JP2011058814A - System, method and program for predicting solar radiation - Google Patents
System, method and program for predicting solar radiation Download PDFInfo
- Publication number
- JP2011058814A JP2011058814A JP2009205492A JP2009205492A JP2011058814A JP 2011058814 A JP2011058814 A JP 2011058814A JP 2009205492 A JP2009205492 A JP 2009205492A JP 2009205492 A JP2009205492 A JP 2009205492A JP 2011058814 A JP2011058814 A JP 2011058814A
- Authority
- JP
- Japan
- Prior art keywords
- solar radiation
- radiation amount
- prediction
- amount
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 241
- 238000000034 method Methods 0.000 title claims description 13
- 238000001556 precipitation Methods 0.000 claims abstract description 58
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 230000002123 temporal effect Effects 0.000 claims description 32
- 238000012937 correction Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000012876 topography Methods 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 5
- 238000012905 input function Methods 0.000 claims description 3
- 238000010248 power generation Methods 0.000 description 11
- 238000000605 extraction Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、日射量予測装置、方法及びプログラムに関する。 The present invention relates to a solar radiation amount prediction apparatus, method, and program.
低炭素社会に向け、風力発電や太陽光発電といった自然エネルギーの積極利用が推進されている。特に、太陽光を電気信号に変換する光電変換素子を使用する太陽光発電施設が導入されつつある。太陽光発電は、日射量に大きく左右されるので、効率的な運用のためには日射量の予測が必要である。 Active use of natural energy such as wind power generation and solar power generation is being promoted toward a low-carbon society. In particular, photovoltaic power generation facilities that use photoelectric conversion elements that convert sunlight into electrical signals are being introduced. Since solar power generation is greatly affected by the amount of solar radiation, it is necessary to predict the amount of solar radiation for efficient operation.
特許文献1には、太陽光発電システムの設置地域において過去に観測された天気現象と過去に計測された日射量とを基に日射量予測式を導出し、当該設置地域の天気予報と、予測対象日の予測実施時刻前に当該設置地域において計測された日射量とを日射量予測式に入力することにより、日射量を予測する技術が記載されている。 In Patent Document 1, a solar radiation amount prediction formula is derived based on the weather phenomenon observed in the past in the area where the photovoltaic power generation system is installed and the amount of solar radiation measured in the past. A technique for predicting the amount of solar radiation by inputting the amount of solar radiation measured in the installation area before the prediction execution time of the target day into the solar radiation amount prediction formula is described.
特許文献2には、リモートセンシング画像から現在の日射量(実績値)を算出し、過去のリモートセンシング画像と現在のリモートセンシング画像から雲の移動量の予測値を求め、将来の、例えば3時間先までの日射量を予測することが記載されている。 In Patent Document 2, a current amount of solar radiation (actual value) is calculated from a remote sensing image, a predicted value of cloud movement amount is obtained from a past remote sensing image and a current remote sensing image, and in the future, for example, 3 hours It is described that the amount of solar radiation is predicted.
また、特許文献3には、毎時観測されるGMS(Geostationary Meteorological Satellite)画像データから、1時間毎に約1kmの分解能で地上到達日射量を推定することが記載され、日射量推定モデルに、雲のない晴天域での計算式と、雲のある雲域での計算式があることが記載されている。 Further, Patent Document 3 describes that the amount of solar radiation reaching the ground is estimated at a resolution of about 1 km every hour from GMS (Geostationary Meteorological Satellite) image data observed every hour. It is described that there is a calculation formula in a clear sky area without a cloud and a calculation formula in a cloud area with a cloud.
大規模太陽光発電施設では、計画的な発電と発電量の予測が重要であり、そのためには、1日の日照量変化を可能な限り正確に予測する必要がある。大規模太陽光発電施設の運用を考慮すると、前日の段階で翌日の日射量変動を予測し、その予測に基づき1日を運用するのが最も効果的である。しかし、前日の予測では、当日の急な天候の変化に対応できない。このような場合に対応する運転計画修正のためには、3時間乃至6時間程度先までの精度の高い日射量短時間予測が求められる。 In a large-scale photovoltaic power generation facility, planned power generation and prediction of power generation amount are important, and for that purpose, it is necessary to predict daily changes in sunshine amount as accurately as possible. In consideration of the operation of a large-scale photovoltaic power generation facility, it is most effective to predict the fluctuation of the amount of solar radiation on the next day in the previous day and operate one day based on the prediction. However, the prediction of the previous day cannot cope with the sudden change in weather on that day. In order to correct the operation plan corresponding to such a case, high-accuracy solar radiation amount short-time prediction of about 3 to 6 hours ahead is required.
特許文献1に記載の技術は、当該設置地域の天気予報を用いるので、もともと、精度の良い日射量短時間予測は困難である。特許文献2、3に記載の技術では、雲の移動を予測し、それを日射量変化に反映させているが、雲の光透過率も考慮しないと、高精度な日射量予測は難しい。 Since the technique described in Patent Document 1 uses a weather forecast for the installation area, it is originally difficult to accurately predict the amount of solar radiation for a short time. In the techniques described in Patent Documents 2 and 3, the movement of the cloud is predicted and reflected in the change in the amount of solar radiation. However, if the light transmittance of the cloud is not taken into account, it is difficult to predict the amount of solar radiation with high accuracy.
本発明は、短時間先の日照量をより高い精度で予測出来る日射量予測装置、方法及びプログラムを提示することを目的とする。 An object of this invention is to show the solar radiation amount prediction apparatus, method, and program which can predict the amount of sunshine ahead of a short time with higher precision.
本発明に係る日射量予測装置は、現在から遡る過去の所定期間の、予測対象地点を含む所定地域の日射量観測値データを入力する観測値入力手段と、快晴時日射量理論値を参照して、当該日射量観測値データを、日射量を妨害する気象要素の時間的空間的分布データに変換する日射量/気象要素変換手段と、当該所定地域の地形を参照し、当該日射量/気象要素変換手段により得られる当該気象要素の時間的空間的分布データの時間的空間的な移動及び変形を予測する移動変形予測手段と、当該移動変形予測手段により予測された当該気象要素のデータを、対応する日時の快晴時日射量理論値を参照して予測全天日射量に変換する日射量変換手段とを具備することを特徴とする。 The solar radiation amount prediction apparatus according to the present invention refers to observation value input means for inputting solar radiation amount observation value data of a predetermined area including a prediction target point in a past predetermined period retroactive from the present time, and a clear sunny solar radiation amount theoretical value. The solar radiation amount / meteorological data conversion means for converting the solar radiation observation value data into temporal / spatial distribution data of the weather element that disturbs the solar radiation amount, and the topography of the predetermined area with reference to the solar radiation amount / weather The movement deformation prediction means for predicting the temporal and spatial movement and deformation of the temporal and spatial distribution data of the weather element obtained by the element conversion means, and the data of the weather element predicted by the movement deformation prediction means, A solar radiation amount conversion means for converting into a predicted global solar radiation amount with reference to a theoretical value of the sunny solar radiation amount at a corresponding date and time.
本発明に係る日射量予測方法は、現在から遡る過去の所定期間の、予測対象地点を含む所定地域の日射量観測値データをコンピュータに入力する観測値入力ステップと、当該コンピュータが、快晴時日射量理論値を参照して、当該日射量観測値データを、日射量を妨害する気象要素の時間的空間的分布データに変換する日射量/気象要素変換ステップと、当該コンピュータが、当該所定地域の地形を参照し、当該日射量/気象要素変換ステップにより得られる当該気象要素の時間的空間的分布データの時間的空間的な移動及び変形を予測する移動変形予測ステップと、当該コンピュータが、当該移動変形予測ステップにより予測された当該気象要素のデータを、対応する日時の快晴時日射量理論値を参照して予測全天日射量に変換する日射量変換ステップとを具備することを特徴とする。 The solar radiation amount prediction method according to the present invention includes an observation value input step of inputting, into a computer, solar radiation amount observation value data of a predetermined area including a prediction target point in a past predetermined period retroactive from the present time, The solar radiation amount / meteorological element conversion step for converting the observed solar radiation amount data into temporal and spatial distribution data of the weather elements that interfere with the solar radiation amount with reference to the theoretical value of the amount, and the computer A movement deformation prediction step for predicting temporal and spatial movement and deformation of the temporal and spatial distribution data of the weather element obtained by the solar radiation / meteorological element conversion step with reference to the terrain, and the computer The amount of solar radiation that converts the data of the meteorological element predicted by the deformation prediction step into the predicted global solar radiation amount with reference to the theoretical value of sunny solar radiation at the corresponding date and time Characterized by comprising a conversion step.
本発明に係る日射量予測プログラムは、コンピュータを使って日射量を予測させる日射量予測プログラムであって、当該コンピュータに、現在から遡る過去の所定期間の、予測対象地点を含む所定地域の日射量観測値データを入力させる観測値入力機能と、快晴時日射量理論値を参照して、当該日射量観測値データを、日射量を妨害する気象要素の時間的空間的分布データに変換させる日射量/気象要素変換機能と、当該所定地域の地形を参照し、当該日射量/気象要素変換機能により得られる当該気象要素の時間的空間的分布データの時間的空間的な移動及び変形を予測させる移動変形予測機能と、当該移動変形予測機能により予測された当該気象要素のデータを、対応する日時の快晴時日射量理論値を参照して予測全天日射量に変換させる日射量変換機能とを実現させることを特徴とする。 The solar radiation amount predicting program according to the present invention is a solar radiation amount predicting program for predicting the solar radiation amount using a computer. The solar radiation amount predicting program for a predetermined area including a prediction target point in the past predetermined period retroactive to the present computer. With reference to the observation value input function that inputs observation data and the theoretical value of sunny solar radiation, the solar radiation amount is converted into temporal and spatial distribution data of meteorological elements that interfere with solar radiation. / Meteorological element conversion function and movement that predicts temporal and spatial movement and deformation of the temporal and spatial distribution data of the weather element obtained by the solar radiation / meteorological element conversion function with reference to the topography of the predetermined area The data of the meteorological element predicted by the deformation prediction function and the movement deformation prediction function are converted into predicted global solar radiation with reference to the theoretical value of sunny solar radiation at the corresponding date and time. Characterized in that to realize the solar radiation conversion function.
本発明は、日射量観測値の時間的空間的分布データを、日射量を妨害する気象要素の時間的空間的分布データに変換した上で、地形を加味して時間的空間的な移動及び変形を予測した上で、全天日射量に戻すので、短時間先の全天日射量を精度よく予測できる。 The present invention converts temporal and spatial distribution data of observed solar radiation values into temporal and spatial distribution data of meteorological elements that interfere with solar radiation, and then moves and transforms temporally and spatially in consideration of topography. Since it is returned to the global solar radiation amount after predicting, the global solar radiation amount ahead for a short time can be accurately predicted.
以下、図面を参照して、本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明の一実施例の概略構成ブロック図を示し、図2は、本実施例の動作フローチャートを示す。本実施例は、コンピュータ上のプログラムとして実現されるが、その機能の一部又は全部を専用ハードウエアで代替することが可能であるかことは明らかである。 FIG. 1 shows a schematic block diagram of an embodiment of the present invention, and FIG. 2 shows an operation flowchart of this embodiment. Although this embodiment is realized as a program on a computer, it is obvious that a part or all of the functions can be replaced with dedicated hardware.
コンピュータのCPU10は、以下の説明する種々の演算機能30〜46を果たす。気象観測衛星による観測で得られる、予測対象地点を含む地域の現在から過去に遡る一定期間内の日射量メッシュデータ12を、CPU10の日射量補正機能30に入力する。日射量メッシュデータ12は、空間的なメッシュ上の時間的に分布する時間的空間的な分布データであり、例えば、空間的なメッシュ間隔は例えば、1kmであり、時間軸方向の間隔は例えば1時間である。日射量メッシュデータ12の精度を高めるために、日射量メッシュデータ12の地域内の複数の地点での、地上で同時刻に観測される日射量観測値14を日射量補正機能30に入力する。日射量補正機能30は、日射量観測値14に従い、同地点又は近地点で日射量観測値14に一致するように日射量メッシュデータ12を全体的に補正し、補正結果を日射量/疑似降水量変換機能32に出力する。
The
日射量メッシュデータ12の各メッシュ点について、日射量メッシュデータ12(及び日射量観測値14)と同時刻の快晴時日射量理論値16をCPU10の日射量/疑似降水量変換機能32に入力する。快晴時日射量理論値16は、日射量メッシュデータ12の各メッシュ点において、対応時刻に得られる理論的な日射量、すなわち、雲及び降雨等の日射妨害が無い状態での日射量である。各メッシュ点の緯度経度及び観測日時の情報から大気外日射量並びに、太陽の高度及び方位を計算でき、快晴時日射量理論値16は、この計算結果から、雲の全くない理想的な状況の日射量として計算されうる。
For each mesh point of the solar radiation
日射量/疑似降水量変換機能32は、日射量補正機能30からの補正日射量メッシュデータと快晴時日射量理論値16とから、下記式に従い疑似降水量を算出する。快晴時日射量理論値16を減衰する要因が降水量である場合の関係式を利用し、各メッシュ点について、
疑似降水量=(1.0−補正日射量メッシュデータ/快晴時日射量理論値)×100
とする。ここでは、疑似降水量の最大値を100mm/hとしている。
The solar radiation amount / pseudo
Pseudo precipitation = (1.0-corrected solar radiation mesh data / sunny solar radiation theoretical value) x 100
And Here, the maximum value of the pseudo precipitation is 100 mm / h.
このように計算した一定地域内の疑似降水量を過去の一定期間(tp〜t0)についてハードディスク50に疑似降水量データファイル52として格納する。t0は一般的には日射量データ12,14を得られる直近の過去の観測日時であり、tpはt0より過去に一定時間遡った過去の日時を示す。ファイル52には、一定期間(tp〜t0)内の1時間毎について、一定の地域における疑似降水量のメッシュデータ、すなわち、疑似降水量の時間的空間的分布を示すデータが格納される。
The simulated precipitation in the certain area thus calculated is stored as the simulated
日射を遮る気象要素が主として雲と降水/降雪であり、本実施例では、これらの変化又は移動を一括して定量評価する指標として疑似降水量という概念を導入したものであり、上式で得られる疑似降水量が降水量そのものに直結するものではないことに注意する必要がある。疑似降水量の代わりに、雲の厚みと日射量の減衰量との関係式を使用する場合には、疑似雲量として定量評価することになる。日射量/疑似降水量変換機能32は、後述する時間的空間的な移動変形を演算出来る気象要素に置換して、日射量の減衰を定量評価する手段と言える。
The meteorological elements that block solar radiation are mainly clouds and precipitation / snowfall. In this example, the concept of simulated precipitation was introduced as an index for quantitative evaluation of these changes or movements. It should be noted that the simulated precipitation produced is not directly related to the precipitation itself. When the relational expression between the cloud thickness and the amount of solar radiation attenuation is used instead of the pseudo precipitation, the pseudo cloud quantity is quantitatively evaluated. The solar radiation amount / pseudo
CPU10の疑似降水量移動変形予測機能34は、日射量メッシュデータ12の対象地域の地形データ18を参照し、将来の一定期間(tc〜tf)について疑似降水量データファイル52から、将来に向けた疑似降水量分布データの時間変化を一定時間間隔、例えば30分間隔で予測する。tcは現在又は未来の直近の予測日時を示し、tfはtcから一定時間後の未来の予測日時を示す。本実施例では、tpは、tcから3時間後乃至6時間後である。
The simulated precipitation movement
流体の移動は、例えば、移流モデルにより予測可能である。疑似降水量移動変形予測機能34も、ファイル52の時間的空間的な疑似降水量分布データに移流モデルを適用して、未来に向けた疑似降水量分布の移動/変形を一定時間間隔で計算する。図2(A)に示すように、疑似降水量分布を空間上で多数の小領域に区分し、この小領域単位で疑似降水量を時間軸方向で対比することで、小領域単位での移動ベクトルを算出出来る。これにより、1又は少数の小領域単位での移動/変形も定量的に把握出来ることになる。図2(A)は小領域単位での移動ベクトルの様子を示し、図2(B)は、図2(A)に示す小領域単位の移動ベクトルを3×3の小領域の全体での大まかな動きベクトルで表記した例を示す。
The movement of the fluid can be predicted by an advection model, for example. The simulated precipitation movement
本実施例では、このように得られた移動ベクトルから、将来の短時間の間での、疑似降水量分布の時間変化を予測する際に、地形の影響を加味する。地形データ18は、例えば、1kmメッシュ地形データとし、風向は16方位で考慮する。例えば、山地の風上側では、上昇気流により雲が発生しやすく、従って、降水が強まるように作用する。逆に、山の風下側では、下降気流により雲が消失するので、降水が弱まる。疑似降水量移動変形予測機能34は、このような地形による影響の補正を将来の疑似降水量に加えて、予測疑似降水量とする。得られた予測疑似降水量のメッシュデータ(x,y,tc〜tf)は、ハードディスク50に予測疑似降水量データファイル54として格納される。
In the present embodiment, the influence of topography is taken into account when predicting the temporal change of the pseudo precipitation distribution during the short time in the future from the movement vector thus obtained. The
なお、以後の処理で、特定の予測対象地域のみの日射量予測を得られれば良い場合には、ファイル54には、最小限、目的とする予測対象地域の予測疑似降水量データ(時間的分布データ)のみを格納すれば良い。また、時間軸について、特定の予測対象日時における日射量予測のみが必要である場合には、ファイル54には、最小限、目的とする予測対象日時の予測疑似降水量データ(空間的分布データ)のみを格納すれば良い。更に、特定の予測対象地点における特定の予測対象日時での日射量予測が必要な場合には、ファイル54には、最小限、目的とする予測対象地点の目的とする予測対象日時のスポット的な予測疑似降水量データのみを格納すれば良い。
If it is sufficient to obtain the solar radiation amount prediction only for a specific prediction target area in the subsequent processing, the
CPU10の全天日射量変換機能36は、tc〜tfの間の予測日時tの快晴時日射量理論値20を参照し、日射量/疑似降水量変換機能32での関係式とは逆の関係式で、ファイル54の予測疑似降水量を全天日射量に変換する。変換後の全天日射量は、ここでは予測値なので、予測日射量と表記する。すなわち、全天日射量変換機能36は、各メッシュ上の各予測日時について、
予測全天日射量=(1.0−予測疑似降水量/100)×快晴時日射量理論値
により予測日射量を計算する。全天日射量変換機能36は、変換結果のメッシュデータをハードディスク50の予測日射量データファイル56に格納する。予測日射量データファイル56に格納される予測日射量データは、予測日射量の時間的空間的分布、すなわち、現在より先の一定期間(tc〜tf)について予測対象地点を含む一定地域範囲内での予測日射量の分布を示す。
The global solar radiation amount conversion function 36 of the
Predicted global solar radiation = (1.0−predicted simulated precipitation / 100) × sunny solar radiation theoretical value is calculated. The total solar radiation amount conversion function 36 stores the mesh data of the conversion result in the predicted solar radiation amount data file 56 of the
快晴時日射量理論値20は、快晴時日射量理論値16と同様に計算されうる。すなわち、快晴時日射量理論値20は、各メッシュ点の緯度経度及び予測日時(tc〜tf)から計算される大気外日射量並びに太陽の高度及び方位に基づき、計算されうる。
The clear sunny solar radiation amount
CPU10の予測対象地点抽出機能38は、予測対象地点の緯度経度データ22に従い、ハードディスク50の予測日射量データファイル56から予測対象地点(X,Y)の未来の一定期間(tc〜tf)の予測日射量データを抽出する。予測対象地点の予測日射量データを地点予測日射量データと呼ぶ。予測対象地点がメッシュ上にある場合には、当該メッシュ上の予測日射量データを地点予測日射量データとして抽出し、予測対象地点がメッシュ上にない場合には、周囲のメッシュ上の予測日射量を内挿又は補間して、予測対象地点上の予測日射量データを生成する。予測対象地点抽出機能38で抽出された地点予測日射量データは、予測対象地点(X,Y)における未来の一定期間(tc〜tf)の予測日射量の時間的変化又は時間的分布を示す。勿論、予測日射量の時間的変化は不要で、特定の時間における予測日射量のみを知りたいときには、その特定の時間の予測日射量をファイル56から抽出すれば良い。
The prediction target
予測疑似降水量データファイル54に格納される予測疑似降水量データが、既に予測対象地点に限定されている場合、予測対象地点抽出機能38による地点抽出が不要であることがいうまでもない。換言すれば、全天日射量変換機能36の実行前に、予測対象地点抽出機能38を実行しても良い。
Needless to say, when the predicted simulated precipitation data stored in the predicted simulated precipitation data file 54 is already limited to the prediction target points, the point extraction by the prediction target
本実施例の演算はデータ量が膨大であるので計算処理に時間がかかり、予測日射量データファイル56を生成出来た時点で、予測対象地点で予測日時に又はその前後での日射量観測値を得られている場合がある。CPU10の補正機能40は、そのような、予測対象地点で日射量を観測している場合に機能する。すなわち、補正機能40は、予測対象地点抽出機能38で抽出された予測対象地点(X,Y)の一定期間(tc〜tf)の予測日射量データを、予測対象地点の同時刻の観測日射量との誤差を線形に外挿入することにより、補正する。但し、将来になるほど不明確になるので、時間の経過により補正量を小さくする。このような補正により、直近の予測値の予測精度を向上させることができる。補正機能40により補正された一定期間(tc〜tf)の地点予測日射量データは、ハードディスク50にファイル58として格納される。
Since the calculation of this embodiment takes a large amount of data, the calculation process takes time, and when the predicted solar radiation amount data file 56 can be generated, the solar radiation amount observed value at or near the predicted date and time at the prediction target point. May have been obtained. The
補正機能40は例えば、観測日時と一致又は近い予測日時の予測日射量と観測値との差を実況補正値とし、その実況補正値に予測日時が遠くなる程小さくなる重み係数を乗算して、予測日射量に加算する。数式で表現すると、例えば、
補正予測値(i)=予測値(i)−実況補正値×(最大補正時間−i)/最大補正時間
実況補正値=予測値(0)−観測値
となる。ただし、最大補正時間は、ここで補正を行う時間長であり、例えば、6時間先までの予測値を補正する場合には、6となる。iは、観測値の観測日時から予測日時までの時間を示し、本実施例では、0から6時間である。予測値(i)は、予測時間iの予測値、補正予測値(i)は、本機能40により補正された予測値(予測日射量)である。予測値(0)は、観測値を得られた日時に一致又はほぼ一致する予測日時の予測値である。
For example, the
Correction predicted value (i) = predicted value (i) −actual correction value × (maximum correction time−i) / maximum correction time actual correction value = predicted value (0) −observed value. However, the maximum correction time is the length of time to be corrected here, and is, for example, 6 when correcting predicted values up to 6 hours ahead. i indicates the time from the observation date and time of the observed value to the predicted date and time, and is 0 to 6 hours in this embodiment. The predicted value (i) is the predicted value of the predicted time i, and the corrected predicted value (i) is the predicted value (predicted solar radiation amount) corrected by the
ファイル58の地点予測日射量データが全天日射量であるのに対し、太陽電池は一般に、発電効率や降雪を考慮して一定の方向に向けて傾斜して設置されている。太陽電池の傾斜の方位は固定されている場合もあるし、太陽に追従するように自動変更される場合もあるが、対規模設備の場合、方位は固定されているのが一般的である。
Whereas the point predicted solar radiation data in the
日射量は、太陽から直接入射する直達成分と、大気で散乱された散乱成分1と、地面で反射され入射する散乱成分2に分けられる。水平面に対する全天日射量は、直達成分と散乱成分1の合計であるが、傾斜角を持ったパネルの場合、さらに地面からの散乱成分2が加わるのと、太陽に向かって垂直に近くなるので、直達成分が強まる。このような傾斜角を持った面に入射する直達成分と散乱成分の計算には、Perezモデル、又は、日本建築学会刊「「拡張アメダス気象データ」のp.341に記載されるErbsモデルが、利用可能であり、本実施例でも、これらのモデルを利用する。 The amount of solar radiation is divided into a directly achieved component directly incident from the sun, a scattering component 1 scattered in the atmosphere, and a scattering component 2 reflected and incident on the ground. The total solar radiation for the horizontal plane is the sum of the directly achieved component and the scattering component 1. However, in the case of a panel with an inclination angle, if the scattering component 2 from the ground is further added, it becomes nearly perpendicular to the sun. , The direct achievement increases. For the calculation of the directly achieved component and the scattering component incident on the surface having such an inclination angle, the Perez model or “Amedas Meteorological Data” p. The Erbs model described in H.341 can be used, and these models are also used in this embodiment.
CPU10の太陽位置計算機能42が、予測対象地点(X,Y)の緯度経度情報と、地点予測日射量データファイル58の予測日時とから、予測対象地点の予測日時における大気外日射量、太陽方位及び太陽高度を計算する。
The solar
CPU10の直散分離機能44は、太陽位置計算機能42により計算される予測対象地点の予測日時における大気外日射量、太陽方位及び太陽高度を参照し、ファイル58からの同じ予測日時の地点予測日射量データの示す全天日射量を直達日射量と散乱日射量に分離する。
The direct divergence separation function 44 of the
そして、CPU10の傾斜面日射量計算機能46が、太陽電池の傾斜角と方位、太陽位置計算機能42による大気外日射量、太陽方位及び太陽高度、直散分離機能44からの直達日射量及び散乱日射量、並びに、ファイル48からの予測日時の地点予測日射量データの示す全天日射量から、太陽電池に入射する傾斜面日射量(予測傾斜面日射量)を計算する。
And the inclined surface solar radiation
このようにして得られた予測日時tc〜tfの予測傾斜面日射量が、表示印刷装置60により、表示され、印刷され、発電計画の資料となる。表示印刷装置60は、画像表示装置もしくはプリンタ、又は、これらの両方からなる。
The predicted inclined surface solar radiation amount of the predicted dates and times tc to tf obtained in this way is displayed and printed by the
ハードディスク50及びここに記録されるファイル52〜58は、ローカルに存在するものでも、ネットワーク上に存在するものでも良いことは勿論であり、ファイル52〜58は単一の記録媒体に記録される必要は無い。
Of course, the
特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。 Although the invention has been described with reference to specific illustrative embodiments, various modifications and alterations may be made to the above-described embodiments without departing from the scope of the invention as defined in the claims. This is obvious to an engineer in the field to which the present invention belongs, and such changes and modifications are also included in the technical scope of the present invention.
10:CPU
12:日射量メッシュデータ
14:日射量観測値
16:快晴時日射量理論値
18:地形データ
20:予測日時の快晴時日射量理論値
22:予測対象地点の緯度経度データ
24:予測対象地点の日射量観測値
26:予測対象地点の緯度経度データ
28:太陽電池の傾斜角・方位
30:日射量補正機能
32:日射量/疑似降水量変換機能
34:疑似降水量移動変形予測機能
36:全天日射量変換機能
38:予測対象地点抽出機能
40:補正機能
42:太陽位置計算機能
44:直散分離機能
46:傾斜面日射量計算機能
50:ハードディスク
52:疑似降水量データファイル
54:予測疑似降水量データファイル
56:予測日射量データファイル
58:地点予測日射量データファイル
60:表示印刷装置
10: CPU
12: Insolation amount mesh data 14: Insolation amount observation value 16: Clear daytime solar radiation amount theoretical value 18: Topographic data 20: Prediction date and time clear solar radiation amount theoretical value 22: Prediction point latitude / longitude data 24: Prediction point point Observed solar radiation value 26: Latitude /
Claims (15)
快晴時日射量理論値を参照して、当該日射量観測値データを、日射量を妨害する気象要素の時間的空間的分布データに変換する日射量/気象要素変換手段(32)と、
当該所定地域の地形を参照し、当該日射量/気象要素変換手段により得られる当該気象要素の時間的空間的分布データの時間的空間的な移動及び変形を予測する移動変形予測手段(34)と、
当該移動変形予測手段により予測された当該気象要素のデータを、対応する日時の快晴時日射量理論値を参照して予測全天日射量に変換する日射量変換手段(36)
とを具備することを特徴とする日射量予測装置。 Observation value input means (30) for inputting solar radiation observation value data of a predetermined area including a prediction target point in a past predetermined period retroactive from the present;
A solar radiation / meteorological element conversion means (32) for referring to the theoretical value of sunny solar radiation and converting the observed solar radiation data into temporal and spatial distribution data of weather elements that interfere with the solar radiation;
A movement deformation prediction means (34) for referring to the topography of the predetermined area and predicting temporal and spatial movement and deformation of the temporal and spatial distribution data of the weather element obtained by the solar radiation amount / meteorological element conversion means; ,
Insolation amount conversion means (36) for converting the data of the meteorological element predicted by the movement deformation prediction means into a predicted global solar radiation amount with reference to a theoretical value of sunny solar radiation on the corresponding date and time.
The solar radiation amount prediction apparatus characterized by comprising.
当該コンピュータが、快晴時日射量理論値を参照して、当該日射量観測値データを、日射量を妨害する気象要素の時間的空間的分布データに変換する日射量/気象要素変換ステップ(32)と、
当該コンピュータが、当該所定地域の地形を参照し、当該日射量/気象要素変換ステップにより得られる当該気象要素の時間的空間的分布データの時間的空間的な移動及び変形を予測する移動変形予測ステップ(34)と、
当該コンピュータが、当該移動変形予測ステップにより予測された当該気象要素のデータを、対応する日時の快晴時日射量理論値を参照して予測全天日射量に変換する日射量変換ステップ(36)
とを具備することを特徴とする日射量予測方法。 An observation value input step (30) for inputting the solar radiation amount observation value data of a predetermined area including the prediction target point in the past predetermined period from the present to the computer;
A solar radiation amount / meteorological element conversion step (32) in which the computer converts the solar radiation amount observation value data into temporal and spatial distribution data of the weather element disturbing the solar radiation amount with reference to the theoretical value of the sunny solar radiation amount. When,
A movement deformation prediction step in which the computer refers to the topography of the predetermined area and predicts temporal and spatial movement and deformation of the temporal and spatial distribution data of the weather element obtained by the solar radiation / meteorological element conversion step. (34)
A solar radiation amount conversion step (36) in which the computer converts the data of the meteorological element predicted by the movement deformation prediction step into a predicted global solar radiation amount with reference to the theoretical value of the sunny solar radiation amount at the corresponding date and time.
The solar radiation amount prediction method characterized by comprising.
現在から遡る過去の所定期間の、予測対象地点を含む所定地域の日射量観測値データを入力させる観測値入力機能(30)と、
快晴時日射量理論値を参照して、当該日射量観測値データを、日射量を妨害する気象要素の時間的空間的分布データに変換させる日射量/気象要素変換機能(32)と、
当該所定地域の地形を参照し、当該日射量/気象要素変換機能により得られる当該気象要素の時間的空間的分布データの時間的空間的な移動及び変形を予測させる移動変形予測機能(34)と、
当該移動変形予測機能により予測された当該気象要素のデータを、対応する日時の快晴時日射量理論値を参照して予測全天日射量に変換させる日射量変換機能(36)
とを実現させることを特徴とする日射量予測プログラム。 A solar radiation amount prediction program for predicting solar radiation amount using a computer,
An observation value input function (30) for inputting solar radiation observation value data of a predetermined area including a prediction target point in a past predetermined period retroactive from the present;
A solar radiation / meteorological element conversion function (32) for converting the observed solar radiation amount data into temporal and spatial distribution data of a weather element that disturbs the solar radiation amount with reference to the theoretical value of the sunny solar radiation amount;
A movement deformation prediction function (34) that refers to the topography of the predetermined area and predicts temporal and spatial movement and deformation of the temporal and spatial distribution data of the weather element obtained by the solar radiation / meteorological element conversion function; ,
A solar radiation amount conversion function (36) for converting the data of the meteorological element predicted by the movement deformation prediction function into a predicted global solar radiation amount with reference to a theoretical value of sunny solar radiation at the corresponding date and time.
The solar radiation amount prediction program characterized by realizing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009205492A JP5059073B2 (en) | 2009-09-07 | 2009-09-07 | Solar radiation amount prediction apparatus, method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009205492A JP5059073B2 (en) | 2009-09-07 | 2009-09-07 | Solar radiation amount prediction apparatus, method and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011058814A true JP2011058814A (en) | 2011-03-24 |
JP5059073B2 JP5059073B2 (en) | 2012-10-24 |
Family
ID=43946643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009205492A Active JP5059073B2 (en) | 2009-09-07 | 2009-09-07 | Solar radiation amount prediction apparatus, method and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5059073B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015137903A (en) * | 2014-01-21 | 2015-07-30 | 関西電力株式会社 | Solar radiation intensity estimation device, solar radiation intensity estimation system and solar radiation intensity estimation method |
WO2015111473A1 (en) * | 2014-01-22 | 2015-07-30 | 株式会社日立製作所 | Photovoltaic power generator output estimation method and device, and power system monitoring device using same |
JP2016052192A (en) * | 2014-08-29 | 2016-04-11 | 日本無線株式会社 | Independent power supply system and control method thereof |
CN108802503A (en) * | 2018-07-24 | 2018-11-13 | 山东大学 | The compensation data system and method for solar radio radiation observation system multichannel frequency conversion |
CN111814398A (en) * | 2020-07-08 | 2020-10-23 | 国网河北省电力有限公司 | Map-based earth surface solar radiance prediction method integrating space-time attention |
JP7491049B2 (en) | 2020-05-19 | 2024-05-28 | 富士通株式会社 | Anomaly detection method and anomaly detection program |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101515003B1 (en) * | 2014-12-31 | 2015-04-24 | (주)가교테크 | Prediction Method of Solar Insolation |
WO2019107622A1 (en) * | 2017-11-30 | 2019-06-06 | 한국에너지기술연구원 | Satellite image analysis model generation method and system for calculating solar radiation by means of artificial neural network technique |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08271649A (en) * | 1995-03-30 | 1996-10-18 | Nippon Telegr & Teleph Corp <Ntt> | Meteorological predicting apparatus |
JPH11211560A (en) * | 1998-01-21 | 1999-08-06 | Fujitsu Ltd | System and method of estimating quantity of solar radiation, using satellite picture data, and recording medium |
JP2003021688A (en) * | 2001-07-06 | 2003-01-24 | Honda Motor Co Ltd | Solar radiation sensor |
JP2003121558A (en) * | 2001-10-12 | 2003-04-23 | Canon Inc | Apparatus and method for information processing |
-
2009
- 2009-09-07 JP JP2009205492A patent/JP5059073B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08271649A (en) * | 1995-03-30 | 1996-10-18 | Nippon Telegr & Teleph Corp <Ntt> | Meteorological predicting apparatus |
JPH11211560A (en) * | 1998-01-21 | 1999-08-06 | Fujitsu Ltd | System and method of estimating quantity of solar radiation, using satellite picture data, and recording medium |
JP2003021688A (en) * | 2001-07-06 | 2003-01-24 | Honda Motor Co Ltd | Solar radiation sensor |
JP2003121558A (en) * | 2001-10-12 | 2003-04-23 | Canon Inc | Apparatus and method for information processing |
Non-Patent Citations (2)
Title |
---|
棚橋修一、他: "日射量推定システムの開発", FAPIG, vol. No.162 平成14年度 第2号, JPN6012038950, 9 December 2002 (2002-12-09), pages 24 - 28, ISSN: 0002290592 * |
飯泉浩、他: "気象衛星を使用した日射量推定", 平成3年度 日本太陽エネルギー学会・日本風力エネルギー協会合同研究発表会 講演論文集, JPN6012038949, 20 September 1991 (1991-09-20), pages 249 - 252, ISSN: 0002290591 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015137903A (en) * | 2014-01-21 | 2015-07-30 | 関西電力株式会社 | Solar radiation intensity estimation device, solar radiation intensity estimation system and solar radiation intensity estimation method |
WO2015111473A1 (en) * | 2014-01-22 | 2015-07-30 | 株式会社日立製作所 | Photovoltaic power generator output estimation method and device, and power system monitoring device using same |
JP2015138864A (en) * | 2014-01-22 | 2015-07-30 | 株式会社日立製作所 | Output estimation method and apparatus of photovoltaic power generator and electric power system monitoring apparatus using the same |
US10211777B2 (en) | 2014-01-22 | 2019-02-19 | Hitachi, Ltd. | Photovoltaic power generator output estimation method and device, and power system monitoring device using same |
JP2016052192A (en) * | 2014-08-29 | 2016-04-11 | 日本無線株式会社 | Independent power supply system and control method thereof |
CN108802503A (en) * | 2018-07-24 | 2018-11-13 | 山东大学 | The compensation data system and method for solar radio radiation observation system multichannel frequency conversion |
CN108802503B (en) * | 2018-07-24 | 2020-09-18 | 山东大学 | Multi-channel frequency conversion data compensation system and method for solar radio observation system |
JP7491049B2 (en) | 2020-05-19 | 2024-05-28 | 富士通株式会社 | Anomaly detection method and anomaly detection program |
CN111814398A (en) * | 2020-07-08 | 2020-10-23 | 国网河北省电力有限公司 | Map-based earth surface solar radiance prediction method integrating space-time attention |
CN111814398B (en) * | 2020-07-08 | 2023-09-29 | 国网河北省电力有限公司 | Map-based earth surface solar radiance prediction method integrating space-time attention |
Also Published As
Publication number | Publication date |
---|---|
JP5059073B2 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5059073B2 (en) | Solar radiation amount prediction apparatus, method and program | |
Carneiro et al. | Review on photovoltaic power and solar resource forecasting: current status and trends | |
US9188701B2 (en) | Power generation predicting apparatus and method thereof | |
Gallagher et al. | A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979–2012) Present wave climate and energy resource assessment | |
JP5047245B2 (en) | Solar radiation amount prediction method, apparatus and program | |
Šúri et al. | SolarGIS: Solar data and online applications for PV planning and performance assessment | |
JP2010060443A (en) | Weather forecast device, method, and program | |
Marques et al. | Comparative energetics of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain | |
Lonij et al. | Forecasts of PV power output using power measurements of 80 residential PV installs | |
Petch et al. | A global model intercomparison of the physical processes associated with the Madden–Julian oscillation | |
Oberheide et al. | A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data | |
JP2015167439A (en) | Power generation amount prediction system of photovoltaic power generator, and power generation amount prediction method | |
Malvoni et al. | Improvements in the predictions for the photovoltaic system performance of the Mediterranean regions | |
CN103971167B (en) | Predict the method and system of the generated output of photovoltaic power generation equipment | |
Walch et al. | Spatio-temporal modelling and uncertainty estimation of hourly global solar irradiance using Extreme Learning Machines | |
Hatanaka et al. | Diffusion models for high-resolution solar forecasts | |
Inage | Development of an advection model for solar forecasting based on ground data. Part II: Verification of the forecasting model over a wide geographical area | |
Hou et al. | Improving the forecast accuracy of ECMWF 2-m air temperature using a historical dataset | |
Paulescu et al. | Intra-hour PV power forecasting based on sky imagery | |
de Araujo | Improvement of coding for solar radiation forecasting in Dili Timor Leste—A WRF case study | |
Šúri et al. | Requirements and standards for bankable DNI data products in CSP projects | |
Kaur et al. | Multi-physics schema for sub-seasonal prediction of Indian summer monsoon | |
JP5945014B1 (en) | Power generation amount prediction apparatus, control method and program for power generation amount prediction apparatus | |
KR20210023150A (en) | Method and apparatus for numerical information production of high-resolusion photovoltaic resources concerning detailed topographical effects | |
KR102685105B1 (en) | Method and device of calculating insolation numercial information based on fixed slope angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120801 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5059073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |