength and a time at which signal light can be transmitted to the optical transmitters A to C (10-1-A to C). For example, the optical transmitters A to C (10-1-A to C) output signal light at a predetermined one wavelength assigned from two wavelengths (λ1, λ2). In this way, the controller (not shown) assigns the wavelength and time to the optical transmitters A to C (10-1-A to C), whereby the allocated band is determined.
光伝送路は、光送信機A〜C(10−1−A〜C)からの信号光を合波して光受信機(20−1)に結合する。ここで、異なる波長の信号光は同時に受信できるが、同一波長の光信号を同時に受信することはできない。そこで、制御器(不図示)は同一波長の信号光が同時に光受信機(20−1)に到着しないように、光送信機A〜C(10−1−A〜C)に対して通信可能時間を指定する必要がある。 The optical transmission line combines the signal light from the optical transmitters A to C (10-1-A to C) and couples it to the optical receiver (20-1). Here, signal lights of different wavelengths can be received simultaneously, but optical signals of the same wavelength cannot be received simultaneously. Therefore, the controller (not shown) can communicate with the optical transmitters A to C (10-1-A to C) so that signal light of the same wavelength does not reach the optical receiver (20-1) at the same time. You need to specify the time.
図2は、X点における光送信機からの信号光のタイムチャートの一例を表す。送信割当は、縦方向が光送信機A〜C(10−1−A〜C)に与えられた送信波長領域であり、横方向が光送信機A〜C(10−1−A〜C)に与えられた送信割当時間を示す。光送信機A(10―1−A)は、波長λ1の信号光を時間t1から時間t2までの割当時間領域で送信し、波長λ2の信号光を時間t2+Δtから時間t3までの割当時間領域で送信する。光送信機B(10―1−B)は、波長λ2の信号光を時間t1から時間t2までの割当時間領域で送信する。光送信機C(10―1−C)は、波長λ1の信号光を時間t2から時間t3までの割当時間領域で送信する。このように、本実施形態の光通信システムは、光送信機A〜C(10−1−A〜C)からの信号光を波長分割多重且つ時分割多重をして光受信機(20−1)に結合する。このように、本実施形態の光通信システムは、光送信機A〜C(10−1−A〜C)からの信号光を波長分割多重且つ時分割多重をして光受信機(20−1)に結合する。 FIG. 2 shows an example of a time chart of signal light from the optical transmitter at point X. In the transmission allocation, the vertical direction is a transmission wavelength region given to the optical transmitters A to C (10-1-A to C), and the horizontal direction is the optical transmitters A to C (10-1-A to C). Shows the assigned transmission time. The optical transmitter A (10-1-A) transmits the signal light having the wavelength λ1 in the allocation time region from the time t1 to the time t2, and transmits the signal light having the wavelength λ2 in the allocation time region from the time t2 + Δt to the time t3. Send. The optical transmitter B (10-1-B) transmits the signal light having the wavelength λ2 in the allocated time region from the time t1 to the time t2. The optical transmitter C (10-1-C) transmits the signal light having the wavelength λ1 in the allocated time region from time t2 to time t3. As described above, the optical communication system according to the present embodiment performs wavelength division multiplexing and time division multiplexing on the signal light from the optical transmitters A to C (10-1-A to C), and the optical receiver (20-1). ). As described above, the optical communication system according to the present embodiment performs wavelength division multiplexing and time division multiplexing on the signal light from the optical transmitters A to C (10-1-A to C), and the optical receiver (20-1). ).
この場合、制御器(不図示)は、時間t1で光送信機A(10―1−A)に波長λ1の信号光を出力するよう指示し、光送信機B(10―1−B)に波長λ2の信号光の送出を出力するよう指示し、光送信機C(10―1−C)に信号光の送出を止めるように指示する。制御器(不図示)は、時間t2で光送信機A(10―1−A)に送出する波長を切り替えて、波長λ1の代りに、波長λ2の信号光の送出を出力するよう指示し、光送信機B(10―1−B)に波長λ2の信号光の送出を止めるように指示し、光送信機C(10―1−C)に波長λ1の信号光を送出するように指示する。光送信機A(10―1−A)は、波長切り替えの指示に従い、切り替えに要する時間Δt経過後に波長λ2の信号光を送出する。 In this case, the controller (not shown) instructs the optical transmitter A (10-1-A) to output the signal light having the wavelength λ1 at time t1, and instructs the optical transmitter B (10-1-B). Instructs the optical transmitter C (10-1-C) to stop transmitting the signal light, and instructs the optical transmitter C (10-1-C) to stop transmitting the signal light. The controller (not shown) switches the wavelength to be transmitted to the optical transmitter A (10-1-A) at time t2, and instructs to output the signal light having the wavelength λ2 instead of the wavelength λ1. The optical transmitter B (10-1-B) is instructed to stop sending the signal light having the wavelength λ2, and the optical transmitter C (10-1-C) is instructed to send the signal light having the wavelength λ1. . In accordance with the wavelength switching instruction, the optical transmitter A (10-1-A) transmits the signal light having the wavelength λ2 after the time Δt required for switching has elapsed.
ここで、切り替えに要する時間Δtは、制御器(不図示)が光送信機A〜C(10−1−A〜C)に指示を伝達するに要する時間を含めても良い。また、制御器(不図示)は、光送信機A〜C(10−1−A〜C)から光受信機(20−1)までの伝送距離が異なる場合、合波したときに重ならないように信号光間の間隔を調整する。信号光がフレームで構成されている場合、制御器(不図示)はフレーム間隔を調整することになる。 Here, the time Δt required for switching may include a time required for a controller (not shown) to transmit an instruction to the optical transmitters A to C (10-1-A to C). Also, the controller (not shown) does not overlap when the transmission distances from the optical transmitters A to C (10-1-A to C) to the optical receiver (20-1) are different. Adjust the interval between the signal lights. When the signal light is composed of frames, a controller (not shown) adjusts the frame interval.
なお、図1では、3つの光送信機A〜C(10−1−A〜C)と2波長で例示しているが、光送信機A〜C(10−1−A〜C)の数は増減してもよいし、波長分割多重する波長の数も3以上であってよい。また、図1では、1つの光受信機(20−1)側が波長分割多重した信号を受信しているが、光受信機(20−1)は複数であってもよい。さらに、本光通信システムは双方向通信のシステムであってもよい。上述のように本光通信システムは、制御器(不図示)が光送信機A〜C(10−1−A〜C)に対して信号光を送出できる波長と時間を割り当てている。このように制御器(不図示)が光送信機A〜C(10−1−A〜C)に割り当てた波長と時間で通信可能な通信量が割当帯域である。 In FIG. 1, three optical transmitters A to C (10-1-A to C) and two wavelengths are illustrated, but the number of optical transmitters A to C (10-1-A to C) is illustrated. The number of wavelengths to be wavelength-division multiplexed may be 3 or more. In FIG. 1, one optical receiver (20-1) receives a wavelength division multiplexed signal, but there may be a plurality of optical receivers (20-1). Further, the optical communication system may be a bidirectional communication system. As described above, in this optical communication system, a controller (not shown) assigns a wavelength and a time at which signal light can be transmitted to the optical transmitters A to C (10-1-A to C). In this way, the communication amount that can be communicated with the wavelength and time allocated to the optical transmitters A to C (10-1-A to C) by the controller (not shown) is the allocated band.
制御器(不図示)は、光送信機A〜C(10−1−A〜C)の通信状態を監視する。例えば、制御器(不図示)は、光送信機A〜C(10−1−A〜C)が通信中であるか否かを監視するとともに、光送信機A〜C(10−1−A〜C)に割り当てる波長の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視する。このとき、光送信機A〜C(10−1−A〜C)の許容故障率も監視する。 A controller (not shown) monitors the communication state of the optical transmitters A to C (10-1-A to C). For example, the controller (not shown) monitors whether or not the optical transmitters A to C (10-1-A to C) are communicating, and the optical transmitters A to C (10-1-A). To C), the number of switching times in a predetermined communication time of the wavelength to be assigned to or the communication interruption time per communication time is monitored. At this time, the allowable failure rate of the optical transmitters A to C (10-1-A to C) is also monitored.
例えば、制御器(不図示)は、伝送するトラフィックの種類と通信中か否かを識別する。トラフィックの種類から、当該トラフィックの許容故障率を判別する。トラフィックの種類がGE−PONの上りトラフィックの場合であれば、トラフィックの許容故障率は、データフレームからLLID(Logical Link ID)とVLAN(Virtual Local Area Network)タグのユーザプライオリティビット(優先度)を読み出すことで識別できる。また、当該トラフィックの伝送がSIP等の制御フレームにより開始し、終了されるようなトラフィックの種類であれば、トラフィックの許容故障率は、SIP(Session Initiation Protocol)等の制御フレームによりトラフィックの種別を識別することができる。 For example, a controller (not shown) identifies the type of traffic to be transmitted and whether communication is in progress. The allowable failure rate of the traffic is determined from the traffic type. If the traffic type is an upstream traffic of GE-PON, the allowable failure rate of the traffic is determined from the data frame by the user priority bit (priority) of the LLID (Logical Link ID) and VLAN (Virtual Local Area Network) tag. Can be identified by reading. Further, if the traffic transmission is a type of traffic that starts and ends with a control frame such as SIP, the allowable failure rate of the traffic is determined according to the type of traffic using a control frame such as SIP (Session Initiation Protocol). Can be identified.
通信中か否かは、一定時間における同一のLLIDやVLANタグのユーザプライオリティビットのフレーム数が所定の値以上であるか、一定時間の間に同一のLLIDやVLANタグのユーザプライオリティビットのフレームがバッファに蓄積されたかで判定することができる。SIP等の制御フレームにより開始し、終了されるようなトラフィックであれば、通信が開始され終了するまでの間は通信中であると判定することができる。 Whether the number of frames of user priority bits of the same LLID or VLAN tag in a certain time is equal to or greater than a predetermined value or whether the frames of user priority bits of the same LLID or VLAN tag are in a certain time. Judgment can be made based on whether the data is stored in the buffer. If the traffic starts and ends with a control frame such as SIP, it can be determined that communication is in progress until the communication starts and ends.
なお、フレームの導通又はバッファへの蓄積の有無を利用する方法は電話等のトラフィックで無音時間中は信号光を送出しない機器への対応の観点から、SIP等の制御フレームを利用する方法は開始又は終了を意味するSIP等の制御フレームの欠落による通信中か否かを誤判定する可能性を減らすために、相互に併用することが望ましい。 Note that the method using the frame continuity or the presence or absence of accumulation in the buffer starts from the viewpoint of dealing with equipment that does not transmit signal light during silent periods due to traffic such as telephone traffic. Alternatively, in order to reduce the possibility of misjudging whether communication is in progress due to a lack of a control frame such as SIP, which means termination, it is desirable to use them together.
制御器(不図示)は、通信中における波長の切り替えに起因する故障率を光送信機A〜C(10−1−A〜C)ごとに算出する。例えば、制御器(不図示)は、当該トラッフィクの通信中の所定の通信時間における波長の切り替え回数又は通信時間当たりの通信断時間を積算し、過去所定の時間における回数や通信断時間から対応する故障率を算出する。そして、算出した故障率が予め定められた一定値を超過したか否かを判定する。算出した故障率が予め定められた一定値を超過中は、切り替えを抑止する。算出した故障率が予め定められた一定値を下回ると抑止を解除する。 A controller (not shown) calculates a failure rate due to wavelength switching during communication for each of the optical transmitters A to C (10-1-A to C). For example, the controller (not shown) integrates the number of times of wavelength switching or the communication interruption time per communication time during a predetermined communication time during the communication of the traffic, and responds from the number of times in the past predetermined time and the communication interruption time. Calculate the failure rate. Then, it is determined whether or not the calculated failure rate exceeds a predetermined value. Switching is inhibited while the calculated failure rate exceeds a predetermined value. The suppression is canceled when the calculated failure rate falls below a predetermined value.
新たに切り替えを行った場合に算出された故障率が予め定められた一定値を上回る際は波長の切り替えを抑止する。新たに切り替えを行った場合に算出されうる故障率が予め定められた一定値を下回る際は、波長の切り替えの抑止を解除することが望ましい。 When the failure rate calculated when a new switch is performed exceeds a predetermined value, the switching of the wavelength is suppressed. When the failure rate that can be calculated when switching is newly performed is below a predetermined value, it is desirable to cancel the suppression of wavelength switching.
図3は、本実施形態に係る故障率の一例を示す。切り替え後の時間の経過と共に、見掛けの故障率は上昇する。しかし、時間t2の切り替え以降から時間t4の間に次の切り替えを行うと、許容故障率を超過する。この場合、制御部は波長の切り替えを抑止する。次に切り替えを行っても、許容しうる故障率を超過しなくなるまで、見掛けの故障率が下がった時間t4の後(本図では1回切り替えを休止)、次の切り替えを行う。このため、見掛けの故障率は許容しうる故障率を超過しない。 FIG. 3 shows an example of the failure rate according to the present embodiment. As time passes after switching, the apparent failure rate increases. However, if the next switching is performed during the time t4 after the switching of the time t2, the allowable failure rate is exceeded. In this case, the control unit suppresses wavelength switching. Even if the next switching is performed, the next switching is performed after time t4 when the apparent failure rate has decreased until the allowable failure rate is not exceeded (the switching is stopped once in this figure). For this reason, the apparent failure rate does not exceed the allowable failure rate.
ここで、予め定められた一定値は、トラフィックの種類に応じて設定する。例えば、予め定められた一定値は、光送信機A〜C(10−1−A〜C)で伝送するトラフィックに許容される故障率から、光通信システムで想定される故障率を差し引いた故障率である。通信システムは波長により冗長化が図られており、通信システムの想定される故障率が十分に低い場合は、トラフィックの許容する故障率から通信システムの想定される故障率を差し引かなくても良い。またこの場合、故障率を算出する際に、当該トラフィックが通信していない時の切り替えによる見掛け上の故障率の上昇は計上しなくて良い。 Here, the predetermined constant value is set according to the type of traffic. For example, the predetermined constant value is a failure obtained by subtracting a failure rate assumed in the optical communication system from a failure rate allowed for traffic transmitted by the optical transmitters A to C (10-1-A to C). Rate. The communication system is made redundant by wavelength, and when the assumed failure rate of the communication system is sufficiently low, the assumed failure rate of the communication system may not be subtracted from the failure rate allowed by traffic. In this case, when calculating the failure rate, it is not necessary to account for an apparent increase in failure rate due to switching when the traffic is not communicating.
トラフィックが映像放送等であり、チャネル切り替えが識別できる場合がある。この場合、波長を切り替えない場合のチャネル切り替えに要する時間が、波長の切り替えに要する時間に対して十分に大きければ、チャネル切り替え最中の波長の切り替えによる見掛け上の故障率の上昇は計上しなくて良い。また、上記の説明では、単一の光送信機A〜C(10−1−A〜C)は、同時に単一の波長でのみ通信する例で説明したが、同時に複数の波長を用いて通信する場合の同様である。 In some cases, the traffic is a video broadcast or the like, and channel switching can be identified. In this case, if the time required for channel switching when the wavelength is not switched is sufficiently longer than the time required for wavelength switching, an increase in the apparent failure rate due to wavelength switching during channel switching is not counted. Good. In the above description, the single optical transmitters A to C (10-1-A to C) communicate with only a single wavelength at the same time, but simultaneously communicate using a plurality of wavelengths. The same applies to
以上のようにして、本実施形態の光通信システムは、トラフィックの要求する品質を確保しつつ、複数のユーザを複数の送受信器に振り分けて収容して総帯域を拡張する光通信システム及び光通信方法を提供することができる。 As described above, the optical communication system according to this embodiment secures the quality required by traffic, and distributes and accommodates a plurality of users to a plurality of transmitters / receivers to expand the total bandwidth. A method can be provided.
(実施形態2)
図4は、本実施形態の光通信システムを説明する概念図である。本光通信システムと図1の光通信システムとの違いは、各光送信機を複数の波長に振り分けて収容する代りに、複数の芯線に振り分けて収容するところである。
(Embodiment 2)
FIG. 4 is a conceptual diagram illustrating the optical communication system of the present embodiment. The difference between the present optical communication system and the optical communication system of FIG. 1 is that each optical transmitter is distributed and accommodated in a plurality of core wires instead of being distributed and accommodated in a plurality of wavelengths.
本実施形態に係る光通信システムは、制御器(不図示)を備え、本実施形態に係る光通信方法を実行する。制御器(不図示)は、光送信機A〜C(10−2−A〜C)の通信状態を監視して光送信機A〜C(10−2−A〜C)ごとの故障率を算出し、故障率が予め定められた一定値未満であれば、光送信機A〜C(10−2−A〜C)に割り当てる芯線の切り替えを可能にし、故障率が一定値以上であれば、光送信機A〜C(10−2−A〜C)に割り当てる芯線の切り替えを抑止する。以下、本実施形態に係る光通信システム及び光通信方法について、具体的に説明する。 The optical communication system according to the present embodiment includes a controller (not shown) and executes the optical communication method according to the present embodiment. The controller (not shown) monitors the communication state of the optical transmitters A to C (10-2-A to C) and determines the failure rate for each of the optical transmitters A to C (10-2-A to C). If calculated and the failure rate is less than a predetermined value, the cores assigned to the optical transmitters A to C (10-2-A to C) can be switched. The switching of the core line assigned to the optical transmitters A to C (10-2-A to C) is suppressed. Hereinafter, the optical communication system and the optical communication method according to the present embodiment will be specifically described.
制御器(不図示)は、光送信機A〜C(10−2−A〜C)の通信状態を監視可能な位置に接続されている。例えば、光スプリッタ12とOLT(21−2)との光伝送路に接続される。制御器(不図示)は、例えば、OLT(21−2)に配置される。
The controller (not shown) is connected to a position where the communication states of the optical transmitters A to C (10-2-A to C) can be monitored. For example, it is connected to the optical transmission line between the
制御器は、実施形態1における波長を芯線に読み替えれば同様である。制御器は、光送信機A〜C(10−2−A〜C)に対して信号光を送信できる芯線と時間を割り当てる。例えば、光送信機A〜C(10−2−A〜C)は、2芯線(H1、H2)の中から割り当てられた所定の1芯線で信号光を出力する。このように制御器(不図示)が光送信機A〜C(10−2−A〜C)に芯線と時間を割り当てることで、割当帯域が決定される。 The controller is the same if the wavelength in the first embodiment is read as the core wire. A controller allocates the core wire and time which can transmit signal light with respect to optical transmitter A-C (10-2-A-C). For example, the optical transmitters A to C (10-2-A to C) output signal light using a predetermined single core line assigned from the two core lines (H1, H2). As described above, the controller (not shown) assigns the core wire and time to the optical transmitters A to C (10-2-A to C), thereby determining the allocation band.
光通信システムは、光送信機A〜C(10−2−A〜C)、複数の光伝送路、光受信機(20−2)及び制御器(不図示)を備える。光送信機A〜C(10−2−A〜C)は各ユーザに所有されており、選択可能な複数の芯線のうちの1芯線に光信号を出力する。光受信機(20−2)は、複数の芯線毎に光送信機A〜C(10−2−A〜C)からの光信号を受信する。光伝送路は、光送信機A〜C(10−2−A〜C)からの光信号を時分割多重して芯線毎にそれぞれ光受信機(20−2)へ結合する。 The optical communication system includes optical transmitters A to C (10-2-A to C), a plurality of optical transmission lines, an optical receiver (20-2), and a controller (not shown). The optical transmitters A to C (10-2-A to C) are owned by each user, and output optical signals to one of the selectable core wires. The optical receiver (20-2) receives optical signals from the optical transmitters A to C (10-2-A to C) for each of the plurality of core wires. In the optical transmission line, optical signals from the optical transmitters A to C (10-2-A to C) are time-division multiplexed and coupled to the optical receiver (20-2) for each core wire.
制御器は、実施形態1における波長を芯線に読み替えれば同様である。制御器は、光送信機A〜C(10−2−A〜C)に対して、芯線毎に時分割多重で帯域を割り当てる。例えば、光送信機A〜C(10−2−A〜C)は、2芯線(H1、H2)の中から割り当てられた所定の1芯線で信号光を出力する。光送信機A(10−2−A)は芯線H1で信号光を送信可能領域で送信する。光送信機B(10−2−B)は芯線H1の信号光を送信可能領域で送信する。光送信機C(10−2−C)は芯線H2の信号光を送信可能領域で送信する。 The controller is the same if the wavelength in the first embodiment is read as the core wire. The controller allocates a band to the optical transmitters A to C (10-2-A to C) by time division multiplexing for each core wire. For example, the optical transmitters A to C (10-2-A to C) output signal light using a predetermined single core line assigned from the two core lines (H1, H2). The optical transmitter A (10-2-A) transmits the signal light in the transmittable area through the core wire H1. The optical transmitter B (10-2-B) transmits the signal light of the core wire H1 in the transmittable area. The optical transmitter C (10-2-C) transmits the signal light of the core wire H2 in the transmittable area.
光伝送路は、光送信機A〜C(10−2−A〜C)からの信号光をそれぞれ光受信機(20−2)に結合する。ここで、異なる芯線の信号光は同時に受信できるが、同一芯線の光信号を同時に受信することはできない。そこで、制御器は同一芯線の信号光が同時に光受信機(20−2)に到着しないように、光送信機A〜C(10−2−A〜C)に対して通信可能時間を指定する必要がある。 The optical transmission path couples signal light from the optical transmitters A to C (10-2-A to C) to the optical receiver (20-2), respectively. Here, although signal light of different core wires can be received simultaneously, optical signals of the same core wire cannot be received simultaneously. Therefore, the controller designates the communicable time to the optical transmitters A to C (10-2-A to C) so that the signal light of the same core wire does not reach the optical receiver (20-2) at the same time. There is a need.
図5に、X点における光送信機からの信号光のタイムチャートの一例を表す。横軸は時間であり、縦軸は芯線又は帯域である。制御器は、時間t1で光送信機Aに芯線H1の信号光を出力するよう指示し、光送信機Bに芯線H2の信号光の送出を出力するよう指示し、光送信機Cに信号光の送出を止めるように指示する。制御器は、時間t2で光送信機Aに送出する芯線を切り替えて、芯線H1の代りに、芯線H2の信号光の送出を出力するよう指示し、光送信機Bに芯線H2の信号光の送出を止めるように指示し、光送信機Cに芯線H1の信号光を送出するように指示する。光送信機Aは、芯線切り替えの指示に従い、切り替えに要する時間Δt経過後に芯線H2の信号光を送出する。このように、図4に示す光通信システムは、光送信機A〜C(10−2−A〜C)からの信号光を芯線多重且つ時分割多重をして光受信機(20−2)に結合する。 FIG. 5 shows an example of a time chart of signal light from the optical transmitter at point X. The horizontal axis is time, and the vertical axis is the core or band. The controller instructs the optical transmitter A to output the signal light of the core wire H1 at the time t1, instructs the optical transmitter B to output the signal light of the core wire H2, and outputs the signal light to the optical transmitter C. To stop sending. The controller switches the core wire to be transmitted to the optical transmitter A at time t2, instructs the optical transmitter B to output the signal light of the core wire H2 instead of the core wire H1, and transmits the signal light of the core wire H2 to the optical transmitter B. Instructs the transmission to stop, and instructs the optical transmitter C to transmit the signal light of the core wire H1. In accordance with the instruction for switching the core wire, the optical transmitter A transmits the signal light of the core wire H2 after the time Δt required for switching has elapsed. As described above, the optical communication system shown in FIG. 4 is an optical receiver (20-2) in which signal light from the optical transmitters A to C (10-2-A to C) is subjected to core line multiplexing and time division multiplexing. To join.
ここで、切り替えに要する時間Δtは、制御器が芯線を変更する装置、本実施例では光送信機と離れたところにある場合は、当該装置が送受信に係る芯線を変更する装置に制御器からの指示を伝達するに要する時間を含めても良い。また、制御器は、光送信機A〜C(10−2−A〜C)から光受信機(20−2)までの伝送距離が異なる場合、それらの信号光が重ならないように信号光間の間隔を調整する。信号光がフレームで構成されている場合、制御器はフレーム間隔を調整することになる。 Here, the time Δt required for switching is determined by the controller from the controller to the device that changes the core wire in the case where the controller is away from the optical transmitter in this embodiment. The time required to transmit the instruction may be included. Further, when the transmission distances from the optical transmitters A to C (10-2-A to C) to the optical receiver (20-2) are different, the controller is configured to prevent the signal lights from overlapping. Adjust the interval. When the signal light is composed of frames, the controller adjusts the frame interval.
光受信機(20−2)は、光伝送路からの光を芯線毎にそれぞれ受光する複数の受光器a、bと、を有する。受光器a、bは、例えば、フォトダイオードである。受光器a、bは、それぞれ受光した信号光を電気信号として出力する。 The optical receiver (20-2) includes a plurality of light receivers a and b that receive light from the optical transmission path for each core wire. The light receivers a and b are, for example, photodiodes. The light receivers a and b each output the received signal light as an electrical signal.
なお、図4では、3つの光送信機と2芯線で例示しているが、光送信機の数は増減してもよいし、芯線多重する芯線の数も3以上であってよい。また、図3では2つの光受信機(20−2)側が芯線多重した信号を受信しているが、光受信機(20−2)は複数であってもよい。さらに、本光通信システムは双方向通信のシステムであってもよい。 In FIG. 4, three optical transmitters and two core wires are illustrated, but the number of optical transmitters may be increased or decreased, and the number of core wires to be multiplexed may be three or more. In FIG. 3, the two optical receivers (20-2) side receive the signal multiplexed by the core wire, but a plurality of optical receivers (20-2) may be provided. Further, the optical communication system may be a bidirectional communication system.
上述のように本光通信システムは、制御器が光送信機A〜C(10−2−A〜C)に対して信号光を送出できる芯線と時間を割り当てている。このように制御器が光送信機に割り当てた芯線と時間で通信可能な通信量が割当帯域となる。 As described above, in the present optical communication system, the controller assigns a core line and time for transmitting signal light to the optical transmitters A to C (10-2-A to C). In this way, the amount of communication that can be communicated in time with the core assigned by the controller to the optical transmitter is the assigned bandwidth.
制御器(不図示)は、光送信機A〜C(10−2−A〜C)の通信状態を監視する。例えば、制御器(不図示)は、光送信機A〜C(10−2−A〜C)が通信中であるか否かを監視するとともに、光送信機A〜C(10−2−A〜C)に割り当てる芯線の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視する。このとき、光送信機A〜C(10−2−A〜C)の許容故障率も監視する。具体例については実施形態1と同様である。 A controller (not shown) monitors the communication state of the optical transmitters A to C (10-2-A to C). For example, the controller (not shown) monitors whether or not the optical transmitters A to C (10-2-A to C) are communicating, and the optical transmitters A to C (10-2-A). To C), the number of switching times of the core wires allocated to the predetermined communication time or the communication interruption time per communication time is monitored. At this time, the allowable failure rate of the optical transmitters A to C (10-2-A to C) is also monitored. Specific examples are the same as those in the first embodiment.
制御器(不図示)は、通信中における芯線の切り替えに起因する故障率を光送信機A〜C(10−2−A〜C)ごとに算出する。例えば、制御器(不図示)は、当該トラッフィクの通信中の所定の通信時間における芯線の切り替え回数又は通信時間当たりの通信断時間を積算し、過去所定の時間における回数又は通信断時間から対応する故障率を算出する。そして、算出した故障率が予め定められた一定値を超過したか否かを判定する。算出した故障率が予め定められた一定値を超過中は、切り替えを抑止する。算出した故障率が予め定められた一定値を下回ると抑止を解除する。 A controller (not shown) calculates a failure rate due to switching of the core wire during communication for each of the optical transmitters A to C (10-2-A to C). For example, the controller (not shown) accumulates the number of core switching times or the communication interruption time per communication time during a predetermined communication time during the traffic communication, and responds from the number of times or communication interruption time in the past predetermined time. Calculate the failure rate. Then, it is determined whether or not the calculated failure rate exceeds a predetermined value. Switching is inhibited while the calculated failure rate exceeds a predetermined value. The suppression is canceled when the calculated failure rate falls below a predetermined value.
新たに切り替えを行った場合に算出された故障率が予め定められた一定値を上回る際は芯線の切り替えを抑止する。新たに切り替えを行った場合に算出されうる故障率が予め定められた一定値を下上回る際は、芯線の切り替えの抑止を解除することが望ましい。 When the failure rate calculated when switching is newly performed exceeds a predetermined value, switching of the core is suppressed. When the failure rate that can be calculated when a new switching is performed is below a predetermined value, it is desirable to cancel the suppression of the core switching.
トラフィックが映像放送等であり、チャネル切り替えが識別できる場合がある。この場合、芯線を切り替えない場合のチャネル切り替えに要する時間が、芯線の切り替えに要する時間に対して十分に大きければ、チャネル切り替え最中の芯線の切り替えによる見掛け上の故障率の上昇は計上しなくて良い。 In some cases, the traffic is a video broadcast or the like, and channel switching can be identified. In this case, if the time required for channel switching when the core is not switched is sufficiently longer than the time required for core switching, an increase in the apparent failure rate due to core switching during channel switching is not counted. Good.
トラフィックが映像放送等であり、チャネル切り替えが識別できる場合がある。この場合、芯線を切り替えない場合のチャネル切り替えに要する時間が、芯線の切り替えに要する時間に対して十分に大きければ、チャネル切り替え最中の芯線の切り替えによる見掛け上の故障率の上昇は計上しなくて良い。 In some cases, the traffic is a video broadcast or the like, and channel switching can be identified. In this case, if the time required for channel switching when the core is not switched is sufficiently longer than the time required for core switching, an increase in the apparent failure rate due to core switching during channel switching is not counted. Good.
以上のようにして、本実施形態の光通信システムは、トラフィックの要求する品質を確保しつつ、複数のユーザを複数の送受信器に振り分けて収容して総帯域を拡張する光通信システム及び光通信方法を提供することができる。 As described above, the optical communication system according to this embodiment secures the quality required by traffic, and distributes and accommodates a plurality of users to a plurality of transmitters / receivers to expand the total bandwidth. A method can be provided.
また、上記の説明では、単一の光送信機A〜C(10−1−A〜C)は、同時に単一の芯線でのみ通信する例で説明したが、同時に複数の芯線を用いて通信する場合も同様であるし、本発明の第1の実施形態と本実施形態を組み合わせた場合も同様である。なお、割り当てに際して、ONU−OLT間の距離差、波長分散、複数の芯線間の距離差に伴う伝達時間の差を考慮して、同時に送信できない場合の送信機の送信時間が重複しないように、同時に受信できない場合の受信機に到着する信号の到着時間同士が重複しないように割り当てる。 In the above description, the single optical transmitters A to C (10-1-A to C) have been described as examples in which communication is performed using only a single core wire at the same time, but communication is performed using a plurality of core wires at the same time. The same applies to the case where the first embodiment of the present invention is combined with the present embodiment. When assigning, considering the difference in ONU-OLT distance difference, chromatic dispersion, and the difference in transmission time due to the distance difference between the plurality of core wires, the transmission time of the transmitter in the case where simultaneous transmission is not possible, When the signals cannot be received simultaneously, the arrival times of the signals arriving at the receiver are assigned so as not to overlap each other.
本発明は、情報通信産業に適用することができる。 The present invention can be applied to the information communication industry.
10−1−A〜C、10−2−A〜C:光送信機A〜C
11−1−A〜C、11−2−A〜C:ONU−A〜C
12:光スプリッタ
20−1、20−2:光受信機
21−1、21−2:OLT
22−1−a,b、22−2−a,b:受光器a,b
25:光合分波器
10-1-A to C, 10-2-A to C: Optical transmitters A to C
11-1-A to C, 11-2-A to C: ONU-A to C
12: Optical splitters 20-1, 20-2: Optical receivers 21-1, 21-2: OLT
22-1-a, b, 22-2-a, b: light receivers a, b
25: Optical multiplexer / demultiplexer
Claims (10)
前記局側装置は、
前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、
切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを可能にし、
切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを抑止する光通信システム。 An optical communication system that shares a time domain and a plurality of wavelength domains between a plurality of optical subscriber-side devices and a single station-side device, and transmits and receives signal light using a passive optical branch circuit,
The station side device
Monitor the communication state of the optical transmitter of the subscriber side device to calculate the failure rate for each optical transmitter,
If the failure rate when switching is less than a predetermined value, it is possible to switch the wavelength allocated to the optical transmitter of the subscriber side device,
An optical communication system that suppresses switching of the wavelength allocated to the optical transmitter of the subscriber side device when the failure rate when switching is equal to or greater than the predetermined value.
前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる波長の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、
通信中における波長の切り替えに起因する故障率を前記光送信機ごとに算出する請求項1に記載の光通信システム。 The station side device
Monitor whether or not the optical transmitter of the subscriber side device is communicating, and the number of switching of the wavelength allocated to the optical transmitter of the subscriber side device in a predetermined communication time or the communication interruption time per communication time And
The optical communication system according to claim 1, wherein a failure rate due to wavelength switching during communication is calculated for each optical transmitter.
前記局側装置は、
前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、
切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを可能にし、
切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを抑止する光通信システム。 An optical communication system that shares a time domain and a plurality of core line areas between a plurality of optical subscriber side apparatuses and one station side apparatus, and transmits / receives signal light using a passive optical branch circuit,
The station side device
Monitor the communication state of the optical transmitter of the subscriber side device to calculate the failure rate for each optical transmitter,
If the failure rate at the time of switching is less than a predetermined value, it is possible to switch the core assigned to the optical transmitter of the subscriber side device,
An optical communication system that suppresses switching of a core line allocated to an optical transmitter of the subscriber side device if the failure rate when switched is equal to or greater than the predetermined value.
前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる芯線の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、
通信中における芯線の切り替えに起因する故障率を前記光送信機ごとに算出する請求項3に記載の光通信システム。 The station side device
Monitor whether or not the optical transmitter of the subscriber side device is communicating, and the number of switching of the core wire assigned to the optical transmitter of the subscriber side device in a predetermined communication time or communication interruption time per communication time And
The optical communication system according to claim 3, wherein a failure rate due to switching of the core wire during communication is calculated for each optical transmitter.
前記加入者側装置の光送信機に許容される故障率から、前記光通信システムで想定される故障率を差し引いた故障率であることを特徴とする請求項1から4のいずれかに記載の光通信システム。 The predetermined constant value is
5. The failure rate according to claim 1, wherein a failure rate is obtained by subtracting a failure rate assumed in the optical communication system from a failure rate allowed for the optical transmitter of the subscriber side device. Optical communication system.
前記局側装置は、
前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、
切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを可能にし、
切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる波長の切り替えを抑止する光通信方法。 An optical communication method for sharing a time domain and a plurality of wavelength domains between a plurality of optical subscriber side apparatuses and a single station side apparatus, and transmitting and receiving signal light using a passive optical branch circuit,
The station side device
Monitor the communication state of the optical transmitter of the subscriber side device to calculate the failure rate for each optical transmitter,
If the failure rate when switching is less than a predetermined value, it is possible to switch the wavelength allocated to the optical transmitter of the subscriber side device,
An optical communication method for suppressing switching of a wavelength allocated to an optical transmitter of the subscriber side device when the failure rate when switching is equal to or greater than the predetermined value.
前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる波長の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、
通信中における波長の切り替えに起因する故障率を前記光送信機ごとに算出する請求項6に記載の光通信方法。 The station side device
Monitor whether or not the optical transmitter of the subscriber side device is communicating, and the number of switching of the wavelength allocated to the optical transmitter of the subscriber side device in a predetermined communication time or the communication interruption time per communication time And
The optical communication method according to claim 6, wherein a failure rate due to wavelength switching during communication is calculated for each optical transmitter.
前記局側装置は、
前記加入者側装置の光送信機の通信状態を監視して前記光送信機ごとの故障率を算出し、
切り替えした場合の前記故障率が予め定められた一定値未満であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを可能にし、
切り替えした場合の前記故障率が前記一定値以上であれば、前記加入者側装置の光送信機に割り当てる芯線の切り替えを抑止する光通信方法。 An optical communication method in which a time domain and a plurality of core areas are shared between a plurality of optical subscriber side apparatuses and one station side apparatus, and signal light is transmitted and received using a passive optical branch circuit,
The station side device
Monitor the communication state of the optical transmitter of the subscriber side device to calculate the failure rate for each optical transmitter,
If the failure rate at the time of switching is less than a predetermined value, it is possible to switch the core assigned to the optical transmitter of the subscriber side device,
An optical communication method for suppressing switching of a core line assigned to an optical transmitter of the subscriber side device when the failure rate when switching is equal to or greater than the predetermined value.
前記加入者側装置の光送信機が通信中であるか否か、及び、前記加入者側装置の光送信機に割り当てる芯線の所定の通信時間における切り替え回数又は通信時間当たりの通信断時間を監視し、
通信中における芯線の切り替えに起因する故障率を前記光送信機ごとに算出する請求項8に記載の光通信方法。 The station side device
Monitor whether or not the optical transmitter of the subscriber side device is communicating, and the number of switching of the core wire assigned to the optical transmitter of the subscriber side device in a predetermined communication time or communication interruption time per communication time And
The optical communication method according to claim 8, wherein a failure rate due to switching of the core wire during communication is calculated for each of the optical transmitters.
前記加入者側装置の光送信機に許容される故障率から、前記光通信システムで想定される故障率を差し引いた故障率であることを特徴とする請求項6から9のいずれかに記載の光通信方法。 The predetermined constant value is
The failure rate obtained by subtracting the failure rate assumed in the optical communication system from the failure rate allowed for the optical transmitter of the subscriber side device. Optical communication method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009208702A JP5235181B2 (en) | 2009-09-09 | 2009-09-09 | Optical communication system and optical communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009208702A JP5235181B2 (en) | 2009-09-09 | 2009-09-09 | Optical communication system and optical communication method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011061479A true JP2011061479A (en) | 2011-03-24 |
JP5235181B2 JP5235181B2 (en) | 2013-07-10 |
Family
ID=43948612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009208702A Active JP5235181B2 (en) | 2009-09-09 | 2009-09-09 | Optical communication system and optical communication method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5235181B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000349801A (en) * | 1999-03-30 | 2000-12-15 | Nec Corp | Method and device for protection changeover for pon |
JP2002198904A (en) * | 2000-12-22 | 2002-07-12 | Mitsubishi Electric Corp | Optical multidrop communication system and switchover and restoration control method of transmission line therefor |
JP2006165953A (en) * | 2004-12-07 | 2006-06-22 | Oki Electric Ind Co Ltd | Optical communication system |
-
2009
- 2009-09-09 JP JP2009208702A patent/JP5235181B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000349801A (en) * | 1999-03-30 | 2000-12-15 | Nec Corp | Method and device for protection changeover for pon |
JP2002198904A (en) * | 2000-12-22 | 2002-07-12 | Mitsubishi Electric Corp | Optical multidrop communication system and switchover and restoration control method of transmission line therefor |
JP2006165953A (en) * | 2004-12-07 | 2006-06-22 | Oki Electric Ind Co Ltd | Optical communication system |
Also Published As
Publication number | Publication date |
---|---|
JP5235181B2 (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7949256B2 (en) | Method and system for increasing downstream bandwidth in an optical network | |
US8200088B2 (en) | Optical communication system, and optical communication method and communication unit therefor | |
JP6053232B2 (en) | Optical communication system and optical communication error recovery method | |
JP5334878B2 (en) | Optical communication system, station side device, subscriber side device, and optical communication method | |
JP5614482B1 (en) | Station side terminal device and path switching method | |
JP2014143502A (en) | Optical subscriber system and dynamic wavelength band allocation method of optical subscriber system | |
JPWO2007026749A1 (en) | Optical communication network system, master station optical communication device, and slave station optical communication device | |
US9331809B2 (en) | DWA control in an OLT with decrease in margin of bandwidth utilization caused by bandwidth reallocation minimized | |
CN107534596B (en) | Station side device and wavelength switching monitoring method | |
KR102028485B1 (en) | Broadcast and data stream transmission method and system, and conversion method and apparatus in hfc based cable network | |
US9866930B2 (en) | Station side terminal device, subscriber side terminal device, optical communication system, route switching method, non-transitory computer readable medium storing route switching program, and wavelength switching method | |
JP6353605B2 (en) | Station side apparatus and wavelength switching method | |
JP5235181B2 (en) | Optical communication system and optical communication method | |
JP5456547B2 (en) | Optical communication system and optical communication method | |
JP5475572B2 (en) | Station-side terminator, optical communication system, and concentrating method | |
KR20140126635A (en) | Apparatus and method for transmitting and receiving optical signal apparatus and method in passive optical network system | |
JP2009218920A (en) | Communication system and communication method | |
JP5456546B2 (en) | Optical communication system and optical communication method | |
JP2009284179A (en) | Optical access terminating device | |
KR100889912B1 (en) | Optical access network architecture | |
JP5290917B2 (en) | Optical communication system and optical communication method | |
JP5882926B2 (en) | Station side apparatus and link speed changing method | |
JP5466321B2 (en) | Optical communication system and optical communication method | |
WO2015022807A1 (en) | Master station device, control device, communication system, and communication method | |
KR100998582B1 (en) | Systen of passive optical network for local customer networking and communication method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130325 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5235181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |