JP2011058511A - Lubricating oil supply device - Google Patents

Lubricating oil supply device Download PDF

Info

Publication number
JP2011058511A
JP2011058511A JP2009205768A JP2009205768A JP2011058511A JP 2011058511 A JP2011058511 A JP 2011058511A JP 2009205768 A JP2009205768 A JP 2009205768A JP 2009205768 A JP2009205768 A JP 2009205768A JP 2011058511 A JP2011058511 A JP 2011058511A
Authority
JP
Japan
Prior art keywords
oil
lubricating oil
oil supply
tank
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205768A
Other languages
Japanese (ja)
Other versions
JP5556993B2 (en
Inventor
Yoshihisa Yamauchi
淑久 山内
Yuichi Miura
雄一 三浦
Atsushi Tezuka
厚 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009205768A priority Critical patent/JP5556993B2/en
Publication of JP2011058511A publication Critical patent/JP2011058511A/en
Application granted granted Critical
Publication of JP5556993B2 publication Critical patent/JP5556993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricating oil supply device shortening a time required to raise a temperature of lubricating oil to an appropriate level when resuming lubricating oil supply to a rotating machine after rotating machine replacement. <P>SOLUTION: A lubricating oil supply device 10 supplies lubricating oil to a bearing 5 of a rotating machine 20. The rotating machine 20 is provided with: an oil inflow port 3 to which a lubricating oil is supplied; and an oil discharge port 7 through which the lubricating oil supplied to the bearing 5 is discharged. The device is equipped with: a tank 21 storing the lubricating oil therein; an oil supply unit 23 arranged close to the oil inflow port 3 to supply the lubricating oil from the tank 21 to the oil inflow port 3; an oil supply path 25 forcing the lubricating oil to flow from the tank 21 to the oil supply unit 23; a first oil return path 27a forcing the lubricating oil to flow from the oil discharge port 7 to the tank 21;and a second oil return path 27b forcing the lubricating oil to flow from the oil supply unit 23 to the tank 21 so as to avoid the rotating machine 20. The oil supply unit 23 can be switched between an oil supply state in which the lubricating oil from the tank 21 is forced to flow to the oil inflow port 3, and a bypass state in which the lubricating oil from the tank 21 is forced to flow to the second oil return path 27b without supply to the oil inflow port 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、試験対象の回転機械の軸受に潤滑油を供給する潤滑油供給装置に関する。   The present invention relates to a lubricating oil supply device that supplies lubricating oil to a bearing of a rotating machine to be tested.

回転機械は、回転する回転体を有し、その回転の状態を検査するために、試験的に回転体を回転させる。この時、回転体を支持する軸受に潤滑油を供給する潤滑油供給装置が設けられる。前記検査では、例えば、回転体が回転している時に、回転により生じる振動を計測し、計測結果から回転体のアンバランスデータを求める(例えば下記特許文献1)。   The rotating machine has a rotating body that rotates, and rotates the rotating body on a trial basis in order to check the state of rotation. At this time, a lubricating oil supply device that supplies lubricating oil to a bearing that supports the rotating body is provided. In the inspection, for example, when the rotating body is rotating, vibration generated by the rotation is measured, and unbalanced data of the rotating body is obtained from the measurement result (for example, Patent Document 1 below).

図1は、従来の潤滑油供給装置を示す。潤滑油供給装置は、タンク51、ポンプ52、給油経路53、給油ユニット54、油戻り経路55、ヒータ56などを備える。
タンク51には、潤滑油が蓄積される。また、ポンプ52は、タンク51内の潤滑油を給油経路53(給油配管)に送り出す。給油経路53は、タンク51からの潤滑油を給油ユニット54まで流す。給油ユニット54は、給油経路53からの潤滑油を回転機械58の油流入口58aに供給する。油戻り経路55(油戻り配管)は、回転機械58の排油口58bから排出された潤滑油をタンクへ戻す。ヒータ56は、タンク51内の潤滑油を加熱する。なお、ポンプ57は、油戻り経路55の潤滑油をタンク51へ送る。
FIG. 1 shows a conventional lubricating oil supply apparatus. The lubricating oil supply device includes a tank 51, a pump 52, an oil supply path 53, an oil supply unit 54, an oil return path 55, a heater 56, and the like.
Lubricating oil is accumulated in the tank 51. In addition, the pump 52 sends the lubricating oil in the tank 51 to the oil supply path 53 (oil supply pipe). The oil supply path 53 allows the lubricating oil from the tank 51 to flow to the oil supply unit 54. The oil supply unit 54 supplies the lubricating oil from the oil supply path 53 to the oil inlet 58 a of the rotary machine 58. The oil return path 55 (oil return pipe) returns the lubricating oil discharged from the oil discharge port 58b of the rotary machine 58 to the tank. The heater 56 heats the lubricating oil in the tank 51. The pump 57 sends the lubricating oil in the oil return path 55 to the tank 51.

給油ユニット54は、図示しない昇降機構により昇降され、図2に示す下降位置にて、回転機械58の油流入口58aと接続する。給油ユニット54は、図1に示す上昇位置から図2に示す下降位置へ下降させられて、油流入口58aを形成する面に押し付けられる。これにより、図2のように、可動部54aがバネ54bに抗して下昇することで、給油路54cが開口し、給油路54cから油流入口58aへ潤滑油が流れる。   The oil supply unit 54 is moved up and down by a lifting mechanism (not shown), and is connected to the oil inlet 58a of the rotary machine 58 at the lowered position shown in FIG. The oil supply unit 54 is lowered from the raised position shown in FIG. 1 to the lowered position shown in FIG. 2, and is pressed against the surface forming the oil inlet 58a. As a result, as shown in FIG. 2, the movable portion 54a moves up against the spring 54b, whereby the oil supply passage 54c opens, and the lubricating oil flows from the oil supply passage 54c to the oil inlet 58a.

給油ユニット54を通して、回転機械58に潤滑油を供給する場合には、給油ユニット54は上述の下降位置にあり、図1において、供給元弁59と戻り弁61を開きバイパス弁63を閉じるので、潤滑油は、タンク51、給油経路53、給油ユニット54、回転機械58、油戻り経路55、タンク51の順に流れて循環する。   When supplying lubricating oil to the rotary machine 58 through the oil supply unit 54, the oil supply unit 54 is in the lowered position, and in FIG. 1, the supply valve 59 and the return valve 61 are opened and the bypass valve 63 is closed. The lubricating oil flows and circulates in the order of the tank 51, the oil supply path 53, the oil supply unit 54, the rotating machine 58, the oil return path 55, and the tank 51.

一方、検査対象の回転機械58を交換する場合には、給油ユニット54を上述の上昇位置にするとともに、供給元弁59と戻り弁61を閉じバイパス弁63を開くので、潤滑油は、タンク51、バイパス経路64、タンク51の順に流れて循環する。   On the other hand, when the rotating machine 58 to be inspected is replaced, the oil supply unit 54 is set to the above-described raised position, the supply valve 59 and the return valve 61 are closed, and the bypass valve 63 is opened. The bypass path 64 and the tank 51 flow in order and circulate.

特開2002−039904号公報JP 2002-039904 A

しかし、回転機械58を交換し、再び、回転機械58に潤滑油を供給する際に、潤滑油の温度が適切な温度に上昇するまでに時間が掛かってしまう。回転機械58を交換するために、供給元弁59と戻り弁61を閉じバイパス弁63を開くと、供給元弁59から給油ユニット54までの給油経路53部分と、回転機械58の排油口58bとの接続位置から戻り弁61までの戻り経路55部分とには、潤滑油が残った状態となる。このように残った潤滑油は、回転機械58を交換している間に冷めてしまう。しかも、供給元弁59、戻り弁61、およびバイパス弁63は、タンク51に近接して設けられるので、給油経路53と戻り経路55において、潤滑油が、広範囲にわたって上述のように残ることになる。従って、回転機械58の交換後、回転機械58への潤滑油供給を再開する際に、潤滑油の温度が適切な温度に上昇するまでに時間が掛かってしまう。特に、潤滑油供給の再開時に、供給元弁59から給油ユニット54までの給油経路53部分に残っている低温潤滑油が、回転機械58に流入するため、潤滑油の温度が適切な温度に上昇するまでに時間が掛かってしまう。   However, when the rotating machine 58 is replaced and the lubricating oil is supplied again to the rotating machine 58, it takes time until the temperature of the lubricating oil rises to an appropriate temperature. If the supply valve 59 and the return valve 61 are closed and the bypass valve 63 is opened in order to replace the rotary machine 58, the oil supply path 53 from the supply source valve 59 to the oil supply unit 54, and the oil outlet 58 b of the rotary machine 58. The lubricating oil remains in the return path 55 portion from the connection position to the return valve 61. The remaining lubricating oil is cooled while the rotary machine 58 is replaced. Moreover, since the supply source valve 59, the return valve 61, and the bypass valve 63 are provided close to the tank 51, the lubricating oil remains in the oil supply path 53 and the return path 55 as described above over a wide range. . Therefore, when the supply of the lubricating oil to the rotating machine 58 is restarted after the replacement of the rotating machine 58, it takes time until the temperature of the lubricating oil rises to an appropriate temperature. In particular, when the supply of the lubricating oil is resumed, the low-temperature lubricating oil remaining in the portion of the oil supply path 53 from the supply source valve 59 to the oil supply unit 54 flows into the rotary machine 58, so that the temperature of the lubricating oil rises to an appropriate temperature. It takes time to do.

そこで、本発明の目的は、回転機械の交換後、回転機械への潤滑油供給を再開する際に、潤滑油の温度が適切な温度に上昇するのに要する時間を短縮できる潤滑油供給装置を提供することにある。   Accordingly, an object of the present invention is to provide a lubricating oil supply device that can reduce the time required for the temperature of the lubricating oil to rise to an appropriate temperature when the lubricating oil supply to the rotating machine is restarted after the rotating machine is replaced. It is to provide.

上記目的を達成するため、本発明によると、回転機械の軸受に潤滑油を供給する潤滑油供給装置であって、
前記回転機械には、潤滑油が供給される油流入口と、前記軸受に供給された潤滑油が排出される排油口とが設けられており、
潤滑油が蓄積されるタンクと、
前記油流入口に近接して配置され、タンクからの潤滑油を前記油流入口に供給する給油ユニットと、
前記タンクから前記給油ユニットへ潤滑油を流す給油経路と、
前記排油口からタンクへ潤滑油を流す第1の油戻り経路と、
回転機械を回避するように前記給油ユニットからタンクへ潤滑油を流す第2の油戻り経路と、を備え、
前記給油ユニットは、タンクからの潤滑油を前記油流入口へ流す油供給状態と、タンクからの潤滑油を、前記油流入口に供給せずに第2の油戻り経路へ流すバイパス状態とに切換可能であり、
前記給油ユニットが前記バイパス状態にある場合、潤滑油が、タンク、給油経路、給油ユニット、第2の油戻り経路の順で循環するようになっている、ことを特徴とする潤滑油供給装置が提供される。
In order to achieve the above object, according to the present invention, there is provided a lubricating oil supply device for supplying lubricating oil to a bearing of a rotary machine,
The rotating machine is provided with an oil inlet to which lubricating oil is supplied and an oil outlet from which the lubricating oil supplied to the bearing is discharged,
A tank in which lubricant is accumulated;
An oil supply unit disposed in proximity to the oil inlet and supplying lubricating oil from a tank to the oil inlet;
An oil supply path for flowing lubricating oil from the tank to the oil supply unit;
A first oil return path for flowing lubricating oil from the oil outlet to the tank;
A second oil return path for flowing lubricating oil from the oil supply unit to the tank so as to avoid the rotating machine,
The oil supply unit is in an oil supply state in which lubricating oil from a tank flows to the oil inlet, and in a bypass state in which lubricating oil from the tank flows to the second oil return path without being supplied to the oil inlet. Switchable,
When the oil supply unit is in the bypass state, the lubricating oil is circulated in the order of a tank, an oil supply path, an oil supply unit, and a second oil return path. Provided.

本発明の好ましい実施形態によると、前記給油ユニットは、
油流入口に接続されタンクからの潤滑油を油流入口へ供給する給油部と、
前記給油部を、油流入口に接続する位置と、油流入口から離間する位置との間で移動させる移動機構と、を有する。
According to a preferred embodiment of the present invention, the refueling unit comprises:
An oil supply unit connected to the oil inlet and supplying lubricating oil from the tank to the oil inlet;
A moving mechanism for moving the oil supply section between a position connected to the oil inlet and a position spaced from the oil inlet;

また、本発明の好ましい実施形態によると、前記給油ユニットは、3方弁を有し、該3方弁により、前記油供給状態と前記バイパス状態との間で切り換えられ、
3方弁は、前記給油部と共に、前記移動機構により移動させられる可動部に設置されている。
Further, according to a preferred embodiment of the present invention, the oil supply unit has a three-way valve, and is switched between the oil supply state and the bypass state by the three-way valve,
The three-way valve is installed in a movable part that is moved by the moving mechanism together with the oil supply part.

本発明の好ましい実施形態によると、前記給油ユニットが前記バイパス状態にある時に、循環している潤滑油を加熱する加熱装置を備える。   According to a preferred embodiment of the present invention, there is provided a heating device that heats the circulating lubricating oil when the oil supply unit is in the bypass state.

好ましくは、給油ユニットの給油部には、油流出口形成面と油圧利用シールが設けられ、該油流出口形成面には、タンクからの潤滑油が流れ出る油流出口が形成され、油圧利用シールは、前記油流入口が形成された油流入口形成面と前記油流出口形成面との間に位置し、
この油圧利用シールは、油流出口から油流入口までの流体通過領域を囲むように、前記油流出口形成面に取り付けられ、
さらに、前記油圧利用シールは、前記油流入口形成面に接して前記油流入口を囲む内側先端と、油流入口中心から油流入口外周縁へ向かう方向に前記内側先端から離れて位置し前記流体通過領域を囲む外側部と、前記内側先端から前記外側部まで延び流体通過領域を囲む拡大部と、を有し、
前記流体通過領域内の油圧により前記拡大部が油流入口形成面に押し付けられることで、外部に対する流体通過領域の密閉が維持される。
Preferably, the oil supply portion of the oil supply unit is provided with an oil outlet forming surface and a hydraulic pressure use seal, and an oil outlet from which the lubricating oil from the tank flows is formed on the oil outlet formation surface. Is located between the oil inlet forming surface on which the oil inlet is formed and the oil outlet forming surface,
This hydraulic utilization seal is attached to the oil outlet forming surface so as to surround a fluid passage region from the oil outlet to the oil inlet,
Furthermore, the hydraulic pressure utilization seal is located at an inner tip that is in contact with the oil inlet forming surface and surrounds the oil inlet, and away from the inner tip in a direction from the center of the oil inlet to the outer peripheral edge of the oil inlet. An outer portion surrounding the passage region, and an enlarged portion extending from the inner tip to the outer portion and surrounding the fluid passage region,
The enlarged portion is pressed against the oil inflow port forming surface by the hydraulic pressure in the fluid passage region, so that the fluid passage region is sealed from the outside.

上述した本発明によると、給油ユニットが前記バイパス状態にある場合、潤滑油が、タンク、給油経路、回転機械に近接する給油ユニット、油戻り経路の順で循環するので、循環しない潤滑油の量が大幅に低減される。従って、回転機械の交換後、回転機械への潤滑油供給を再開する際に、循環しないで冷めた潤滑油が回転機械に流入する時間を大幅に短縮することができる。本発明の実施形態による他の効果は、以下の説明で明らかにする。   According to the present invention described above, when the oil supply unit is in the bypass state, the lubricating oil circulates in the order of the tank, the oil supply path, the oil supply unit adjacent to the rotating machine, and the oil return path, so that the amount of the lubricating oil that does not circulate Is greatly reduced. Therefore, when the supply of lubricating oil to the rotating machine is restarted after the replacement of the rotating machine, the time for the lubricating oil cooled without circulating to flow into the rotating machine can be greatly shortened. Other effects of the embodiment of the present invention will be clarified in the following description.

従来の潤滑油供給装置の構成例を示す。The structural example of the conventional lubricating oil supply apparatus is shown. 図1の給油ユニットが給油している状態を示す。The state which the oil supply unit of FIG. 1 supplies is shown. 本発明の実施形態による潤滑油供給装置の構成を示す。The structure of the lubricating oil supply apparatus by embodiment of this invention is shown. (A)は、図3における油圧利用シール付近の部分拡大図であり、(B)は、(A)のB−B矢視図である。(A) is the elements on larger scale in the vicinity of the hydraulic pressure utilization seal in FIG. 3, (B) is a BB arrow view of (A). 図5は、図4(A)の構成において油通過領域に潤滑油を流した状態を示している。FIG. 5 shows a state in which lubricating oil flows in the oil passage region in the configuration of FIG. 油圧利用シールの別の構成例を示す。Another structural example of a hydraulic-utilizing seal is shown. 油圧利用シールの別の構成例を示す。Another structural example of a hydraulic-utilizing seal is shown. 油圧利用シールの別の構成例を示す。Another structural example of a hydraulic-utilizing seal is shown.

本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   The best mode for carrying out the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

[潤滑油供給装置]
図3は、本発明の実施形態による潤滑油供給装置10の構成図である。潤滑油供給装置10は、試験対象の回転機械20の軸受5に潤滑油を供給する装置である。
[Lubricating oil supply device]
FIG. 3 is a configuration diagram of the lubricating oil supply apparatus 10 according to the embodiment of the present invention. The lubricating oil supply device 10 is a device that supplies lubricating oil to the bearing 5 of the rotating machine 20 to be tested.

回転機械20には、潤滑油が供給される油流入口3と、軸受5に供給された潤滑油が排出される排油口7とが設けられる。図3の例では、回転機械20は、過給機である。過給機20は、車両や船舶などに搭載されるエンジンの排ガスエネルギーを利用して、エンジンに圧縮空気を供給する装置である。過給機20は、エンジンの排ガスにより回転駆動されるタービン翼9と、タービン翼9と一体的に回転することで圧縮空気をエンジンに供給するコンプレッサ翼11と、一端部にタービン翼9が結合され他端部にコンプレッサ翼11が結合される回転軸13とを有する。また、過給機20は、タービン翼9を内部に収容するタービンハウジング15と、コンプレッサ翼11を内部に収容するコンプレッサハウジング(図示せず)と、回転軸13を支持する軸受5が内部に組み込まれる軸受ハウジング17と、を備える。タービン翼9、コンプレッサ翼11および回転軸13は、振動計測対象回転機械20の回転体を構成する。タービンハウジング15、コンプレッサハウジングおよび軸受ハウジング17は、静止側部である。   The rotary machine 20 is provided with an oil inlet 3 to which lubricating oil is supplied and an oil outlet 7 from which the lubricating oil supplied to the bearing 5 is discharged. In the example of FIG. 3, the rotary machine 20 is a supercharger. The supercharger 20 is a device that supplies compressed air to an engine by using exhaust gas energy of an engine mounted on a vehicle or a ship. The turbocharger 20 includes a turbine blade 9 that is rotationally driven by exhaust gas from the engine, a compressor blade 11 that supplies compressed air to the engine by rotating integrally with the turbine blade 9, and the turbine blade 9 coupled to one end. And a rotating shaft 13 to which the compressor blade 11 is coupled. The turbocharger 20 includes a turbine housing 15 that houses the turbine blades 9 therein, a compressor housing (not shown) that houses the compressor blades 11 therein, and a bearing 5 that supports the rotary shaft 13 incorporated therein. Bearing housing 17. The turbine blade 9, the compressor blade 11, and the rotating shaft 13 constitute a rotating body of the vibration measurement target rotating machine 20. The turbine housing 15, the compressor housing and the bearing housing 17 are stationary sides.

潤滑油供給装置10は、タンク21、給油ユニット23、給油経路25、第1および第2の油戻り経路27a,27b、加熱装置28などを備える。   The lubricating oil supply apparatus 10 includes a tank 21, an oil supply unit 23, an oil supply path 25, first and second oil return paths 27a and 27b, a heating device 28, and the like.

タンク21には、潤滑油が蓄積される。タンク21には、ポンプ21aが設けられる。ポンプ21aは、タンク21内の潤滑油を給油経路25へ送出する。   Lubricating oil is accumulated in the tank 21. The tank 21 is provided with a pump 21a. The pump 21 a sends the lubricating oil in the tank 21 to the oil supply path 25.

給油ユニット23は、油流入口3に近接して配置され、給油経路25を通してタンク21から送られてくる潤滑油を油流入口3に供給する。給油ユニット23は、油供給状態とバイパス状態とに切換可能であり、油供給状態では、タンク21からの潤滑油を油流入口3へ流し、バイパス状態では、タンク21からの潤滑油を、油流入口3に供給せずに第2の油戻り経路27bへ流す。   The oil supply unit 23 is disposed in the vicinity of the oil inlet 3, and supplies the lubricating oil sent from the tank 21 through the oil supply path 25 to the oil inlet 3. The oil supply unit 23 can be switched between an oil supply state and a bypass state. In the oil supply state, the lubricant oil from the tank 21 flows to the oil inlet 3, and in the bypass state, the lubricant oil from the tank 21 is supplied to the oil supply port 3. Without being supplied to the inflow port 3, it flows to the second oil return path 27 b.

給油経路25は、タンク21と給油ユニット23を接続する管であり、タンク21から給油ユニット23へ潤滑油を流す。当該管25は、給油ユニット23が後述のように移動する時に、給油ユニット23の移動に追従できるように、たるんでおり、かつ変形可能であるのがよい。   The oil supply path 25 is a pipe connecting the tank 21 and the oil supply unit 23, and allows the lubricating oil to flow from the tank 21 to the oil supply unit 23. The pipe 25 may be slack and deformable so that the movement of the fuel supply unit 23 can be followed when the fuel supply unit 23 moves as described later.

第1の油戻り経路27aは、回転機械20の排油口7とタンク21とを接続する管であり、排油口7からタンク21へ潤滑油を流す。第2の油戻り経路27bは、給油ユニット23(3方弁23c)とタンク21を接続する管であり、回転機械20を回避するように給油ユニット23からタンク21へ潤滑油を流す管である。図3の例では、第1および第2の油戻り経路27aは、排油口7に近接する位置で合流し、当該位置からタンク21までの経路・管を共有している。
なお、油戻り経路27a,27b内の潤滑油をタンク21に送るためのポンプ27cが、油戻り経路27aまたは27b(図3では、経路27a,27bの共有部分)に設けられてよい。
The first oil return path 27 a is a pipe that connects the oil discharge port 7 of the rotary machine 20 and the tank 21, and allows lubricating oil to flow from the oil discharge port 7 to the tank 21. The second oil return path 27 b is a pipe that connects the oil supply unit 23 (three-way valve 23 c) and the tank 21, and is a pipe that flows lubricating oil from the oil supply unit 23 to the tank 21 so as to avoid the rotating machine 20. . In the example of FIG. 3, the first and second oil return paths 27 a merge at a position close to the oil discharge port 7 and share a path / pipe from the position to the tank 21.
Note that a pump 27c for sending the lubricating oil in the oil return paths 27a and 27b to the tank 21 may be provided in the oil return path 27a or 27b (in FIG. 3, a shared portion of the paths 27a and 27b).

加熱装置28は、給油ユニット23が前記油供給状態または前記バイパス状態にある時に、循環している潤滑油を加熱して、当該潤滑油の温度を所望の範囲にする。図3の例では、加熱装置28は、タンク21に設けられているが、他の箇所に設けられてもよい。   When the oil supply unit 23 is in the oil supply state or the bypass state, the heating device 28 heats the circulating lubricating oil to bring the temperature of the lubricating oil into a desired range. In the example of FIG. 3, the heating device 28 is provided in the tank 21, but may be provided in another location.

本実施形態によると、給油ユニット23が前記バイパス状態にある場合、潤滑油が、回転機械20を経由せずに、タンク21、給油経路25、給油ユニット23、第2の油戻り経路27bの順で循環し、給油ユニット23が前記油供給状態にある場合、潤滑油が、タンク21、給油経路25、給油ユニット23、回転機械20、第1の油戻り経路27aの順で循環するようになっている。   According to the present embodiment, when the oil supply unit 23 is in the bypass state, the lubricating oil does not pass through the rotary machine 20 and goes in the order of the tank 21, the oil supply path 25, the oil supply unit 23, and the second oil return path 27b. When the oil supply unit 23 is in the oil supply state, the lubricating oil circulates in the order of the tank 21, the oil supply path 25, the oil supply unit 23, the rotary machine 20, and the first oil return path 27a. ing.

給油ユニット23について、より詳しく説明する。   The oil supply unit 23 will be described in more detail.

給油ユニット23は、給油部23a、移動機構23b、および3方弁23cを備える。
給油部23aは、回転機械20の油流入口3に接続されタンク21からの油を油流入口3へ供給する。給油部23a内に、潤滑油の温度を検出する温度センサ(熱電対)を設けてよく、これにより、回転機械20の交換後、当該温度センサによる検出温度が所望の範囲になったことを確認できる。
移動機構23bは、給油部23aを、接続位置と非接続位置との間で移動させる。移動機械が給油部23aを接続位置に移動させることで、給油部23aは油流入口3に接続させられる。一方、移動機構23bが給油部23aを非接続位置に移動させることで、給油部23aは油流入口3から離間させられる。移動機構23bは、例えば、給油部23aを接続位置と非接続位置との間で昇降させる油圧式または空圧式のシリンダ装置であってよいが、給油部23aを接続位置と非接続位置との間で移動させることができれば他の適切な機構であってもよい。
3方弁23cにより、給油ユニット23が、前記油供給状態と前記バイパス状態との間で切り換えられる。すなわち、3方向弁は、前記油供給状態と前記バイパス状態との間で切り換えられ、油供給状態では、タンク21からの潤滑油を、給油部23aと油流入口3へ流し、バイパス状態では、タンク21からの潤滑油を、油流入口3に供給せずに第2の油戻り経路27bへ流す。切り換えは、作業員が所定の操作部23dを操作することで行われてよい。例えば、作業員が操作部23dを操作することで、3方弁23cを前記油供給状態または前記バイパス状態に切り換えるための制御信号が3方弁23cへ出力され、制御信号に従って、3方弁23cが、前記油供給状態または前記バイパス状態に切り換わる。3方弁23cは、給油部23aと共に、移動機構23bにより移動させられる可動部23eに設置されている。
The oil supply unit 23 includes an oil supply part 23a, a moving mechanism 23b, and a three-way valve 23c.
The oil supply unit 23 a is connected to the oil inlet 3 of the rotary machine 20 and supplies oil from the tank 21 to the oil inlet 3. A temperature sensor (thermocouple) that detects the temperature of the lubricating oil may be provided in the oil supply unit 23a, and thereby confirming that the temperature detected by the temperature sensor is within a desired range after the rotating machine 20 is replaced. it can.
The movement mechanism 23b moves the oil supply part 23a between the connection position and the non-connection position. The moving machine moves the oil supply portion 23 a to the connection position, so that the oil supply portion 23 a is connected to the oil inlet 3. On the other hand, the moving mechanism 23b moves the oil supply portion 23a to the non-connection position, so that the oil supply portion 23a is separated from the oil inlet 3. The moving mechanism 23b may be, for example, a hydraulic or pneumatic cylinder device that raises and lowers the oil supply portion 23a between the connection position and the non-connection position, but the oil supply portion 23a is between the connection position and the non-connection position. Any other suitable mechanism may be used as long as it can be moved by.
The oil supply unit 23 is switched between the oil supply state and the bypass state by the three-way valve 23c. That is, the three-way valve is switched between the oil supply state and the bypass state. In the oil supply state, the lubricating oil from the tank 21 flows to the oil supply portion 23a and the oil inlet 3, and in the bypass state, Lubricating oil from the tank 21 is supplied to the second oil return path 27 b without being supplied to the oil inlet 3. The switching may be performed by an operator operating a predetermined operation unit 23d. For example, when the operator operates the operation unit 23d, a control signal for switching the three-way valve 23c to the oil supply state or the bypass state is output to the three-way valve 23c, and according to the control signal, the three-way valve 23c Is switched to the oil supply state or the bypass state. The three-way valve 23c is installed in the movable part 23e moved by the moving mechanism 23b together with the oil supply part 23a.

上述した潤滑油供給装置10によると、給油ユニット23が前記バイパス状態にある場合、潤滑油が、タンク21、給油経路25、回転機械20に近接する給油ユニット23、第2の油戻り経路27bの順で循環するので、循環しない潤滑油の量が、大幅に低減され、または、ほとんど無くすことができる。例えば、循環しない潤滑油の量を、給油部23aに残留する潤滑油の量程度にすることができる。従って、回転機械20の交換後、回転機械20への潤滑油供給を再開する際に、循環しないで冷めた潤滑油の回転機械20に流入する時間を大幅に短縮することができる。その結果、回転機械20への潤滑油供給を再開する際に、速やかに、適切な温度の潤滑油を回転機械20流入させることができる。   According to the lubricating oil supply apparatus 10 described above, when the oil supply unit 23 is in the bypass state, the lubricating oil is supplied to the tank 21, the oil supply path 25, the oil supply unit 23 adjacent to the rotary machine 20, and the second oil return path 27b. Since it circulates in order, the amount of lubricating oil that does not circulate can be greatly reduced or almost eliminated. For example, the amount of lubricating oil that does not circulate can be reduced to the amount of lubricating oil remaining in the oil supply portion 23a. Therefore, when the supply of the lubricating oil to the rotating machine 20 is resumed after the replacement of the rotating machine 20, the time for the lubricating oil cooled without circulating to flow into the rotating machine 20 can be greatly shortened. As a result, when the supply of the lubricating oil to the rotating machine 20 is resumed, the lubricating oil having an appropriate temperature can be promptly introduced into the rotating machine 20.

[油圧利用シール]
給油部23aは、油圧利用シール29を有する。図4(A)は、図3における油圧利用シール29付近の部分拡大図であり、図4(B)は、図4(A)のB−B矢視図である。
[Hydraulic seal]
The oil supply unit 23 a has a hydraulic pressure utilization seal 29. 4A is a partially enlarged view of the vicinity of the hydraulic pressure use seal 29 in FIG. 3, and FIG. 4B is a view taken along the line BB in FIG. 4A.

油圧利用シール29は、潤滑油が流れ出る油流出口29aと、この油流出口29aからの潤滑油を流入させる油流入口3との接続部分を、潤滑油の圧力(油圧)を利用してシールするものである。油圧利用シール29は、油流出口形成面29bに取り付けられる。油流出口形成面29bは、給油部23aに設けられ、タンク21からの潤滑油が流れ出る油流出口29aが形成される面である。例えば、給油部23aは、内部に潤滑油が流れる円筒形状を有し、当該円筒の先端にフランジ24が設けられ、フランジ24の先端面が油流出口形成面29bとなっていてよい。移動機構23bにより給油部23aが前記接続位置に移動させられた状態で、油圧利用シール29の先端29cが,油流入口3が形成された油流入口形成面33に接触し、油流出口29aから油流入口3までの油通過領域31を囲む。   The oil pressure use seal 29 seals the connecting portion between the oil outlet 29a through which the lubricating oil flows out and the oil inlet 3 through which the lubricating oil from the oil outlet 29a flows, using the pressure (hydraulic pressure) of the lubricating oil. To do. The hydraulic pressure utilization seal 29 is attached to the oil outlet forming surface 29b. The oil outlet formation surface 29b is provided on the oil supply portion 23a, and is a surface on which an oil outlet 29a from which the lubricating oil from the tank 21 flows is formed. For example, the oil supply portion 23a may have a cylindrical shape through which lubricating oil flows, and a flange 24 may be provided at the tip of the cylinder, and the tip surface of the flange 24 may be an oil outlet forming surface 29b. In a state where the oil supply portion 23a is moved to the connection position by the moving mechanism 23b, the tip 29c of the hydraulic pressure utilization seal 29 contacts the oil inlet forming surface 33 on which the oil inlet 3 is formed, and the oil outlet 29a The oil passage area 31 from the oil inlet 3 to the oil inlet 3 is surrounded.

油圧利用シール29は、内側先端29c、外側部29d、および拡大部29eを有する。内側先端29cは、油流入口形成面33に接して油流入口3を囲む。外側部29dは、油流入口3中心から油流入口3外周縁へ向かう方向に内側先端29cから離れて位置し油通過領域31を囲む。拡大部29eは、内側先端29cから外側部29dまで延び油通過領域31を囲む。   The hydraulic pressure utilization seal 29 has an inner tip 29c, an outer portion 29d, and an enlarged portion 29e. The inner front end 29 c is in contact with the oil inlet forming surface 33 and surrounds the oil inlet 3. The outer portion 29d is located away from the inner tip 29c in the direction from the center of the oil inlet 3 toward the outer peripheral edge of the oil inlet 3, and surrounds the oil passage region 31. The enlarged portion 29e extends from the inner tip 29c to the outer portion 29d and surrounds the oil passage region 31.

上述の構成で、給油部23aが接続位置にある時に、油通過領域31内の油圧により拡大部29eが油流入口形成面33に押し付けられることで、外部に対する油通過領域31の密閉が維持される。   With the above-described configuration, when the oil supply portion 23a is in the connection position, the enlarged portion 29e is pressed against the oil inlet forming surface 33 by the oil pressure in the oil passage region 31, so that the sealing of the oil passage region 31 with respect to the outside is maintained. The

油圧利用シール29について、より詳細に説明する。   The hydraulic utilization seal 29 will be described in more detail.

この例では、内側先端29cは、油圧利用シール29の中心軸C方向から見た形状が環状であり、外側部29dおよび拡大部29eの各々は、中心軸Cと直交する平面による断面の形状(以下、横断面形状という)が環状である(図4(B)を参照)。また、この例では、内側先端29cは平らな接触面であり、外側部29dの形状は円筒である。この例では、図4(A)に示すように、拡大部29eは、中心軸Cを含む平面による断面の形状(以下、縦断面形状という)が、中心軸Cから外側に傾いた方向であって油流出口29a側へ向かう方向に、内側先端29cから外側部29dまで直線的に延びている。   In this example, the inner tip 29c has an annular shape as viewed from the direction of the central axis C of the hydraulic seal 29, and each of the outer portion 29d and the enlarged portion 29e has a cross-sectional shape by a plane orthogonal to the central axis C ( Hereinafter, the cross-sectional shape is circular (see FIG. 4B). In this example, the inner tip 29c is a flat contact surface, and the outer portion 29d has a cylindrical shape. In this example, as shown in FIG. 4A, the enlarged portion 29e has a cross-sectional shape (hereinafter referred to as a vertical cross-sectional shape) by a plane including the central axis C in a direction inclined outward from the central axis C. Thus, it extends linearly from the inner tip 29c to the outer portion 29d in the direction toward the oil outlet 29a.

図4(A)は、油圧利用シール29内部の油通過領域31を潤滑油が流れていない状態を示している。一方、図5は、図4(A)の構成において油通過領域31に潤滑油を流した状態を示している。
図5に示すように潤滑油が油通過領域31を通過する時に、潤滑油の圧力(例えば、300〜500kPa)が油圧利用シール29に作用する。これにより、油通過領域31内の油圧により拡大部29eが油流入口形成面33に押し付けられることで、外部に対する油通過領域31の密閉が維持される。本実施形態では、図5のように、油通過領域31内の油圧(例えば、300〜500kPa)により油圧利用シール29は弾性変形し、これにより、拡大部29eが油流入口形成面33に押し付けられる。図5における油圧利用シール29と油流入口形成面33との接触面積は、図4(A)の状態よりも増えている。
FIG. 4A shows a state in which the lubricating oil is not flowing through the oil passage region 31 inside the hydraulic pressure utilization seal 29. On the other hand, FIG. 5 shows a state in which lubricating oil is allowed to flow through the oil passage region 31 in the configuration of FIG.
As shown in FIG. 5, when the lubricating oil passes through the oil passage region 31, the pressure of the lubricating oil (for example, 300 to 500 kPa) acts on the hydraulic pressure utilization seal 29. As a result, the enlarged portion 29e is pressed against the oil inflow port forming surface 33 by the oil pressure in the oil passage region 31, and the sealing of the oil passage region 31 with respect to the outside is maintained. In the present embodiment, as shown in FIG. 5, the hydraulic pressure utilization seal 29 is elastically deformed by the hydraulic pressure (for example, 300 to 500 kPa) in the oil passage region 31, and thereby the enlarged portion 29 e is pressed against the oil inlet forming surface 33. It is done. The contact area between the hydraulic pressure utilization seal 29 and the oil inlet forming surface 33 in FIG. 5 is larger than that in the state of FIG.

油圧利用シール29により、油通過領域31内の油圧により拡大部29eが油流入口形成面33に押し付けられることで、外部に対する油通過領域31の密閉(シール)が維持されるので、内側先端29cを油流入口形成面33に接触させるための微小力を、油圧利用シール29から油流入口形成面33に作用させるだけで、油圧によりシールがなされる。従って、油流入口形成面33にほとんど外力を作用させずに、油流出口29aと油流入口3との接続箇所をシールすることができる。
また、油通過領域31内の油圧により油圧利用シール29を弾性変形させることで、拡大部29eを、油流入口形成面33に密着させるように油流入口形成面33に押し付けることができる。これにより、油流出口29aと油流入口3との接続箇所をより確実にシールすることができる。
さらに、拡大部29eの縦断面形状が、油流入口形成面33から外側部29dまで、中心軸Cから傾いた方向であって油流入口3側へ向かう方向へ延びているので、油圧利用シール29に油圧が作用すると、油圧利用シール29が弾性変形して油圧利用シール29(即ち、内側先端29cと拡大部29e)と油流入口形成面33との接触面積が増加する。従って、一層確実にシールがなされる。
Since the enlarged portion 29e is pressed against the oil inflow port forming surface 33 by the oil pressure in the oil passage region 31 by the oil pressure use seal 29, the seal (seal) of the oil passage region 31 with respect to the outside is maintained. By simply applying a micro force for contacting the oil inflow port forming surface 33 to the oil inflow port forming surface 33 from the oil pressure utilization seal 29, sealing is performed by hydraulic pressure. Therefore, the connection portion between the oil outlet 29 a and the oil inlet 3 can be sealed with almost no external force acting on the oil inlet forming surface 33.
Further, the enlarged portion 29 e can be pressed against the oil inlet forming surface 33 so as to be in close contact with the oil inlet forming surface 33 by elastically deforming the hydraulic pressure utilization seal 29 by the oil pressure in the oil passage region 31. Thereby, the connection location of the oil outlet 29a and the oil inlet 3 can be sealed more reliably.
Furthermore, since the longitudinal cross-sectional shape of the enlarged portion 29e extends from the oil inlet forming surface 33 to the outer side portion 29d in a direction inclined from the central axis C and toward the oil inlet 3 side, the hydraulic pressure utilization seal When the oil pressure acts on 29, the oil pressure utilization seal 29 is elastically deformed, and the contact area between the oil pressure utilization seal 29 (that is, the inner tip 29c and the enlarged portion 29e) and the oil inflow port forming surface 33 increases. Therefore, the sealing is performed more reliably.

[回転機械の試験]
回転機械20(この例では過給機)の試験は、この例では、回転体のアンバランス試験であり、次のように行われる。
コンプレッサハウジング(図示せず)が取り外された過給機20の振動計測用タービンハウジング15をボルト35などで振動計測用の支持体32に取り付ける。その後、エンジンの排ガスと同じ程度の圧力を有する圧縮ガスを、タービンハウジング15に形成された流路(図示せず)を通して、タービン翼9に供給することで、タービン翼9、コンプレッサ翼11および回転軸13からなる回転体を回転駆動する。回転体が所定の回転速度に達したら、軸受ハウジング17に取り付けられた加速度ピックアップ37で回転体の振動(即ち、加速度)を計測しつつ、回転角検出器39により回転体の回転角を計測する。これにより、例えば、演算器41が、所定の回転速度において、どの回転角でどの程度の振動(加速度)が生じているかを計測する。なお、この計測データに基づいてアンバランス量を求める。
[Rotating machinery testing]
The test of the rotating machine 20 (supercharger in this example) is an unbalance test of the rotating body in this example, and is performed as follows.
The vibration measurement turbine housing 15 of the supercharger 20 from which the compressor housing (not shown) is removed is attached to the vibration measurement support 32 with bolts 35 or the like. Thereafter, compressed gas having the same pressure as the exhaust gas of the engine is supplied to the turbine blade 9 through a flow path (not shown) formed in the turbine housing 15, whereby the turbine blade 9, the compressor blade 11 and the rotation are supplied. The rotating body composed of the shaft 13 is driven to rotate. When the rotating body reaches a predetermined rotational speed, the rotation angle detector 39 measures the rotation angle of the rotating body while measuring the vibration (ie, acceleration) of the rotating body with the acceleration pickup 37 attached to the bearing housing 17. . Thereby, for example, the calculator 41 measures how much vibration (acceleration) is generated at which rotation angle at a predetermined rotation speed. The unbalance amount is obtained based on this measurement data.

上述の振動計測時において、移動機構23bにより、給油部23aが前記接続位置に位置させられることで、油圧利用シール29の内側先端29cが油流入口形成面33に接触させられている。油流入口形成面33は、この例では、軸受ハウジング17の外表面である。潤滑油が、例えば300〜500kPa程度の圧力で、給油部23aの油流出口29aから油流入口3へ流入する。油流入口3へ流入した潤滑油は、軸受ハウジング17の内部に形成された潤滑油路42を通って軸受5に供給される。軸受5に供給された潤滑油は、その後、排油口7から第1の油戻り経路27aへ排出される。従って、潤滑油は、ポンプ21b、27aにより、タンク21、給油ユニット23の給油部23a、回転機械20、第1の油戻り経路27aの順で循環する。   At the time of the above-described vibration measurement, the oil supply portion 23a is positioned at the connection position by the moving mechanism 23b, so that the inner tip 29c of the hydraulic pressure utilization seal 29 is brought into contact with the oil inlet forming surface 33. In this example, the oil inlet forming surface 33 is an outer surface of the bearing housing 17. The lubricating oil flows into the oil inlet 3 from the oil outlet 29a of the oil supply section 23a at a pressure of, for example, about 300 to 500 kPa. The lubricating oil that has flowed into the oil inlet 3 is supplied to the bearing 5 through a lubricating oil passage 42 formed inside the bearing housing 17. The lubricating oil supplied to the bearing 5 is then discharged from the oil discharge port 7 to the first oil return path 27a. Accordingly, the lubricating oil is circulated by the pumps 21b and 27a in the order of the tank 21, the oil supply part 23a of the oil supply unit 23, the rotary machine 20, and the first oil return path 27a.

また、上述の振動計測時において、移動機構23bにより、給油部23aを、油流入口3に接続する時に、油圧利用シール29の内側先端29cが油流入口形成面33に作用させる接触圧をできる限り小さくすることが好ましい。なぜなら、油流入口形成面33に作用する接触圧(外力)は、振動計測に悪影響を与え、高精度な振動計測の障害となる。そこで、上述の接触圧が所定の微小値になるように、油圧利用シール29を用いて油流出口29aと油流入口3を接続する。例えば、前記接触圧を検知する圧力センサと、この圧力センサが検知した前記接触圧に基づいて、前記接触圧が所定の微小値となるように移動機構23bの移動を制御する制御部とを設けてよい。この場合、圧力センサは、例えば、前記接触圧(即ち、その反作用力)が作用するように可動部23eに組み込まれた圧電素子であってよい。   In addition, during the vibration measurement described above, when the oil supply portion 23a is connected to the oil inlet 3, the contact pressure that causes the inner tip 29c of the hydraulic seal 29 to act on the oil inlet forming surface 33 can be generated by the moving mechanism 23b. It is preferable to make it as small as possible. This is because the contact pressure (external force) acting on the oil inlet forming surface 33 adversely affects vibration measurement and becomes an obstacle to highly accurate vibration measurement. Therefore, the oil outlet 29a and the oil inlet 3 are connected using a hydraulic pressure seal 29 so that the above-described contact pressure becomes a predetermined minute value. For example, a pressure sensor that detects the contact pressure and a control unit that controls the movement of the moving mechanism 23b based on the contact pressure detected by the pressure sensor so that the contact pressure becomes a predetermined minute value are provided. It's okay. In this case, the pressure sensor may be, for example, a piezoelectric element incorporated in the movable portion 23e so that the contact pressure (that is, the reaction force) acts.

なお、軸受5に供給された潤滑油は、軸受ハウジング17の内部に形成された排油路(図示せず)を通って、軸受ハウジング17の外面に設けられた排油口7から管27aへ流れる。排油口7と管27aとの接続箇所には、例えば図3に示すシール47が設けられる。排油口7における潤滑油の圧力は小さいので、シール47を軸受ハウジング17の外面に微小力で接触させるだけで、排油が外部に漏れなくなる。従って、排油口7と管27aとの接続には、上述の油圧利用シール29を用いなくてもよい。   Note that the lubricating oil supplied to the bearing 5 passes through an oil drain passage (not shown) formed in the bearing housing 17 and flows from the oil outlet 7 provided on the outer surface of the bearing housing 17 to the pipe 27a. Flowing. For example, a seal 47 shown in FIG. 3 is provided at a connection portion between the oil discharge port 7 and the pipe 27a. Since the pressure of the lubricating oil at the oil discharge port 7 is small, the oil does not leak to the outside only by bringing the seal 47 into contact with the outer surface of the bearing housing 17 with a small force. Therefore, the oil pressure use seal 29 does not have to be used for the connection between the oil discharge port 7 and the pipe 27a.

本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

[他の実施形態]
例えば、油圧利用シール29の形状は、図4(A)に示す以外に、図6に示す形状であってもよい。図6の油圧利用シール29は、以下で説明する以外の点は、図4の油圧利用シール29と同じである。
[Other Embodiments]
For example, the shape of the hydraulic pressure utilization seal 29 may be the shape shown in FIG. 6 in addition to the shape shown in FIG. The hydraulic pressure utilization seal 29 of FIG. 6 is the same as the hydraulic pressure utilization seal 29 of FIG. 4 except for the points described below.

図4(A)では、油圧利用シール29も用いて油流出口29aと油流入口3とを接続した接続状態において、油圧利用シール29に油圧が作用していない時には、油圧利用シール29の内側先端29cは油流入口形成面33に面で接触している。
図6の場合には、前記接続状態において、油圧利用シール29に油圧が作用していない時には、図6(A)に示すように、油圧利用シール29の内側先端29cは油流入口形成面33に(円を描く)線で接触している。なお、図6では、図4(B)の場合と同様に、内側先端29cは油圧利用シール29の中心軸C方向から見た形状が環状であり、外側部29dおよび拡大部29eの各々は、横断面形状が環状である。図6の場合、油圧利用シール29は、油圧が作用すると、図6(B)のように弾性変形することで、油圧により拡大部29eが油流入口形成面33に押し付けられる。
In FIG. 4A, in the connected state where the oil outlet 29a and the oil inlet 3 are also connected using the oil pressure use seal 29, when the oil pressure is not applied to the oil pressure use seal 29, the inside of the oil pressure use seal 29 is shown. The tip 29c is in surface contact with the oil inlet forming surface 33.
In the case of FIG. 6, when no hydraulic pressure is applied to the hydraulic pressure utilization seal 29 in the connected state, as shown in FIG. 6A, the inner tip 29 c of the hydraulic pressure utilization seal 29 is the oil inlet forming surface 33. Is touching by a line (drawing a circle). In FIG. 6, as in the case of FIG. 4B, the inner tip 29c has an annular shape when viewed from the central axis C direction of the hydraulic seal 29, and each of the outer portion 29d and the enlarged portion 29e is The cross-sectional shape is annular. In the case of FIG. 6, when the oil pressure is applied, the oil pressure utilization seal 29 is elastically deformed as shown in FIG. 6B, so that the enlarged portion 29 e is pressed against the oil inlet forming surface 33 by the oil pressure.

また、油圧利用シール29の形状は、図7に示す形状であってもよい。図7の油圧利用シール29は、以下で説明する以外の点は、図4の油圧利用シール29と同じである。
図4(A)では、油圧利用シール29に油圧を含めた外力が作用していない状態で、拡大部29eの縦断面形状は内側先端29cから外側部29dまで直線的に延びている。
図7の場合には、油圧利用シール29に油圧を含めた外力が作用していない状態で、図7(A)のように、拡大部29eの縦断面形状が内側先端29cから外側部29dまで曲線状に延びている。図7(B)は、図7(A)の構成において油圧利用シール29に油圧が作用している状態を示す。なお、図7では、図4(B)の場合と同様に、内側先端29cは油圧利用シール29の中心軸C方向から見た形状が環状であり、外側部29dおよび拡大部29eの各々は、横断面形状が環状である。
Moreover, the shape shown in FIG. The hydraulic utilization seal 29 in FIG. 7 is the same as the hydraulic utilization seal 29 in FIG. 4 except for the points described below.
In FIG. 4A, the vertical cross-sectional shape of the enlarged portion 29e extends linearly from the inner tip 29c to the outer portion 29d in a state where an external force including hydraulic pressure is not acting on the hydraulic pressure utilization seal 29.
In the case of FIG. 7, in the state where the external force including the hydraulic pressure is not applied to the hydraulic pressure utilization seal 29, the longitudinal section shape of the enlarged portion 29e is from the inner tip 29c to the outer portion 29d as shown in FIG. It extends in a curved line. FIG. 7B shows a state in which hydraulic pressure is applied to the hydraulic pressure utilization seal 29 in the configuration of FIG. In FIG. 7, as in the case of FIG. 4B, the inner tip 29 c has an annular shape when viewed from the central axis C direction of the hydraulic seal 29, and each of the outer portion 29 d and the enlarged portion 29 e is The cross-sectional shape is annular.

また、油圧利用シール29の形状は、図8に示す形状であってもよい。図8の油圧利用シール29は、以下で説明する以外の点は、図4の油圧利用シール29と同じである。
図8の場合には、油圧利用シール29に油圧を含めた外力が作用していない状態で、図8(A)のように、拡大部29eの縦断面形状は、中心軸Cと直交する方向に、内側先端29cから外側部29dまで延びている。図8(A)において、拡大部29eの全体が、油流入口形成面33に接触している。また、図8の場合、好ましくは、外側部29dは、弾性変形しない、または、弾性変形しにくく剛性が高い材料(例えば金属)で形成され、内側先端29cと拡大部29eは、弾性変形しやすい材料(例えばゴム)で形成される。この構成で、油圧により、拡大部29eの全体が油流入口形成面33に押し付けられて油流入口形成面33に接触する(図8(B)の状態)。図8の場合にも、油圧により拡大部29eは弾性変形するが、この弾性変形量は、図4の場合と比較して小さい。また、図8の場合には、油圧利用シール29に油圧が作用しても、油圧利用シール29と油流入口形成面33との接触面積は、油圧利用シール29に油圧が作用していない図8(A)の状態と同じであってよい。内側先端29cと拡大部29eは、一体成形され、接着剤などにより拡大部29eが外側部29dに水密に結合される。なお、図8では、図4(B)の場合と同様に、内側先端29cは油圧利用シール29の中心軸C方向から見た形状が環状であり、外側部29dおよび拡大部29eの各々は、横断面形状が環状である。
Further, the shape of the hydraulic pressure utilization seal 29 may be the shape shown in FIG. The hydraulic pressure utilization seal 29 of FIG. 8 is the same as the hydraulic pressure utilization seal 29 of FIG. 4 except for the points described below.
In the case of FIG. 8, the vertical sectional shape of the enlarged portion 29 e is perpendicular to the central axis C as shown in FIG. Furthermore, it extends from the inner tip 29c to the outer portion 29d. In FIG. 8A, the entire enlarged portion 29 e is in contact with the oil inflow port forming surface 33. In the case of FIG. 8, preferably, the outer portion 29d is not elastically deformed, or is formed of a material (for example, metal) that is difficult to elastically deform and has high rigidity, and the inner tip 29c and the enlarged portion 29e are easily elastically deformed. It is made of a material (for example, rubber). With this configuration, the entire enlarged portion 29e is pressed against the oil inflow port forming surface 33 by the hydraulic pressure, and comes into contact with the oil inflow port forming surface 33 (state shown in FIG. 8B). In the case of FIG. 8 as well, the enlarged portion 29e is elastically deformed by hydraulic pressure, but the amount of elastic deformation is smaller than that in the case of FIG. Further, in the case of FIG. 8, even if hydraulic pressure acts on the hydraulic pressure utilization seal 29, the contact area between the hydraulic pressure utilization seal 29 and the oil inflow port forming surface 33 is a diagram where hydraulic pressure does not act on the hydraulic pressure utilization seal 29. It may be the same as the state of 8 (A). The inner tip 29c and the enlarged portion 29e are integrally formed, and the enlarged portion 29e is water-tightly coupled to the outer portion 29d by an adhesive or the like. In FIG. 8, as in the case of FIG. 4B, the inner tip 29 c has an annular shape when viewed from the central axis C direction of the hydraulic seal 29, and each of the outer portion 29 d and the enlarged portion 29 e is The cross-sectional shape is annular.

また、本発明によると、上述の回転機械20は過給機以外の回転機械(例えば、ターボ圧縮機やガスタービン)であってもよい。   According to the present invention, the rotary machine 20 described above may be a rotary machine other than a supercharger (for example, a turbo compressor or a gas turbine).

3 油流入口、5 軸受、7 排油口、9 タービン翼、
10 潤滑油供給装置、11 コンプレッサ翼、13 回転軸、
15 タービンハウジング、17 軸受ハウジング、20 回転機械(過給機)、
21 タンク、21a ヒータ、21b ポンプ、23 給油ユニット、
23a 給油部、23b 移動機構、23c 3方弁、23d 操作部、
23e 可動部、25 給油経路、27a 第1の油戻り経路、
27b 第2の油戻り経路、29 油圧利用シール、29a 油流出口、
29b 油流出口形成面、29c 内側先端、29d 外側部、
29e 拡大部、31 油通過領域、32 支持体、33 油流入口形成面、
35 ボルト、37 加速度ピックアップ、39 回転角検出器、41 演算器

3 Oil inlet, 5 Bearing, 7 Oil outlet, 9 Turbine blade,
10 Lubricating oil supply device, 11 compressor blade, 13 rotating shaft,
15 turbine housing, 17 bearing housing, 20 rotating machine (supercharger),
21 tank, 21a heater, 21b pump, 23 oil supply unit,
23a Oil supply part, 23b Movement mechanism, 23c 3 way valve, 23d Operation part,
23e movable part, 25 oil supply path, 27a first oil return path,
27b Second oil return path, 29 oil pressure utilization seal, 29a oil outlet,
29b oil outlet forming surface, 29c inner tip, 29d outer part,
29e enlarged portion, 31 oil passage area, 32 support, 33 oil inlet forming surface,
35 volts, 37 acceleration pickup, 39 rotation angle detector, 41 calculator

Claims (5)

回転機械の軸受に潤滑油を供給する潤滑油供給装置であって、
前記回転機械には、潤滑油が供給される油流入口と、前記軸受に供給された潤滑油が排出される排油口とが設けられており、
潤滑油が蓄積されるタンクと、
前記油流入口に近接して配置され、タンクからの潤滑油を前記油流入口に供給する給油ユニットと、
前記タンクから前記給油ユニットへ潤滑油を流す給油経路と、
前記排油口からタンクへ潤滑油を流す第1の油戻り経路と、
回転機械を回避するように前記給油ユニットからタンクへ潤滑油を流す第2の油戻り経路と、を備え、
前記給油ユニットは、タンクからの潤滑油を前記油流入口へ流す油供給状態と、タンクからの潤滑油を、前記油流入口に供給せずに第2の油戻り経路へ流すバイパス状態とに切換可能であり、
前記給油ユニットが前記バイパス状態にある場合、潤滑油が、タンク、給油経路、給油ユニット、第2の油戻り経路の順で循環するようになっている、ことを特徴とする潤滑油供給装置。
A lubricating oil supply device that supplies lubricating oil to a bearing of a rotating machine,
The rotating machine is provided with an oil inlet to which lubricating oil is supplied and an oil outlet from which the lubricating oil supplied to the bearing is discharged,
A tank in which lubricant is accumulated;
An oil supply unit disposed in proximity to the oil inlet and supplying lubricating oil from a tank to the oil inlet;
An oil supply path for flowing lubricating oil from the tank to the oil supply unit;
A first oil return path for flowing lubricating oil from the oil outlet to the tank;
A second oil return path for flowing lubricating oil from the oil supply unit to the tank so as to avoid the rotating machine,
The oil supply unit is in an oil supply state in which lubricating oil from a tank flows to the oil inlet, and in a bypass state in which lubricating oil from the tank flows to the second oil return path without being supplied to the oil inlet. Switchable,
When the oil supply unit is in the bypass state, the lubricant is circulated in the order of a tank, an oil supply path, an oil supply unit, and a second oil return path.
前記給油ユニットは、
油流入口に接続されタンクからの潤滑油を油流入口へ供給する給油部と、
前記給油部を、油流入口に接続する位置と、油流入口から離間する位置との間で移動させる移動機構と、を有する、ことを特徴とする請求項1に記載の潤滑油供給装置。
The refueling unit is
An oil supply unit connected to the oil inlet and supplying lubricating oil from the tank to the oil inlet;
The lubricating oil supply apparatus according to claim 1, further comprising: a moving mechanism that moves the oil supply unit between a position connected to the oil inlet and a position separated from the oil inlet.
前記給油ユニットは、3方弁を有し、該3方弁により、前記油供給状態と前記バイパス状態との間で切り換えられ、
3方弁は、前記給油部と共に、前記移動機構により移動させられる可動部に設置されている、ことを特徴とする請求項2に記載の潤滑油供給装置。
The oil supply unit has a three-way valve, and is switched between the oil supply state and the bypass state by the three-way valve,
The lubricating oil supply apparatus according to claim 2, wherein the three-way valve is installed in a movable part that is moved by the moving mechanism together with the oil supply part.
前記給油ユニットが前記バイパス状態にある時に、循環している潤滑油を加熱する加熱装置を備える、ことを特徴とする請求項1、2または3に記載の潤滑油供給装置。   4. The lubricating oil supply device according to claim 1, further comprising a heating device that heats the circulating lubricating oil when the oil supply unit is in the bypass state. 5. 給油ユニットの給油部には、油流出口形成面と油圧利用シールが設けられ、該油流出口形成面には、タンクからの潤滑油が流れ出る油流出口が形成され、油圧利用シールは、前記油流入口が形成された油流入口形成面と前記油流出口形成面との間に位置し、
この油圧利用シールは、油流出口から油流入口までの流体通過領域を囲むように、前記油流出口形成面に取り付けられ、
さらに、前記油圧利用シールは、前記油流入口形成面に接して前記油流入口を囲む内側先端と、油流入口中心から油流入口外周縁へ向かう方向に前記内側先端から離れて位置し前記流体通過領域を囲む外側部と、前記内側先端から前記外側部まで延び流体通過領域を囲む拡大部と、を有し、
前記流体通過領域内の油圧により前記拡大部が油流入口形成面に押し付けられることで、外部に対する流体通過領域の密閉が維持される、ことを特徴とする請求項1〜4のいずれか一項に記載の潤滑油供給装置。

The oil supply portion of the oil supply unit is provided with an oil outlet forming surface and a hydraulic pressure use seal, and the oil outlet forming surface is formed with an oil outlet from which the lubricating oil flows from the tank. Located between the oil inlet forming surface on which the oil inlet is formed and the oil outlet forming surface,
This hydraulic utilization seal is attached to the oil outlet forming surface so as to surround a fluid passage region from the oil outlet to the oil inlet,
Furthermore, the hydraulic pressure utilization seal is located at an inner tip that is in contact with the oil inlet forming surface and surrounds the oil inlet, and away from the inner tip in a direction from the center of the oil inlet to the outer peripheral edge of the oil inlet. An outer portion surrounding the passage region, and an enlarged portion extending from the inner tip to the outer portion and surrounding the fluid passage region,
The sealing of the fluid passage region with respect to the outside is maintained by pressing the enlarged portion against the oil inlet forming surface by the hydraulic pressure in the fluid passage region. The lubricating oil supply device described in 1.

JP2009205768A 2009-09-07 2009-09-07 Lubricating oil supply device Active JP5556993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205768A JP5556993B2 (en) 2009-09-07 2009-09-07 Lubricating oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205768A JP5556993B2 (en) 2009-09-07 2009-09-07 Lubricating oil supply device

Publications (2)

Publication Number Publication Date
JP2011058511A true JP2011058511A (en) 2011-03-24
JP5556993B2 JP5556993B2 (en) 2014-07-23

Family

ID=43946395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205768A Active JP5556993B2 (en) 2009-09-07 2009-09-07 Lubricating oil supply device

Country Status (1)

Country Link
JP (1) JP5556993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287395A (en) * 2011-08-23 2011-12-21 安徽淮化股份有限公司 Lubricating oil injecting and pumping device for blower

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217648B2 (en) * 1982-02-26 1987-04-18 Tsucha Seisakusho Kk
JPH01200002A (en) * 1988-02-02 1989-08-11 Honda Motor Co Ltd Balance confirming device for turborotating machine
JPH07269304A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Lubricating device for rotary machine having sliding bearing
JPH07112833B2 (en) * 1988-03-22 1995-12-06 石川島播磨重工業株式会社 Lubricant supply device for counter-rotating propeller
JP2000343377A (en) * 1999-05-31 2000-12-12 Niigata Eng Co Ltd Lubricating device for machine tool
JP2002039904A (en) * 2000-07-26 2002-02-06 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for correcting high-speed balance of supercharger
JP2002310390A (en) * 2001-04-10 2002-10-23 Toyota Motor Corp Oil temperature control method and device
JP2010060533A (en) * 2008-09-08 2010-03-18 Ihi Corp Method and facilities for imbalance measurement of rotary machine
JP2010071665A (en) * 2008-09-16 2010-04-02 Ihi Corp Fluid-pressure utilizing seal and rotating machine being object of vibration measurement using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217648B2 (en) * 1982-02-26 1987-04-18 Tsucha Seisakusho Kk
JPH01200002A (en) * 1988-02-02 1989-08-11 Honda Motor Co Ltd Balance confirming device for turborotating machine
JPH07112833B2 (en) * 1988-03-22 1995-12-06 石川島播磨重工業株式会社 Lubricant supply device for counter-rotating propeller
JPH07269304A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Lubricating device for rotary machine having sliding bearing
JP2000343377A (en) * 1999-05-31 2000-12-12 Niigata Eng Co Ltd Lubricating device for machine tool
JP2002039904A (en) * 2000-07-26 2002-02-06 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for correcting high-speed balance of supercharger
JP2002310390A (en) * 2001-04-10 2002-10-23 Toyota Motor Corp Oil temperature control method and device
JP2010060533A (en) * 2008-09-08 2010-03-18 Ihi Corp Method and facilities for imbalance measurement of rotary machine
JP2010071665A (en) * 2008-09-16 2010-04-02 Ihi Corp Fluid-pressure utilizing seal and rotating machine being object of vibration measurement using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287395A (en) * 2011-08-23 2011-12-21 安徽淮化股份有限公司 Lubricating oil injecting and pumping device for blower

Also Published As

Publication number Publication date
JP5556993B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
EP1632979B1 (en) Rotating anode X-Ray tube and X-Ray generator
CN105143634A (en) Method for checking the sealing tightness of a combustion engine having an exhaust gas turbocharger, and exhaust gas turbocharger
CN110332330A (en) Valve gear
EP2602487B1 (en) Vane pump
JP2020128711A (en) Cooling water control valve device
CN109470480A (en) The performance testing device of marine turbosupercharger floating thrust bearing
JP4946983B2 (en) Turbocharger
JP5556993B2 (en) Lubricating oil supply device
JP2000274378A (en) Operating condition diagnostic device for hydraulic rotating machine
CN107063668A (en) A kind of dry gas seals experimental system suitable for multi-state
CN107795477B (en) A kind of equivalent test experimental bed of dynamic gap leakage of the axial direction of oil-free turbo-compressor
KR102078830B1 (en) A under-water pump with modular leak chamber
CN101622456A (en) Centrifugal pump comprising a spiral housing
CN204405304U (en) Spin-on oil filter performance testing device
JP2007077804A (en) Hydraulic pump diagnostic device and hydraulic pump diagnostic method
CN208431206U (en) The air inlet blade opening of centrifugal compressor accurately controls and feedback device
JP2014126180A (en) Ball bearing for flow control valve, and exhaust gas recirculation control valve device incorporating the same
KR101899045B1 (en) Apparatus of testing hub seal and method of testing hub seal using the same
CN106662109B (en) Vertical shaft pump
JP5526513B2 (en) Fluid pressure seal and rotating machine subject to vibration measurement using it
EP2276912B1 (en) Rotary machine
KR100845613B1 (en) Device for vane operation test of variable-vane pump
CN113029444A (en) Building heating and ventilation pipeline&#39;s leakproofness pressure test device
JP4415890B2 (en) Measuring method and measuring device for cylinder bore
JP2010285882A (en) Submerged bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R151 Written notification of patent or utility model registration

Ref document number: 5556993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250