JP2011058586A - Warm-up device of transmission for electric automobile - Google Patents

Warm-up device of transmission for electric automobile Download PDF

Info

Publication number
JP2011058586A
JP2011058586A JP2009210561A JP2009210561A JP2011058586A JP 2011058586 A JP2011058586 A JP 2011058586A JP 2009210561 A JP2009210561 A JP 2009210561A JP 2009210561 A JP2009210561 A JP 2009210561A JP 2011058586 A JP2011058586 A JP 2011058586A
Authority
JP
Japan
Prior art keywords
transmission
heat
oil
latent heat
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009210561A
Other languages
Japanese (ja)
Inventor
Yuichi Ito
雄一 伊藤
Makoto Yasui
誠 安井
Masaya Ooka
眞也 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009210561A priority Critical patent/JP2011058586A/en
Publication of JP2011058586A publication Critical patent/JP2011058586A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a warm-up device of a transmission for an electric automobile, efficiently utilizing a storage battery, reducing viscosity by quickly warming oil in the transmission in start of the electric automobile at low temperature, and surely and sufficiently improving transmission efficiency of energy in the transmission. <P>SOLUTION: The warm-up device 5 heats oil used for the transmission 3 transmitting torque to an axle 4 through the transmission 3 from an electric motor 2 driven by the storage battery 1. The warm-up device 5 includes an oil circulation passage 7 using oil as heat medium and circulating the oil from/to the inside to/from the outside of the transmission 3 by hydraulic pressure of the pump 6, the oil circulation passage 7 has a heat absorption path 8 making oil absorb calories generated in the storage battery 1, and a heat accumulator/radiator 9 is disposed downstream of the heat absorption path to accumulate the calories stored in the oil as latent heat and to radiate the heat when needed. When a core generator 10 is operated, a solid-phase core is generated in a liquid-phase latent heat accumulating material to generate the latent heat and heat oil passing through the heat accumulator/radiator 9, so that the transmission 3 is also heated by the oil. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、電動機で自動車の車輪を駆動する電気自動車に用いられる減速機などの変速機に付設される暖機装置に関するものである。   The present invention relates to a warming-up device attached to a transmission such as a reduction gear used in an electric vehicle that drives a vehicle wheel with an electric motor.

一般に、電動機、すなわち電動モータで自動車の車輪を駆動する電気自動車において、蓄電池(バッテリ)の効率的な利用を図り、それによる航続距離の延長化のため、様々な部品の改良が試みられており、例えばモータの高効率化、タイヤのころがり抵抗係数の低減、蓄電池の高性能化、充電器の高効率化、空気抵抗の改善、車両の軽量化などの改良がなされている。   In general, in an electric vehicle, that is, an electric vehicle that drives an automobile wheel by an electric motor, various parts have been improved in order to efficiently use a storage battery (battery) and thereby extend a cruising distance. For example, improvements such as higher motor efficiency, reduced tire rolling resistance coefficient, higher performance of storage batteries, higher efficiency of chargers, improved air resistance, and lighter vehicles have been made.

そのうち、電動機は、低速回転からトルクは充分に大きいという特性があり、高速回転までの速度調整は電気的に制御すれば変速機を用いる必要性は必ずしもないとも言われるが、発生したトルクを効率よく利用するためには変速機が必要である。   Among them, the electric motor has the characteristic that the torque is sufficiently large from the low speed rotation, and it is said that there is no need to use the transmission if the speed adjustment until the high speed rotation is electrically controlled, but the generated torque is efficiently used. A gearbox is necessary to make good use.

因みに、変速機の歯車などの動力伝達機構におけるギア比等を変更し、減速だけを行なえる減速機も広い意味では変速機の概念に含んで、以下に減速機も含めて変速機と総称する。   Incidentally, a reduction gear that can change only the gear ratio in the power transmission mechanism such as a gear of the transmission and perform only deceleration is included in the concept of the transmission in a broad sense, and is hereinafter collectively referred to as a transmission including the reduction gear. .

このような変速機の内部やオイルパンに保持されている潤滑油または作動流体からなるオイルは、変速機用オイルまたはATF(Automatic Transmission Fluid)とも称され、これを温度調整する技術が知られているが、これは内燃機関の廃熱を利用して暖めて粘性が低くなるようにするものである(特許文献1)。   Such an oil made of lubricating oil or working fluid held in the transmission or in the oil pan is also called transmission oil or ATF (Automatic Transmission Fluid), and a technique for adjusting the temperature thereof is known. However, this uses the waste heat of the internal combustion engine to warm it up and lower the viscosity (Patent Document 1).

また、変速機の一つとして、トルクコンバータと歯車変速機を組み合わせた自動変速機が知られており、これには、トルクコンバータ内で動力伝達を行なう作動オイルと歯車変速機において変速段を選択するためのクラッチおよびブレーキの動作の制御を行なう作動オイルと、さらには潤滑用のオイルが共用される。   As one of the transmissions, an automatic transmission in which a torque converter and a gear transmission are combined is known. For this, hydraulic oil that transmits power in the torque converter and a gear stage are selected in the gear transmission. The hydraulic oil for controlling the operation of the clutch and the brake and the oil for lubrication are shared.

このような変速機のオイルが配送される経路内に、オイルとの熱交換によって相転移を生じる潜熱蓄熱材を含む蓄熱体を熱交換可能に接触させ、それによってオイルが所定温度より低い状態で、潜熱蓄熱材の液体から固体への相転移に伴う潜熱(凝固熱)の放熱によってオイル温度を上昇させ、またオイルが必要以上に加熱されたときには、潜熱蓄熱材を融解させて吸熱(蓄熱)させ、これによりオイルの使用温度を平均化して粘度変化を小さくした変速装置が知られている(特許文献2)。   A heat storage body including a latent heat storage material that undergoes phase transition by heat exchange with oil is brought into contact with the transmission oil in a path through which the oil is delivered so that heat can be exchanged. The oil temperature is increased by releasing the latent heat (solidification heat) associated with the phase transition of the latent heat storage material from liquid to solid, and when the oil is heated more than necessary, the latent heat storage material is melted to absorb heat (heat storage). Thus, there is known a transmission in which the temperature of oil used is averaged to reduce the change in viscosity (Patent Document 2).

特開2005−299767号公報JP 2005-299767 A 特開2007−303557号公報(段落0006)JP 2007-303557 A (paragraph 0006)

しかし、上記した特許文献1に開示された従来技術では、内燃機関のエンジンが始動初期の低温状態から暖機されるのを待ってから、その後にエンジンの廃熱を利用して自動変速機が暖機されるので、低温での自動車の始動初期に暖機装置として即効作用は得られ難いという問題点がある。   However, in the prior art disclosed in Patent Document 1 described above, after waiting for the engine of the internal combustion engine to be warmed up from a low temperature state at the initial stage of startup, the automatic transmission is used by utilizing the waste heat of the engine thereafter. Since the vehicle is warmed up, there is a problem that it is difficult to obtain an immediate effect as a warming-up device at the initial stage of starting the automobile at a low temperature.

また、上記した特許文献2に開示された従来技術では、変速装置内のオイルの使用温度の平均化は図れるが、冬季などの低温環境下では始動当初に充分な熱量は得られず、特に内燃機関のトルクより高効率で伝達する必要性が求められる電気自動車では、変速装置の低温始動時の回転トルクの伝達効率の改善を充分に図れないという問題点がある。   In the prior art disclosed in Patent Document 2 mentioned above, the temperature of use of the oil in the transmission can be averaged, but a sufficient amount of heat cannot be obtained at the beginning of the start in a low temperature environment such as winter, and the internal combustion in particular. In an electric vehicle that needs to be transmitted with higher efficiency than the torque of the engine, there is a problem in that it is not possible to sufficiently improve the transmission efficiency of the rotational torque when the transmission is started at a low temperature.

そこで、この発明の課題は、上記した問題点を解決し、蓄電池の効率的な利用を図ると共に、低温での電気自動車の始動時に、変速機内のオイルを速やかに暖めて低粘性化することができ、これにより変速機におけるエネルギーの伝達効率の向上を確実かつ充分に図れる電気自動車用変速機の暖機装置とすることである。   Accordingly, an object of the present invention is to solve the above-described problems, to efficiently use the storage battery, and to quickly warm the oil in the transmission and reduce the viscosity when starting the electric vehicle at a low temperature. Thus, it is possible to provide a warm-up device for a transmission for an electric vehicle that can reliably and sufficiently improve energy transmission efficiency in the transmission.

上記の課題を解決するために、この発明においては、蓄電池で駆動される電動機から変速機を介して回転力を車軸に伝達する電気自動車の前記変速機内のオイルを加熱する暖機装置において、この暖機装置は、前記オイルを熱媒体として変速機内外を循環させるオイル循環路を備え、このオイル循環路に蓄電池で生じた熱量を前記オイルに吸収させる熱吸収経路を設けると共に、この熱吸収経路の下流側に前記オイルの保有する熱量を潜熱として蓄積しかつ放熱可能な蓄・放熱器を設けたことを特徴とする電気自動車用変速機の暖機装置としたのである。   In order to solve the above-described problem, in the present invention, in a warm-up device for heating oil in the transmission of an electric vehicle that transmits a rotational force to an axle through a transmission from an electric motor driven by a storage battery, The warm-up device includes an oil circulation path that circulates inside and outside the transmission using the oil as a heat medium, and a heat absorption path that absorbs heat generated in the storage battery in the oil is provided in the oil circulation path. The electric vehicle transmission warming-up device is characterized in that a heat accumulator / heat radiator capable of storing and dissipating heat as the latent heat is provided on the downstream side of the oil.

上記したように構成されるこの発明の電気自動車用変速機の暖機装置は、蓄電池で生じた熱量を熱吸収経路でオイルに吸収させ、次いでオイルの保有する熱量を潜熱として蓄・放熱器に蓄積させる。   The warming-up device for an electric vehicle transmission according to the present invention configured as described above absorbs the heat generated in the storage battery into the oil through the heat absorption path, and then uses the heat stored in the oil as latent heat in the storage / radiator. Accumulate.

また、蓄・放熱器は、保有する潜熱蓄熱材や添加剤(過冷却防止剤、相分離防止剤、融点調整剤など)の物性によって、所定の融点において融解熱を含めた熱量を蓄熱し、その後、融点以上に加熱された後で融点以下に冷却されると、過冷却の状態になって潜熱が蓄えられた状態になる。   In addition, the heat storage / heat radiator stores the amount of heat including heat of fusion at a predetermined melting point depending on the physical properties of the latent heat storage material and additives (supercooling inhibitor, phase separation inhibitor, melting point adjuster, etc.) After that, when it is heated to the melting point or higher and then cooled to the melting point or lower, it is in a supercooled state where latent heat is stored.

その後、融点以下の環境温度において温度蓄・放熱器に蓄積されている熱量は、過冷却の液相状態で潜熱を保有する状態にあるが、必要に応じて物理的な衝撃等を与えることにより、一挙に放熱する固相の状態に転換させることができる。
このとき、蓄・放熱器からの放熱は、蓄・放熱器を通過するオイルを急速に加熱し、相当量の熱量でもって変速機を急速に暖めることができる。
After that, the amount of heat stored in the temperature accumulator / heat radiator at the ambient temperature below the melting point is in a state of holding latent heat in the supercooled liquid phase state, but by applying physical impact etc. as necessary , It can be converted to a solid phase that releases heat all at once.
At this time, the heat radiation from the accumulator / heat radiator rapidly heats the oil passing through the accumulator / heat radiator, and the transmission can be warmed up with a considerable amount of heat.

このようにして冬季など低温環境での電気自動車の始動時に、変速機内のオイルは速やかに暖められて低粘性化するから、効率よく変速機を作動させ、かつ発生したトルクを効率よく利用することができ、しかも常時には配送されるオイルによって作動中に発熱する蓄電池は冷却される。
蓄・放熱器を通過する変速機内のオイルは、変速機の動力伝達機構の潤滑油であってもよく、もしくは変速機の作動油、または両者併用したオイルを用いることもできる。
In this way, when starting an electric vehicle in a low temperature environment such as winter, the oil in the transmission is quickly warmed and the viscosity becomes low, so that the transmission can be operated efficiently and the generated torque can be used efficiently. In addition, the storage battery that generates heat during operation is always cooled by the oil delivered.
The oil in the transmission that passes through the accumulator / heatsink may be lubricating oil for the power transmission mechanism of the transmission, or hydraulic oil for the transmission, or oil that is a combination of both.

前記した熱吸収経路としては、別途、蓄電池内で生じた熱量を吸収して蓄電池外に取り出す熱媒体配送路を設けたものであってもよく、この熱媒体配送路に対してオイル循環路を熱交換可能に配置して熱吸収経路としたものであってもよい。
このように熱吸収経路に、蓄電池内で生じた熱量をオイルに効率よく吸収させるための熱媒体配送路を別途設けることにより、変速機に用いるオイル量を必要以上に多くすることなく、また蓄電池における熱媒体配送路には、水、その他の安全で不燃性などの所要特性を有する熱媒体を使用することもできるようになる。
As the above-described heat absorption path, a heat medium delivery path that separately absorbs the amount of heat generated in the storage battery and takes it out of the storage battery may be provided, and an oil circulation path is provided for this heat medium delivery path. It may be arranged to be heat exchangeable and used as a heat absorption path.
Thus, by separately providing a heat medium delivery path in the heat absorption path for efficiently absorbing the amount of heat generated in the storage battery, the storage battery can be used without increasing the amount of oil used for the transmission more than necessary. It is also possible to use a heat medium having other required characteristics such as water and other non-flammability in the heat medium delivery path.

また、蓄・放熱器が、容器内に潜熱蓄熱材を保持し、過冷却された液相の潜熱蓄熱材に固相の核を発生させる発核装置を設けた蓄・放熱器であることが、蓄・放熱器に蓄積された熱量を確実に放熱させるために好ましい。
発核装置を作動させると、過冷却された液相の潜熱蓄熱材に固相の核が発生し、それによって周囲の液相は一挙に固相に相転換し、潜熱が発生する。
Further, the storage / heat radiator is a storage / heat radiator provided with a nucleation device that holds the latent heat storage material in the container and generates a solid phase nucleus in the supercooled liquid phase latent heat storage material. It is preferable for reliably radiating the heat stored in the accumulator / heat radiator.
When the nucleation device is operated, solid phase nuclei are generated in the supercooled liquid phase latent heat storage material, whereby the surrounding liquid phase is transformed into the solid phase all at once and latent heat is generated.

例えば、潜熱蓄熱材が、融点60℃以下の潜熱蓄熱材であれば、60℃以上のオイルが変速機内外を循環することによって融解し液状になる。その後に電気自動車が非使用状態で融点以下、例えば常温の環境に冷却されると、潜熱蓄熱材は過冷却状態になって液相を保ちながら潜熱を保有する。
そして、電気自動車の始動と同時に発核装置を作動させると、液相の潜熱蓄熱材中に固相の核が発生し、引き続いて液相の潜熱蓄熱材は核を中心にして一挙に固相に相転換し、潜熱が発生して蓄・放熱器を通過するオイルを温め、このオイルで変速機も温められて変速機におけるエネルギーの伝達効率が向上する。
For example, if the latent heat storage material is a latent heat storage material having a melting point of 60 ° C. or lower, the oil having a temperature of 60 ° C. or higher is melted and liquefied by circulating inside and outside the transmission. Thereafter, when the electric vehicle is cooled to an environment below the melting point, for example, room temperature, in a non-use state, the latent heat storage material becomes supercooled and retains the latent heat while maintaining the liquid phase.
When the nucleation device is activated simultaneously with the start of the electric vehicle, solid phase nuclei are generated in the liquid phase latent heat storage material, and subsequently the liquid phase latent heat storage material is Phase change occurs, the latent heat is generated and the oil passing through the accumulator / heat radiator is warmed, and the transmission is also warmed by this oil, so that the transmission efficiency of energy in the transmission is improved.

この発明に使用される潜熱蓄熱材としては、酢酸ナトリウム3水和物、チオ硫酸ナトリウム5水和物、水酸化バリウム8水和物、硝酸リチウム3水和物、塩化カルシウム6水和物および硫酸ナトリウム10水和物から選ばれる1種以上の潜熱蓄熱材を挙げることができる。   The latent heat storage material used in this invention includes sodium acetate trihydrate, sodium thiosulfate pentahydrate, barium hydroxide octahydrate, lithium nitrate trihydrate, calcium chloride hexahydrate and sulfuric acid. One or more latent heat storage materials selected from sodium decahydrate can be mentioned.

発核装置は、潜熱蓄熱材に対して固相の核の発生に所要の圧力、熱、振動または電圧による衝撃を与える発核装置を採用することができ、発核装置の容器内に1箇所のみならず間隔を空けて複数個所に発核装置を設けることにより、より急速に潜熱を放出させてオイルを急速に温めることができる。   As the nucleation device, a nucleation device that applies an impact by pressure, heat, vibration, or voltage required for generation of solid phase nuclei to the latent heat storage material can be adopted, and one location is provided in the container of the nucleation device. In addition, by providing nucleation devices at a plurality of positions at intervals, the latent heat can be released more rapidly and the oil can be warmed more rapidly.

また、発核装置に、外気温または変速機温度に応じて作動または非作動を制御可能であるように温度センサと作動制御装置を設けることもできる。
作動または非作動を制御可能であるように温度センサと作動制御装置を設けた発核装置により、外気温または変速機温度のいずれかが潜熱蓄熱材の融点よりも高い場合には、オイルを加熱する必要性はあまりないので、そのときには発核装置を作動させないようにし、逆に外気温または変速機温度のいずれかが潜熱蓄熱材の融点よりも低い場合にのみ発核装置を作動させることが効率よく暖機装置を使用するために好ましい。
Further, the nucleation device can be provided with a temperature sensor and an operation control device so that the operation or non-operation can be controlled according to the outside air temperature or the transmission temperature.
A nucleation device equipped with a temperature sensor and an operation control device so that operation or non-operation can be controlled will heat the oil if either the outside air temperature or the transmission temperature is higher than the melting point of the latent heat storage material. Therefore, the nucleation device should not be operated at that time, and conversely, the nucleation device should be operated only when either the outside air temperature or the transmission temperature is lower than the melting point of the latent heat storage material. It is preferable to use the warm-up device efficiently.

また、発核装置に、潜熱蓄熱材の固相または液相のいずれの状態であるのかを判別するため、透過光量または反射光量によって判別する光センサを設け、前記判別に基づいて作動と非作動を制御することが好ましい。潜熱蓄熱材が不完全な液相または固相の状態では、暖機装置が充分な熱量を発生しないからである。   Also, in order to determine whether the latent heat storage material is in a solid phase or a liquid phase, the nucleator is provided with an optical sensor that discriminates according to the transmitted light amount or the reflected light amount. Is preferably controlled. This is because the warm-up device does not generate a sufficient amount of heat when the latent heat storage material is in an incomplete liquid or solid state.

さらにまた、潜熱蓄熱材の固相または液相の状態を透過光量または反射光量によって判別する光センサを備え、前記光センサの判別に応じて電動機の駆動または停止を制御する制御装置を設けることが好ましい。潜熱蓄熱材が完全に液相になるまで加熱されていない場合には、オイルが保有する熱量を潜熱として取り出すことが確実にできるように、電動機を停止できないようにすることが好ましい。   Furthermore, it is provided with an optical sensor that discriminates the state of the solid phase or the liquid phase of the latent heat storage material based on the transmitted light amount or the reflected light amount, and a control device that controls driving or stopping of the electric motor according to the discrimination of the optical sensor preferable. When the latent heat storage material is not heated until it is completely in the liquid phase, it is preferable that the electric motor cannot be stopped so that the amount of heat held by the oil can be reliably taken out as latent heat.

この発明は、変速機内外を循環させるオイル循環路に蓄電池で生じた熱量をオイルに吸収させる熱吸収経路を設けると共に、前記オイルが保有する熱量を潜熱として蓄積し適宜放熱可能な蓄・放熱器を設けたことにより、蓄電池で生じた熱量は、蓄・放熱器に一時的に蓄えられ、作動中の蓄電池を冷却し、かつ低温環境下での電気自動車の始動時に、蓄・放熱器からの放熱でオイルを急速に加熱し、この熱量で変速機内のオイルを速やかに暖めて低粘性化し、これにより変速機におけるエネルギーの伝達効率の向上を充分にかつ確実に図ることのできる電気自動車用変速機の暖機装置となる利点がある。   The present invention provides an oil circulation path that circulates in and out of a transmission with a heat absorption path that allows the oil to absorb the amount of heat generated by the storage battery, and accumulates the amount of heat held by the oil as latent heat and can appropriately dissipate heat. The amount of heat generated by the storage battery is temporarily stored in the storage / heat radiator, cooling the operating storage battery, and starting the electric vehicle in a low temperature environment, Electric vehicle heat transmission that rapidly heats the oil by heat dissipation and quickly warms the oil in the transmission with this amount of heat to reduce the viscosity, thereby improving the energy transmission efficiency in the transmission sufficiently and reliably There is an advantage that it becomes a warm-up device of the machine.

また、蓄・放熱器が、容器内に潜熱蓄熱材を保持し、過冷却された液相の潜熱蓄熱材に固相の核を発生させる発核装置を設けた蓄・放熱器であるので、蓄・放熱器に蓄積された熱量を確実に放熱させることができる。   In addition, since the accumulator / heat radiator is a accumulator / heat radiator provided with a nucleation device for holding the latent heat storage material in the container and generating a solid phase nucleus in the supercooled liquid phase latent heat storage material, The amount of heat stored in the accumulator / heat radiator can be radiated reliably.

発核装置の容器内に1箇所のみならず間隔を空けて複数個所に発核装置を設けることにより、極めて急速に潜熱を放出させてオイルを急速に温めることができる。
発核装置に、外気温または変速機温度に応じて作動または非作動を制御可能であるように温度センサと作動制御装置を設ければ、より効率よく暖機装置を使用することができる。
By providing the nucleation device at a plurality of locations at intervals as well as at one location in the container of the nucleation device, the latent heat can be released very rapidly and the oil can be warmed rapidly.
If the nucleation device is provided with a temperature sensor and an operation control device so that the operation or non-operation can be controlled according to the outside air temperature or the transmission temperature, the warm-up device can be used more efficiently.

光センサの判別に応じて電動機の駆動または停止を制御する制御装置を設けることにより、潜熱蓄熱材が完全に液相になるまで加熱されていない場合に、電動機を停止できないよう設定し、オイルが保有する熱量を確実に潜熱として取り出すことができる。   By providing a control device that controls the driving or stopping of the motor according to the discrimination of the optical sensor, the motor is set so that it cannot be stopped when the latent heat storage material is not heated until it is completely in the liquid phase, The amount of heat held can be reliably extracted as latent heat.

第1実施形態を模式的に示す電気自動車用変速機の暖機装置の平面図The top view of the warming-up apparatus of the transmission for electric vehicles which shows 1st Embodiment typically (a)蓄・放熱器の発核装置の熱電素子を用いた例を模式的に示す説明図、(b)蓄・放熱器の発核装置のバイメタルを用いた例を模式的に示す説明図、(c)蓄・放熱器の発核装置の電圧印加用電極を用いた例を模式的に示す説明図、(d)蓄・放熱器の発核装置のアクチュエータを用いた例を模式的に示す説明図(A) An explanatory diagram schematically showing an example using a thermoelectric element of a nucleation device for a storage / heat radiator, (b) an explanatory diagram schematically showing an example using a bimetal of a nucleation device for a storage / heat radiator. (C) Explanatory drawing which shows typically the example using the voltage application electrode of the nuclear generator of a storage / heat radiator, (d) The example using the actuator of the nuclear generator of a storage / heat radiator Illustration showing 第1実施形態に付設される制御装置を模式的に説明する暖機装置の平面図The top view of the warming-up apparatus which illustrates typically the control apparatus attached to 1st Embodiment 第2実施形態を模式的に示す電気自動車用変速機の暖機装置の平面図The top view of the warming-up apparatus of the transmission for electric vehicles which shows 2nd Embodiment typically

この発明の実施形態を以下に添付図面を参照しながら説明する。
図1に示す第1実施形態は、蓄電池(バッテリー)1で駆動される電動機(モータ)2から変速機3(減速機)を介して回転力を車軸4に伝達する電気自動車の変速機3に用いるオイルを加熱する電気自動車用変速機の暖機装置5である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The first embodiment shown in FIG. 1 is applied to a transmission 3 of an electric vehicle that transmits rotational force to an axle 4 from an electric motor (motor) 2 driven by a storage battery (battery) 1 via a transmission 3 (reduction gear). It is the warming-up apparatus 5 of the transmission for electric vehicles which heats the oil to be used.

この暖機装置5は、オイルを熱媒体とし、ポンプ6で生じる油圧によって変速機3の内外を循環させるオイル循環路7を備えたものであり、このオイル循環路7に蓄電池1で生じた熱量をオイルに吸収させる熱吸収経路8を設け、その下流側にオイルが保有する熱量を潜熱として蓄積し、必要に応じて放熱可能な蓄・放熱器9を設けている。   The warm-up device 5 includes an oil circulation path 7 that uses oil as a heat medium and circulates the inside and outside of the transmission 3 by the hydraulic pressure generated by the pump 6. The amount of heat generated in the storage battery 1 in the oil circulation path 7. The heat absorption path 8 that absorbs the oil is provided, and the storage / heat radiator 9 capable of storing the amount of heat held by the oil as latent heat and dissipating heat as necessary is provided on the downstream side.

この発明でいう電気自動車は、電動モータのみを車両走行用の動力源として備えている電気自動車であるもの、または電動モータの他に燃料の燃焼で作動するエンジン等の電動モータ以外の動力源を車両走行用または発電用に備えている電気自動車(いわゆるハイブリッド車)をも含めて総称するものである。   The electric vehicle referred to in the present invention is an electric vehicle having only an electric motor as a power source for vehicle travel, or a power source other than an electric motor such as an engine that operates by combustion of fuel in addition to the electric motor. This is a general term including an electric vehicle (so-called hybrid vehicle) provided for vehicle driving or power generation.

また、実施形態の変速機3などのように、この発明でいう変速機は、トルクコンバータまたは歯車変速機の単独の機構からなるものだけではなく、これらを組み合わせた自動変速機であっても良い。
このような変速機内で用いるオイルとしては、トルクコンバータ内で動力伝達を行なう作動オイルと、歯車変速機において変速段を選択するためのクラッチおよびブレーキの動作の制御を行なう作動オイルと、さらには潤滑用のオイルを含めて言うものである。
Further, like the transmission 3 of the embodiment, the transmission referred to in the present invention is not limited to a single mechanism of a torque converter or a gear transmission, but may be an automatic transmission that combines these. .
The oil used in such a transmission includes hydraulic oil for transmitting power in the torque converter, hydraulic oil for controlling the operation of the clutch and brake for selecting the gear position in the gear transmission, and further lubrication. This includes oil for use.

因みに、自動変速機は、油圧力を利用した複数のクラッチ、ブレーキ群によって複数の遊星歯車列を自動的に繋ぎ替え、減速比を替えることで行われる。クラッチ、ブレーキ群による繋ぎ替えは、複数の油圧コントロールバルブの開度を制御して圧力調整を行うことで行われる。
一方、機械式動力伝達機構による変速機としては、遊星歯車式、平行軸式などが好適に用いられ、一段以上の変速機構を有するものであれば手動または自動であってもよい。
Incidentally, the automatic transmission is performed by automatically switching a plurality of planetary gear trains by a plurality of clutches and brake groups using hydraulic pressure and changing a reduction ratio. The reconnection by the clutch and brake group is performed by adjusting the pressure by controlling the openings of the plurality of hydraulic control valves.
On the other hand, as a transmission using a mechanical power transmission mechanism, a planetary gear type, a parallel shaft type, or the like is preferably used, and may be manual or automatic as long as it has one or more speed change mechanisms.

図1に示すように、変速機3からオイルを配送する熱吸収経路8は、蓄電池1に効率よく熱交換可能であるように可及的に長い距離であり、かつ広い面積で接触するように設けたものである。
熱吸収経路8は、アルミニウムや銅などの熱伝導性の良い金属などからなる配管を用いて構成することができ、また熱交換効率を高めるためのU字形状に配置する配管形態に設けることができ、熱交換の周知な手段を採用することができる。
As shown in FIG. 1, the heat absorption path 8 for delivering oil from the transmission 3 is as long as possible so that heat can be efficiently exchanged with the storage battery 1 and is in contact with a wide area. It is provided.
The heat absorption path 8 can be configured using a pipe made of a metal having good thermal conductivity such as aluminum or copper, and is provided in a pipe form arranged in a U shape for improving heat exchange efficiency. And well-known means of heat exchange can be employed.

また、蓄電池1は、通常、複数の電池セルからなるモジュールを組み合わせて構成された物を用いることができるが、各電池セルの構成例としては、リチウムイオン二次電池、リチウムイオン重合体二次電池、ニッケル金属ハイブリッド電池などが挙げられる。
前記した熱吸収経路8は、例えば電池セルからなるモジュールの内部やその周囲に接触しながら通過するように設けることができる。そして、蓄電池1の熱吸収経路8を経由したオイルは、その下流側に設けた蓄・放熱器9に流入する。
Moreover, although the storage battery 1 can use the thing normally comprised combining the module which consists of several battery cells, as a structural example of each battery cell, a lithium ion secondary battery, a lithium ion polymer secondary Examples include batteries and nickel metal hybrid batteries.
The above-described heat absorption path 8 can be provided so as to pass through, for example, the inside or the periphery of a module made of battery cells. Then, the oil that has passed through the heat absorption path 8 of the storage battery 1 flows into the storage / heat radiator 9 provided on the downstream side thereof.

蓄・放熱器9は、加熱されたオイルが保有する熱量と同量の熱量を潜熱として蓄積し、必要に応じて放熱可能であるように断熱材からなる密閉された容器9aの内部に潜熱蓄熱材(図示せず)を充填したものであり、この容器9aの内側には、発核装置10の衝撃発生部分が装着されている。発核装置10は、トリガーとも別称されるものであり、圧力、熱、振動または電圧による衝撃を過冷却された液相の潜熱蓄熱材に与え、固相の核を発生させて急速に液相へ変換し、潜熱を発生させるための起動を行なうものである。   The accumulator / heat radiator 9 accumulates the same amount of heat as that of the heated oil as latent heat, and stores latent heat in the inside of a sealed container 9a made of a heat insulating material so that it can dissipate heat as necessary. A material (not shown) is filled, and an impact generating portion of the nucleation device 10 is mounted inside the container 9a. The nucleation device 10 is also referred to as a trigger, and applies an impact by pressure, heat, vibration, or voltage to a supercooled liquid phase latent heat storage material to generate solid phase nuclei and rapidly liquid phase. The system is activated to generate latent heat.

蓄・放熱器9の容器9aに貫通し、潜熱蓄熱材に接する内部の配管形態は、収容されている潜熱蓄熱材に対して可及的に広い面積で接触して効率よく熱交換できるように、配管の周囲に金属製のフィンを設けたもの、またはU字状に折り返された部分を設けて長い配管を密集させるなどの熱交換に有利な周知形態を採用することができる。   The internal piping configuration that penetrates the container 9a of the heat accumulator / heat radiator 9 and is in contact with the latent heat storage material can contact the latent heat storage material accommodated in the widest possible area and efficiently exchange heat. It is possible to adopt a well-known form advantageous for heat exchange, such as one in which metal fins are provided around the pipe, or a long pipe is densely provided by providing a U-shaped folded portion.

潜熱蓄熱材の具体例としては、酢酸ナトリウム3水和物(CHCOOH・3HO、融点58℃、融解熱264KJ/Kg)、チオ硫酸ナトリウム5水和物(Na・5HO、融点48℃、融解熱197KJ/Kg)、水酸化バリウム8水和物(Ba(OH)・8HO、融点78℃)、硝酸リチウム3水和物(LiNO・3HO)、塩化カルシウム6水和物(CaCl・6HO、融点29.7℃、融解熱192KJ/Kg)および硫酸ナトリウム10水和物(NaSO・10HO、融点32.4℃、融解熱251KJ/Kg)から選ばれる1種以上の無機水和塩からなる潜熱蓄熱材が挙げられる。また、C1838(融点28.2℃、融解熱243KJ/Kg)、C2042(融点36.4℃、融解熱247KJ/Kg)、C2246(融点44℃、融解熱157KJ/Kg)などのパラフィンからなる潜熱蓄熱材を採用することもできる。 Specific examples of the latent heat storage material include sodium acetate trihydrate (CH 3 COOH.3H 2 O, melting point 58 ° C., heat of fusion 264 KJ / Kg), sodium thiosulfate pentahydrate (Na 2 S 2 O 3. 5H 2 O, melting point 48 ° C., heat of fusion 197 KJ / Kg), barium hydroxide octahydrate (Ba (OH) 2 .8H 2 O, melting point 78 ° C.), lithium nitrate trihydrate (LiNO 3 · 3H 2 O), calcium chloride hexahydrate (CaCl 2 · 6H 2 O, melting point 29.7 ° C., heat of fusion 192 KJ / Kg) and sodium sulfate decahydrate (Na 2 SO 3 · 10H 2 O, melting point 32.4). And a latent heat storage material composed of at least one inorganic hydrate salt selected from the group consisting of ° C and heat of fusion 251 KJ / Kg). Also, C 18 H 38 (melting point 28.2 ° C., heat of fusion 243 KJ / Kg), C 20 H 42 (melting point 36.4 ° C., heat of fusion 247 KJ / Kg), C 22 H 46 (melting point 44 ° C., heat of fusion 157 KJ) It is also possible to employ a latent heat storage material made of paraffin such as / Kg).

図1および図2に示すように、発核装置(トリガー)10、11、13、15は、断熱材からなる容器9a内の潜熱蓄熱材に対し、固相の核の発生に所要の圧力、熱、振動または電圧による衝撃を与えるものである。
図2(a)に示す発核装置10は、熱電素子10aを用いたペルチェ効果によるものである。ペルチェ効果は、電気エネルギーを熱エネルギーに変換する効果であり、2種類の異種金属(または半導体)の両端を接続し、電流を流すことにより両端に温度差が生じる現象を利用し、通電による急激な温度変化により発核させるものである。
このように構成される実施形態では、蓄・放熱器9を通過するオイルは、ここで熱を吸収されて下流に配送され、すなわち蓄電池1で生じた熱量の一部または全部は、蓄・放熱器9に一時的に蓄えられ、その熱量だけ冷却されたオイルが変速機3と蓄電池1に返送され、蓄電池1は冷却される。
蓄・放熱器9内の潜熱蓄熱材は、融点以上に加熱された後で、電気自動車が停止して外気に冷却され、融点以下に冷却されると、過冷却の状態になって潜熱が蓄えられた状態になる。
As shown in FIG. 1 and FIG. 2, the nucleation devices (triggers) 10, 11, 13, and 15 have pressures required for generating solid-phase nuclei with respect to the latent heat storage material in the container 9a made of heat insulating material, It gives a shock by heat, vibration or voltage.
The nucleation device 10 shown in FIG. 2A is based on the Peltier effect using the thermoelectric element 10a. The Peltier effect is an effect that converts electrical energy into thermal energy. By connecting the two ends of two types of dissimilar metals (or semiconductors) and passing a current, a phenomenon in which a temperature difference is generated at both ends is used. Nucleation is caused by various temperature changes.
In the embodiment configured as described above, the oil passing through the accumulator / heat radiator 9 absorbs heat here and is delivered downstream, that is, part or all of the heat generated in the storage battery 1 is accumulated / radiated. The oil temporarily stored in the container 9 and cooled by the amount of heat is returned to the transmission 3 and the storage battery 1, and the storage battery 1 is cooled.
After the latent heat storage material in the heat accumulator / heat radiator 9 is heated to the melting point or higher, the electric vehicle is stopped and cooled to the outside air, and when cooled to the melting point or lower, the latent heat is stored. It will be in the state.

そして、電気自動車の低温時の始動時に発核装置10を作動させると、液相の潜熱蓄熱材中に固相の核が発生し、引き続いて液相の潜熱蓄熱材は核を中心にして一挙に固相に相転換し、潜熱が発生して蓄・放熱器9を通過するオイルを温め、このオイルで変速機3も温められて変速機3におけるエネルギーの伝達効率が向上する。   When the nucleation device 10 is operated when the electric vehicle is started at a low temperature, solid phase nuclei are generated in the liquid phase latent heat storage material, and subsequently the liquid phase latent heat storage material is centered on the core. Phase change to a solid phase, latent heat is generated and the oil passing through the accumulator / heat radiator 9 is warmed. The transmission 3 is also warmed by this oil, and the energy transmission efficiency in the transmission 3 is improved.

図2(b)に示す発核装置11は、バイメタルを用いたトリガーである。熱伝導率の異なる2層の金属12にそれぞれ電極を取り付けて、通電して発熱させることにより、層間に歪みを生じさせて皿形ばねの反転のように層厚方向に急激な変形を生じさせるものである。   The nucleation device 11 shown in FIG. 2B is a trigger using a bimetal. Electrodes are attached to two layers of metal 12 having different thermal conductivities and are heated to generate heat, thereby causing distortion between the layers and causing rapid deformation in the layer thickness direction, such as reversal of a disc-shaped spring. Is.

図2(c)に示す発核装置13は、電圧印加によるトリガーであり、2つの電極間14に例えば電圧0.5〜50V程度を印加することにより、両極間に電気的な衝撃を与えて発核させるものである。   The nucleation device 13 shown in FIG. 2 (c) is a trigger by voltage application, and applies an electric shock between the two electrodes by applying a voltage of about 0.5 to 50V between the two electrodes 14, for example. It is what makes it nucleate.

図2(d)に示す発核装置15は、潜熱蓄熱材に接する皿ばね形の金属板16をソレノイド17によるアクチュエータで後方より突子18を押圧し、金属板16を厚み方向に反転変形させて急激な変形による衝撃圧を生じさせるものである。図示したアクチュエータは、ソレノイドバルブと同様な原理で電気的に突子18をソレノイド17から突出させるものを示したが、空気圧または油圧で突子18を押出すこともできる。
このような発核装置は、容器9a内に間隔を空けて複数個所に設け、発核による相変化の速度を向上させることもできる。
The nucleation device 15 shown in FIG. 2 (d) presses the protrusion 18 from behind with a disc spring-shaped metal plate 16 in contact with the latent heat storage material by an actuator by a solenoid 17, and reversely deforms the metal plate 16 in the thickness direction. It generates impact pressure due to sudden deformation. Although the illustrated actuator has shown the thing which makes the protrusion 18 protrude from the solenoid 17 electrically on the principle similar to a solenoid valve, the protrusion 18 can also be extruded by air pressure or hydraulic pressure.
Such a nucleation device can be provided at a plurality of locations at intervals in the container 9a to improve the speed of phase change due to nucleation.

図3に示す暖機装置は、外気温および変速機温度から選ばれる1以上の温度条件に応じて作動または非作動を制御可能であるように温度センサ19、20と制御装置21を設けたものである。温度センサ19は、電気自動車の車外の外気に触れるように設置され、温度センサ20は、変速機3の内部に設置される。   The warm-up device shown in FIG. 3 is provided with temperature sensors 19 and 20 and a control device 21 so that operation or non-operation can be controlled according to one or more temperature conditions selected from the outside air temperature and the transmission temperature. It is. The temperature sensor 19 is installed so as to touch outside air outside the electric vehicle, and the temperature sensor 20 is installed inside the transmission 3.

制御装置21は、例えばマイクロシーケンサと呼ばれる比較的単純なデジタル回路(小さなコンピュータ)がマイクロプログラムを実行し、信号を読み取り、制御信号を発生するなどの周知なものを採用できる。
制御装置21は、蓄電池1からの電力を直接または他の装置から間接的に受けて作動し、ポンプ6と発核装置10とを作動または作動停止させることができる。
As the control device 21, for example, a known device such as a relatively simple digital circuit (small computer) called a microsequencer executes a microprogram, reads a signal, and generates a control signal can be adopted.
The control device 21 operates by receiving electric power from the storage battery 1 directly or indirectly from another device, and can activate or deactivate the pump 6 and the nucleation device 10.

また、発核装置10などには、潜熱蓄熱材の固相または液相の状態を透過光量または反射光量によって判別する光センサ22と連動させることができる。
光センサ22は、フォトセンサとも称され、光によって対象物の有無、明るさ、色を反射パターンなどの物理量を検出することにより検出する周知のものである。発光・受光素子を組み合わせたものであってもよく、透過型フォトセンサ、反射型フォトセンサのいずれであってもよい。
Further, the nucleation device 10 or the like can be interlocked with an optical sensor 22 that determines the state of the solid phase or the liquid phase of the latent heat storage material based on the transmitted light amount or the reflected light amount.
The optical sensor 22 is also called a photosensor, and is a known sensor that detects the presence / absence, brightness, and color of an object by detecting physical quantities such as a reflection pattern. A combination of light emitting and light receiving elements may be used, and either a transmissive photosensor or a reflective photosensor may be used.

図4に示す第2実施形態は、蓄電池1で生じた熱量を吸収して蓄電池1の外部に取り出す熱媒体配送路23を別途独立させて設け、この熱媒体配送路23に対してオイル循環路7aを、熱交換器24を介して熱交換可能に配置して設けたことの他は、第1実施形態と同じ構成からなる電気自動車用変速機の暖機装置である。   In the second embodiment shown in FIG. 4, a heat medium delivery path 23 that absorbs the amount of heat generated in the storage battery 1 and takes it out of the storage battery 1 is provided separately, and an oil circulation path is provided with respect to the heat medium delivery path 23. 7a is a warming-up device for a transmission for an electric vehicle having the same configuration as that of the first embodiment except that the heat exchanger 24 is disposed so as to be able to exchange heat.

熱交換器24は、断熱性素材で形成された容器内に、金属製のフィンを有する熱媒体配送路23の一部とオイル循環路7aの一部を接近させて配置し、その間に水その他の安全で不燃性であるなどの熱伝導性の良い液体を充填したものである。このようにすれば、変速機に用いるオイル量を必要以上に多くすることもなくなり、また蓄電池1のより効率のよい冷却を行なうことができる。   The heat exchanger 24 is disposed in a container formed of a heat insulating material with a part of the heat medium delivery path 23 having metal fins and a part of the oil circulation path 7a approached, with water or the like therebetween. It is filled with a liquid with good thermal conductivity such as safe and non-flammable. In this way, the amount of oil used in the transmission is not increased more than necessary, and the storage battery 1 can be cooled more efficiently.

1 蓄電池
2 電動機
3 変速機
4 車軸
5 暖機装置
6 ポンプ
7、7a オイル循環路
8、23 熱吸収経路
9 蓄・放熱器
9a 容器
10、11、13、15 発核装置
10a 熱電素子
12 2層の金属
14 2つの電極
16 金属板
17 ソレノイド
18 突子
19、20 温度センサ
21 制御装置
22 光センサ
24 熱交換器
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Electric motor 3 Transmission 4 Axle 5 Warm-up device 6 Pump 7, 7a Oil circulation path 8, 23 Heat absorption path 9 Storage and radiator 9a Container 10, 11, 13, 15 Nucleation apparatus 10a Thermoelectric element 12 Two layers Metal 14 Two electrodes 16 Metal plate 17 Solenoid 18 Projectors 19 and 20 Temperature sensor 21 Control device 22 Optical sensor 24 Heat exchanger

Claims (11)

蓄電池で駆動される電動機から変速機を介して回転力を車軸に伝達する電気自動車の前記変速機内のオイルを加熱する暖機装置において、
この暖機装置は、前記オイルを熱媒体として変速機内外を循環させるオイル循環路を備え、このオイル循環路に蓄電池で生じた熱量を前記オイルに吸収させる熱吸収経路を設けると共に、この熱吸収経路の下流側に前記オイルが保有する熱量を潜熱として蓄積しかつ放熱可能な蓄・放熱器を設けたことを特徴とする電気自動車用変速機の暖機装置。
In a warming-up device for heating oil in the transmission of an electric vehicle that transmits rotational force to an axle from a motor driven by a storage battery via the transmission,
The warming-up device includes an oil circulation path that circulates inside and outside the transmission using the oil as a heat medium. The oil circulation path includes a heat absorption path that allows the oil to absorb the amount of heat generated in the storage battery. A warming-up device for a transmission for an electric vehicle, characterized in that an accumulator / heat radiator capable of accumulating the amount of heat held by the oil as latent heat and dissipating heat is provided on the downstream side of the path.
オイルが、潤滑油もしくは作動油または両者併用したオイルである請求項1に記載の電気自動車用変速機の暖機装置。   2. The warm-up device for a transmission for an electric vehicle according to claim 1, wherein the oil is lubricating oil, hydraulic oil, or oil using both. 熱吸収経路が、蓄電池内で生じた熱量を吸収して蓄電池外に取り出す熱媒体配送路を設け、この熱媒体配送路に対してオイル循環路を熱交換可能に配置して設けた熱吸収経路である請求項1に記載の電気自動車用変速機の暖機装置。   The heat absorption path is provided with a heat medium delivery path that absorbs the amount of heat generated in the storage battery and takes it out of the storage battery, and an oil circulation path is arranged in the heat medium delivery path so that heat exchange is possible. The warm-up device for a transmission for an electric vehicle according to claim 1. 蓄・放熱器が、容器内に潜熱蓄熱材を保持し、過冷却された液相の潜熱蓄熱材に固相の核を発生させる発核装置を設けた蓄・放熱器である請求項1〜3のいずれかに記載の電気自動車用変速機の暖機装置。   The heat accumulator / heat radiator is a heat accumulator / heat radiator provided with a nucleation device for holding a latent heat storage material in a container and generating a solid phase nucleus in a supercooled liquid phase latent heat storage material. 4. A warming-up device for a transmission for an electric vehicle according to any one of 3 above. 潜熱蓄熱材が、融点60℃以下の潜熱蓄熱材である請求項4に記載の電気自動車用変速機の暖機装置。   The warm-up device for a transmission for an electric vehicle according to claim 4, wherein the latent heat storage material is a latent heat storage material having a melting point of 60 ° C. or less. 潜熱蓄熱材が、酢酸ナトリウム3水和物、チオ硫酸ナトリウム5水和物、水酸化バリウム8水和物、硝酸リチウム3水和物、塩化カルシウム6水和物および硫酸ナトリウム10水和物から選ばれる1種以上の潜熱蓄熱材である請求項4に記載の電気自動車用変速機の暖機装置。   The latent heat storage material is selected from sodium acetate trihydrate, sodium thiosulfate pentahydrate, barium hydroxide octahydrate, lithium nitrate trihydrate, calcium chloride hexahydrate and sodium sulfate decahydrate. The warming-up device for a transmission for an electric vehicle according to claim 4, which is one or more kinds of latent heat storage materials. 発核装置が、潜熱蓄熱材に対して固相の核の発生に所要の圧力、熱、振動または電圧による衝撃を与える発核装置である請求項4に記載の電気自動車用変速機の暖機装置。   The warming-up of the transmission for an electric vehicle according to claim 4, wherein the nucleating device is a nucleating device that applies an impact by pressure, heat, vibration, or voltage required for generating solid-phase nuclei to the latent heat storage material. apparatus. 発核装置が、容器内に間隔を空けて複数個所に設けられている請求項7に記載の電気自動車用変速機の暖機装置。   The warming-up device for a transmission for an electric vehicle according to claim 7, wherein the nucleation device is provided at a plurality of locations at intervals in the container. 発核装置に、外気温および変速機温度から選ばれる1以上の温度条件に応じて作動または非作動を制御可能であるように温度センサと制御装置を設けた請求項4に記載の電気自動車用変速機の暖機装置。   5. The electric vehicle according to claim 4, wherein the nucleation device is provided with a temperature sensor and a control device so that operation or non-operation can be controlled according to one or more temperature conditions selected from an outside air temperature and a transmission temperature. Transmission warm-up device. 発核装置に、潜熱蓄熱材の固相または液相の状態を透過光量または反射光量によって判別する光センサと前記判別に基づいて作動制御する制御装置を設けた請求項4に記載の電気自動車用変速機の暖機装置。   5. The electric vehicle according to claim 4, wherein the nucleation device is provided with an optical sensor that determines a solid phase or a liquid phase state of the latent heat storage material based on a transmitted light amount or a reflected light amount, and a control device that controls operation based on the determination. Transmission warm-up device. 潜熱蓄熱材の固相または液相の状態を透過光量または反射光量によって判別する光センサを備え、前記光センサの判別に応じて電動機の駆動または停止を制御する制御装置を設けた請求項1に記載の電気自動車用変速機の暖機装置。   2. A control device that includes an optical sensor that determines a solid phase or a liquid phase state of the latent heat storage material based on a transmitted light amount or a reflected light amount, and that controls driving or stopping of an electric motor according to the determination of the optical sensor. The warming-up device of the transmission for electric vehicles of description.
JP2009210561A 2009-09-11 2009-09-11 Warm-up device of transmission for electric automobile Pending JP2011058586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210561A JP2011058586A (en) 2009-09-11 2009-09-11 Warm-up device of transmission for electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210561A JP2011058586A (en) 2009-09-11 2009-09-11 Warm-up device of transmission for electric automobile

Publications (1)

Publication Number Publication Date
JP2011058586A true JP2011058586A (en) 2011-03-24

Family

ID=43946459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210561A Pending JP2011058586A (en) 2009-09-11 2009-09-11 Warm-up device of transmission for electric automobile

Country Status (1)

Country Link
JP (1) JP2011058586A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087801A (en) * 2015-11-04 2017-05-25 株式会社豊田中央研究所 Hybrid vehicle
JP6269889B1 (en) * 2017-07-27 2018-01-31 トヨタ自動車株式会社 Battery cooling system
JP6269891B1 (en) * 2017-10-19 2018-01-31 トヨタ自動車株式会社 Battery cooling system
CN108278359A (en) * 2018-01-29 2018-07-13 安徽江淮汽车集团股份有限公司 Gearbox low temperature wriggling control method and system
JP2020029171A (en) * 2018-08-22 2020-02-27 トヨタ自動車株式会社 Control device of cooling device for vehicle
JP2020062964A (en) * 2018-10-17 2020-04-23 トヨタ自動車株式会社 Battery cooling system
JP2022109680A (en) * 2021-01-15 2022-07-28 尚士 柴山 Temperature change suppression device and self-propelled vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087801A (en) * 2015-11-04 2017-05-25 株式会社豊田中央研究所 Hybrid vehicle
JP6269889B1 (en) * 2017-07-27 2018-01-31 トヨタ自動車株式会社 Battery cooling system
JP2019029140A (en) * 2017-07-27 2019-02-21 トヨタ自動車株式会社 Battery cooling system
JP6269891B1 (en) * 2017-10-19 2018-01-31 トヨタ自動車株式会社 Battery cooling system
JP2019029329A (en) * 2017-10-19 2019-02-21 トヨタ自動車株式会社 Battery cooling system
CN108278359A (en) * 2018-01-29 2018-07-13 安徽江淮汽车集团股份有限公司 Gearbox low temperature wriggling control method and system
JP2020029171A (en) * 2018-08-22 2020-02-27 トヨタ自動車株式会社 Control device of cooling device for vehicle
JP7087822B2 (en) 2018-08-22 2022-06-21 トヨタ自動車株式会社 Vehicle cooling device control device
JP2020062964A (en) * 2018-10-17 2020-04-23 トヨタ自動車株式会社 Battery cooling system
JP2022109680A (en) * 2021-01-15 2022-07-28 尚士 柴山 Temperature change suppression device and self-propelled vehicle

Similar Documents

Publication Publication Date Title
JP2011058586A (en) Warm-up device of transmission for electric automobile
US9771853B2 (en) Waste heat accumulator/distributor system
US11021072B2 (en) Vehicle heat management control device and recording medium storing heat management control program
US9228472B2 (en) System for thermal management of a vehicle and method for vehicle cold start
US8136487B2 (en) Cooling air supply apparatus for an internal combustion engine having an emergency operation device
EP2270918B1 (en) Electric traction vehicle with cooling by refrigeration cycle
CN104218273B (en) Battery thermal management system for electrified vehicles
JP2011027246A (en) Warmup device for electric automobile transmission
US8281884B2 (en) Cooling system for a vehicle with hybrid propulsion
EP2316675A1 (en) Air conditioner
KR20160120293A (en) Passive Temperature Control Of Accumulators
JP2015015208A (en) Battery module, power-supply unit including battery module and temperature management method of battery module
JP2012238571A (en) Battery temperature adjusting device
CN102207187A (en) Transmission heating and storage device
JP2012235579A (en) Electric vehicle
JP4984441B2 (en) Energy control device for heating and cooling
JP6034043B2 (en) Waste heat utilization system for automobile and automobile
JP4992290B2 (en) Transmission
JP2011179690A (en) Heat pipe type cooling system
CN104565325A (en) Method and arrangement for controlling transmission oil temperature
JP2010054162A (en) Heat storage device and warmup system for vehicle
KR101138526B1 (en) Vehicle having thermoelectric generation system using waste heat
JP2002039339A (en) Temperature regulating means for transmission fluid
JP4757662B2 (en) Waste heat utilization equipment
CN109488483B (en) Vehicle heat exchange system