JP2011058684A - Damper device and refrigerator equipped with the damper device - Google Patents

Damper device and refrigerator equipped with the damper device Download PDF

Info

Publication number
JP2011058684A
JP2011058684A JP2009207642A JP2009207642A JP2011058684A JP 2011058684 A JP2011058684 A JP 2011058684A JP 2009207642 A JP2009207642 A JP 2009207642A JP 2009207642 A JP2009207642 A JP 2009207642A JP 2011058684 A JP2011058684 A JP 2011058684A
Authority
JP
Japan
Prior art keywords
opening
chamber
damper
refrigerator
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009207642A
Other languages
Japanese (ja)
Inventor
Taichiro Yamashita
太一郎 山下
Katsutoshi Shinohara
克利 篠原
Yasuo Kurihara
康夫 栗原
Shintaro Yamawaki
信太郎 山脇
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Nobuaki Arakawa
展昭 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009207642A priority Critical patent/JP2011058684A/en
Priority to KR1020100080235A priority patent/KR20110027565A/en
Priority to CN2010102595189A priority patent/CN102022888A/en
Publication of JP2011058684A publication Critical patent/JP2011058684A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a refrigerator with high energy-saving performance, carrying out reliable temperature control by securely closing the opening of an electric damper. <P>SOLUTION: The refrigerator comprises a freezing-temperature zone chamber provided for a refrigerator body, a cooler chamber provided behind the freezing-temperature zone chamber and installed with a cooler, a blower for blowing cold air from the cooler chamber to the freezing-temperature zone chamber, a partition plate which partitions between the cooler chamber and the freezing-temperature zone chamber and has an outlet port for blowing the cold air blown by the blower to the freezing-temperature zone chamber, and a freezing chamber damper controlling an air supply amount to the freezing-temperature zone chamber. The freezing chamber damper comprises a frame having an opening which communicates the cooler chamber with the outlet port, an opening/closing body opening/closing the opening, and a driving means for driving the opening/closing body. An area of the opening of the freezing chamber damper is larger than an area of the outlet port. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ダンパ装置およびダンパ装置を備えた冷蔵庫に関する。   The present invention relates to a damper device and a refrigerator including the damper device.

冷蔵室及び冷凍室を共通の冷却器によって冷却する、冷気強制循環方式の冷蔵庫において、冷蔵室の温度はおよそ3〜5[℃]、冷凍室はおよそ−18[℃]に制御され、夫々温度帯が異なる。そのため、冷却室から冷気ダクトを経由して冷蔵室及び冷凍室に夫々冷気を分配する場合、冷気流量を切り替える必要がある。   In the cold air forced circulation type refrigerator that cools the refrigerator compartment and the freezer compartment with a common cooler, the temperature of the refrigerator compartment is controlled to about 3 to 5 [° C.], and the temperature of the freezer compartment is controlled to about −18 [° C.], respectively. The band is different. Therefore, when distributing cold air from the cooling chamber to the refrigerator compartment and the freezer compartment via the cold air duct, it is necessary to switch the cold air flow rate.

冷気流量を切り替える手段である、電動ダンパに関わる従来技術として、特許文献1及び特許文献2の技術が知られている。   As a conventional technique related to an electric damper, which is a means for switching a cold air flow rate, techniques of Patent Document 1 and Patent Document 2 are known.

特許文献1には、冷蔵室冷却用ダクトに設けた冷蔵室用ダンパと、冷凍室冷却用ダクトに設けた冷凍室用ダンパとを備え、冷蔵室用ダンパのみを開放して冷蔵室のみを冷却する構成が記載されている。   Patent Document 1 includes a cold room damper provided in a cold room cooling duct and a freezer damper provided in the freezer cooling duct, and only the cold room damper is opened to cool only the cold room. The structure to be described is described.

特許文献2には、冷却室から冷凍室及び冷蔵室へ夫々冷気を供給する風路を並列に設け、冷却室から冷凍室への風路内部にダンパを有し、適正風量に制御する構成が記載されている。   Patent Document 2 has a configuration in which air paths for supplying cold air from the cooling chamber to the freezing room and the refrigerating room are provided in parallel, a damper is provided inside the air path from the cooling room to the freezing room, and the air flow is controlled to an appropriate level. Are listed.

特開2005−180719号公報JP 2005-180719 A 特開2002−31466号公報JP 2002-31466 A

特許文献1及び特許文献2に記載の構成では、低温側となる冷凍室とは別に、高温側となる冷蔵室の冷却のみを行うことで、冷却効率の向上と省エネルギー化が図られている。   In the configurations described in Patent Document 1 and Patent Document 2, the cooling efficiency is improved and the energy is saved by cooling only the refrigerator room on the high temperature side separately from the freezer room on the low temperature side.

ここで、ダンパ装置は冷気ダクト内に設けられる。このことから、送風抵抗を低減するために、ダンパ装置を開いた際の開口面積を拡大することが考えられる。特に、近年の冷蔵庫においては、内容積の大型化が求められており、開口面積を拡大しつつ貯蔵空間内の容積を減少しないような形態とすることが望ましい。   Here, the damper device is provided in the cold air duct. From this, in order to reduce the blowing resistance, it is conceivable to enlarge the opening area when the damper device is opened. In particular, in recent refrigerators, an increase in the internal volume is required, and it is desirable that the volume in the storage space is not reduced while the opening area is enlarged.

一方、冷気ダクトの占有体積を低減した場合、冷気の送風抵抗が増大する。すると、必要な冷気を送風するための送風機(送風ファン)の消費電力が増大して、省エネルギー性能が低下するおそれがある。   On the other hand, when the volume occupied by the cold air duct is reduced, the air blowing resistance of the cold air is increased. Then, the power consumption of the blower (blower fan) for blowing the necessary cool air increases, and there is a risk that the energy saving performance is lowered.

そこで、貯蔵空間内の容積を減少させず、かつ省エネルギー性能を向上させるために、冷気ダクトを扁平な形状として冷蔵庫の奥行き方向の寸法を小さくする構成がよい。そのためのダンパ装置の形状として、奥行き寸法を小さく、幅を広げた横長の細長い長方形状とすることが望ましい。   Therefore, in order to improve the energy saving performance without reducing the volume in the storage space, a configuration in which the cold air duct is flattened to reduce the dimension in the depth direction of the refrigerator is preferable. As a shape of the damper device for that purpose, it is desirable to use a horizontally long and narrow rectangular shape with a small depth dimension and a wide width.

また、一例として、冷蔵室用ダンパを閉、冷凍室用ダンパを開とする場合、冷蔵室用ダンパに隙間があると、当該隙間から冷蔵室内にも冷気が流れ込む。すると、本来ならば冷凍室内のみを冷却するだけの冷気が必要なのに対して、冷蔵室内に漏れる冷気の分の冷却熱量が余計に必要となる。よって、省エネルギー性の観点から、電動ダンパを閉とする際に、密閉度を高めることが望ましい。   As an example, when the refrigerator compartment damper is closed and the freezer compartment damper is opened, if there is a gap in the refrigerator compartment damper, cold air flows into the refrigerator compartment from the gap. Then, originally, cold air for cooling only the freezer compartment is required, but an additional amount of cooling heat for the cold air leaking into the refrigerator compartment is required. Therefore, from the viewpoint of energy saving, it is desirable to increase the sealing degree when closing the electric damper.

すなわち、ダンパ装置の開口面積を大型化しつつ、閉鎖時の密閉性を向上することが望ましい。しかし、ダンパ装置の開口面積を大型化すると、各部品が大型化するため、部品の剛性が低下して弾性変形しやすく、閉鎖時に隙間が生じやすくなって密閉しにくくなる、という課題がある。   That is, it is desirable to improve the hermeticity when closed while increasing the opening area of the damper device. However, when the opening area of the damper device is increased, each component is increased in size, so that there is a problem that the rigidity of the component is reduced and elastic deformation is easily caused, and a gap is easily generated at the time of closing so that it is difficult to seal.

特許文献1及び特許文献2には、冷凍室用ダンパの開口面積と冷凍室への空気吹き出し口との大小関係については述べられていない。また、開閉体であるバッフルの閉止性とバッフル形状の適正な縦横比に関しては記載されていない。換言すると、バッフルの開口と冷凍室の吹き出しノズルやファン寸法との望ましい大小関係、あるいはバッフルの適切な縦横寸法の比率については述べられていない。   Patent Document 1 and Patent Document 2 do not describe the magnitude relationship between the opening area of the freezer damper and the air outlet to the freezer. Moreover, it does not describe about the closing property of the baffle which is an opening / closing body and the appropriate aspect ratio of the baffle shape. In other words, there is no mention of a desirable magnitude relationship between the opening of the baffle and the blowout nozzle or fan size of the freezer, or the appropriate ratio of the vertical and horizontal dimensions of the baffle.

そこで、上記従来技術の問題点に鑑み、本発明は、電動ダンパの開口を確実に閉じることにより、信頼性の高い温度制御を行うことができるダンパ装置を得ることを目的とする。また、電動ダンパの開口を確実に閉じることにより、信頼性の高い温度制御を行うことで、省エネルギー性能が高い冷蔵庫を得ることを目的とする。   Accordingly, in view of the above-described problems of the prior art, an object of the present invention is to obtain a damper device that can perform highly reliable temperature control by reliably closing an opening of an electric damper. Moreover, it aims at obtaining the refrigerator with high energy saving performance by performing reliable temperature control by closing the opening of an electric damper reliably.

前記目的を達成するために、本発明の冷蔵庫は、冷蔵庫本体に設けられた冷凍温度帯室と、該冷凍温度帯室の後方に設けられ冷却器が設置される冷却器室と、前記冷却器室から前記冷凍温度帯室へ冷気を送風する送風機と、前記冷却器室と前記冷凍温度帯室とを仕切り前記送風機で送風された冷気を前記冷凍温度帯室へ吹き出す吹き出し口を有する仕切板と、前記冷凍温度帯室への送風量を制御する冷凍室ダンパと、を備えた冷蔵庫において、前記冷凍室ダンパは、前記冷却器室と前記吹き出し口とを連通する開口を有するフレームと、前記開口を開閉する開閉体と、該開閉体を駆動する駆動手段と、を備え、該冷凍室ダンパの前記開口の面積は前記吹き出し口の面積よりも大きいことを特徴とする。   In order to achieve the above object, a refrigerator according to the present invention includes a refrigeration temperature zone chamber provided in a refrigerator body, a cooler chamber provided behind the refrigeration temperature zone chamber and provided with a cooler, and the cooler. A blower that blows cool air from a room to the freezing temperature zone chamber, a partition plate that partitions the cooler chamber and the freezing temperature zone chamber, and has a blowout port that blows off the cold air blown by the blower to the freezing temperature zone chamber; A refrigerator including a freezer damper that controls the amount of air blown to the freezing temperature zone chamber, wherein the freezer damper includes a frame having an opening communicating the cooler chamber and the outlet, and the opening And an opening / closing body that opens and closes the opening / closing body, and a drive unit that drives the opening / closing body, wherein the area of the opening of the freezer compartment damper is larger than the area of the outlet.

また、前記吹き出し口は複数設けられ、前記冷凍室ダンパの前記開口の面積は前記複数の吹き出し口の合計の面積よりも大きいことを特徴とする。   Further, a plurality of the outlets are provided, and the area of the opening of the freezer compartment damper is larger than the total area of the plurality of outlets.

また、前記冷凍室ダンパの前記開口は長方形状であって、縦横比が4〜11であることを特徴とする。   Further, the opening of the freezer damper is rectangular and has an aspect ratio of 4 to 11.

また、前記開口の面積は6000〜6500mm2であることを特徴とする。 The area of the opening is 6000 to 6500 mm 2 .

また、本発明のダンパ装置は、長方形状の開口を有するフレームと、前記開口を開閉する開閉体と、該開閉体を駆動する駆動手段と、を備えたダンパ装置において、前記開口の縦横比は4〜11であり、且つ該開口の面積は6000〜6500mm2であることを特徴とする。 Further, the damper device of the present invention is a damper device comprising a frame having a rectangular opening, an opening / closing body for opening / closing the opening, and a driving means for driving the opening / closing body, wherein the aspect ratio of the opening is 4 to 11 and the area of the opening is 6000 to 6500 mm 2 .

本発明によれば、電動ダンパの開口を確実に閉じることにより、信頼性の高い温度制御を行うことができるダンパ装置を得ることができる。また、電動ダンパの開口を確実に閉じることにより、信頼性の高い温度制御を行うことで、省エネルギー性能が高い冷蔵庫を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the damper apparatus which can perform reliable temperature control can be obtained by closing the opening of an electric damper reliably. Moreover, the refrigerator with high energy saving performance can be obtained by performing reliable temperature control by closing the opening of the electric damper with certainty.

本発明の実施形態に係る冷蔵庫の正面外形図である。It is a front external view of the refrigerator which concerns on embodiment of this invention. 冷蔵庫の庫内の構成を表す図1のX−X断面図である。It is XX sectional drawing of FIG. 1 showing the structure in the store | warehouse | chamber of a refrigerator. 冷蔵庫の庫内の構成を表す正面図である。It is a front view showing the structure in the store | warehouse | chamber of a refrigerator. 図2の要部拡大説明図である。FIG. 3 is an enlarged explanatory view of a main part of FIG. 2. 図2の要部拡大説明図である。FIG. 3 is an enlarged explanatory view of a main part of FIG. 2. 図3におけるF範囲を示す拡大斜視図である。It is an expansion perspective view which shows F range in FIG. 図6のE−E断面斜視図である。FIG. 7 is a perspective view taken along the line E-E in FIG. 6. ダンパの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of a damper. ダンパの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of a damper. ダンパの構成を示す図8のY−Y断面図である。It is YY sectional drawing of FIG. 8 which shows the structure of a damper. ダンパの駆動手段を図8の矢印Z方向に見た概略図である。It is the schematic which looked at the drive means of the damper in the arrow Z direction of FIG. ダンパの駆動手段を図8の矢印Z方向に見た概略図である。It is the schematic which looked at the drive means of the damper in the arrow Z direction of FIG. ダンパの駆動手段を図8の矢印Z方向に見た概略図である。It is the schematic which looked at the drive means of the damper in the arrow Z direction of FIG. ダンパの駆動手段を図8の矢印Z方向に見た概略図である。It is the schematic which looked at the drive means of the damper in the arrow Z direction of FIG. 開閉体の周囲に均一な圧接力が加わった状態を説明する概略斜視図である。It is a schematic perspective view explaining the state where the uniform press-contact force was added to the circumference | surroundings of the opening / closing body. 開閉体の短辺比とモーメント比の関係を示すグラフである。It is a graph which shows the relationship between the short side ratio of an opening-closing body, and a moment ratio.

本発明に係る冷蔵庫の実施形態を、図面を参照しながら説明する。   An embodiment of a refrigerator according to the present invention will be described with reference to the drawings.

図1は、本実施形態の冷蔵庫の正面外形図である。図2は、冷蔵庫の庫内の構成を表す図1におけるX−X縦断面図である。図3は、冷蔵庫の庫内の構成を表す正面図であり、冷気ダクトや吹き出し口の配置などを示す図である。図4と図5は、図2の要部拡大説明図である。   FIG. 1 is a front outline view of the refrigerator of the present embodiment. FIG. 2 is an XX longitudinal cross-sectional view in FIG. 1 illustrating a configuration inside the refrigerator. FIG. 3 is a front view illustrating a configuration inside the refrigerator, and is a diagram illustrating the arrangement of the cold air duct and the outlet. 4 and 5 are enlarged views for explaining the main part of FIG.

図1に示すように、本実施形態の冷蔵庫1は、上方から、冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6から構成されている。   As shown in FIG. 1, the refrigerator 1 of this embodiment is comprised from the upper part from the refrigerator compartment 2, the ice-making room 3, the upper stage freezer room 4, the lower stage freezer room 5, and the vegetable compartment 6. FIG.

冷蔵室2は、前方に左右に分割された観音開きの冷蔵室扉2a,2bを備え、製氷室3,上段冷凍室4,下段冷凍室5,野菜室6は、それぞれ引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aを備えている。以下では、冷蔵室扉2a,2b,製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aを単に扉2a,2b,3a,4a,5a,6aと称する。   The refrigerating room 2 is provided with front-opening refrigerating room doors 2a and 2b divided into left and right, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer type ice making room door 3a. , An upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.

また、冷蔵庫1は、扉2a,2b,3a,4a,5a,6aの開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知する図示しないアラーム,冷蔵室2の温度設定や上段冷凍室4や下段冷凍室5の温度設定をする図示しない温度設定器等を備えている。   In the refrigerator 1, the door sensor (not shown) that detects the open / closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a and the state determined as the door open state are continued for a predetermined time, for example, 1 minute or more. In this case, an alarm (not shown) for notifying the user, a temperature setting unit (not shown) for setting the temperature of the refrigerator compartment 2 and the temperature of the upper freezer compartment 4 and the lower freezer compartment 5 are provided.

図2に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10は、複数の真空断熱材25を実装している。   As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane). The heat insulating box 10 of the refrigerator 1 has a plurality of vacuum heat insulating materials 25 mounted thereon.

庫内は、断熱仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。   The inside of the refrigerator is separated from the refrigerator compartment 2 by the heat insulating partition wall 28, the upper freezing chamber 4 and the ice making chamber 3 (see FIG. 1, the ice making chamber 3 is not shown in FIG. 2). The lower freezer compartment 5 and the vegetable compartment 6 are separated.

扉2a,2b(図1参照)の庫内側には、複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。   A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b (see FIG. 1). The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.

図2に示すように、上段冷凍室4,下段冷凍室5及び野菜室6は、それぞれの室の前方に備えられた扉4a,5a,6aと一体に、収納容器4b,5b,6bがそれぞれ設けられている。扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器4b,5b,6bが引き出せるようになっている。図1に示す製氷室3にも同様に、扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。   As shown in FIG. 2, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are integrated with doors 4a, 5a, 6a provided in front of the respective chambers, and storage containers 4b, 5b, 6b are respectively provided. Is provided. The storage containers 4b, 5b, and 6b can be pulled out by placing a hand on a handle portion (not shown) of the doors 4a, 5a, and 6a and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the door 3a. The container 3b can be pulled out by pulling it out.

図2に示すように(適宜図3から図7参照)、冷却器7は下段冷凍室5の略背部に備えられた冷却器収納室8内に設けられている。冷却器7の上方には庫内送風機9(送風機)が設けられている。冷却器7と熱交換して冷やされた空気(以下、冷却器7で冷やされた低温空気を「冷気」と称する)は、庫内送風機9によって、冷蔵室送風ダクト11,野菜室送風ダクト14,上段冷凍室送風ダクト12,下段冷凍室送風ダクトである冷気ダクト13及び図示しない製氷室送風ダクトを介して、冷蔵室2,野菜室6,上段冷凍室4,下段冷凍室5,製氷室3の各室へ送られる。各室への送風は、冷蔵室冷却ダンパ20と冷凍室冷却ダンパ50の開閉により制御される。   As shown in FIG. 2 (refer to FIGS. 3 to 7 as appropriate), the cooler 7 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5. An internal fan 9 (blower) is provided above the cooler 7. The air cooled by the heat exchange with the cooler 7 (hereinafter, the low-temperature air cooled by the cooler 7 is referred to as “cold air”) is supplied by the internal fan 9 to the refrigerator compartment air duct 11 and the vegetable compartment air duct 14. , Upper freezer compartment air duct 12, cold air duct 13 which is a lower freezer compartment air duct, and ice making room air duct (not shown), refrigerator room 2, vegetable room 6, upper freezer room 4, lower freezer room 5, ice making room 3 Sent to each room. Air blowing to each room is controlled by opening and closing the refrigerator compartment cooling damper 20 and the freezer compartment cooling damper 50.

ちなみに、冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5及び野菜室6への各送風ダクトは、図3に破線で示すように冷蔵庫1の各室の背面側に設けられている。具体的には、冷蔵室冷却ダンパ20が開状態、冷凍室冷却ダンパ50が閉状態の場合、冷気は冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られ、冷蔵室送風ダクト11から分岐した野菜室送風ダクト14を経て、吹き出し口6cから野菜室6に送られる。   Incidentally, the air ducts to the refrigerator compartment 2, the ice making room 3, the upper freezer room 4, the lower freezer room 5, and the vegetable room 6 are provided on the back side of each room of the refrigerator 1 as indicated by broken lines in FIG. Yes. Specifically, when the refrigerator compartment cooling damper 20 is in the open state and the freezer compartment cooling damper 50 is in the closed state, the cold air is sent to the refrigerator compartment 2 from the outlets 2c provided in multiple stages through the refrigerator compartment air duct 11. It passes through the vegetable room air duct 14 branched from the refrigerator compartment air duct 11, and is sent to the vegetable room 6 from the blower outlet 6c.

なお、冷蔵室2を冷却した冷気は、例えば、冷蔵室2の下面に設けられた戻り口2dから冷蔵室戻りダクト16を経て、冷却器収納室8の正面から見て、例えば、右側下部に戻る。また、別の構成としては、戻り口2dから野菜室送風ダクト14を経て吹き出し口6cから野菜室6に送風された後、戻り口6dから冷却器収納室8に戻る。   Note that the cold air that has cooled the refrigerator compartment 2 is, for example, in the lower right portion as viewed from the front of the cooler storage chamber 8 through the refrigerator outlet return duct 16 from the return port 2d provided on the lower surface of the refrigerator compartment 2. Return. As another configuration, the air is sent from the return port 2d through the vegetable room air duct 14 to the vegetable room 6 from the blowout port 6c, and then returns from the return port 6d to the cooler storage chamber 8.

図3において、冷凍室冷却ダンパ50が開状態のとき、冷却器7で熱交換された冷気が庫内送風機9により、図示省略の製氷室送風ダクトや上段冷凍室送風ダクト12を経て吹き出し口3c,4cからそれぞれ製氷室3,上段冷凍室4へ送風され、冷気ダクト13を経て吹き出し口5cから下段冷凍室5へ送風される。この点からも冷凍室冷却ダンパ50は、後述する送風機カバー56部の上方に取り付けられ、製氷室3への送風を容易にしている。   In FIG. 3, when the freezer cooling damper 50 is in the open state, the cold air heat-exchanged by the cooler 7 is blown out by the internal fan 9 through the ice making fan blow duct and the upper freezer blower duct 12 (not shown). , 4c are sent to the ice making chamber 3 and the upper freezing chamber 4, respectively, and are sent from the outlet 5c to the lower freezing chamber 5 through the cold air duct 13. Also from this point, the freezer compartment cooling damper 50 is attached above a blower cover 56 part described later, and facilitates air blowing to the ice making chamber 3.

また、上段冷凍室4,下段冷凍室5,製氷室3を冷却した冷気は、下段冷凍室5の後部下方に設けられた冷凍室戻り口17を介して、冷却器収納室8に戻る。   In addition, the cold air that has cooled the upper freezing chamber 4, the lower freezing chamber 5, and the ice making chamber 3 returns to the cooler storage chamber 8 through the freezing chamber return port 17 provided below the rear portion of the lower freezing chamber 5.

図4は、冷凍室冷却ダンパ50と冷蔵室冷却ダンパ20とをともに開放した状態、図5は冷凍室冷却ダンパ50を閉鎖し、冷蔵室冷却ダンパ20のみを開放した状態を示す。図6は冷凍室戻り口17から冷蔵室ダクト15に至るまでの構成を示す斜視図、図7は図6におけるE−E方向の断面斜視図である。   FIG. 4 shows a state where both the freezer cooling damper 50 and the refrigerating room cooling damper 20 are opened, and FIG. 5 shows a state where the freezing room cooling damper 50 is closed and only the refrigerating room cooling damper 20 is opened. 6 is a perspective view showing a configuration from the freezer return port 17 to the refrigerator compartment duct 15, and FIG. 7 is a cross-sectional perspective view in the EE direction in FIG.

図4から図7において、吹き出し口3c,4c,5cを形成するのが仕切板54である。この仕切板54は冷凍室4,下段冷凍室5,冷却器収納室8を区画する。   4 to 7, the partition plate 54 forms the outlets 3c, 4c, and 5c. This partition 54 partitions the freezer compartment 4, the lower freezer compartment 5, and the cooler storage compartment 8.

55は庫内送風機9が取り付けられているファンモータ固定部である。ファンモータ固定部55は、冷却器収納室8と仕切板54との間を区画している。庫内送風機9は、ファンモータ固定部55に取り付けられている。   Reference numeral 55 denotes a fan motor fixing portion to which the internal fan 9 is attached. The fan motor fixing part 55 partitions the cooler storage chamber 8 and the partition plate 54. The internal fan 9 is attached to the fan motor fixing portion 55.

56は送風機カバーで、庫内送風機9の前面を覆っている。送風機カバー56と仕切板54との間には、冷気ダクト13が形成されている。また、送風機カバー56の上部は、冷凍室冷却ダンパ50の吹き出し口56aが形成されている。   A blower cover 56 covers the front surface of the internal fan 9. A cool air duct 13 is formed between the blower cover 56 and the partition plate 54. In addition, a blowout port 56 a of the freezer compartment cooling damper 50 is formed in the upper part of the blower cover 56.

また、送風機カバー56は、送風機9が吹き出す冷気が前面を覆うことによって引き起こす乱流を整流して騒音等の発生を防止する整流部56bを有している。   The blower cover 56 includes a rectifying unit 56b that rectifies turbulent flow caused by the cool air blown from the blower 9 covering the front surface and prevents noise and the like from being generated.

また、送風機カバー56は、仕切板54との間に庫内送風機9より吹き出された冷気を吹き出し口3c,4c,5c等に導くべく、上段冷凍室送風ダクト12、及び冷気ダクト13を形成している。   The blower cover 56 forms an upper freezer compartment air duct 12 and a cold air duct 13 so as to guide the cold air blown from the internal fan 9 to the air outlets 3c, 4c, 5c and the like between the blower cover 56 and the partition plate 54. ing.

更に、送風機カバー56は、庫内送風機9が吹き出す冷気を冷蔵室冷却ダンパ20側に送風する役目も果たしている。   Further, the blower cover 56 also plays a role of blowing the cool air blown out by the internal blower 9 to the refrigerator compartment cooling damper 20 side.

すなわち、送風機カバー56部に設けられた冷凍室冷却ダンパ50に入らない冷気は、冷蔵室ダクト15を経由して図4の如く冷蔵室冷却ダンパ20側に行く。   That is, the cold air that does not enter the freezer compartment cooling damper 50 provided in the blower cover 56 part goes to the refrigerator compartment cooling damper 20 side via the refrigerator compartment duct 15 as shown in FIG.

そして、図4に示すように製氷室3を含む冷凍温度帯室と、野菜室6を含む冷蔵温度帯室との両方の室に冷気を送る時、多量の冷気は冷凍室冷却ダンパ50側に送られ、わずかの冷気は冷蔵室ダクト15側に行くよう構成されている。   Then, as shown in FIG. 4, when sending cold air to both the freezing temperature zone chamber including the ice making chamber 3 and the refrigeration temperature zone chamber including the vegetable chamber 6, a large amount of cold air is sent to the freezing chamber cooling damper 50 side. A small amount of cool air is sent to the refrigerator compartment duct 15 side.

なお、上記の冷蔵室冷却ダンパ20は、図4ないし図5に示す如く、冷蔵室2の後部に取り付けられている。さらに、冷蔵室冷却ダンパ20は、図3に示すように正面からみて水平よりも傾斜して配置されており、位置の高い方にモータ等の駆動手段60を設けている。   The refrigerating room cooling damper 20 is attached to the rear part of the refrigerating room 2 as shown in FIGS. Further, as shown in FIG. 3, the cold room cooling damper 20 is disposed so as to be inclined with respect to the horizontal when viewed from the front, and a driving means 60 such as a motor is provided at a higher position.

次に、冷却器7の下方には除霜ヒータ22が設置されている。除霜ヒータ22の上方には、除霜水が除霜ヒータ22に滴下することを防止するために、上部カバー53が設けられている。   Next, a defrost heater 22 is installed below the cooler 7. An upper cover 53 is provided above the defrost heater 22 in order to prevent defrost water from dripping onto the defrost heater 22.

冷却器7及びその周辺の冷却器収納室8の壁に付着した霜が除霜によって融解すると、除霜水は冷却器収納室8の下部に備えられた樋23に流入する。その後に、排水管27を介して機械室19に配された蒸発皿21に達し、後記する凝縮器の熱により蒸発させられる。   When the frost adhering to the cooler 7 and the wall of the cooler storage chamber 8 in the vicinity thereof is melted by defrosting, the defrost water flows into the eaves 23 provided at the lower portion of the cooler storage chamber 8. After that, it reaches the evaporating dish 21 disposed in the machine room 19 through the drain pipe 27 and is evaporated by the heat of the condenser described later.

また、冷却器7の正面から見て右上部には冷却器に取り付けられた冷却器温度センサ35、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられている。そして、それぞれ冷却器7の温度(以下、冷却器温度と称する),冷蔵室2の温度(以下、冷蔵室温度と称する),下段冷凍室5の温度(以下、冷凍室温度と称する)を検知できるようになっている。   In addition, a cooler temperature sensor 35 attached to the cooler is located in the upper right portion when viewed from the front of the cooler 7, a refrigerator temperature sensor 33 is provided in the refrigerator compartment 2, and a freezer compartment temperature sensor 34 is provided in the lower freezer compartment 5. Is provided. The temperature of the cooler 7 (hereinafter referred to as the cooler temperature), the temperature of the refrigerator compartment 2 (hereinafter referred to as the refrigerator compartment temperature), and the temperature of the lower freezer compartment 5 (hereinafter referred to as the freezer compartment temperature) are detected. It can be done.

さらに、冷蔵庫1は、庫外の温湿度環境(外気温度,外気湿度)を検知する図示しない外気温度センサと外気湿度センサを備えている。なお、野菜室6にも野菜室温度センサ33aを配置してもよい。   Furthermore, the refrigerator 1 includes an outside air temperature sensor and an outside air humidity sensor (not shown) that detect a temperature and humidity environment (outside air temperature, outside air humidity) outside the refrigerator. Note that the vegetable room temperature sensor 33a may also be arranged in the vegetable room 6.

断熱箱体10の下部背面側には、機械室19が設けられており、機械室19には、圧縮機24及び図示しない凝縮器が収納されており、図示しない庫外送風機により凝縮器の熱が除熱される。ちなみに、本実施形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。   A machine room 19 is provided on the lower back side of the heat insulating box 10. The machine room 19 contains a compressor 24 and a condenser (not shown). Is removed. Incidentally, in this embodiment, isobutane is used as a refrigerant, and the amount of refrigerant enclosed is as small as about 80 g.

冷蔵庫1の天井壁上面側にはCPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板31が配置されている。制御基板31は、前記した外気温度センサ,外気湿度センサ,冷却器温度センサ35,冷蔵室温度センサ33,冷凍室温度センサ34,扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する扉センサ,冷蔵室2内壁に設けられた図示しない温度設定器,下段冷凍室5内壁に設けられた図示しない温度設定器等と接続する。そして、前記ROMに予め搭載されたプログラムにより、圧縮機24のON,OFF等の制御,冷蔵室冷却ダンパ20及び冷凍室冷却ダンパ50を個別に駆動する後述するそれぞれの駆動モータの制御,庫内送風機9のON/OFF制御や回転速度制御,前記庫外送風機のON/OFF制御や回転速度制御等の制御,前記した扉開放状態を報知するアラームのON/OFF等の制御を行う。   A control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted is disposed on the top surface side of the refrigerator 1. The control board 31 opens and closes the doors of the outside temperature sensor, the outside humidity sensor, the cooler temperature sensor 35, the refrigerator temperature sensor 33, the freezer temperature sensor 34, and the doors 2a, 2b, 3a, 4a, 5a, and 6a. It is connected to a door sensor for detecting the state, a temperature setter (not shown) provided on the inner wall of the refrigerator compartment 2, a temperature setter (not shown) provided on the inner wall of the lower freezer compartment 5, and the like. And by control of ON / OFF of the compressor 24 by the program previously mounted in the ROM, control of respective driving motors to be described later for individually driving the cold room cooling damper 20 and the freezing room cooling damper 50, the interior Control such as ON / OFF control and rotation speed control of the blower 9, ON / OFF control and rotation speed control of the outside fan, and control of ON / OFF of an alarm for notifying the door open state described above are performed.

次に、冷蔵室冷却ダンパ20が閉状態で、且つ冷凍室冷却ダンパ50が開状態で、冷凍温度帯室(製氷室3,上段冷凍室4及び下段冷凍室5)のみの冷却が行われている状態では、図4中に破線で図示した冷蔵室2に向かう矢印80方向の空気は流れない。すなわち、庫内送風機9から送風された冷気は、全て冷凍室冷却ダンパ50を通って製氷室,上段冷凍室4、および下段冷凍室5に送風される。   Next, the refrigerator compartment cooling damper 20 is closed and the freezer compartment cooling damper 50 is opened, and only the freezing temperature zone (ice-making compartment 3, upper freezer compartment 4 and lower freezer compartment 5) is cooled. In the state, the air in the direction of arrow 80 toward the refrigerator compartment 2 shown by the broken line in FIG. 4 does not flow. That is, all of the cool air blown from the internal fan 9 is sent to the ice making room, the upper freezer room 4 and the lower freezer room 5 through the freezer cooling damper 50.

製氷室3に製氷室送風ダクトを介して送風された冷気及び上段冷凍室4に上段冷凍室送風ダクト12(図2参照)を介して送風された冷気は、下段冷凍室5に下降し、下段冷凍室5に冷気ダクト13(図2参照)を介して送風された冷気とともに、図4中に矢印Cで示す冷凍室戻り空気の流れとなる。すなわち、下段冷凍室5の奥壁下部に配された冷凍室戻り口17を経由して冷却器収納室8の下部前方から冷却器収納室8に流入し、冷却器配管7aに多数のフィンが取り付けられて構成された冷却器7と熱交換する。   The cold air blown to the ice making chamber 3 through the ice making chamber blow duct and the cold air blown to the upper freezer compartment 4 through the upper freezer blower duct 12 (see FIG. 2) descends to the lower freezer compartment 5 and then falls to the lower stage. Along with the cold air blown into the freezer compartment 5 through the cold air duct 13 (see FIG. 2), the flow of the freezer return air indicated by an arrow C in FIG. That is, it flows into the cooler storage chamber 8 from the lower front of the cooler storage chamber 8 through the freezer return port 17 disposed in the lower part of the back wall of the lower freezing chamber 5, and a large number of fins are formed in the cooler piping 7a. Heat exchange is performed with the cooler 7 that is installed.

なお、冷凍室戻り口17の横幅寸法は、冷却器7の幅寸法とほぼ等しい横幅である。   In addition, the width dimension of the freezer compartment return port 17 is a width substantially equal to the width dimension of the cooler 7.

次に、冷蔵室冷却ダンパ20及び冷凍室冷却ダンパ50が共に開状態の場合には、図4に破線で示した冷蔵室2に向かう矢印80方向の空気も流れる。すると、庫内送風機9から送風された冷気の一部は、冷蔵室冷却ダンパ20を通って冷蔵室2(冷蔵温度帯室)に送風され、他は冷凍室冷却ダンパ50を通って製氷室3,上段冷凍室4、および下段冷凍室5(冷凍温度帯室)に送風される。ここで、冷凍室冷却ダンパ50を開いた場合、冷凍室冷却ダンパ50に設けられた後述する開閉体64の先端は冷蔵室ダクト15を完全に塞がないよう、適切な隙間を設けて配置されている。   Next, when both the refrigerating room cooling damper 20 and the freezing room cooling damper 50 are in the open state, the air in the direction of the arrow 80 toward the refrigerating room 2 indicated by a broken line in FIG. 4 also flows. Then, a part of the cool air blown from the internal blower 9 is blown through the refrigerator compartment cooling damper 20 to the refrigerator compartment 2 (refrigeration temperature zone compartment), and the other is passed through the freezer compartment cooling damper 50 to the ice making compartment 3. , Are sent to the upper freezer compartment 4 and the lower freezer compartment 5 (freezing temperature zone). Here, when the freezer compartment cooling damper 50 is opened, an end of an opening / closing body 64 described later provided in the freezer compartment cooling damper 50 is disposed with an appropriate gap so as not to completely block the refrigerator compartment duct 15. ing.

一方、図5に示すように冷蔵室冷却ダンパ20が開状態、且つ冷凍室冷却ダンパ50が閉状態で、冷蔵温度帯室(冷蔵室2及び野菜室6)のみの冷却が行われている場合では、冷蔵室2からの戻り冷気は、図3中に矢印Dで示す冷蔵室戻り空気のように、野菜室送風ダクト14ないし冷蔵室戻りダクト16を介して、冷却器収納室8の側方下部から冷却器収納室8に流入し、冷却器7と熱交換する。   On the other hand, as shown in FIG. 5, when the refrigerator compartment cooling damper 20 is in the open state and the refrigerator compartment cooling damper 50 is in the closed state, only the refrigerator temperature zone (refrigerator compartment 2 and vegetable compartment 6) is being cooled. Then, the return cold air from the refrigerating room 2 is transferred to the side of the cooler storage room 8 via the vegetable room air duct 14 or the refrigerating room return duct 16 like the refrigerating room return air indicated by the arrow D in FIG. It flows into the cooler storage chamber 8 from the lower part and exchanges heat with the cooler 7.

なお、野菜室6を冷却した冷気は、図4に示す如く、野菜室戻り口6d(図4参照)を介して、冷却器収納室8の下部に流入するが、風量が冷凍温度帯室を循環する風量や冷蔵室2を循環する風量に比べて少ない。   As shown in FIG. 4, the cold air that has cooled the vegetable compartment 6 flows into the lower portion of the cooler storage chamber 8 through the vegetable compartment return port 6 d (see FIG. 4). Less than the amount of air circulating and the amount of air circulating through the refrigerator compartment 2.

上記にて説明したように、冷蔵庫1内の冷気の切替えは冷蔵室冷却ダンパ20及び冷凍室冷却ダンパ50を夫々適宜に開閉することにより行う構成である。   As described above, the cooling air in the refrigerator 1 is switched by opening and closing the refrigerator compartment cooling damper 20 and the freezer compartment cooling damper 50 as appropriate.

次に、図8から図14を用いて、冷凍室冷却ダンパ50を例として、電動ダンパの構成と動作の一例について説明する。   Next, an example of the configuration and operation of the electric damper will be described using the freezer compartment cooling damper 50 as an example with reference to FIGS. 8 to 14.

図8と図9は冷凍室冷却ダンパ50の構成の一例を示す斜視図である。図9は図8の矢印S方向から見た図であり、図10は図8におけるY−Y方向の断面図である。   8 and 9 are perspective views showing an example of the configuration of the freezer compartment cooling damper 50. FIG. 9 is a view seen from the direction of arrow S in FIG. 8, and FIG. 10 is a cross-sectional view in the YY direction in FIG.

冷凍室冷却ダンパ50は、開口62を一面に備え、例えば樹脂製のフレーム63と、フレーム63の一端にモータや減速歯車などの駆動系を内蔵した駆動手段60を備え、駆動軸61から駆動力を出力する。   The freezer compartment cooling damper 50 includes an opening 62 on one surface, and includes, for example, a resin frame 63 and a driving means 60 having a built-in driving system such as a motor and a reduction gear at one end of the frame 63. Is output.

開閉体64は樹脂製の板状の開閉板64aと、該開閉板64aの一面に設けられた密閉部材64bとを備える。密閉部材64bは、発泡ウレタンや発泡ポリエチレンといった柔軟な材料で成形されており、フレーム63に設けられた幅W,高さhの開口62に対向して設けられる。   The opening / closing body 64 includes a resin plate-like opening / closing plate 64a and a sealing member 64b provided on one surface of the opening / closing plate 64a. The sealing member 64 b is formed of a flexible material such as foamed urethane or foamed polyethylene, and is provided to face the opening 62 having a width W and a height h provided in the frame 63.

開閉体64の一端は、駆動軸61に軸支されており、他端はフレーム63に設けられた支軸65のまわりに回転自在に設けられている。開閉体64は、駆動軸61と支軸65とを結んだ回動軸のまわりに揺動自在であり、かつ前記回動軸は開閉体64の長手方向の一辺と平行に、その一辺の近傍に配置されている。フレーム63の開口62の長手方向略中央部には、開口62の変形を抑止するための補強の支柱62aが設けられている。   One end of the opening / closing body 64 is pivotally supported by the drive shaft 61, and the other end is rotatably provided around a support shaft 65 provided on the frame 63. The opening / closing body 64 can swing around a rotation shaft connecting the drive shaft 61 and the support shaft 65, and the rotation shaft is parallel to one side in the longitudinal direction of the opening / closing body 64 and in the vicinity of the one side. Is arranged. A reinforcing column 62 a for suppressing deformation of the opening 62 is provided at a substantially central portion in the longitudinal direction of the opening 62 of the frame 63.

図8から図10は、開閉体64が閉鎖された状態を示している。開閉体64は閉位置において、柔軟な密閉部材64bがフレーム63に設けられた開口62の内周に沿って設けられた接触部66と接触することによって開口62を密閉する。モータを回転させると、駆動軸61を介して開閉体64が図示の矢印方向におよそ90°回動して開閉体は64′で示した開位置となる。開位置と閉位置との間を開閉体64が回転動作することによって、開位置においては開口62を冷気が通過することができ、閉位置においては冷気の流れを阻止して閉鎖する構成である。   8 to 10 show a state in which the opening / closing body 64 is closed. In the closed position, the opening / closing body 64 seals the opening 62 by contacting a flexible sealing member 64 b with a contact portion 66 provided along the inner periphery of the opening 62 provided in the frame 63. When the motor is rotated, the opening / closing body 64 is rotated by about 90 ° in the direction of the arrow through the drive shaft 61, so that the opening / closing body is in the open position indicated by 64 '. The opening / closing body 64 rotates between the open position and the closed position, so that cool air can pass through the opening 62 in the open position, and the cool air flow is blocked and closed in the closed position. .

次に、駆動手段60の構成と動作の一例について図11から図14を用いて説明する。図11から図14は、駆動手段60を図5の矢印Z方向に見た概略図である。駆動手段60はモータ70を有し、モータ70の出力軸71にはピニオンギヤ72が設けられており、モータ70の駆動とともに回転してトルクを出力する。アイドラギヤ73はアイドラ支点74のまわりに回動自在に軸支された減速歯車である。   Next, an example of the configuration and operation of the driving unit 60 will be described with reference to FIGS. 11 to 14 are schematic views of the driving means 60 as viewed in the direction of arrow Z in FIG. The driving means 60 has a motor 70, and an output shaft 71 of the motor 70 is provided with a pinion gear 72, which rotates with the driving of the motor 70 and outputs torque. The idler gear 73 is a reduction gear that is rotatably supported around an idler fulcrum 74.

アイドラギヤ73の外周は、ピニオンギヤ72とかみ合うギヤ73aを有し、ピニオンギヤ72からのトルクを減速しながら伝達する。アイドラギヤ73の一部には、部分歯車73bが設けられている。部分歯車73bは、例えばアイドラギヤ73が90°回転する範囲のみに設けられている。部分歯車73bの歯車形状以外の部分には、円柱状をなした円柱部73cが設けられている。なお、ギヤ73aと部分歯車73bは、アイドラギヤ73の高さ方向に対して、互いにずれた位置に設けられている。   The outer periphery of the idler gear 73 has a gear 73a that meshes with the pinion gear 72, and transmits torque while decelerating the torque from the pinion gear 72. A partial gear 73 b is provided on a part of the idler gear 73. The partial gear 73b is provided only in a range in which, for example, the idler gear 73 rotates 90 °. A cylindrical portion 73c having a cylindrical shape is provided at a portion of the partial gear 73b other than the gear shape. The gear 73 a and the partial gear 73 b are provided at positions shifted from each other with respect to the height direction of the idler gear 73.

出力ギヤ75は、駆動軸61のまわりに回動自在に軸支され、開閉体64と嵌合されている。開閉体64と出力ギヤ75とは連結されており、一体として回動する。出力ギヤ75の一部には、部分歯車75bが設けられている、部分歯車75bは、アイドラギヤ73の一部に設けられた部分歯車73bとかみ合って、アイドラギヤ73と連動して例えば90°だけ回転する。   The output gear 75 is pivotally supported around the drive shaft 61 and is fitted to the opening / closing body 64. The opening / closing body 64 and the output gear 75 are connected and rotate as a unit. A partial gear 75 b is provided at a part of the output gear 75. The partial gear 75 b meshes with a partial gear 73 b provided at a part of the idler gear 73 and rotates by 90 ° in conjunction with the idler gear 73. To do.

出力ギヤ75の部分歯車75bを挟んで両側には、円弧形状をした第一のストッパ75cと第二のストッパ75dとが設けられている。第一のストッパ75cと第二のストッパ75dは、開閉体64が開位置及び閉位置において、それぞれアイドラギヤ73の円柱部73cと互いに嵌合される位置関係にある。出力ギヤ75が部分歯車75bのかみ合う範囲であるおよそ90°回動することにより、出力ギヤ75と連結された開閉体64が回動する構成である。   On both sides of the partial gear 75b of the output gear 75, an arc-shaped first stopper 75c and a second stopper 75d are provided. The first stopper 75c and the second stopper 75d are in a positional relationship in which the opening / closing body 64 is fitted to the cylindrical portion 73c of the idler gear 73 at the open position and the closed position, respectively. The opening / closing body 64 connected to the output gear 75 is rotated by rotating the output gear 75 by approximately 90 °, which is a range where the partial gear 75b is engaged.

次に、駆動手段60の動作について説明する。   Next, the operation of the driving unit 60 will be described.

図11は、駆動手段60は開閉体64が閉鎖状態にあり、図8から図10と同様な状態を図示している。アイドラギヤ73に設けられた円柱部73cは、出力ギヤ75の第二のストッパ75dと嵌合しており、開閉体64を閉鎖状態で保持している。   FIG. 11 shows the drive unit 60 in a state similar to that shown in FIGS. A cylindrical portion 73c provided on the idler gear 73 is fitted with the second stopper 75d of the output gear 75, and holds the opening / closing body 64 in a closed state.

図12は、図11の状態からモータ70を駆動して、ピニオンギヤ72,アイドラギヤ73,出力ギヤ75をそれぞれ矢印方向に回転した状態であり、出力ギヤ75の一部である部分歯車75bとアイドラギヤ73の一部に設けられた部分歯車73bとかみ合っている。出力ギヤ75の第二のストッパ75dは、アイドラギヤ73の円柱部73cから離反した位置となる。   12 shows a state in which the motor 70 is driven from the state of FIG. 11 and the pinion gear 72, the idler gear 73, and the output gear 75 are rotated in the directions of the arrows, respectively. The partial gear 75b and the idler gear 73 that are part of the output gear 75 are shown. Is engaged with a partial gear 73b provided at a part of the gear. The second stopper 75 d of the output gear 75 is positioned away from the cylindrical portion 73 c of the idler gear 73.

図13は図12よりもさらに矢印方向に回動した位置を示している。図14においてはおよそ90°回動して、出力ギヤ75の一部である部分歯車75bとアイドラギヤ73の一部に設けられた部分歯車73bとのかみ合いが終了した状態を示す。この状態で、出力ギヤ75の第一のストッパ75cはアイドラギヤ73の円柱部73cと嵌合した位置となって、開閉体64を開放状態で保持する。開閉体64を再度閉鎖する際には、図14の状態から図13,図12の状態を経由して図11の状態に至る。   FIG. 13 shows a position rotated further in the direction of the arrow as compared with FIG. FIG. 14 shows a state in which the meshing between the partial gear 75 b that is a part of the output gear 75 and the partial gear 73 b that is provided in a part of the idler gear 73 is completed after being rotated approximately 90 °. In this state, the first stopper 75c of the output gear 75 is in a position where it is engaged with the cylindrical portion 73c of the idler gear 73, and holds the opening / closing body 64 in an open state. When the opening / closing body 64 is closed again, the state shown in FIG. 11 is reached from the state shown in FIG. 14 via the states shown in FIGS.

上記のように動作することによって、ダンパ50は開閉体64の開閉動作を行う。   By operating as described above, the damper 50 opens and closes the opening / closing body 64.

ここで、冷凍温度帯室に収納した冷凍食品などを長期にわたって保存するためには、冷凍温度帯室内部の温度ムラを低減して、できるだけ均一に冷却することが望ましい。すなわち、図2又は図4等により説明したように、冷凍温度帯室内に冷気を吹き込む吹き出し口3c,4c,5cは、冷凍温度帯室の背面側にある。そのため、冷凍温度帯室内においては冷気が手前側に送風されるまでの間に温度上昇する傾向がある。この傾向は、冷気の流量が少なく流速が遅いほど顕著となる。そのため、冷凍温度帯室の温度ムラを低減するには、吹き出し口3c,4c,5cから所定以上の量の冷気を冷凍温度帯室に吹き込むとともに、その冷気の流速を高めることが有効である。   Here, in order to preserve the frozen food stored in the frozen temperature zone chamber for a long period of time, it is desirable to reduce the temperature unevenness inside the frozen temperature zone chamber and cool it as uniformly as possible. That is, as described with reference to FIG. 2 or FIG. 4 and the like, the outlets 3c, 4c, and 5c for blowing cool air into the refrigeration temperature zone chamber are on the back side of the refrigeration temperature zone chamber. For this reason, the temperature tends to rise in the refrigeration temperature zone until the cool air is blown to the near side. This tendency becomes more prominent as the flow rate of cold air is smaller and the flow rate is slower. Therefore, in order to reduce the temperature unevenness in the freezing temperature zone, it is effective to blow a predetermined amount or more of cool air from the outlets 3c, 4c, 5c into the freezing temperature zone and increase the flow rate of the cold air.

また、流量を増加させて且つ流速を高めるためには、庫内送風機9を大型化することが有効であるが省エネルギー性の観点からは望ましくない。また、騒音が大きくなる等の問題があるので、庫内送風機9を大型化するのではなく、送風抵抗を低減することによって損失を減らし、冷気の流速を高めることが望ましい。   In order to increase the flow rate and increase the flow velocity, it is effective to increase the size of the internal fan 9, but this is not desirable from the viewpoint of energy saving. Moreover, since there is a problem such as an increase in noise, it is desirable not to increase the size of the internal fan 9 but to reduce the loss by reducing the blowing resistance and increase the flow rate of the cold air.

次に、図4から図7によって、送風抵抗を低減するための構成について説明する。   Next, a configuration for reducing the blowing resistance will be described with reference to FIGS.

庫内送風機9によって圧力が高められて吐出された冷気は、送風機カバー56に沿って図7の矢印57のように流れる。冷凍室冷却ダンパ50の開口を通過した後の冷気は、矢印58aないし矢印58bを経て、吹き出し口3c,4c,5cから吐出される。   The cool air discharged with the pressure increased by the internal blower 9 flows along the blower cover 56 as indicated by an arrow 57 in FIG. The cold air after passing through the opening of the freezer compartment cooling damper 50 is discharged from the outlets 3c, 4c, 5c via the arrows 58a to 58b.

ここで、庫内送風機9から吐出される冷気は、整流部56bで整流されて、その大部分が矢印57aのように流れる。整流部56bによって、上流から下流に向かって徐々に広がる風路が形成されていることによる。しかし、一部の冷気は矢印57のごとく拡散する。そこで、冷凍室冷却ダンパ50の幅寸法Wを庫内送風機9の直径Dよりも大とする。これにより、冷気を滑らかに冷凍室冷却ダンパ50に導入でき好適である。   Here, the cool air discharged from the internal blower 9 is rectified by the rectifying unit 56b, and most of the air flows as indicated by an arrow 57a. This is because the rectifying unit 56b forms an air passage that gradually spreads from upstream to downstream. However, some of the cold air diffuses as indicated by arrows 57. Therefore, the width dimension W of the freezer cooling damper 50 is made larger than the diameter D of the internal fan 9. Thereby, cold air can be smoothly introduced into the freezer compartment cooling damper 50, which is preferable.

庫内送風機9によって一旦高められた冷気の圧力は、冷気の送風経路内の抵抗によって下流側では徐々に低くなった後、最後は流速を高めるために面積を縮小された吹き出し口3c,4c,5cから冷凍温度帯室内に吐出される。   The pressure of the cold air once increased by the internal blower 9 gradually decreases on the downstream side due to the resistance in the air flow path of the cold air, and finally the outlets 3c, 4c, whose area is reduced to increase the flow velocity, 5c is discharged into the freezing temperature zone.

ここで、庫内送風機9から吹き出し口3c,4c,5cに至るまでの冷気の送風経路内に面積の極小部分があると、その部分において局部的に流速が高まり、オリフィスとなる。そのため、上流側と下流側とで圧力差が生じ、下流側、すなわち吹き出しノズル側の圧力が低下する。すると、面積を絞った吹き出しノズルにおける冷気の流速も流量も低下するので、温度ムラが生じやすくなる。   Here, if there is a local minimum portion in the cool air blowing path from the internal blower 9 to the outlets 3c, 4c, 5c, the flow velocity is locally increased in that portion to form an orifice. Therefore, a pressure difference is generated between the upstream side and the downstream side, and the pressure on the downstream side, that is, the blowing nozzle side is reduced. Then, since the flow velocity and flow rate of the cold air at the blowout nozzle with a reduced area are reduced, temperature unevenness is likely to occur.

すなわち、庫内送風機9から吹き出し口3c,4c,5cに至るまでの冷気の通風抵抗を低減するためには、送風経路内に面積が極小となる部分がないように構成するのがよい。すなわち、庫内送風機9から吹き出し口3c,4c,5cまでの間の冷気ダクト内に設けられた冷凍室冷却ダンパ50の開口面積は、吹き出し口3c,4c,5cの面積よりも大、とすることが好適である。   That is, in order to reduce the ventilation resistance of the cold air from the internal blower 9 to the blowout ports 3c, 4c, 5c, it is preferable that there is no portion where the area is minimized in the blower path. That is, the opening area of the freezer compartment cooling damper 50 provided in the cold air duct between the internal blower 9 and the outlets 3c, 4c, 5c is larger than the area of the outlets 3c, 4c, 5c. Is preferred.

ここで、吹き出し口の面積は冷気の流量と流速によって定まる。以下、それらの適正値を算出する。   Here, the area of the outlet is determined by the flow rate and flow rate of the cold air. Hereinafter, those appropriate values are calculated.

まず、冷凍室から外部に漏洩する熱漏洩量を概算する。内容量が600Lクラスの冷蔵庫1の寸法は、概ね幅750[mm],奥行き700[mm],高さ1800[mm]程度であり、高さのうち冷凍室の占める高さは、概ね700[mm]である。   First, the amount of heat leakage that leaks from the freezer to the outside is estimated. The dimensions of the refrigerator 1 having an internal capacity of 600 L are approximately a width of 750 [mm], a depth of 700 [mm], and a height of 1800 [mm]. The height occupied by the freezer compartment is approximately 700 [ mm].

冷凍室を縦横高さが700×750×700[mm]の立方体として表面積を計算すると、上下面は冷蔵室又は野菜室と接しており、その面積は、
0.7[m]×0.75[m]×2=1.05[m2] …(1)
となる。
When calculating the surface area of a freezer room as a cube having a vertical and horizontal height of 700 × 750 × 700 [mm], the upper and lower surfaces are in contact with the refrigerator room or vegetable room,
0.7 [m] × 0.75 [m] × 2 = 1.05 [m 2 ] (1)
It becomes.

室温である外気と接する面は、上下面以外の4面であり、その表面積は、
0.7[m]×0.7[m]×2+0.7[m]×0.75[m]×2=2.03[m2] …(2)
となる。
The surfaces in contact with the outside air at room temperature are four surfaces other than the upper and lower surfaces, and the surface area is
0.7 [m] × 0.7 [m] × 2 + 0.7 [m] × 0.75 [m] × 2 = 2.03 [m 2 ] (2)
It becomes.

ここで、冷凍室から外気に漏れる熱漏洩量Qを概算するにあたり、簡単のために外気と接する面からのみ熱漏洩すると仮定して、面積を2[m2]、壁面の冷凍室内部から外気への熱通過率K=0.35[W/(m2・K)]、内部温度を−18[℃]、外気温度を+30[℃]とすると、熱漏洩量Qは表面積×熱通過率×温度差で表され、
Q=2[m2]×0.35[W/(m2・K)]×48[K]=33.6[W] …(3)
となる。
Here, when estimating the heat leakage amount Q leaking to the outside air from the freezing chamber, on the assumption that observed heat leakage from the surface in contact with ambient air for the sake of simplicity, an area 2 [m 2], the outside air from the refrigeration compartment of the wall If the heat transfer rate K = 0.35 [W / (m 2 · K)], the internal temperature is −18 [° C.], and the outside air temperature is +30 [° C.], the amount of heat leakage Q is surface area × heat transfer rate X Expressed by temperature difference,
Q = 2 [m 2 ] × 0.35 [W / (m 2 · K)] × 48 [K] = 33.6 [W] (3)
It becomes.

次に、必要な冷気の流量について概算する。   Next, the required cold air flow is estimated.

冷却器7によって冷却された冷気は、冷凍温度帯室内に吹き込まれて、貯蔵食品等から熱を奪うとともに、一部は冷蔵庫1の表面から冷凍温度帯室外に熱漏洩して温度が上昇した後に冷凍室戻り口17から冷却器7に戻る。   The cold air cooled by the cooler 7 is blown into the freezing temperature zone chamber to take heat away from the stored food and the like, and after a part of the heat leaks from the surface of the refrigerator 1 to the outside of the freezing temperature zone chamber and the temperature rises. Return to the cooler 7 from the freezer return port 17.

ここで、冷気の流量をV[m3]、冷気の温度上昇をΔt[℃]、空気の比熱をCp[kJ/(kg・K)]、空気の密度をρ[kg/m3]とすると、冷気から奪われる熱量Q[kJ/min]は、
Q=V×Δt×Cp×ρ …(4)
で表される。必要な熱量Qから流量Vを求めるには、
V=Q/(Δt×Cp×ρ) …(5)
となる。
Here, the flow rate of cold air is V [m 3 ], the temperature rise of cold air is Δt [° C.], the specific heat of air is Cp [kJ / (kg · K)], and the density of air is ρ [kg / m 3 ]. Then, the amount of heat Q [kJ / min] taken from the cold air is
Q = V × Δt × Cp × ρ (4)
It is represented by To obtain the flow rate V from the required amount of heat Q,
V = Q / (Δt × Cp × ρ) (5)
It becomes.

ここで、式(3)に示されるように、熱漏洩量は33.6[W]、食品の温度を下げるために必要な熱量が熱漏洩と同等の33.6[W]とすると、全体で必要な熱量は、
Q=67.2[W]=4.03[kJ/min]
である。
Here, as shown in Equation (3), if the amount of heat leakage is 33.6 [W], and the amount of heat necessary for lowering the temperature of food is 33.6 [W], which is equivalent to heat leakage, The amount of heat required is
Q = 67.2 [W] = 4.03 [kJ / min]
It is.

ここで、冷気は冷凍温度帯室内に−20℃で流入して−15[℃]で冷却器に戻るとすれば、冷気の温度上昇Δt=5[℃]、比熱Cp=1.01[kJ/(kg・K)]、空気の密度ρ=1.4[kg/m3])とすれば、
V=4.03/(5×1.01×1.4)=0.57[m3/min] …(6)
となり、冷気の流量としては、およそ0.6[m3/min]が必要である。
Here, if the cold air flows into the freezing temperature zone at −20 ° C. and returns to the cooler at −15 [° C.], the temperature rise of the cold air Δt = 5 [° C.] and the specific heat Cp = 1.01 [kJ] / (Kg · K)], air density ρ = 1.4 [kg / m 3 ])
V = 4.03 / (5 × 1.01 × 1.4) = 0.57 [m 3 / min] (6)
Therefore, the flow rate of the cold air needs to be about 0.6 [m 3 / min].

冷凍室において温度むらが生じないためには、吹き出しノズルから吐出される冷気の流速は、およそ2[m/s]程度が必要であるとされている。ここで、冷気の流量が式(6)により概算したように、およそ毎分0.6[m3]、流速が2[m/s]程度であるとすれば、吐出口の面積Sはおよそ、
S=0.6/(2×60)=0.005[m2]=5000[mm2] …(7)
となる。冷凍室冷却ダンパ50の開口62の面積は、これよりも大とするのが好都合であり、例えば20%から30%程度大とすると、6000から6500[mm2]とするのが好適である。
In order to prevent temperature unevenness in the freezer compartment, the flow rate of the cold air discharged from the blowing nozzle is required to be about 2 [m / s]. Here, if the flow rate of cold air is approximately 0.6 [m 3 ] per minute and the flow rate is approximately 2 [m / s] as estimated by the equation (6), the area S of the discharge port is approximately ,
S = 0.6 / (2 × 60) = 0.005 [m 2 ] = 5000 [mm 2 ] (7)
It becomes. The area of the opening 62 of the freezer compartment cooling damper 50 is conveniently larger than this. For example, if it is about 20% to 30% larger, it is preferably 6000 to 6500 [mm 2 ].

次に、冷凍室冷却ダンパ50の開口62の形状について説明する。先に説明したように、開口62の幅Wはファンの直径Dよりも大とすることが好適である。しかし、開口62の面積を一定として幅Wを拡大した場合、高さ寸法hを小さくして、縦横比の大きい細長い形状となる。   Next, the shape of the opening 62 of the freezer compartment cooling damper 50 will be described. As described above, the width W of the opening 62 is preferably larger than the diameter D of the fan. However, when the width W is enlarged while keeping the area of the opening 62 constant, the height dimension h is reduced to form an elongated shape with a large aspect ratio.

また、開閉動作を行う開閉体64は、開口62よりも一回り大きく、開口62を閉鎖するよう構成されている。その縦横比は開口62の縦横比と概ね同じである。   The opening / closing body 64 that performs the opening / closing operation is slightly larger than the opening 62 and is configured to close the opening 62. The aspect ratio is substantially the same as the aspect ratio of the opening 62.

開閉体64は板状であって、密閉性を向上するために適切な縦横比の範囲について、図15を参照して説明する。   The opening / closing body 64 is plate-shaped, and the range of the aspect ratio appropriate for improving the sealing performance will be described with reference to FIG.

図15は、開閉体64が駆動軸61,支軸65からなる回動軸のまわりに矢印59方向に回転して、密閉部材64bが接触部66(図示せず)と均一に接触した状態を示す。この状態で、接触面の全周にわたって一様な押圧力として分布荷重p[N/mm]が生じる。図15では、分布荷重pを模式的に矢印で示している。r1は駆動軸61から接触部66の最も遠い辺68aまでの距離、r2は駆動軸61から接触部66の最も近い辺68bまでの距離である。   FIG. 15 shows a state in which the opening / closing body 64 rotates in the direction of the arrow 59 around the rotation shaft composed of the drive shaft 61 and the support shaft 65 so that the sealing member 64b is uniformly in contact with the contact portion 66 (not shown). Show. In this state, a distributed load p [N / mm] is generated as a uniform pressing force over the entire circumference of the contact surface. In FIG. 15, the distributed load p is schematically indicated by an arrow. r1 is the distance from the drive shaft 61 to the farthest side 68a of the contact portion 66, and r2 is the distance from the drive shaft 61 to the nearest side 68b of the contact portion 66.

ここで、計算のために分布荷重pを各辺の中央に加わる集中荷重Pとして簡易化して、長辺,短辺においてそれぞれP1[N],P2[N]とした場合、
P1=p×W …(8)
P2=p×h …(9)
となる。
Here, when the distribution load p is simplified as a concentrated load P applied to the center of each side for calculation, and P1 [N] and P2 [N] are respectively set on the long side and the short side,
P1 = p × W (8)
P2 = p × h (9)
It becomes.

ここで、
h=r1−r2 …(10)
として、長辺に生じる駆動軸61まわりのモーメントは、
(1)駆動軸61から最も遠い辺68aにおいては
M1=P1×r1=p×W×r1 …(11)
(2)駆動軸61から最も近い辺68bにおいては
M2=P1×r2=p×W×r2 …(12)
(3)側辺68cにおいては
M3=P2×(h/2+r2)=p×h×(h/2+r2) …(13)
である。
here,
h = r1-r2 (10)
The moment around the drive shaft 61 that occurs on the long side is
(1) In the side 68a farthest from the drive shaft 61, M1 = P1 × r1 = p × W × r1 (11)
(2) In the side 68b closest to the drive shaft 61, M2 = P1 × r2 = p × W × r2 (12)
(3) For the side 68c, M3 = P2 × (h / 2 + r2) = p × h × (h / 2 + r2) (13)
It is.

よって、駆動軸61まわりに生じるモーメントMはそれらの合計であり、側辺は2ヶ所なので、
M=M1+M2+2×M3 …(14)
=p×W×r1+p×W×r2+2×p×h×(h/2+r2)
=p×{W×(r1+r2)+h×(h+2×r2)}
=p×{W×(h+2×r2)+h×(h+2×r2)}
=p×(W+h)×(h+2×r2) …(15)
となる。
Therefore, the moment M generated around the drive shaft 61 is the sum of them, and there are two sides,
M = M1 + M2 + 2 × M3 (14)
= P * W * r1 + p * W * r2 + 2 * p * h * (h / 2 + r2)
= P × {W × (r1 + r2) + h × (h + 2 × r2)}
= P × {W × (h + 2 × r2) + h × (h + 2 × r2)}
= P × (W + h) × (h + 2 × r2) (15)
It becomes.

式(15)の意味するところは、均一の分布荷重pを全周に加える際に必要となる駆動トルクMを算出するものである。ここで、計算された駆動トルクMが小さいほど、小さいトルクで同じ分布荷重pが得られることになる。よって、Mが小さいほど密閉部材64bの開口62への当接圧力が最大となり、好適であることを示す。   The meaning of the equation (15) is to calculate the driving torque M required when the uniform distributed load p is applied to the entire circumference. Here, as the calculated driving torque M is smaller, the same distributed load p is obtained with a smaller torque. Therefore, it is shown that the smaller the M is, the more the pressure of contact with the opening 62 of the sealing member 64b is maximized.

すなわち、分布荷重pを単位荷重1であるとして、無次元化したモーメント比をM′とすれば、
M′=(W+h)×(h+2×r2) …(16)
となる。
That is, assuming that the distributed load p is unit load 1 and the non-dimensional moment ratio is M ′,
M ′ = (W + h) × (h + 2 × r2) (16)
It becomes.

したがって、式(16)の右辺を最小とする開閉体64の幅W及び高さhの関係が最も望ましい形状である、ということである。   Therefore, the relationship between the width W and the height h of the opening / closing body 64 that minimizes the right side of Expression (16) is the most desirable shape.

ここで、先に述べたように、開口62の面積を6400[mm2]とし、開口62を正方形とする場合、幅Wと高さhはともに80[mm]となる。 Here, as described above, when the area of the opening 62 is 6400 [mm 2 ] and the opening 62 is a square, both the width W and the height h are 80 [mm].

一方、開口62を細長い長方形形状とする場合、幅Wを拡大し高さhを縮小し、かつ面積は6400[mm2]とするので、一例として、W=160[mm],h=40[mm]となる。 On the other hand, when the opening 62 has an elongated rectangular shape, the width W is enlarged and the height h is reduced, and the area is 6400 [mm 2 ]. Therefore, as an example, W = 160 [mm], h = 40 [ mm].

ここで、開口62の短辺であるh寸法と、正方形の場合の一辺の長さW=80[mm]との比を短辺比Cとして無次元化する。正方形の場合、h=80[mm]であり、C=1となる。また、W=160[mm],h=40[mm]の長方形の場合、C=0.5となる。すなわち、短辺比Cが小さいほど細長い形状であることを示している。   Here, the dimension of the h dimension which is the short side of the opening 62 and the length W of one side in the case of a square W = 80 [mm] is made dimensionless as the short side ratio C. In the case of a square, h = 80 [mm] and C = 1. In the case of a rectangle of W = 160 [mm] and h = 40 [mm], C = 0.5. That is, the smaller the short side ratio C is, the longer the shape is.

図16に、短辺比とモーメント比との関係を示す。図16では、実装上実現可能な寸法の一例としてr2=6[mm]として、C≒0.2〜1.0となる範囲、すなわちh=15〜80[mm]の範囲において、モーメント比M′を式(16)によってそれぞれ計算した結果を示す。   FIG. 16 shows the relationship between the short side ratio and the moment ratio. In FIG. 16, when r2 = 6 [mm] as an example of a size that can be realized in mounting, the moment ratio M is in a range where C≈0.2 to 1.0, that is, in a range of h = 15 to 80 [mm]. The result of calculating 'by the equation (16) is shown.

図16に示すように、モーメント比M′はC=0.4において極小値となる。これは、C=1の正方形の場合と比較して約70%となり、短辺比Cの好適な範囲として0.3から0.5程度となることがわかる。すなわち、幅W×高さhの好適な範囲は、267[mm]×24[mm]から160[mm]×40[mm]となる。また、最適値は183[mm]×35[mm]となる。   As shown in FIG. 16, the moment ratio M ′ has a minimum value at C = 0.4. This is about 70% compared to the case of C = 1 square, and it can be seen that the preferred range of the short side ratio C is about 0.3 to 0.5. That is, a preferable range of width W × height h is 267 [mm] × 24 [mm] to 160 [mm] × 40 [mm]. The optimum value is 183 [mm] × 35 [mm].

この短辺比Cを長辺Wと短辺hとの比率である縦横比として表すと、短辺比0.3の場合は11.125、短辺比0.5の場合は4となる。すなわち、縦横比で表すと4から11の範囲が好適であり、最適値は5.23となる。   When the short side ratio C is expressed as an aspect ratio that is a ratio of the long side W to the short side h, the short side ratio C is 11.125 when the short side ratio is 0.3, and 4 when the short side ratio is 0.5. That is, when expressed in terms of aspect ratio, the range of 4 to 11 is suitable, and the optimum value is 5.23.

先に説明したように、ここで求められたダンパ開口62の幅Wよりもファン直径Dを小とする方が送風抵抗を低減するために望ましい、よって、ファン直径Dはφ150[mm]以下とすることが望ましい。   As described above, it is desirable to make the fan diameter D smaller than the width W of the damper opening 62 obtained here in order to reduce the air blowing resistance. Therefore, the fan diameter D is not more than φ150 [mm]. It is desirable to do.

次に、冷凍室冷却ダンパ50の配置について説明すると、図3ないし図7に示すように、冷凍室冷却ダンパ50は水平面に平行に配置するのではなく、図3では図示右側が低くなるように傾斜して配置する。これによって、冷凍室冷却ダンパ50の一部に結露した水分を斜面に沿って排水できるので、水分がダンパ内部に滞留して氷結することがなく好適である。さらに、冷凍室冷却ダンパ50の一端に設けられた駆動手段60を傾斜の高所側に配置する。これによって、排水が駆動手段60に入り込まず、さらに好適である。   Next, the arrangement of the freezer compartment cooling damper 50 will be described. As shown in FIGS. 3 to 7, the freezer compartment cooling damper 50 is not arranged in parallel to the horizontal plane, but in FIG. Place it at an angle. Accordingly, moisture condensed on a part of the freezer cooling damper 50 can be drained along the slope, which is preferable because moisture does not stay inside the damper and freeze. Further, the driving means 60 provided at one end of the freezer compartment cooling damper 50 is disposed on the inclined high place side. Accordingly, the drainage does not enter the driving means 60, which is more preferable.

以上説明したように、本発明においては、冷凍室冷却ダンパ50の開口62の面積を冷凍室への冷気の吹き出し口の面積よりも大とする。   As described above, in the present invention, the area of the opening 62 of the freezer compartment cooling damper 50 is larger than the area of the cold air outlet to the freezer compartment.

これによって、送風経路の圧力損失を低減し、通風抵抗の少ない冷蔵庫を提供できる。   Thereby, the pressure loss of a ventilation path can be reduced and the refrigerator with little ventilation resistance can be provided.

さらに、冷凍室冷却ダンパ50の開口62の寸法は、面積が同一である正方形の一辺の長さと短辺hの長さとを比較した短辺比Cにおいて0.3から0.5、長辺と短辺の比である縦横比で表すと4から11の範囲とする。   Furthermore, the dimension of the opening 62 of the freezer cooling damper 50 is 0.3 to 0.5 in the short side ratio C in which the length of one side of the square having the same area and the length of the short side h are compared, and The range of 4 to 11 is expressed by the aspect ratio which is the ratio of the short sides.

これによって、密閉部材64bと開口62の接触部66との間の当接圧力が最大となり、密閉性を向上して冷気の漏れを防止できるので好適である。すなわち幅W×高さhは267[mm]×24[mm]から160[mm]×40[mm]の範囲が好適であり、最適値は183[mm]×35[mm]となり、開閉体64であるバッフルの寸法も開口62より一回り大きいが略同等の寸法である。開閉体64の奥行き寸法は24から40[mm]となって幅と比べて小さいので、冷気ダクト13の奥行き寸法を小となして冷蔵庫1の奥行きを小さくできるので都合がよい。   This is preferable because the contact pressure between the sealing member 64b and the contact portion 66 of the opening 62 is maximized, the sealing performance is improved, and the leakage of cold air can be prevented. That is, the width W × height h is preferably in the range of 267 [mm] × 24 [mm] to 160 [mm] × 40 [mm], and the optimum value is 183 [mm] × 35 [mm]. The size of the baffle which is 64 is also slightly larger than the opening 62, but is substantially the same size. Since the depth dimension of the opening / closing body 64 is 24 to 40 [mm], which is smaller than the width, it is convenient because the depth dimension of the cold air duct 13 can be reduced and the depth of the refrigerator 1 can be reduced.

以上の構成により、通風抵抗が少なく、かつ気密性を向上することで冷気の漏れを低減して、省エネルギー化が図れる冷蔵庫を提供できる。従って、冷蔵庫内の食品を所定温度範囲に維持しながら省エネルギー性能を確保し、食品の貯蔵温度維持ができる冷蔵庫を得ることができる。   With the above configuration, it is possible to provide a refrigerator that has less ventilation resistance and improves airtightness, thereby reducing leakage of cold air and saving energy. Accordingly, it is possible to obtain a refrigerator capable of ensuring energy saving performance while maintaining the food storage temperature while maintaining the food in the refrigerator within a predetermined temperature range.

本発明は以上説明した如く、冷凍室冷却ダンパの開口部の面積を冷凍室への冷気の吹き出し口の面積よりも大とすることによって、送風経路の圧力損失を低減し、通風抵抗の少ない冷蔵庫を提供できる、という効果がある。   As described above, the present invention reduces the pressure loss of the ventilation path and reduces the ventilation resistance by making the area of the opening of the freezer cooling damper larger than the area of the cold air outlet to the freezer. Can be provided.

さらに冷凍室冷却ダンパの開口部の寸法は、面積が同一である正方形の一辺の長さと短辺hの長さとを比較した短辺比Cにおいて0.3から0.5、長辺と短辺の比である縦横比で表すと4から11の範囲とすることによって、密閉部材と開口部接触部との間の当接圧力が最大となり、密閉性を向上して冷気の漏れを防止できるので、省エネルギー化が図れるものである。   Furthermore, the dimension of the opening of the freezer cooling damper is 0.3 to 0.5 in the short side ratio C in which the length of one side of the square having the same area is compared with the length of the short side h, and the long side and the short side. By expressing the ratio in the range of 4 to 11, the contact pressure between the sealing member and the opening contact portion is maximized, improving the sealing property and preventing the leakage of cold air. Energy saving can be achieved.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 冷却器
8 冷却器収納室
9 庫内送風機(送風機)
10 断熱箱体
11 冷蔵室送風ダクト
12 上段冷凍室送風ダクト
13 冷気ダクト
15 冷蔵室ダクト
16 冷蔵室戻りダクト
17 冷凍室戻り口
19 機械室
20 冷蔵室冷却ダンパ
21 蒸発皿
22 除霜ヒータ
23 樋
24 圧縮機
31 制御基板
33 冷蔵室温度センサ
33a 野菜室温度センサ
34 冷凍室温度センサ
35 冷却器温度センサ
50 冷凍室冷却ダンパ
53 上部カバー
54 仕切板
55 ファンモータ固定部
56 送風機カバー
56a 吹き出し口
56b 整流部
60 駆動手段
61 駆動軸
62 開口
62a 支柱
63 フレーム
64 開閉体
64a 開閉板
64b 密閉部材
65 支軸
66 接触部
67 圧接力
70 モータ
71 出力軸
72 ピニオンギヤ
73 アイドラギヤ
74 アイドラ支点
75 出力ギヤ
1 Refrigerator 2 Refrigerated room (refrigerated temperature zone)
3 Ice making room (freezing temperature zone)
4 Upper freezer room (freezing temperature room)
5 Lower freezer compartment (freezing temperature zone)
6 Vegetable room (refrigerated temperature room)
7 Cooler 8 Cooler storage chamber 9 Blower (blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigerating room ventilation duct 12 Upper stage freezing room ventilation duct 13 Cold air duct 15 Refrigerating room duct 16 Refrigerating room return duct 17 Freezing room return port 19 Machine room 20 Refrigerating room cooling damper 21 Evaporating dish 22 Defrosting heater 23 樋 24 Compressor 31 Control board 33 Refrigerating room temperature sensor 33a Vegetable room temperature sensor 34 Freezer room temperature sensor 35 Cooler temperature sensor 50 Freezer room cooling damper 53 Upper cover 54 Partition plate 55 Fan motor fixing part 56 Blower cover 56a Air outlet 56b Rectification part 60 driving means 61 driving shaft 62 opening 62a support 63 frame 64 opening / closing body 64a opening / closing plate 64b sealing member 65 support shaft 66 contact portion 67 pressure contact force 70 motor 71 output shaft 72 pinion gear 73 idler gear 74 idler fulcrum 75 output gear

Claims (5)

冷蔵庫本体に設けられた冷凍温度帯室と、
該冷凍温度帯室の後方に設けられ冷却器が設置される冷却器室と、
前記冷却器室から前記冷凍温度帯室へ冷気を送風する送風機と、
前記冷却器室と前記冷凍温度帯室とを仕切り前記送風機で送風された冷気を前記冷凍温度帯室へ吹き出す吹き出し口を有する仕切板と、
前記冷凍温度帯室への送風量を制御する冷凍室ダンパと、を備えた冷蔵庫において、
前記冷凍室ダンパは、
前記冷却器室と前記吹き出し口とを連通する開口を有するフレームと、
前記開口を開閉する開閉体と、
該開閉体を駆動する駆動手段と、を備え、
該冷凍室ダンパの前記開口の面積は前記吹き出し口の面積よりも大きいことを特徴とする冷蔵庫。
A freezing temperature zone provided in the refrigerator body,
A cooler chamber provided behind the freezing temperature zone chamber and provided with a cooler;
A blower for blowing cool air from the cooler room to the freezing temperature zone;
A partition plate that partitions the cooler chamber and the refrigeration temperature zone chamber and has a blowout port that blows out the cold air blown by the blower to the refrigeration temperature zone chamber;
In a refrigerator including a freezer damper that controls the amount of air blown to the freezing temperature zone chamber,
The freezer damper is
A frame having an opening communicating the cooler chamber and the outlet;
An opening and closing body for opening and closing the opening;
Driving means for driving the opening and closing body,
The refrigerator characterized in that the area of the opening of the freezer damper is larger than the area of the outlet.
前記吹き出し口は複数設けられ、前記冷凍室ダンパの前記開口の面積は前記複数の吹き出し口の合計の面積よりも大きいことを特徴とする、請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein a plurality of the outlets are provided, and an area of the opening of the freezer damper is larger than a total area of the plurality of outlets. 前記冷凍室ダンパの前記開口は長方形状であって、縦横比が4〜11であることを特徴とする、請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the opening of the freezer damper is rectangular and has an aspect ratio of 4 to 11. 前記開口の面積は6000〜6500mm2であることを特徴とする、請求項1乃至3のいずれかに記載の冷蔵庫。 The refrigerator according to claim 1, wherein an area of the opening is 6000 to 6500 mm 2 . 長方形状の開口を有するフレームと、
前記開口を開閉する開閉体と、
該開閉体を駆動する駆動手段と、を備えたダンパ装置において、
前記開口の縦横比は4〜11であり、且つ該開口の面積は6000〜6500mm2であることを特徴とするダンパ装置。
A frame having a rectangular opening;
An opening and closing body for opening and closing the opening;
In a damper device comprising a driving means for driving the opening and closing body,
The damper device according to claim 1 , wherein an aspect ratio of the opening is 4 to 11, and an area of the opening is 6000 to 6500 mm 2 .
JP2009207642A 2009-09-09 2009-09-09 Damper device and refrigerator equipped with the damper device Pending JP2011058684A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009207642A JP2011058684A (en) 2009-09-09 2009-09-09 Damper device and refrigerator equipped with the damper device
KR1020100080235A KR20110027565A (en) 2009-09-09 2010-08-19 Damper apparatus and refrigerator having damper apparatus
CN2010102595189A CN102022888A (en) 2009-09-09 2010-08-19 Damper Apparatus and Refrigerator having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207642A JP2011058684A (en) 2009-09-09 2009-09-09 Damper device and refrigerator equipped with the damper device

Publications (1)

Publication Number Publication Date
JP2011058684A true JP2011058684A (en) 2011-03-24

Family

ID=43864481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207642A Pending JP2011058684A (en) 2009-09-09 2009-09-09 Damper device and refrigerator equipped with the damper device

Country Status (3)

Country Link
JP (1) JP2011058684A (en)
KR (1) KR20110027565A (en)
CN (1) CN102022888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020690A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 refrigerator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5791425B2 (en) * 2011-08-19 2015-10-07 三菱電機株式会社 Freezer refrigerator
JP5847626B2 (en) * 2012-03-26 2016-01-27 ハイアールアジア株式会社 Refrigerator and operation method thereof
US10368660B2 (en) 2013-05-29 2019-08-06 Carrier Corporation Refrigerated sales furniture
CN104534780A (en) * 2014-12-23 2015-04-22 合肥美的电冰箱有限公司 Air duct assembly and refrigerator
CN105135789B (en) * 2015-07-24 2017-11-17 合肥美的电冰箱有限公司 Refrigerator
CN106610170B (en) * 2015-10-22 2020-04-28 青岛海尔智能技术研发有限公司 Air-cooled refrigerator and control method thereof
JP6889463B2 (en) * 2016-12-06 2021-06-18 アクア株式会社 refrigerator
CN108168190A (en) * 2017-12-28 2018-06-15 青岛海尔特种电冰柜有限公司 Air cooling refrigeration equipment
JP7261444B2 (en) * 2018-12-10 2023-04-20 アクア株式会社 refrigerator
CN113432368B (en) * 2020-03-23 2023-03-10 日立环球生活方案株式会社 Refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692871B2 (en) * 1988-07-19 1997-12-17 三洋電機株式会社 refrigerator
JP2005076922A (en) * 2003-08-29 2005-03-24 Hitachi Ltd Refrigerator
JP2005180719A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Refrigerator
JP2006308259A (en) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Freezer-refrigerator
JP2008008565A (en) * 2006-06-30 2008-01-17 Hitachi Appliances Inc Refrigerator
JP2008309409A (en) * 2007-06-15 2008-12-25 Panasonic Corp Damper device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715226B2 (en) * 1992-09-28 1998-02-18 株式会社三協精機製作所 Damper device
CN2549408Y (en) * 2002-06-03 2003-05-07 张炳圣 Airing opening of refrigerator
JP4157447B2 (en) * 2003-09-09 2008-10-01 日本電産サンキョー株式会社 Damper device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692871B2 (en) * 1988-07-19 1997-12-17 三洋電機株式会社 refrigerator
JP2005076922A (en) * 2003-08-29 2005-03-24 Hitachi Ltd Refrigerator
JP2005180719A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Refrigerator
JP2006308259A (en) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Freezer-refrigerator
JP2008008565A (en) * 2006-06-30 2008-01-17 Hitachi Appliances Inc Refrigerator
JP2008309409A (en) * 2007-06-15 2008-12-25 Panasonic Corp Damper device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020690A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
CN102022888A (en) 2011-04-20
KR20110027565A (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP2011058684A (en) Damper device and refrigerator equipped with the damper device
JP5178642B2 (en) refrigerator
JP6131116B2 (en) refrigerator
JP5530852B2 (en) refrigerator
JP2013002664A (en) Refrigerator
JP2015001331A (en) Refrigerator
JP4848332B2 (en) refrigerator
JP2011058686A (en) Refrigerator
WO2011114656A1 (en) Refrigerator
JP2012057888A (en) Refrigerator
JP2002130910A (en) Refrigerator
JP2011058694A (en) Damper device and refrigerator using the same
JP2013002663A (en) Refrigerator
JP5039761B2 (en) refrigerator
JP5341653B2 (en) refrigerator
JP5380216B2 (en) refrigerator
JP5103452B2 (en) refrigerator
JP6446665B2 (en) refrigerator
JP6383936B2 (en) refrigerator
JP6975735B2 (en) refrigerator
JP2019027649A (en) refrigerator
JP6778861B2 (en) refrigerator
JP5202484B2 (en) Damper device and refrigerator using the damper device
JP2007315662A (en) Refrigerator
JP2023007618A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508