JP2011060795A - Organic thin film solar cell - Google Patents

Organic thin film solar cell Download PDF

Info

Publication number
JP2011060795A
JP2011060795A JP2009205392A JP2009205392A JP2011060795A JP 2011060795 A JP2011060795 A JP 2011060795A JP 2009205392 A JP2009205392 A JP 2009205392A JP 2009205392 A JP2009205392 A JP 2009205392A JP 2011060795 A JP2011060795 A JP 2011060795A
Authority
JP
Japan
Prior art keywords
thin film
solar cell
composite
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009205392A
Other languages
Japanese (ja)
Inventor
Kazuhiro Marumoto
一弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2009205392A priority Critical patent/JP2011060795A/en
Publication of JP2011060795A publication Critical patent/JP2011060795A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new organic thin film solar cell with high conversion efficiency without using an expensive material such as gold. <P>SOLUTION: The organic thin film solar cell includes a substrate 10 which is transparent to sunlight, a transparent electrode 20 provided on the substrate, a composite thin film 30 comprising poly-3,4-ethylenedioxythiophene(PEDOT) and polystyrene-sulfonic acid(PSS) and provided on the electrode, a composite photovoltaic thin film layer 40 comprising polyhexylthiophene and a fullerene derivative and provided on the composite thin film, a palladium metal film layer 50 provided on the composite photovoltaic thin film layer, a semi-insulating layer 60 provided on the palladium metal film layer, and an electrode 70 provided on the semi-insulating layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機薄膜太陽電池に関し、より詳しくは、有機薄膜太陽電池のコスト上昇を抑えて効率を向上することに関する。   The present invention relates to an organic thin film solar cell, and more particularly to improving efficiency by suppressing an increase in cost of the organic thin film solar cell.

現在は、地球温暖化を防止するため、クリーンエネルギーの開発が要望されている。
その中で、太陽電池による発電は、世界規模で推進されている。
Currently, there is a demand for the development of clean energy to prevent global warming.
Among them, power generation by solar cells is being promoted on a global scale.

有機薄膜太陽電池は、2つの異種電極間に、電子供与性および電子受容性の機能を有する有機薄膜を配置する構造となっており、シリコンなどに代表される無機太陽電池に比べ製造工程が容易であり、かつ低コストで大面積化が可能であるという利点を持つ。しかし、現在有機太陽電池の発電効率は、シリコンなどに代表される無機太陽電池に比べ低くその改善が重要な課題となっていた。   An organic thin film solar cell has a structure in which an organic thin film having electron donating and electron accepting functions is disposed between two different electrodes, and the manufacturing process is easier than an inorganic solar cell typified by silicon. And has the advantage that the area can be increased at low cost. However, the power generation efficiency of organic solar cells is currently lower than that of inorganic solar cells represented by silicon and the like, and improvement thereof has been an important issue.

そこで、この改善の研究が世界中で活発に行われている。例えば、金ナノ粒子を使用して、粒子のプラズモン共鳴により光吸収が増強され、その結果、有機太陽電池の効率が向上したことが報告されている(非特許文献1等参照)。   Therefore, research on this improvement is actively conducted all over the world. For example, it has been reported that light absorption is enhanced by plasmon resonance of particles using gold nanoparticles, and as a result, the efficiency of the organic solar cell is improved (see Non-Patent Document 1, etc.).

また、不対電子に着目して高効率化を達成する有機薄膜太陽電池の提案がある。これは、基板上に形成された第1電極層と、正孔取出し層と、光電変換層と、第2電極層とを有する有機薄膜太陽電池において、正孔取出し層を、導電性高分子材料と不対電子をもつ低分子化合物とする有機薄膜太陽電池である。不対電子に注目しているものの、電子スピンを測定することは無く、導電性高分子の正孔移動を円滑に行い、光電変換効率を向上させるものである。(特許文献1等参照)。   There is also a proposal of an organic thin film solar cell that achieves high efficiency by focusing on unpaired electrons. In an organic thin film solar cell having a first electrode layer, a hole extraction layer, a photoelectric conversion layer, and a second electrode layer formed on a substrate, the hole extraction layer is made of a conductive polymer material. It is an organic thin-film solar cell made of a low molecular compound having unpaired electrons. Although attention is paid to unpaired electrons, electron spin is not measured, hole transfer of a conductive polymer is performed smoothly, and photoelectric conversion efficiency is improved. (Refer to patent document 1 etc.).

Xiaohong Chen et al.,“Plasmon Eenhancement of bulk heterojunction organic photovoltaic devices by electrode modification”Applied Physics Letters 93, 123302(2008)Xiaohong Chen et al. , “Plasmon Enhancement of Bulk Heterojunction Organic Photovoltaic Devices by Electrode Modifications” Applied Physics Letters 93, 123302 (2008) 特開2006−278583号公報JP 2006-278583 A

しかし、金は、希少金属で高価であり、太陽電池のように大量に使用するには適切ではない。また、有機薄膜太陽電池の効率は低くさらに向上することが重要であった。   However, gold is a rare metal and expensive, and is not suitable for use in large quantities like solar cells. In addition, it is important that the efficiency of the organic thin film solar cell is low and further improved.

本発明は、以上のような課題を解決し、金等の高価な材料を使用しないで、変換効率の高い新たな有機薄膜太陽電池を提供することを目的とする。   An object of the present invention is to solve the above-described problems and to provide a new organic thin-film solar cell with high conversion efficiency without using an expensive material such as gold.

本発明者は、有機薄膜太陽電池の効率を向上するのに、各種の金属薄膜の効用を鋭意研究し、パラジウム等が有用であることに着目して、下記の発明を完成するに至った。   The present inventor has intensively studied the utility of various metal thin films to improve the efficiency of organic thin film solar cells, and led to the completion of the following invention, focusing on the usefulness of palladium and the like.

(1) 有機薄膜太陽電池であって、太陽光に対して透明な基板と、前記基板上に設けられた透明な電極と、前記電極上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜と、前記複合薄膜上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層と、前記複合光起電力薄膜層上に設けられたパラジウム金属薄膜層と、前記パラジウム金属薄膜層上に設けられた半絶縁層と、前記半絶縁層上に設けられた電極と、を備えた有機薄膜太陽電池。   (1) An organic thin film solar cell, which is a substrate transparent to sunlight, a transparent electrode provided on the substrate, and poly3,4-ethylenedioxythiophene provided on the electrode (PEDOT): A polystyrene / sulfonic acid (PSS) composite thin film, a composite photovoltaic thin film layer made of polyhexylthiophine and a fullerene derivative provided on the composite thin film, and provided on the composite photovoltaic thin film layer An organic thin film solar cell comprising: a palladium metal thin film layer; a semi-insulating layer provided on the palladium metal thin film layer; and an electrode provided on the semi-insulating layer.

(1)に記載の有機薄膜太陽電池によれば、太陽光に対して透明な基板と、前記基板上に設けられた透明な電極と、前記電極上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜と、前記複合薄膜上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層と、前記複合光起電力薄膜層上に設けられたパラジウム金属薄膜層と、前記パラジウム金属薄膜層上に設けられた半絶縁層と、前記半絶縁層上に設けられた電極と、を備えるので透明な基板を通して吸収した太陽光がパラジウム金属薄膜層まで到達する。パラジウム金属薄膜層による表面プラズモン共鳴(Surface Plasmon Resonance)効果により、太陽光によるエネルギーを効率よく吸収して発電効率を高めることができる。   According to the organic thin film solar cell described in (1), a substrate transparent to sunlight, a transparent electrode provided on the substrate, and a poly3,4-ethylenedioxide provided on the electrode. Oxytiphene (PEDOT): Polystyrene sulfonic acid (PSS) composite thin film, a composite photovoltaic thin film layer made of polyhexylthiophine and fullerene derivative provided on the composite thin film, and the composite photovoltaic thin film layer A palladium metal thin film layer, a semi-insulating layer provided on the palladium metal thin film layer, and an electrode provided on the semi-insulating layer, so that sunlight absorbed through a transparent substrate is palladium The metal thin film layer is reached. Due to the surface plasmon resonance effect of the palladium metal thin film layer, energy from sunlight can be efficiently absorbed to increase power generation efficiency.

ここで、半絶縁層とは、パラジウム金属薄膜層と電極とを表面プラズモン共鳴効果を発揮するように絶縁し、かつパラジウム金属薄膜層の電荷を電極に供給する層である。具体的にはフッ化リチウムによる層が望ましいが、それに限られるものではない。   Here, the semi-insulating layer is a layer that insulates the palladium metal thin film layer and the electrode so as to exert a surface plasmon resonance effect, and supplies the charge of the palladium metal thin film layer to the electrode. Specifically, a layer made of lithium fluoride is desirable, but not limited thereto.

(2) 前記パラジウム金属薄膜層の厚みが1nmから8nmである(1)に記載の有機薄膜太陽電池。   (2) The organic thin film solar cell according to (1), wherein the palladium metal thin film layer has a thickness of 1 nm to 8 nm.

(2)に記載の有機薄膜太陽電池によれば、パラジウム金属薄膜層の厚みが1nmから8nmと適切な厚みであるので、効率を高くするとともに、パラジウム金属資源の節約をすることができる。   According to the organic thin film solar cell described in (2), since the thickness of the palladium metal thin film layer is an appropriate thickness of 1 nm to 8 nm, the efficiency can be increased and the palladium metal resource can be saved.

(3) 有機薄膜太陽電池であって、太陽光に対して透明な基板と、前記基板上に設けられた透明な電極と、前記電極上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜と、前記複合薄膜上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層と、前記複合光起電力薄膜層上に設けられた銅金属薄膜層と、前記銅金属薄膜層上に設けられた半絶縁層と、前記半絶縁層上に設けられた電極と、を備えた有機薄膜太陽電池。
(3) An organic thin-film solar cell, a substrate transparent to sunlight, a transparent electrode provided on the substrate, and poly3,4-ethylenedioxythiophene provided on the electrode (PEDOT): A polystyrene / sulfonic acid (PSS) composite thin film, a composite photovoltaic thin film layer made of polyhexylthiophine and a fullerene derivative provided on the composite thin film, and provided on the composite photovoltaic thin film layer An organic thin film solar cell comprising: a copper metal thin film layer; a semi-insulating layer provided on the copper metal thin film layer; and an electrode provided on the semi-insulating layer.

(3)に記載の本発明の有機薄膜太陽電池によれば、太陽光に対して透明な基板と、前記基板上に設けられた透明な電極と、前記電極上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜と、前記複合薄膜上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層と、前記複合光起電力薄膜層上に設けられた銅金属薄膜層と、前記銅金属薄膜層上に設けられた半絶縁層と、前記半絶縁層上に設けられた電極と、を備えるので、透明な基板を通して吸収した太陽光が、パラジウム金属薄膜層まで到達する。銅金属薄膜層による表面プラズモン共鳴効果により、太陽光によるエネルギーを効率よく吸収して発電効率を高めることができる。   According to the organic thin-film solar cell of the present invention described in (3), a substrate transparent to sunlight, a transparent electrode provided on the substrate, and poly 3, 4 provided on the electrode -Ethylenedioxythiophene (PEDOT): Polystyrene sulfonic acid (PSS) composite thin film, a composite photovoltaic thin film layer comprising polyhexylthiophine and a fullerene derivative provided on the composite thin film, and the composite photovoltaic power Since it comprises a copper metal thin film layer provided on the thin film layer, a semi-insulating layer provided on the copper metal thin film layer, and an electrode provided on the semi-insulating layer, it is absorbed through a transparent substrate. Sunlight reaches the palladium metal thin film layer. Due to the surface plasmon resonance effect of the copper metal thin film layer, it is possible to efficiently absorb energy from sunlight and increase power generation efficiency.

(4) 前記半絶縁層の厚みが0.2nmから1nmである請求項1から請求項3のいずれかに記載の有機薄膜太陽電池。   (4) The organic thin-film solar cell according to any one of claims 1 to 3, wherein the semi-insulating layer has a thickness of 0.2 nm to 1 nm.

(4)に記載の本発明の有機薄膜太陽電池によれば、半絶縁層の厚みが0.2nmから1nmと適切な厚みであるので、パラジウム薄膜金属層又は銅薄膜金属層で表面プラズモン共振効果を適切に発生させ、その効果により発生した電気を適切に電極に伝達することが出来る。   According to the organic thin film solar cell of the present invention described in (4), since the thickness of the semi-insulating layer is an appropriate thickness of 0.2 nm to 1 nm, the surface plasmon resonance effect can be achieved with a palladium thin film metal layer or a copper thin film metal layer. Can be appropriately generated, and electricity generated by the effect can be appropriately transmitted to the electrode.

本発明によれば、金、銀等の高価な材料を用いないで同等以上の性能を有する有機薄膜太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the organic thin film solar cell which has the performance more than equivalent can be provided, without using expensive materials, such as gold | metal | money and silver.

本発明の有機太陽電池の構成を示す1例である。It is an example which shows the structure of the organic solar cell of this invention. 本発明の有機太陽電池の製造工程を示す1例である。It is an example which shows the manufacturing process of the organic solar cell of this invention. 有機太陽電池の性能を測定する方法を説明する図ある。It is a figure explaining the method of measuring the performance of an organic solar cell. 太陽電池の性能を測定する方法を説明する図ある。It is a figure explaining the method of measuring the performance of a solar cell. 本発明の有機太陽電池の性能を示す図である。It is a figure which shows the performance of the organic solar cell of this invention. 本発明の有機太陽電池の性能を示すデータである。It is data which shows the performance of the organic solar cell of this invention.

以下、本発明の実施形態について説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。
<実施例1>
Hereinafter, embodiments of the present invention will be described. This is merely an example, and the technical scope of the present invention is not limited to this.
<Example 1>

図1は、本発明の有機薄膜太陽電池の基本構造を示す。基本構造は、図1(a)は、本発明の金属薄膜有機太陽電池の断面を示す図であり、図1(b)は、本発明の金属有機薄膜太陽電池のAl電極側から見た図である。   FIG. 1 shows the basic structure of the organic thin film solar cell of the present invention. FIG. 1 (a) is a view showing a cross section of the metal thin film organic solar cell of the present invention, and FIG. 1 (b) is a view of the basic structure as viewed from the Al electrode side of the metal organic thin film solar cell of the present invention. It is.

有機薄膜太陽電池の材料は、共役低分子系と共役ポリマー系とがある。共役低分子系は、P型有機半導体とN型有機半導体とみなせる共役低分子を積層した構造の有機薄膜太陽電池としている。共役ポリマー系は、P型有機半導体の共役ポリマーとN型有機半導体としてフラーレン誘導体とを混合して得られた薄膜から、バルクへテロ接合構造とした有機薄膜太陽電池としている。   Organic thin film solar cell materials include conjugated low-molecular materials and conjugated polymer materials. The conjugated small molecule system is an organic thin-film solar cell having a structure in which conjugated small molecules that can be regarded as a P-type organic semiconductor and an N-type organic semiconductor are stacked. The conjugated polymer system is an organic thin film solar cell having a bulk heterojunction structure from a thin film obtained by mixing a conjugated polymer of a P-type organic semiconductor and a fullerene derivative as an N-type organic semiconductor.

図1(a)に示すように、太陽光に対して透明なガラス基板10上に、透明な電極20、例えばITO(Indium Tin Oxide)が設けられる。電極20上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜30が設けられる。複合薄膜30上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層40が設けられる。複合光起電力薄膜層40上に設けられたパラジウム金属薄膜層50が設けられ、その上にフッ化リチウム層60が設けれ、その上にアルミ電極が図1(b)のように設けられる。ガラス基板10の照射された太陽光は、電極22と電極72より電気エネルギーに変換されて取り出される。   As shown to Fig.1 (a), the transparent electrode 20, for example, ITO (Indium Tin Oxide), is provided on the glass substrate 10 transparent with respect to sunlight. A poly 3,4-ethylenedioxythiophene (PEDOT): polystyrene-sulfonic acid (PSS) composite thin film 30 provided on the electrode 20 is provided. A composite photovoltaic thin film layer 40 made of polyhexylthiophine and a fullerene derivative provided on the composite thin film 30 is provided. A palladium metal thin film layer 50 provided on the composite photovoltaic thin film layer 40 is provided, a lithium fluoride layer 60 is provided thereon, and an aluminum electrode is provided thereon as shown in FIG. Sunlight irradiated on the glass substrate 10 is converted into electric energy from the electrodes 22 and 72 and extracted.

図2は、本発明で使用する有機薄膜太陽電池の製造方法を示す1例である。ガラス基板10上に透明な電極20、例えばITO(Indium Tin Oxide)を設ける(S10)。次に、ポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜30を30nmの厚さでスピンコートする(S20)。
次に、ポリヘキシルチオフィンとフラーレン誘導体を溶媒クロロベンゼンに溶かしてスピンコートし厚さ70nmの複合光起電力薄膜層40を設ける(S30)。その上に真空蒸着法により、1.2nmのパラジウム金属薄膜50を形成する(S40)。そして、真空蒸着法により、半絶縁層である厚さ0.4nmのフッ化リチウム50を積層する(S50)。その後アルミ電極70を形成する(S60)。そして、140℃で8分間アニールをする(S70)。
FIG. 2 is an example showing a method for producing an organic thin film solar cell used in the present invention. A transparent electrode 20, for example, ITO (Indium Tin Oxide) is provided on the glass substrate 10 (S10). Next, a poly 3,4-ethylenedioxythiophene (PEDOT): polystyrene-sulfonic acid (PSS) composite thin film 30 is spin-coated with a thickness of 30 nm (S20).
Next, polyhexylthiophine and fullerene derivative are dissolved in a solvent chlorobenzene and spin-coated to provide a composite photovoltaic thin film layer 40 having a thickness of 70 nm (S30). A 1.2 nm palladium metal thin film 50 is formed thereon by vacuum deposition (S40). Then, lithium fluoride 50 having a thickness of 0.4 nm, which is a semi-insulating layer, is laminated by vacuum deposition (S50). Thereafter, an aluminum electrode 70 is formed (S60). Then, annealing is performed at 140 ° C. for 8 minutes (S70).

上記のようにして作成した薄膜有機太陽電池について、ソーラーシミュレータを用いた疑似太陽光(フィルターAM1.5、パワー100mW/cm)の光を照射して測定した。図3は、薄膜有機太陽電池の効率の測定法を説明する図である。 About the thin film organic solar cell produced as mentioned above, it measured by irradiating the light of the artificial sunlight (filter AM1.5, power 100mW / cm < 2 >) using a solar simulator. FIG. 3 is a diagram illustrating a method for measuring the efficiency of a thin-film organic solar cell.

図3に示すように、透明な電極20とアルミ電極70の交差する部分を測定エリア84と定め、測定の為に測定エリア84の形状にあわせた試料用マスク80と、黒紙で測定範囲以外の光を遮断する遮光用マスク90を準備した。測定時は、試料用マスク80を薄膜有機太陽電池の表側、すなわち、ガラス基板10上に張り付け、遮光用マスク90を試料用マスク80上に張り付けた。また、透明電極(ITO電極)20には、Agペースト73をつけ、端子24と端子74に接続した。そして図3に示すように疑似太陽光を透明基板10側から照射した。   As shown in FIG. 3, the intersection of the transparent electrode 20 and the aluminum electrode 70 is defined as a measurement area 84, and a sample mask 80 that matches the shape of the measurement area 84 for measurement, and a black paper other than the measurement range. A light shielding mask 90 was prepared to block the light. At the time of measurement, the sample mask 80 was attached to the front side of the thin film organic solar cell, that is, the glass substrate 10, and the light shielding mask 90 was attached to the sample mask 80. Further, an Ag paste 73 was applied to the transparent electrode (ITO electrode) 20 and connected to the terminals 24 and 74. Then, as shown in FIG. 3, simulated sunlight was irradiated from the transparent substrate 10 side.

このようにして、測定したデータは、図4に示すように解析される。図4に示すように暗い状態で測定した値(図4上の一点鎖線)に対して、疑似太陽光を照射した値(図4上の実線)のような曲線を描く。この曲線上で電圧と電流を掛けた最大生成電力Pmaxを入射光エネルギーで割り算して、最大光エネルギー変換効率を求める。
また、図4に示すような短絡電流密度Jscと開放電圧Voc測定し、これらを乗じた値を分母とし、最大生成電力Pmaxを分子として、フィルファクターFFを算出する。
Thus, the measured data is analyzed as shown in FIG. As shown in FIG. 4, a curve such as a value (solid line in FIG. 4) irradiated with pseudo-sunlight is drawn with respect to a value measured in a dark state (one-dot chain line on FIG. 4). The maximum generated power Pmax obtained by multiplying the voltage and the current on this curve is divided by the incident light energy to obtain the maximum light energy conversion efficiency.
Further, the short-circuit current density Jsc and the open circuit voltage Voc as shown in FIG. 4 are measured, and the fill factor FF is calculated using the value obtained by multiplying these as the denominator and the maximum generated power Pmax as the numerator.

本発明の実施例1である、1.4nmの厚さのパラジウム薄膜を用いた例では、図5、図6に示すように、金属膜を用いない例よりも効率が0.73%向上していることが判明した。また、貴金属である金、銀を用いたサンプルよりも効率上昇率が大きいことが判明した。   In the example using the palladium thin film having a thickness of 1.4 nm, which is Example 1 of the present invention, the efficiency is improved by 0.73% as compared with the example using no metal film, as shown in FIGS. Turned out to be. It was also found that the rate of increase in efficiency was greater than that of samples using noble metals such as gold and silver.

以上のようにして、金、銀等の高価な材料を用いないで同等以上の性能を有する有機薄膜太陽電池を提供することができることが判明した。
<実施例2>
As described above, it has been found that an organic thin film solar cell having equivalent or better performance can be provided without using expensive materials such as gold and silver.
<Example 2>

実施例2は、パラジウムにかえて、銅の薄膜を使用する例である。銅は、電気産業にて多く使用されている。銅も金、銀、パラジウムと同様に結晶構造は、面心立法構造である(長島弘三、富田功著「一般化学」ページ95参照)。また、銅は周期表で原子番号29であり、パラジウムは原子番号46であり、同じN殻の電子分布をもつ(長島弘三、富田功著「一般化学」ページ26,27参照)。   Example 2 is an example in which a copper thin film is used instead of palladium. Copper is widely used in the electrical industry. Copper, like gold, silver and palladium, has a face-centered structure (see “General Chemistry” page 95 by Kozo Nagashima and Isao Tomita). Copper has atomic number 29 in the periodic table and palladium has atomic number 46, and has the same N-shell electron distribution (see “General Chemistry” pages 26 and 27 by Kozo Nagashima and Isao Tomita).

今回の試作品では、他の金属膜と同じ厚さの1.4nmであり、構成、製作方法は、図1と図2のパラジウムを銅に置く変えたのみであるので、説明を省略する。   In this prototype, the thickness is 1.4 nm, which is the same thickness as other metal films, and the configuration and manufacturing method are simply changed by placing palladium in FIG. 1 and FIG.

図5、図6に示すように、銅の金属薄膜を使用した場合に、使わないケースより、0.24%効率が向上している。したがって、表面プラズモン共鳴効果が表れていると推定される。   As shown in FIGS. 5 and 6, when a copper metal thin film is used, the efficiency is improved by 0.24% as compared with the case where the copper thin film is not used. Therefore, it is estimated that the surface plasmon resonance effect appears.

また、表面プラズモン共鳴効果が表れる適切な厚みを選定することにより、金薄膜を使用した有機太陽電池に匹敵する性能を有する有機太陽電池を実現する可能性がある。   In addition, by selecting an appropriate thickness that exhibits the surface plasmon resonance effect, there is a possibility of realizing an organic solar cell having performance comparable to that of an organic solar cell using a gold thin film.

以上のようにして、金、銀等の高価な材料を用いないで同等以上の性能を有する有機薄膜太陽電池を提供することができる。   As described above, it is possible to provide an organic thin-film solar cell having equivalent or better performance without using expensive materials such as gold and silver.

本発明の実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることができる。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   Although described using the embodiment of the present invention, the technical scope of the present invention is not limited to the scope described in the above embodiment. Various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10 透明基板
20 透明電極
22 正極端子
30 PEDOT:PSS複合膜
40 複合光起電力薄膜
50 パラジウム又は銅薄膜層
60 フッ化リチウム層
70 アルミ電極
72 負極端子
DESCRIPTION OF SYMBOLS 10 Transparent substrate 20 Transparent electrode 22 Positive electrode terminal 30 PEDOT: PSS composite film 40 Composite photovoltaic thin film 50 Palladium or copper thin film layer 60 Lithium fluoride layer 70 Aluminum electrode 72 Negative electrode terminal

Claims (4)

有機薄膜太陽電池であって、
太陽光に対して透明な基板と、
前記基板上に設けられた透明な電極と、
前記電極上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜と、
前記複合薄膜上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層と、
前記複合光起電力薄膜層上に設けられたパラジウム金属薄膜層と、
前記パラジウム金属薄膜層上に設けられた半絶縁層と、
前記半絶縁層上に設けられた電極と、
を備えた有機薄膜太陽電池。
An organic thin film solar cell,
A substrate transparent to sunlight,
A transparent electrode provided on the substrate;
A poly 3,4-ethylenedioxythiophene (PEDOT): polystyrene-sulfonic acid (PSS) composite thin film provided on the electrode;
A composite photovoltaic thin film layer comprising polyhexylthiophine and a fullerene derivative provided on the composite thin film;
A palladium metal thin film layer provided on the composite photovoltaic thin film layer;
A semi-insulating layer provided on the palladium metal thin film layer;
An electrode provided on the semi-insulating layer;
Organic thin-film solar cell with
前記パラジウム金属薄膜層の厚みが1nmから8nmである請求項1に記載の有機薄膜太陽電池。   The organic thin film solar cell according to claim 1, wherein the palladium metal thin film layer has a thickness of 1 nm to 8 nm. 有機薄膜太陽電池であって、
太陽光に対して透明な基板と、
前記基板上に設けられた透明な電極と、
前記電極上に設けられたポリ3,4−エチレンジオキシチフェン(PEDOT):ポリスチレン・スルホン酸(PSS)複合薄膜と、
前記複合薄膜上に設けられたポリヘキシルチオフィンとフラーレン誘導体による複合光起電力薄膜層と、
前記複合光起電力薄膜層上に設けられた銅金属薄膜層と、
前記銅金属薄膜層上に設けられた半絶縁層と、
前記半絶縁層上に設けられた電極と、
を備えた有機薄膜太陽電池。
An organic thin film solar cell,
A substrate transparent to sunlight,
A transparent electrode provided on the substrate;
A poly 3,4-ethylenedioxythiophene (PEDOT): polystyrene-sulfonic acid (PSS) composite thin film provided on the electrode;
A composite photovoltaic thin film layer comprising polyhexylthiophine and a fullerene derivative provided on the composite thin film;
A copper metal thin film layer provided on the composite photovoltaic thin film layer;
A semi-insulating layer provided on the copper metal thin film layer;
An electrode provided on the semi-insulating layer;
Organic thin-film solar cell with
前記半絶縁層の厚みが0.2nmから1nmである請求項1から請求項3のいずれかに記載の有機薄膜太陽電池。
The organic thin-film solar cell according to any one of claims 1 to 3, wherein the semi-insulating layer has a thickness of 0.2 nm to 1 nm.
JP2009205392A 2009-09-07 2009-09-07 Organic thin film solar cell Pending JP2011060795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205392A JP2011060795A (en) 2009-09-07 2009-09-07 Organic thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205392A JP2011060795A (en) 2009-09-07 2009-09-07 Organic thin film solar cell

Publications (1)

Publication Number Publication Date
JP2011060795A true JP2011060795A (en) 2011-03-24

Family

ID=43948143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205392A Pending JP2011060795A (en) 2009-09-07 2009-09-07 Organic thin film solar cell

Country Status (1)

Country Link
JP (1) JP2011060795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911389A (en) * 2012-11-01 2013-02-06 喻小琦 Polythiophene composite material and preparation method thereof
WO2014181765A1 (en) * 2013-05-09 2014-11-13 ローム株式会社 Organic thin film solar cell and method for manufacturing same
KR101543258B1 (en) 2013-10-24 2015-08-11 한국과학기술원 Inverted polymer solar cells with randomly nanostructured surface electrode and manufacturing method thereof
CN105552234A (en) * 2015-12-23 2016-05-04 成都新柯力化工科技有限公司 Perovskite photovoltaic composite material for 3D printing forming and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911389A (en) * 2012-11-01 2013-02-06 喻小琦 Polythiophene composite material and preparation method thereof
WO2014181765A1 (en) * 2013-05-09 2014-11-13 ローム株式会社 Organic thin film solar cell and method for manufacturing same
KR101543258B1 (en) 2013-10-24 2015-08-11 한국과학기술원 Inverted polymer solar cells with randomly nanostructured surface electrode and manufacturing method thereof
CN105552234A (en) * 2015-12-23 2016-05-04 成都新柯力化工科技有限公司 Perovskite photovoltaic composite material for 3D printing forming and preparation method thereof

Similar Documents

Publication Publication Date Title
Lakhdar et al. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3
He et al. Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression
Rong et al. Challenges for commercializing perovskite solar cells
Park et al. 13.2% efficiency Si nanowire/PEDOT: PSS hybrid solar cell using a transfer-imprinted Au mesh electrode
Mali et al. Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells
Zhang et al. Improved PEDOT: PSS/c-Si hybrid solar cell using inverted structure and effective passivation
Shen et al. Hybrid heterojunction solar cell based on organic–inorganic silicon nanowire array architecture
Zheng et al. High‐Efficiency ITO‐Free Organic Photovoltaics with Superior Flexibility and Upscalability
Mariani et al. Low-temperature graphene-based paste for large-area carbon perovskite solar cells
Kim et al. 18.4%-efficient heterojunction Si solar cells using optimized ITO/Top electrode
Gupta et al. Highly conformal Ni micromesh as a current collecting front electrode for reduced cost Si solar cell
Chou et al. The effect of SWCNT with the functional group deposited on the counter electrode on the dye-sensitized solar cell
Zhang et al. High-performance ultrathin organic–inorganic hybrid silicon solar cells via solution-processed interface modification
Sakata et al. Performance of Si/PEDOT: PSS solar cell controlled by dipole moment of additives
Wu et al. Hysteresis analysis in dye-sensitized solar cells based on external bias field effects
JP2011060795A (en) Organic thin film solar cell
Mali et al. Stability of unstable perovskites: recent strategies for making stable perovskite solar cells
Li et al. Performance improvement of PEDOT: PSS/N-Si heterojunction solar cells by alkaline etching
Wen et al. Achievable efficiency improvement of Sb2Se3 thin-film solar cells through interface engineering
Liu et al. Photoinduced field-effect passivation from negative carrier accumulation for high-efficiency silicon/organic heterojunction solar cells
JP6959795B2 (en) Manufacturing method of back contact type solar cell
Wang et al. Effect of photo-doping on performance for solid-state dye-sensitized solar cell based on 2, 2′ 7, 7′-tetrakis-(N, N-di-p-methoxyphenyl-amine)-9, 9′-spirobifluorene and carbon counter electrode
Siwach et al. To investigate opulence of graphene in ZnO/graphene nanocomposites based dye sensitized solar cells
KR101390775B1 (en) Organic solar cell including metal wiring buried substrates, and the preparation method thereof
JP2006093284A (en) Photoelectric conversion element