JP2011057828A - Novel photosensitizer and photoelectromotive force element - Google Patents

Novel photosensitizer and photoelectromotive force element Download PDF

Info

Publication number
JP2011057828A
JP2011057828A JP2009208398A JP2009208398A JP2011057828A JP 2011057828 A JP2011057828 A JP 2011057828A JP 2009208398 A JP2009208398 A JP 2009208398A JP 2009208398 A JP2009208398 A JP 2009208398A JP 2011057828 A JP2011057828 A JP 2011057828A
Authority
JP
Japan
Prior art keywords
group
atom
salt
nitrogen
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009208398A
Other languages
Japanese (ja)
Other versions
JP5424246B2 (en
Inventor
Koji Segawa
浩司 瀬川
Junichi Fujisawa
潤一 藤沢
Jotaro Nakazaki
城太郎 中崎
Satoshi Uchida
聡 内田
Takumi Kinoshita
卓巳 木下
Takaya Kubo
貴哉 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Eneos Corp
Original Assignee
University of Tokyo NUC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, JX Nippon Oil and Energy Corp filed Critical University of Tokyo NUC
Priority to JP2009208398A priority Critical patent/JP5424246B2/en
Priority to PCT/JP2010/064292 priority patent/WO2011030665A1/en
Publication of JP2011057828A publication Critical patent/JP2011057828A/en
Application granted granted Critical
Publication of JP5424246B2 publication Critical patent/JP5424246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel photosensitizer which absorbs a broad region of ray from visible ray to infrared ray, and has a sufficient photoelectric conversion performance. <P>SOLUTION: The photosensitizer comprises a metal complex which has a structure represented by formula (I), wherein the symbols are each specifically defined. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規光増感剤に関し、特に色素増感型太陽電池に好適に用いられる新規光増感剤に関する。また、本発明は、上記新規光増感剤を用いた光起電力素子に関する。   The present invention relates to a novel photosensitizer, and more particularly to a novel photosensitizer that is suitably used for a dye-sensitized solar cell. The present invention also relates to a photovoltaic device using the novel photosensitizer.

1991年にグレッツェルらが発表した色素増感型太陽電池素子は、ルテニウム錯体によって分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池であり、シリコン太陽電池並みの性能が得られることが報告されている(非特許文献1参照)。この方法は、チタニア等の安価な酸化物半導体を高純度に精製することなく用いることができるため、安価な色素増感型太陽電池素子を提供でき、しかも色素の吸収がブロードであるため、可視光線のほぼ全波長領域の光を電気に変換できるという利点があり、注目を集めている。   The dye-sensitized solar cell element announced by Gretzell et al. In 1991 is a wet solar cell using a titanium oxide porous thin film spectrally sensitized by a ruthenium complex as a working electrode, and can obtain performance equivalent to that of a silicon solar cell. Has been reported (see Non-Patent Document 1). Since this method can use an inexpensive oxide semiconductor such as titania without purifying it with high purity, it can provide an inexpensive dye-sensitized solar cell element, and since the absorption of the dye is broad, it is visible. It has the advantage of being able to convert light in almost all wavelength regions of light into electricity, and has attracted attention.

しかしながら、公知のルテニウム錯体色素は、可視光は吸収するものの700nmより長波長の赤外光はほとんど吸収しないため、赤外域での光電変換能は低い。したがって、更に変換効率を上げるためには可視光のみならず赤外域にも吸収を有する色素の開発が望まれていた。   However, the known ruthenium complex dye absorbs visible light but hardly absorbs infrared light having a wavelength longer than 700 nm, and thus has a low photoelectric conversion ability in the infrared region. Therefore, in order to further increase the conversion efficiency, development of a dye having absorption not only in the visible light but also in the infrared region has been desired.

一方、ルテニウム錯体色素の一種であるブラックダイは、920nmまで光を吸収することができる。また、下記特許文献1では、可視光から赤外光までの広い範囲で光を吸収し得る光増感剤について提案されている。   On the other hand, a black die which is a kind of ruthenium complex dye can absorb light up to 920 nm. Moreover, in the following patent document 1, a photosensitizer capable of absorbing light in a wide range from visible light to infrared light is proposed.

特開2009−64680号公報JP 2009-64680 A

オレガン(B. O’Regan)、グレツェル(M.Graetzel),「ネイチャー(Nature)」,(英国),1991年,353巻,p.737B. O'Regan, M. Graetzel, "Nature", (UK), 1991, 353, p. 737

しなしながら、上述したブラックダイや、上記特許文献1に記載された光増感剤であっても、赤外域での光の吸収量や光電変換特性は必ずしも十分ではなく、これらの特性について更なる改善が求められている。   However, even with the above-described black die and the photosensitizer described in Patent Document 1, the amount of light absorption and photoelectric conversion characteristics in the infrared region are not always sufficient. There is a need for improvement.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、可視光から赤外光までの広い範囲の光を吸収し、且つ、十分な光電変換特性を有する新規光増感剤、及び、それを用いた光起電力素子を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, absorbs a wide range of light from visible light to infrared light, and has a novel photosensitizer having sufficient photoelectric conversion characteristics, And it aims at providing a photovoltaic device using the same.

上記目的を達成するために、本発明は、下記一般式(I)で表される構造を含む金属錯体からなる光増感剤を提供する。

Figure 2011057828


[式(I)中、Rは水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示し、R、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を置換基として有するアリール基を示し、Rは水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を置換基として有するアリール基、或いは、Mに配位する窒素原子を含む下記一般式(I−a)で表されるイミノ基又はMに配位する窒素原子を含む下記一般式(I−b)で表されるピリジル基を示し、Xはそれぞれ独立にハロゲン原子、ヒドロキシ基、シアノ基、メチル基、水素原子、チオシアネート基、ヒドラジド基、アジド基、イソシアニド基、シアネート基、イソチオシアネート基又はニトロ基を示し、Lは下記一般式(I−c)又は(I−d)で表される2座配位子、或いは、下記一般式(I−e)で表される3座配位子を示し、Zは炭素原子、窒素原子、硫黄原子又はリン原子を示し、Mは鉄原子、ルテニウム原子、オスミウム原子、コバルト原子、ロジウム原子、イリジウム原子又はレニウム原子を示し、pは0〜2の整数を示し、qは1〜4の整数を示し、rは0又は1を示す。]
Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


[式(I−a)、(I−b)、(I−c)、(I−d)及び(I−e)中、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20及びR21はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示す。] In order to achieve the above object, the present invention provides a photosensitizer comprising a metal complex containing a structure represented by the following general formula (I).
Figure 2011057828


[In the formula (I), R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkylamino group, a hydroxyl group, an alkoxy group, an acyl group, an ester group, a cyano group, a nitro group, an amino group, an alkoxyalkyl group, an aminoalkyl group. A group, a perfluoroalkyl group, an aryl group or a heterocyclic group, or a carboxyl group, a sulfonic acid group or a phosphoric acid group, or a metal salt, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt thereof; R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group, nitro group, amino group, alkoxyalkyl group, amino group Alkyl group, perfluoroalkyl group, aryl group or heterocyclic group, carboxyl group, sulfo group Acid group or phosphate group or metal salt thereof, quaternary ammonium salt or nitrogen-containing heterocyclic salt, or carboxyl group, sulfonic acid group or phosphoric acid group or metal salt thereof, quaternary ammonium salt or nitrogen-containing complex R 6 represents an aryl group having a ring salt as a substituent, and R 6 represents a hydrogen atom, a halogen atom, an alkyl group, an alkylamino group, a hydroxyl group, an alkoxy group, an acyl group, an ester group, a cyano group, a nitro group, an amino group, an alkoxy group. An alkyl group, an aminoalkyl group, a perfluoroalkyl group, an aryl group or a heterocyclic group, or a carboxyl group, a sulfonic acid group or a phosphoric acid group or a metal salt thereof, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt, or Carboxyl group, sulfonic acid group or phosphoric acid group or their metal salts, quaternary ammonia An aryl group having a nium salt or a nitrogen-containing heterocyclic salt as a substituent, an imino group represented by the following general formula (Ia) containing a nitrogen atom coordinated to M, or a nitrogen atom coordinated to M Including a pyridyl group represented by the following general formula (Ib), wherein X is independently a halogen atom, a hydroxy group, a cyano group, a methyl group, a hydrogen atom, a thiocyanate group, a hydrazide group, an azide group, an isocyanide group, A cyanate group, an isothiocyanate group or a nitro group is shown, and L is a bidentate ligand represented by the following general formula (Ic) or (Id) or represented by the following general formula (Ie). Z represents a carbon atom, nitrogen atom, sulfur atom or phosphorus atom, M represents an iron atom, ruthenium atom, osmium atom, cobalt atom, rhodium atom, iridium atom or rhenium Represents an atomic, p represents an integer of 0 to 2, q represents an integer of 1 to 4, r is 0 or 1. ]
Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


[Formula (I-a), (I -b), (I-c), (I-d) and in (I-e), R 11 , R 12, R 13, R 14, R 15, R 16 , R 17 , R 18 , R 19 , R 20 and R 21 are each independently a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group, nitro group , Amino group, alkoxyalkyl group, aminoalkyl group, perfluoroalkyl group, aryl group or heterocyclic group, or carboxyl group, sulfonic acid group or phosphoric acid group or metal salt thereof, quaternary ammonium salt or nitrogen-containing complex A ring salt is shown. ]

上記一般式(I)で表される構造を含む金属錯体からなる光増感剤によれば、可視光から赤外光までの広い範囲の光を十分に吸収することができ、且つ、十分な光電変換特性を得ることができる。   According to the photosensitizer comprising the metal complex including the structure represented by the general formula (I), it is possible to sufficiently absorb a wide range of light from visible light to infrared light, and sufficient Photoelectric conversion characteristics can be obtained.

本発明はまた、上記本発明の光増感剤を含有する金属酸化物半導体層を備える、光起電力素子を提供する。   The present invention also provides a photovoltaic device comprising a metal oxide semiconductor layer containing the photosensitizer of the present invention.

本発明によれば、可視光から赤外光までの広い範囲の光を吸収し、且つ、十分な光電変換特性を有する新規光増感剤、及び、それを用いた光起電力素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel photosensitizer which absorbs the light of a wide range from visible light to infrared light, and has sufficient photoelectric conversion characteristics, and a photovoltaic device using the same are provided. be able to.

本発明の光起電力素子の好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the photovoltaic device of this invention. 実施例で作製した錯体色素(ttt−Iエステル体)の2D−NMR分析結果を示す図である。It is a figure which shows the 2D-NMR analysis result of the complex pigment | dye (ttt-I ester body) produced in the Example. 実施例で作製した錯体色素(tcc−Iエステル体)の2D−NMR分析結果を示す図である。It is a figure which shows the 2D-NMR analysis result of the complex pigment | dye (tcc-I ester body) produced in the Example. 実施例で作製した錯体色素(cct−Iエステル体)の2D−NMR分析結果を示す図である。It is a figure which shows the 2D-NMR analysis result of the complex pigment | dye (cct-I ester body) produced in the Example. 実施例1〜4及び比較例1の光増感剤の分光吸収スペクトルを示す図である。It is a figure which shows the spectral absorption spectrum of the photosensitizer of Examples 1-4 and the comparative example 1. 実施例1〜4の光増感剤を用いた光起電力セルにおける入射フォトン〜電流変換効率(IPCE)を示す図である。It is a figure which shows the incident photon-current conversion efficiency (IPCE) in the photovoltaic cell using the photosensitizer of Examples 1-4.

以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本発明の光増感剤は、下記一般式(I)で表される構造を含む金属錯体(錯体色素)からなるものである。

Figure 2011057828

The photosensitizer of the present invention comprises a metal complex (complex dye) containing a structure represented by the following general formula (I).
Figure 2011057828

一般式(I)中、Rは水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示し、水素原子、カルボキシル基、アルキル基、アルキルアミノ基、アルコキシ基又はアルコキシアルキル基であることが好ましく、水素原子又はカルボキシル基であることがより好ましい。 In general formula (I), R 1 is a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group, nitro group, amino group, alkoxyalkyl group, aminoalkyl. Group, perfluoroalkyl group, aryl group or heterocyclic group, or carboxyl group, sulfonic acid group or phosphoric acid group, or a metal salt, quaternary ammonium salt or nitrogen-containing heterocyclic salt thereof, hydrogen atom, carboxyl group , An alkyl group, an alkylamino group, an alkoxy group or an alkoxyalkyl group, and more preferably a hydrogen atom or a carboxyl group.

一般式(I)中、R、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を置換基として有するアリール基を示す。このうち、Rは、アリール基、カルボキシル基を置換基として有するアリール基、又は、複素環基であることが好ましく、アリール基、又は、カルボキシル基を置換基として有するアリール基であることがより好ましい。また、R、R及びRはそれぞれ独立に、水素原子、カルボキシル基、アルキル基、アルキルアミノ基、アルコキシ基又はアルコキシアルキル基であることが好ましく、水素原子又はカルボキシル基であることがより好ましい。 In general formula (I), R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group. Nitro group, amino group, alkoxyalkyl group, aminoalkyl group, perfluoroalkyl group, aryl group or heterocyclic group, or carboxyl group, sulfonic acid group or phosphoric acid group or metal salt thereof, quaternary ammonium salt or A nitrogen-containing heterocyclic salt, or an aryl group having a carboxyl group, a sulfonic acid group or a phosphoric acid group or a metal salt, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt as a substituent. Among these, R 2 is preferably an aryl group, an aryl group having a carboxyl group as a substituent, or a heterocyclic group, more preferably an aryl group or an aryl group having a carboxyl group as a substituent. preferable. R 3 , R 4 and R 5 are each independently preferably a hydrogen atom, a carboxyl group, an alkyl group, an alkylamino group, an alkoxy group or an alkoxyalkyl group, more preferably a hydrogen atom or a carboxyl group. preferable.

一般式(I)中、Rは水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を置換基として有するアリール基、或いは、Mに配位する窒素原子を含む下記一般式(I−a)で表されるイミノ基又はMに配位する窒素原子を含む下記一般式(I−b)で表されるピリジル基を示し、Mに配位する窒素原子を含む下記一般式(I−a)で表されるイミノ基であることが好ましい。 In general formula (I), R 6 represents a hydrogen atom, a halogen atom, an alkyl group, an alkylamino group, a hydroxyl group, an alkoxy group, an acyl group, an ester group, a cyano group, a nitro group, an amino group, an alkoxyalkyl group, an aminoalkyl. Group, perfluoroalkyl group, aryl group or heterocyclic group, carboxyl group, sulfonic acid group or phosphoric acid group, or metal salts thereof, quaternary ammonium salt or nitrogen-containing heterocyclic salt, or carboxyl group, sulfonic acid An aryl group having a group or a phosphate group or a metal salt thereof, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt as a substituent, or the following general formula (Ia) containing a nitrogen atom coordinated to M Or a pyridyl group represented by the following general formula (Ib) containing a nitrogen atom coordinated to M, and coordinated to M It is preferably an imino group represented by the following general formula (Ia) containing a nitrogen atom.

Figure 2011057828
Figure 2011057828


Figure 2011057828
Figure 2011057828

なお、一般式(I)において、R、R、R、R、R及びRはそれぞれ独立した置換基であり、これらの置換基間で結合を持たない。 In the general formula (I), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independent substituents and do not have a bond between these substituents.

一般式(I)中、Xはそれぞれ独立にハロゲン原子、ヒドロキシ基、シアノ基、メチル基、水素原子、チオシアネート基、ヒドラジド基、アジド基、イソシアニド基、シアネート基、イソチオシアネート基又はニトロ基を示し、ハロゲン原子、チオシアネート基、ヒドロキシ基又はシアノ基であることが好ましく、ハロゲン原子又はチオシアネート基であることがより好ましい。   In general formula (I), each X independently represents a halogen atom, hydroxy group, cyano group, methyl group, hydrogen atom, thiocyanate group, hydrazide group, azide group, isocyanide group, cyanate group, isothiocyanate group or nitro group. , A halogen atom, a thiocyanate group, a hydroxy group or a cyano group, more preferably a halogen atom or a thiocyanate group.

一般式(I)中、Lは下記一般式(I−c)又は(I−d)で表される2座配位子、或いは、下記一般式(I−e)で表される3座配位子を示し、下記一般式(I−c)又は(I−d)で表される2座配位子であることが好ましい。   In general formula (I), L is a bidentate ligand represented by the following general formula (Ic) or (Id), or a tridentate represented by the following general formula (Ie) A bidentate ligand, which represents a ligand and is represented by the following general formula (Ic) or (Id), is preferable.

Figure 2011057828
Figure 2011057828


Figure 2011057828
Figure 2011057828


Figure 2011057828
Figure 2011057828

一般式(I)中、Zは炭素原子、窒素原子、硫黄原子又はリン原子を示し、炭素原子又は窒素原子であることが好ましく、炭素原子であることがより好ましい。   In general formula (I), Z represents a carbon atom, a nitrogen atom, a sulfur atom or a phosphorus atom, preferably a carbon atom or a nitrogen atom, and more preferably a carbon atom.

一般式(I)中、Mは鉄原子、ルテニウム原子、オスミウム原子、コバルト原子、ロジウム原子、イリジウム原子又はレニウム原子を示し、鉄原子、ルテニウム原子又はオスミウム原子であることが好ましく、ルテニウム原子であることがより好ましい。   In the general formula (I), M represents an iron atom, ruthenium atom, osmium atom, cobalt atom, rhodium atom, iridium atom or rhenium atom, preferably an iron atom, ruthenium atom or osmium atom, and is a ruthenium atom. It is more preferable.

一般式(I)中、pは0〜2の整数を示し、qは1〜4の整数を示し、rは0又は1を示す。このうち、pは、Zがリン原子である場合は2であり、Zが硫黄原子又は炭素原子である場合は1であり、Zが窒素原子である場合は0である。また、qは、Mに配位する窒素の数に応じて変動する。更に、rは、qの値やMに配位する窒素の数に応じて変動し、例えば、qが3であり且つRが上記一般式(I−a)又は(I−b)で表される基である場合に0を取り得る。なお、本発明の効果がより十分に得られることから、pは1であり、qは2であり、rは1であることが好ましい。 In general formula (I), p represents an integer of 0 to 2, q represents an integer of 1 to 4, and r represents 0 or 1. Among these, p is 2 when Z is a phosphorus atom, 1 when Z is a sulfur atom or a carbon atom, and 0 when Z is a nitrogen atom. Further, q varies depending on the number of nitrogen coordinated to M. Further, r varies depending on the value of q and the number of nitrogens coordinated to M. For example, q is 3 and R 6 is represented by the general formula (Ia) or (Ib). 0 can be taken when In addition, since the effect of this invention is acquired more fully, it is preferable that p is 1, q is 2, and r is 1.

また、上記一般式(I−a)、(I−b)、(I−c)及び(I−d)中、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20及びR21はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示す。このうち、R11は、アリール基又は複素環基であることが好ましく、アリール基であることがより好ましい。また、R12〜R21は、水素原子、カルボキシル基、アルキル基、アルキルアミノ基、アルコキシ基又はアルコキシアルキル基であることが好ましく、水素原子又はカルボキシル基であることがより好ましい。 In the general formulas (Ia), (Ib), (Ic), and (Id), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 are used. , R 18 , R 19 , R 20 and R 21 are each independently a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group, nitro group, amino group An alkoxyalkyl group, an aminoalkyl group, a perfluoroalkyl group, an aryl group or a heterocyclic group, or a carboxyl group, a sulfonic acid group or a phosphoric acid group, or a metal salt, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt thereof. Show. Among these, R 11 is preferably an aryl group or a heterocyclic group, and more preferably an aryl group. R 12 to R 21 are preferably a hydrogen atom, a carboxyl group, an alkyl group, an alkylamino group, an alkoxy group or an alkoxyalkyl group, and more preferably a hydrogen atom or a carboxyl group.

上記一般式(I)で表される構造は、本発明の効果がより十分に得られることから、下記一般式(II)で表される構造であることが好ましく、下記一般式(III)で表される構造であることがより好ましく、下記一般式(IV)で表される構造であることが特に好ましい。   The structure represented by the general formula (I) is preferably a structure represented by the following general formula (II), since the effects of the present invention can be obtained more sufficiently. The structure represented is more preferable, and the structure represented by the following general formula (IV) is particularly preferable.

Figure 2011057828
Figure 2011057828

Figure 2011057828
Figure 2011057828

Figure 2011057828
Figure 2011057828

上記一般式(II)〜(IV)中、R、R、R、R、R、R、R14、R15、R16、X、L、Z及びMはそれぞれ上述したものと同義であり、R22は水素原子、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示し、R23はR〜Rと同義である。但し、上記一般式(II)及び(III)において、Rは上記一般式(I−a)又は(I−b)で表される基以外の基であり、Zは炭素原子又は窒素原子であり、Lは上記一般式(I−c)又は(I−d)で表される2座配位子である。また、上記一般式(II)及び(III)において、R、R、R、R、R及びR22は水素原子又はカルボキシル基であり且つそれらのうちの少なくとも一つはカルボキシル基であることが好ましい。更に、上記一般式(IV)において、R、R14、R15、R16、R22及びR23は水素原子又はカルボキシル基であり且つそれらのうちの少なくとも一つはカルボキシル基であることが好ましい。 In the general formulas (II) to (IV), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 14 , R 15 , R 16 , X, L, Z, and M are as described above. R 22 represents a hydrogen atom, a carboxyl group, a sulfonic acid group or a phosphoric acid group, or a metal salt, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt thereof, and R 23 represents R 3 to R 5 . It is synonymous. However, in the general formulas (II) and (III), R 6 is a group other than the group represented by the general formula (Ia) or (Ib), and Z is a carbon atom or a nitrogen atom. And L is a bidentate ligand represented by the above general formula (Ic) or (Id). In the general formulas (II) and (III), R 1 , R 3 , R 4 , R 5 , R 6 and R 22 are a hydrogen atom or a carboxyl group, and at least one of them is a carboxyl group It is preferable that Further, in the general formula (IV), R 1 , R 14 , R 15 , R 16 , R 22 and R 23 are a hydrogen atom or a carboxyl group, and at least one of them is a carboxyl group. preferable.

また、本発明の光増感剤は、上記一般式(I)で表される構造の対イオンを有していてもよい。対イオンとしては、ハロゲン化物イオン、PF 、BF 、ClO 、BR 、RSO 及びNBu 等が挙げられる。 Moreover, the photosensitizer of the present invention may have a counter ion having a structure represented by the general formula (I). Examples of the counter ion include halide ions, PF 6 , BF 4 , ClO 4 , BR 4 , RSO 3 and NBu 4 + .

また、上記一般式(I)で表される構造は、複数の幾何異性体を取り得るが、本発明の光増感剤はいずれの異性体からなるものでも良い。本発明の光増感剤は、一種の異性体のみからなるものであっても良く、2種以上の異性体の混合物からなるものであっても良い。   The structure represented by the general formula (I) can take a plurality of geometric isomers, but the photosensitizer of the present invention may be composed of any isomer. The photosensitizer of the present invention may be composed of only one kind of isomer or may be composed of a mixture of two or more kinds of isomers.

上記一般式(I)で表される構造を有する金属錯体からなる光増感剤として具体的には、以下のものが挙げられる。   Specific examples of the photosensitizer comprising the metal complex having the structure represented by the general formula (I) include the following.

Figure 2011057828
Figure 2011057828

Figure 2011057828
Figure 2011057828

Figure 2011057828
Figure 2011057828

次に、本発明の光増感剤の合成方法について説明する。なお、以下では、上記一般式(I)におけるMとしてルテニウムを用いた場合を例にとって説明する。本発明の光増感剤の合成方法としては、ルテニウム前駆体に、ルテニウムに配位する窒素原子を分子内に含む配位子と、Xを分子内に含む化合物とを反応させる方法が好ましく用いられる。   Next, a method for synthesizing the photosensitizer of the present invention will be described. In the following, a case where ruthenium is used as M in the general formula (I) will be described as an example. As a method for synthesizing the photosensitizer of the present invention, a method in which a ruthenium precursor is reacted with a ligand containing a nitrogen atom coordinated to ruthenium in the molecule and a compound containing X in the molecule is preferably used. It is done.

ルテニウム前駆体としては、例えば、塩化ルテニウム、ジクロロ(p−サイメン)ルテニウム二量体、ジヨード(p−サイメン)ルテニウム二量体等を用いることができる。   As the ruthenium precursor, for example, ruthenium chloride, dichloro (p-cymene) ruthenium dimer, diiodo (p-cymene) ruthenium dimer, or the like can be used.

ルテニウム前駆体に2種類の異なる配位子を反応させる場合、それらの反応は、逐次的に添加して反応を行なっても良く、また、同時に添加して反応を行なっても良い。逐次的に反応を行なう場合、添加する配位子の順序は特に限定されない。   When two kinds of different ligands are reacted with the ruthenium precursor, these reactions may be carried out by sequentially adding them, or they may be carried out by adding them simultaneously. When performing reaction sequentially, the order of the ligand to add is not specifically limited.

反応溶媒としては、一般的な有機溶媒や水等を用いることができるが、エタノール、メタノール、ブタノール等のアルコール系溶媒、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、ジメチルスルホキシド、プロピレンカーボネート、N−メチルピロリドン等の極性溶媒を用いることが好ましい。   As a reaction solvent, a general organic solvent, water, or the like can be used, but alcohol solvents such as ethanol, methanol, and butanol, amide solvents such as dimethylformamide and dimethylacetamide, dimethyl sulfoxide, propylene carbonate, N- It is preferable to use a polar solvent such as methylpyrrolidone.

反応温度は特に限定されないが、効率的に反応を進行させる観点から、加温することが好ましく、50〜250℃の温度範囲で反応を行なうことが特に好ましい。2種類の異なる配位子を逐次的に反応させる場合は、1段目の反応と2段目の反応の反応温度を変えても良い。また、加温については、オイルバス、ウォーターバス、マイクロ波加熱装置等を使用して行うことができる。   The reaction temperature is not particularly limited, but it is preferable to warm from the viewpoint of efficiently proceeding the reaction, and it is particularly preferable to perform the reaction in a temperature range of 50 to 250 ° C. When two kinds of different ligands are reacted sequentially, the reaction temperature of the first stage reaction and the second stage reaction may be changed. Further, the heating can be performed using an oil bath, a water bath, a microwave heating device, or the like.

反応時間は特に限定されないが、通常、1分〜数日であり、好ましくは5分〜1日であり、加熱装置により時間を変更することが好ましい。   Although reaction time is not specifically limited, Usually, it is 1 minute-several days, Preferably it is 5 minutes-1 day, It is preferable to change time with a heating apparatus.

Xについては、対応するアンモニウム塩や金属塩等を添加して反応を行なうことで、導入することができる。その際の反応時間や反応温度は特に限定されない。また、ルテニウム前駆体にXを導入する工程、及び、ルテニウム前駆体に配位子を反応させる工程の順序は特に限定されず、どちらの工程を先に行ってもよい。   About X, it can introduce | transduce by adding corresponding ammonium salt, a metal salt, etc., and reacting. The reaction time and reaction temperature at that time are not particularly limited. The order of the step of introducing X into the ruthenium precursor and the step of reacting the ligand with the ruthenium precursor are not particularly limited, and either step may be performed first.

次に、本発明の光起電力素子について説明する。本発明の光起電力素子は、上述した本発明の光増感剤を含有する金属酸化物半導体層を備えるものである。   Next, the photovoltaic element of the present invention will be described. The photovoltaic device of the present invention comprises a metal oxide semiconductor layer containing the above-described photosensitizer of the present invention.

図1は、本発明の光起電力素子の好適な一実施形態を示す模式断面図である。図1に示した光起電力素子においては、透明導電性基板1上に本発明の光増感剤を吸着させた半導体層(金属酸化物半導体層)3が配置され、該半導体層3と対向電極基板2との間に電解質層4が配置され、それらの周辺がシール材5で密封されている。なお、リード線は透明導電性基板1と対向電基板2の導電部分に接続され、電力を取り出すことができる。   FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the photovoltaic element of the present invention. In the photovoltaic device shown in FIG. 1, a semiconductor layer (metal oxide semiconductor layer) 3 on which a photosensitizer of the present invention is adsorbed is disposed on a transparent conductive substrate 1 and is opposed to the semiconductor layer 3. An electrolyte layer 4 is disposed between the electrode substrate 2 and the periphery thereof is sealed with a sealing material 5. Note that the lead wire is connected to the conductive portions of the transparent conductive substrate 1 and the counter electrode substrate 2 so that electric power can be taken out.

透明導電性基板1は、通常、透明基板上に透明導電層を積層させて製造される。ここで、透明基板としては特に限定されず、材質、厚さ、寸法、形状等を目的に応じて適宜選択することができる。例えば、透明基板としては、無色もしくは有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色もしくは有色の透明性を有する樹脂を用いても良い。かかる樹脂としては、具体的には、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリ酢酸セルロース、ポリメチルペンテンなどが挙げられる。なお、本発明における透明とは、10〜100%の透過率を有することであり、また、本発明における基板とは、常温において平滑な面を有するものであり、その面は平面もしくは曲面であってもよく、また応力によって変形するものであってもよい。   The transparent conductive substrate 1 is usually manufactured by laminating a transparent conductive layer on a transparent substrate. Here, it does not specifically limit as a transparent substrate, A material, thickness, a dimension, a shape, etc. can be suitably selected according to the objective. For example, as the transparent substrate, colorless or colored glass, netted glass, glass block, or the like may be used, or a colorless or colored transparent resin may be used. Specific examples of the resin include polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, and polymethylpentene. Etc. The term “transparent” in the present invention means that it has a transmittance of 10 to 100%, and the substrate in the present invention has a smooth surface at room temperature, and the surface is a flat surface or a curved surface. It may be deformed by stress.

電極の導電層を形成する透明導電層としては、本発明の目的を果たすものである限り特に限定されず、例えば、金、銀、クロム、銅、タングステンなどの金属薄膜、金属酸化物からなる導電膜などが挙げられる。金属酸化物としては、例えば、酸化錫や酸化亜鉛に、他の金属元素を微量ドープしたIndium Tin Oxide(ITO(In:Sn))、Fluorine doped Tin Oxide(FTO(SnO:F))、Aluminum doped Zinc Oxide(AZO(ZnO:Al))などが好適なものとして用いられる。 The transparent conductive layer that forms the conductive layer of the electrode is not particularly limited as long as it fulfills the object of the present invention. For example, a conductive thin film made of gold, silver, chromium, copper, tungsten, or the like, or a conductive film made of a metal oxide. Examples include membranes. Examples of the metal oxide include Indium Tin Oxide (ITO (In 2 O 3 : Sn)), Fluorine doped Tin Oxide (FTO (SnO 2 : F)) in which tin oxide or zinc oxide is slightly doped with another metal element. ), Aluminum doped Zinc Oxide (AZO (ZnO: Al)) and the like are preferably used.

透明電極層の膜厚は、通常10nm〜10μmであり、好ましくは100nm〜2μmである。また、透明電極層の表面抵抗(抵抗率)は、光起電力素子の用途により適宜選択されるが、通常0.5〜500Ω/sqであり、好ましくは2〜50Ω/sqである。   The film thickness of the transparent electrode layer is usually 10 nm to 10 μm, preferably 100 nm to 2 μm. The surface resistance (resistivity) of the transparent electrode layer is appropriately selected depending on the use of the photovoltaic element, but is usually 0.5 to 500 Ω / sq, preferably 2 to 50 Ω / sq.

対向電極としては、通常、白金、カーボン電極などを用いることができる。基板の材質は特に限定されず、材質、厚さ、寸法、形状等を目的に応じて適宜選択することができる。例えば、基板としては、無色もしくは有色ガラス、網入りガラス、ガラスブロック等が用いられる他、無色もしくは有色の透明性を有する樹脂を用いても良い。かかる樹脂としては、具体的には、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリスルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリカーボネート、ポリイミド、ポリメチルメタクリレート、ポリスチレン、トリ酢酸セルロース、ポリメチルペンテンなどが挙げられる。また、金属プレートなどを基板として用いることもできる。   As the counter electrode, platinum, carbon electrodes, etc. can be usually used. The material of the substrate is not particularly limited, and the material, thickness, size, shape, and the like can be appropriately selected according to the purpose. For example, as the substrate, colorless or colored glass, netted glass, glass block, or the like may be used, or a colorless or colored transparent resin may be used. Specific examples of the resin include polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, and polymethylpentene. Etc. A metal plate or the like can also be used as the substrate.

本発明の光起電力素子において用いられる半導体層3としては、特に限定されないが、例えば、TiO、ZnO、SnO、Nbからなる層等が挙げられ、なかでもTiO、ZnOからなる層が好ましい。 As the semiconductor layer 3 used in the photovoltaic device of the present invention is not particularly limited, for example, TiO 2, ZnO, such as a layer made of SnO 2, Nb 2 O 5 and the like, from among them TiO 2, ZnO Is preferred.

半導体層3に用いられる半導体は単結晶でも多結晶でも良い。結晶系としては、アナターゼ型、ルチル型、ブルッカイト型などが主に用いられるが、好ましくはアナターゼ型である。   The semiconductor used for the semiconductor layer 3 may be single crystal or polycrystalline. As the crystal system, anatase type, rutile type, brookite type and the like are mainly used, and anatase type is preferable.

半導体層3の形成には公知の方法を用いることができる。半導体層3の形成方法としては、例えば、上記半導体のナノ粒子分散液、ゾル溶液等を、公知の方法により基板上に塗布する方法が挙げられる。この場合の塗布方法としては特に限定されず、キャスト法により薄膜状態で得る方法、スピンコート法、ディップコート法、バーコート法のほか、スクリーン印刷法を初めとした各種の印刷方法を用いることができる。   A known method can be used to form the semiconductor layer 3. Examples of the method for forming the semiconductor layer 3 include a method in which the above-described semiconductor nanoparticle dispersion, sol solution, or the like is applied onto a substrate by a known method. The coating method in this case is not particularly limited, and various printing methods such as a screen printing method can be used in addition to a method obtained in a thin film state by a casting method, a spin coating method, a dip coating method, a bar coating method. it can.

半導体層3の厚みは特に限定されないが、通常0.5μm〜50μmであり、好ましくは1μm〜20μmである。   The thickness of the semiconductor layer 3 is not particularly limited, but is usually 0.5 μm to 50 μm, preferably 1 μm to 20 μm.

本発明の光増感剤を半導体層3に吸着させる方法としては、例えば、溶媒に光増感剤を溶解させた溶液を、半導体層3上にスプレーコートやスピンコートなどにより塗布した後、乾燥する方法を用いることができる。この場合、適当な温度に基板を加熱しても良い。または、光増感剤を溶解させた溶液に半導体層3を浸漬して吸着させる方法を用いることもできる。浸漬する時間は、光増感剤が半導体層3に十分に吸着される時間であれば特に制限されないが、好ましくは10分〜30時間であり、より好ましくは1〜20時間である。また、浸漬する際に必要に応じて溶媒や基板を加熱しても良い。光増感剤を溶解させた溶液を調製する場合、光増感剤の濃度としては、0.01〜100mmol/L程度であることが好ましく、0.1〜50mmol/L程度であることがより好ましい。また、溶媒としては、アルコール類、エーテル類、ニトリル類、エステル類、炭化水素など用いることができる。   As a method for adsorbing the photosensitizer of the present invention to the semiconductor layer 3, for example, a solution obtained by dissolving a photosensitizer in a solvent is applied on the semiconductor layer 3 by spray coating or spin coating, and then dried. Can be used. In this case, the substrate may be heated to an appropriate temperature. Alternatively, a method in which the semiconductor layer 3 is immersed and adsorbed in a solution in which a photosensitizer is dissolved can be used. The immersion time is not particularly limited as long as the photosensitizer is sufficiently adsorbed to the semiconductor layer 3, but is preferably 10 minutes to 30 hours, and more preferably 1 to 20 hours. Moreover, you may heat a solvent and a board | substrate as needed, when immersing. When preparing a solution in which the photosensitizer is dissolved, the concentration of the photosensitizer is preferably about 0.01 to 100 mmol / L, more preferably about 0.1 to 50 mmol / L. preferable. As the solvent, alcohols, ethers, nitriles, esters, hydrocarbons and the like can be used.

また、光増感剤間の凝集等の相互作用を低減するために、界面活性剤としての性質を持つ無色の化合物を添加し、半導体層3に共吸着させてもよい。このような無色の化合物の例としては、カルボキシル基やスルホ基を有するコール酸、デオキシコール酸、ケノデオキシコール酸、タウロデオキシコール酸等のステロイド化合物やスルホン酸塩類等が挙げられる。   Further, in order to reduce the interaction such as aggregation between the photosensitizers, a colorless compound having properties as a surfactant may be added and co-adsorbed to the semiconductor layer 3. Examples of such colorless compounds include steroid compounds such as cholic acid having a carboxyl group or sulfo group, deoxycholic acid, chenodeoxycholic acid, taurodeoxycholic acid, sulfonates, and the like.

上述した方法で半導体層3に光増感剤を吸着させた後、未吸着の光増感剤は、速やかに洗浄により除去することが好ましい。洗浄は、湿式洗浄槽中でアセトニトリル、アルコール系溶媒等を用いて行うことが好ましい。   After the photosensitizer is adsorbed on the semiconductor layer 3 by the above-described method, it is preferable that the non-adsorbed photosensitizer is quickly removed by washing. Washing is preferably performed using acetonitrile, an alcohol-based solvent or the like in a wet washing tank.

光増感剤の吸着量は、強アルカリ溶液を用いて、半導体層3から光増感剤を脱着し、アルカリ溶液の光吸収量を測定することで算出される。この吸着量は、半導体表面積に対して、1.0×10−8mol/cm〜1.0×10−6mol/cmの範囲であることが好ましい。 The adsorption amount of the photosensitizer is calculated by detaching the photosensitizer from the semiconductor layer 3 using a strong alkali solution and measuring the light absorption amount of the alkali solution. This adsorption amount is preferably in the range of 1.0 × 10 −8 mol / cm 2 to 1.0 × 10 −6 mol / cm 2 with respect to the semiconductor surface area.

光増感剤を半導体層3に吸着させた後、アミン類、4級アンモニウム塩、少なくとも1つのウレイド基を有するウレイド化合物、少なくとも1つのシリル基を有するシリル化合物、アルカリ金属塩、アルカリ土類金属塩等を用いて、半導体層3の表面を処理してもよい。好ましいアミン類の例としては、ピリジン、4−t−ブチルピリジン、ポリビニルピリジン等が挙げられる。好ましい4級アンモニウム塩の例としては、テトラブチルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド等が挙げられる。これらは有機溶媒に溶解して用いてもよく、液体の場合はそのまま用いてもよい。   After adsorbing the photosensitizer to the semiconductor layer 3, amines, quaternary ammonium salts, ureido compounds having at least one ureido group, silyl compounds having at least one silyl group, alkali metal salts, alkaline earth metals The surface of the semiconductor layer 3 may be treated with salt or the like. Examples of preferred amines include pyridine, 4-t-butylpyridine, polyvinylpyridine and the like. Examples of preferred quaternary ammonium salts include tetrabutylammonium iodide, tetrahexylammonium iodide and the like. These may be used by dissolving in an organic solvent, or may be used as they are in the case of a liquid.

電解質層4に用いられる電解質としては、特に限定されず、液体系でも固体系のいずれでもよいが、可逆な電気化学的酸化還元特性を示すものが望ましい。ここで、可逆な電気化学的酸化還元特性を示すということは、光起電力素子の作用する電位領域において、可逆的に電気化学的酸化還元反応を起こし得ることをいう。典型的には、通常、水素基準電極(NHE)に対して−1〜+2Vvs NHEの電位領域で可逆的であることが望ましい。   The electrolyte used for the electrolyte layer 4 is not particularly limited and may be either a liquid system or a solid system, but it is desirable to have a reversible electrochemical redox characteristic. Here, showing reversible electrochemical redox characteristics means that an electrochemical redox reaction can occur reversibly in the potential region where the photovoltaic element acts. Typically, it is usually desirable to be reversible in the potential region of −1 to +2 Vvs NHE with respect to the hydrogen reference electrode (NHE).

電解質のイオン伝導度は、通常、室温で1×10−7S/cm以上であり、好ましくは1×10−6S/cm以上であり、さらに好ましくは1×10−5S/cm以上であることが望ましい。 The ionic conductivity of the electrolyte is usually 1 × 10 −7 S / cm or more at room temperature, preferably 1 × 10 −6 S / cm or more, more preferably 1 × 10 −5 S / cm or more. It is desirable to be.

電解質層4の厚さは、特に制限されないが、1μm以上であることが好ましく、10μm以上であることがより好ましく、また、3mm以下であることが好ましく、1mm以下であることがより好ましい。   The thickness of the electrolyte layer 4 is not particularly limited, but is preferably 1 μm or more, more preferably 10 μm or more, and preferably 3 mm or less, more preferably 1 mm or less.

電解質としては、上記の条件を満足すれば特に制限されるものでなく、液体系および固体系、ならびに、固体系電解質に可塑剤を含有させた擬固体系など、本技術分野で公知のものを使用することができる。   The electrolyte is not particularly limited as long as the above-described conditions are satisfied, and those known in the art such as liquid systems and solid systems, and quasi-solid systems in which a solid system electrolyte contains a plasticizer may be used. Can be used.

シール材5としては、例えば、エポキシ系樹脂、アクリル系樹脂、テフロン(登録商標)系樹脂、ブチルゴムなどの光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂が用いられる。また、ガラス粉末などを含む無機系シール材を用いることもできる。   As the sealing material 5, for example, an epoxy resin, an acrylic resin, a Teflon (registered trademark) resin, a photocurable resin such as butyl rubber, a thermosetting resin, or a thermoplastic resin is used. An inorganic sealing material containing glass powder or the like can also be used.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1〜4]
(2座のキレート配位子の合成)
まず、4−アミノ安息香酸4.73gと、塩化チオニル20mlとをトルエン70mlに添加し、この混合物をアルゴン雰囲気下、110℃で6時間攪拌することにより反応させた。得られた反応物を室温に戻した後、反応物をターシャリブチルアルコール84mlに水浴中でゆっくりと滴下し、さらに110℃で1時間攪拌した。次に、反応物に飽和炭酸カリウム水溶液120mlを加え、さらにクロロホルム80mlを加えて抽出操作を3回行った。抽出された有機層を硫酸マグネシウム150mgで乾燥させ、ろ過した後、ろ液に含まれる溶媒を留去した。その後、展開溶媒をクロロホルムとしたシリカゲルカラムクロマトグラフィーにて目的物を分離し、四塩化炭素/ヘキサン混合溶媒にて再結晶させることで、アミノ安息香酸ターシャリブチルエステルを2.7g得た(下記反応式(a)参照)。
[Examples 1 to 4]
(Synthesis of bidentate chelate ligand)
First, 4.73 g of 4-aminobenzoic acid and 20 ml of thionyl chloride were added to 70 ml of toluene, and this mixture was reacted by stirring at 110 ° C. for 6 hours in an argon atmosphere. After the obtained reaction product was returned to room temperature, the reaction product was slowly added dropwise to 84 ml of tertiary butyl alcohol in a water bath and further stirred at 110 ° C. for 1 hour. Next, 120 ml of saturated aqueous potassium carbonate solution was added to the reaction product, and 80 ml of chloroform was further added, and extraction operation was performed three times. The extracted organic layer was dried over 150 mg of magnesium sulfate and filtered, and then the solvent contained in the filtrate was distilled off. Thereafter, the target product was separated by silica gel column chromatography using chloroform as a developing solvent, and recrystallized from a carbon tetrachloride / hexane mixed solvent to obtain 2.7 g of aminobutyl tert-butylaminobenzoate (below) Reaction formula (a) reference).

Figure 2011057828
Figure 2011057828

次に、アミノ安息香酸ターシャリブチルエステル2320mgと、2−ピリジンカルバルデヒド1160μlとをエタノール20mlに加え、室温で30分間攪拌した後、溶媒を留去した。その後、反応物にジクロロメタンとペンタンとを加え、再結晶させることで目的の2座配位のキレート配位子であるターシャリブチルエステル2.12gを得た(下記反応式(b)参照)。また、生成物の構造及び純度は、H−NMRにより同定した。H−NMR分析の結果を以下に示す。
1H NMR (CDCl3): δ8.76(1H, d, J = 4.4);8.60(1H, s); 8.24(1H, d, J = 7.9); 8.14(2H, d, J = 8.4); 7.89(2H, d, J = 8.4);7.87(1H, dd, J = 7.9., 7.1);7.43(1H, dd, J = 7.1, 4.9)
Next, 2320 mg of aminobenzoic acid tertiary butyl ester and 1160 μl of 2-pyridinecarbaldehyde were added to 20 ml of ethanol and stirred at room temperature for 30 minutes, and then the solvent was distilled off. Thereafter, dichloromethane and pentane were added to the reaction product and recrystallized to obtain 2.12 g of tertiary butyl ester as a target bidentate chelate ligand (see the following reaction formula (b)). The structure and purity of the product were identified by 1 H-NMR. The results of 1 H-NMR analysis are shown below.
1 H NMR (CDCl 3 ): δ 8.76 (1H, d, J = 4.4); 8.60 (1H, s); 8.24 (1H, d, J = 7.9); 8.14 (2H, d, J = 8.4); 7.89 (2H, d, J = 8.4); 7.87 (1H, dd, J = 7.9., 7.1); 7.43 (1H, dd, J = 7.1, 4.9)

Figure 2011057828
Figure 2011057828

(錯体色素の合成1)
まず、塩化ルテニウム360mgと、ヨウ化リチウム1.5gとをエタノール200mlに添加し、この混合物をアルゴン雰囲気下、90℃で30分間攪拌した。その後、この混合物に上記2座のキレート配位子1.25gを添加し、さらに90℃で30分間攪拌した。次に、得られた反応物の溶媒を留去し、展開溶媒をクロロホルム:アセトニトリル=8:2としたシリカゲルカラムクロマトグラフィーにて目的物を分離し、クロロホルム/エタノールで再沈殿させることにより、目的の錯体色素を得た。なお、錯体色素としては、異性体3種類が得られ、ttt−Iのエステル体が124mg、tcc−Iのエステル体が56mg、cct−Iのエステル体が114mg得られた(下記反応式(c)参照)。これら異性体の構造は、H−NMR及び2D−NMR(1H−1H COSY)にて同定を行った。H−NMR分析の結果を以下に示し、2D−NMR分析の結果を図2〜4に示す。図2〜4に示すように、ttt−Iのエステル体においてはaとbが近く、カップリングしており(図2)、tcc−Iのエステル体においてはaとbが互いに離れていてカップリングしておらず(図3)、cct−Iのエステル体においてはaとbが比較的近いため、弱くカップリングしている(図4)。
1H NMR (CDCl3): [ttt-Iエステル]: δ8.87(1H, s); 8.21(2H, d, J= 8.2); 8.08(2H, d, J = 8.2); 7.94(1H, d, J = 5.7); 7.90(1H, d, J = 7.5);7.68(1H, dd, J = 7.5., 7.5); 7.00(1H, dd, J = 5.7, 7.5); 1.56(9H, s)
[tcc-Iエステル]: δ9.69(1H, d, J = 5.6); 8.57(1H, s); 8.00(1H, d, J = 7.6); 7.93(1H,dd, J = 7.6, 7,6); 7.65(1H, dd, J = 5.6, 7.6); 7.58(2H, d, J = 8.2); 7.33(2H,d, J = 8.2); 1.56(9H, s)
[cct-Iエステル]: δ10.16(1H, d, J = 5.7); 8.72(1H, s); 7.81(1H, d, J = 7.7); 7.73(2H,d, J = 8.4); 7.65(1H, dd, J = 7.7, 7.7); 7.36(1H, dd, J = 7.7, 5.7); 7.04(2H,d, J = 8.4); 1.56(9H, s)
(Synthesis of complex dye 1)
First, 360 mg of ruthenium chloride and 1.5 g of lithium iodide were added to 200 ml of ethanol, and this mixture was stirred at 90 ° C. for 30 minutes in an argon atmosphere. Thereafter, 1.25 g of the bidentate chelate ligand was added to the mixture, and the mixture was further stirred at 90 ° C. for 30 minutes. Next, the solvent of the obtained reaction product was distilled off, and the target product was separated by silica gel column chromatography using chloroform: acetonitrile = 8: 2 as a developing solvent, and reprecipitated with chloroform / ethanol. The complex dye was obtained. As the complex dye, three types of isomers were obtained, 124 mg of the ttt-I ester, 56 mg of the tcc-I ester, and 114 mg of the cct-I ester (the following reaction formula (c )reference). The structures of these isomers were identified by 1 H-NMR and 2D-NMR (1H-1H COSY). The results of 1 H-NMR analysis are shown below, and the results of 2D-NMR analysis are shown in FIGS. As shown in FIGS. 2 to 4, in the ttt-I ester, a and b are close to each other and coupled (FIG. 2), and in the tcc-I ester, a and b are separated from each other. In the ester body of cct-I, a and b are relatively close to each other and are weakly coupled (FIG. 4).
1 H NMR (CDCl 3 ): [ttt-I ester]: δ 8.87 (1H, s); 8.21 (2H, d, J = 8.2); 8.08 (2H, d, J = 8.2); 7.94 (1H, d, J = 5.7); 7.90 (1H, d, J = 7.5); 7.68 (1H, dd, J = 7.5., 7.5); 7.00 (1H, dd, J = 5.7, 7.5); 1.56 (9H, s )
[tcc-I ester]: δ9.69 (1H, d, J = 5.6); 8.57 (1H, s); 8.00 (1H, d, J = 7.6); 7.93 (1H, dd, J = 7.6, 7, 6); 7.65 (1H, dd, J = 5.6, 7.6); 7.58 (2H, d, J = 8.2); 7.33 (2H, d, J = 8.2); 1.56 (9H, s)
[cct-I ester]: δ 10.16 (1H, d, J = 5.7); 8.72 (1H, s); 7.81 (1H, d, J = 7.7); 7.73 (2H, d, J = 8.4); 7.65 (1H, dd, J = 7.7, 7.7); 7.36 (1H, dd, J = 7.7, 5.7); 7.04 (2H, d, J = 8.4); 1.56 (9H, s)

Figure 2011057828
Figure 2011057828

次に、ttt−Iのエステル体10mgをクロロホルム5mlに加え、そこにトリフルオロ酢酸20mlを添加し、室温で30分間攪拌した。その後、溶媒を完全に留去し、次にジクロロメタンを加えて溶媒留去する事を5回繰り返した。得られた反応物を、メタノールを展開溶媒とするゲルパーミエーションクロマトグラフィー(Sephadex LH−20)で精製分離し、目的の錯体色素を得た(下記反応式(d)参照)。この錯体色素を、実施例1の光増感剤とした。また、得られた錯体色素について、質量分析により構造を同定した。分析結果を以下に示す。
MS(ESI-MS): m/z: 402.4(M-2H)2-, 806.4(M-H)-;MW: 807.34 calcd. for C26H24I2N4O4Ru
Next, 10 mg of the ester of ttt-I was added to 5 ml of chloroform, 20 ml of trifluoroacetic acid was added thereto, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the solvent was distilled off completely, and then dichloromethane was added and the solvent was distilled off five times. The obtained reaction product was purified and separated by gel permeation chromatography (Sephadex LH-20) using methanol as a developing solvent to obtain the target complex dye (see the following reaction formula (d)). This complex dye was used as the photosensitizer of Example 1. Further, the structure of the obtained complex dye was identified by mass spectrometry. The analysis results are shown below.
MS (ESI-MS): m / z: 402.4 (M-2H) 2- , 806.4 (MH) - ; MW: 807.34 calcd.for C 26 H 24 I 2 N 4 O 4 Ru

Figure 2011057828
Figure 2011057828

(錯体色素の合成2)
上記錯体色素の合成1で得られたttt−Iのエステル体20mgを2−メトキシエタノール20mlに加え、そこへチオシアン酸鉛(II)150mgを水1mlに加えた混合物を添加し、130℃で2時間攪拌した。その後、反応物をろ過し、得られたろ液の溶媒を留去し、そこに5mlの2−メトキシエタノールと水100mlとを加えて再沈殿させることで、ttt−NCSのエステル体を得た(下記反応式(e)参照)。他の異性体についても同様の操作を行い、tcc−NCS及びcct−NCSのエステル体を得た。これらのエステル体の構造は質量分析で確認した。分析結果を以下に示す。
MS(ESI-MS): m/z: [ttt-NCSエステル] 781.4(M)+;
[tcc-NCSエステル] 781.2(M)+;
[cct-NCSエステル] 781.4(M)+;
MW: 781.91 calcd. for C36H36N6O4RuS2
(Synthesis of complex dye 2)
20 mg of the ester of ttt-I obtained in Synthesis 1 of the complex dye was added to 20 ml of 2-methoxyethanol, and a mixture of 150 mg of lead (II) thiocyanate in 1 ml of water was added thereto. Stir for hours. Thereafter, the reaction product was filtered, the solvent of the obtained filtrate was distilled off, and 5 ml of 2-methoxyethanol and 100 ml of water were added thereto for reprecipitation to obtain an ester of ttt-NCS ( See the following reaction formula (e)). The same operation was performed on other isomers to obtain ester bodies of tcc-NCS and cct-NCS. The structure of these ester bodies was confirmed by mass spectrometry. The analysis results are shown below.
MS (ESI-MS): m / z: [ttt-NCS ester] 781.4 (M) + ;
[tcc-NCS ester] 781.2 (M) + ;
[cct-NCS ester] 781.4 (M) + ;
MW: 781.91 calcd.for C 36 H 36 N 6 O 4 RuS 2

Figure 2011057828
Figure 2011057828

次に、ttt−NCSのエステル体10mgをクロロホルム5mlに加え、そこにトリフルオロ酢酸20mlを添加し、室温で30分間攪拌した。その後、溶媒を完全に留去し、次にジクロロメタンを加えて溶媒留去する事を5回繰り返した。得られた反応物を、メタノールを展開溶媒とするゲルパーミエーションクロマトグラフィー(Sephadex LH−20)で精製分離し、目的の錯体色素を得た(下記反応式(f)参照)。この錯体色素を、実施例2の光増感剤とした。tcc−NCS及びcct−NCSのエステル体に対しても同様の操作を行い、得られた錯体色素をそれぞれ実施例3及び4の光増感剤とした。得られた錯体色素の構造は、質量分析により同定した。分析結果を以下に示す。
MS(ESI-MS): m/z: [ttt-NCS] 334.4(M-2H)2-, 668.4(M-H)-;
[tcc-NCS] 334.2(M-2H)2-, 668.2(M-H)-;
[cct-NCS] 334.4(M-2H)2-, 668.4(M-H)-;
MW: 669.7 calcd. for C28H20N6O4RuS2
Next, 10 mg of the ester of ttt-NCS was added to 5 ml of chloroform, 20 ml of trifluoroacetic acid was added thereto, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the solvent was distilled off completely, and then dichloromethane was added and the solvent was distilled off five times. The obtained reaction product was purified and separated by gel permeation chromatography (Sephadex LH-20) using methanol as a developing solvent to obtain a target complex dye (see the following reaction formula (f)). This complex dye was used as the photosensitizer of Example 2. The same operation was performed on the ester bodies of tcc-NCS and cct-NCS, and the resulting complex dyes were used as the photosensitizers of Examples 3 and 4, respectively. The structure of the obtained complex dye was identified by mass spectrometry. The analysis results are shown below.
MS (ESI-MS): m / z: [ttt-NCS] 334.4 (M-2H) 2- , 668.4 (MH) - ;
[tcc-NCS] 334.2 (M-2H) 2- , 668.2 (MH) - ;
[cct-NCS] 334.4 (M-2H) 2- , 668.4 (MH) - ;
MW: 669.7 calcd.for C 28 H 20 N 6 O 4 RuS 2

Figure 2011057828
Figure 2011057828

以上の手順で作製した実施例1〜4の光増感剤は、それぞれ下記式(1)〜(4)で表されるものである。   The photosensitizers of Examples 1 to 4 produced by the above procedure are represented by the following formulas (1) to (4), respectively.

Figure 2011057828
Figure 2011057828

[比較例1]
下記式(5)で表される錯体色素(商品名:N719、ソーラロニクス社製)を比較例1の光増感剤とした。
[Comparative Example 1]
The complex dye represented by the following formula (5) (trade name: N719, manufactured by Solaronics) was used as the photosensitizer of Comparative Example 1.

Figure 2011057828
Figure 2011057828

[比較例2]
ジクロロ(p−サイメン)ルテニウム2量体(1.22g;2mmol)と2,2’−ビピリジン−4,4’−ジカルボン酸(0.49g;2mmol)をエタノールに溶解し、3時間加熱還流した。反応終了後、溶媒を留去し、化合物Aを得た。
[Comparative Example 2]
Dichloro (p-cymene) ruthenium dimer (1.22 g; 2 mmol) and 2,2′-bipyridine-4,4′-dicarboxylic acid (0.49 g; 2 mmol) were dissolved in ethanol and heated to reflux for 3 hours. . After completion of the reaction, the solvent was distilled off to obtain Compound A.

一方、フェナントロリンジアミンを文献(Tetrahedron letters 38,8159(1997))に記載の方法にて合成した。フェナントロリンジアミン(0.21g;1.0mmol)とサリチルアルデヒド(0.24g;2.0mmol)をエタノールに溶解し、オルトギ酸エステル(0.1ml)を添加し、3時間加熱還流を行った。反応終了後、ろ過にて、化合物Bを得た。   On the other hand, phenanthrolinediamine was synthesized by the method described in the literature (Tetrahedron letters 38, 8159 (1997)). Phenanthrolinediamine (0.21 g; 1.0 mmol) and salicylaldehyde (0.24 g; 2.0 mmol) were dissolved in ethanol, orthoformate (0.1 ml) was added, and the mixture was heated to reflux for 3 hours. After completion of the reaction, Compound B was obtained by filtration.

化合物Aおよび化合物BをDMFに溶解し、135℃にて4時間加熱攪拌し化合物Cを得た後、アンモニウムチオシアネート(0.4g)を添加し、4時間加熱還流を行った。反応終了後、減圧濃縮し、水に分散し、ろ過した。得られた固形物をカラムクロマトグラフィー(充填剤:Sephadex LH−20、溶離液:DMF)にて精製し、下記式(6)で表される錯体色素を0.3g(0.3mmol)得た。これを比較例2の光増感剤とした。   Compound A and Compound B were dissolved in DMF and heated and stirred at 135 ° C. for 4 hours to obtain Compound C. Then, ammonium thiocyanate (0.4 g) was added, and the mixture was heated to reflux for 4 hours. After completion of the reaction, the mixture was concentrated under reduced pressure, dispersed in water, and filtered. The obtained solid was purified by column chromatography (filler: Sephadex LH-20, eluent: DMF) to obtain 0.3 g (0.3 mmol) of a complex dye represented by the following formula (6). . This was used as the photosensitizer of Comparative Example 2.

Figure 2011057828
Figure 2011057828

[吸収スペクトルの測定]
実施例1〜4及び比較例1で得られた光増感剤について、可視光から赤外光にかけての分光吸収スペクトルを、分光光度計(商品名:V570 日本分光社製)により測定した。なお、測定液は、0.5×10−4〜2×10−4mol/lの濃度とし、DMF溶媒により調製した。その結果を図5に示す。
[Measurement of absorption spectrum]
About the photosensitizer obtained in Examples 1-4 and the comparative example 1, the spectral absorption spectrum from visible light to infrared light was measured with the spectrophotometer (brand name: V570 product made from JASCO Corporation). The measurement liquid was prepared in a DMF solvent at a concentration of 0.5 × 10 −4 to 2 × 10 −4 mol / l. The result is shown in FIG.

[光起電力セルの作製及び光電変換特性の測定]
導電性基板上に支持された二酸化チタン膜の増感に基づく光起電力セルを以下の手順で作製した。まず、導電性ガラス(フッ素ドープSnO、10Ω)上にコロイド状TiO粒子(粒径:20〜30nm)を塗布し、450℃で30分間焼成し(膜厚:10μm)、その上に、光を散乱させるため、TiO粒子(粒径:300〜400nm)を塗布し、520℃で1時間焼成した(膜厚:6〜8μ)。これら2層の膜を、30分間TiCl溶液に浸漬した後、450℃で30分間加熱した。
[Production of photovoltaic cell and measurement of photoelectric conversion characteristics]
A photovoltaic cell based on sensitization of a titanium dioxide film supported on a conductive substrate was produced by the following procedure. First, colloidal TiO 2 particles (particle size: 20-30 nm) are applied on conductive glass (fluorine-doped SnO 2 , 10Ω), baked at 450 ° C. for 30 minutes (film thickness: 10 μm), In order to scatter light, TiO 2 particles (particle size: 300 to 400 nm) were applied and baked at 520 ° C. for 1 hour (film thickness: 6 to 8 μm). These two layers were immersed in a TiCl 4 solution for 30 minutes and then heated at 450 ° C. for 30 minutes.

得られた膜を、実施例1〜4の場合は上記光増感剤(実施例1〜4)/メタノール溶液(3.0×10−4mol/L)に3時間、比較例1〜2の場合は上記光増感剤(比較例1〜2)/エタノール溶液(3.0×10−4mol/L)に15時間、それぞれ浸し、色素(光増感剤)層を形成した。得られた基板とPt薄膜のついたガラスのPt面とを合わせ、実施例1〜4の場合は2.0mol/Lのヨウ化リチウムと0.025mol/Lのヨウ素とを含むアセトニトリル溶液を、比較例1〜2の場合は0.3mol/Lのヨウ化リチウムと0.03mol/Lのヨウ素とを含むアセトニトリル溶液を、それぞれ毛細管現象によって染み込ませ、周辺をエポキシ接着剤で封止した。なお、透明導電基板の導電層部分と対向電極にはリード線を接続した。これにより、光起電力セルを得た。 In the case of Examples 1-4, the obtained film | membrane was compared with the said photosensitizer (Examples 1-4) / methanol solution (3.0 * 10 < -4 > mol / L) for 3 hours, Comparative Examples 1-2. In the case of No. 1, the dye (photosensitizer) layer was formed by immersing in the photosensitizer (Comparative Examples 1 and 2) / ethanol solution (3.0 × 10 −4 mol / L) for 15 hours. The obtained substrate and the Pt surface of the glass with the Pt thin film were combined, and in the case of Examples 1 to 4, an acetonitrile solution containing 2.0 mol / L lithium iodide and 0.025 mol / L iodine, In the case of Comparative Examples 1 and 2, acetonitrile solutions containing 0.3 mol / L lithium iodide and 0.03 mol / L iodine were each soaked by capillary action, and the periphery was sealed with an epoxy adhesive. A lead wire was connected to the conductive layer portion of the transparent conductive substrate and the counter electrode. Thereby, a photovoltaic cell was obtained.

得られた光起電力セルに対し疑似太陽光を照射し、入射フォトン〜電流変換効率(IPCE)を測定した。750nm、780nm、850nm、900nm及び950nmの各波長におけるIPCE(%)の測定結果を表1に示す。また、実施例の光増感剤を用いた光起電力セルについて、IPCEスペクトルを図6に示す。   The obtained photovoltaic cell was irradiated with pseudo-sunlight, and incident photons to current conversion efficiency (IPCE) were measured. Table 1 shows the measurement results of IPCE (%) at wavelengths of 750 nm, 780 nm, 850 nm, 900 nm, and 950 nm. FIG. 6 shows the IPCE spectrum of the photovoltaic cell using the photosensitizer of the example.

Figure 2011057828
Figure 2011057828

1…透明導電性基板、2…対向電極基板、3…光増感剤を吸着した半導体層、4…電解質層、5…シール材。
DESCRIPTION OF SYMBOLS 1 ... Transparent conductive substrate, 2 ... Counter electrode substrate, 3 ... Semiconductor layer which adsorb | sucked photosensitizer, 4 ... Electrolyte layer, 5 ... Sealing material.

Claims (2)

下記一般式(I)で表される構造を含む金属錯体からなる光増感剤。
Figure 2011057828


[式(I)中、Rは水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示し、R、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を置換基として有するアリール基を示し、Rは水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を置換基として有するアリール基、或いは、Mに配位する窒素原子を含む下記一般式(I−a)で表されるイミノ基又はMに配位する窒素原子を含む下記一般式(I−b)で表されるピリジル基を示し、Xはそれぞれ独立にハロゲン原子、ヒドロキシ基、シアノ基、メチル基、水素原子、チオシアネート基、ヒドラジド基、アジド基、イソシアニド基、シアネート基、イソチオシアネート基又はニトロ基を示し、Lは下記一般式(I−c)又は(I−d)で表される2座配位子、或いは、下記一般式(I−e)で表される3座配位子を示し、Zは炭素原子、窒素原子、硫黄原子又はリン原子を示し、Mは鉄原子、ルテニウム原子、オスミウム原子、コバルト原子、ロジウム原子、イリジウム原子又はレニウム原子を示し、pは0〜2の整数を示し、qは1〜4の整数を示し、rは0又は1を示す。]
Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


[式(I−a)、(I−b)、(I−c)、(I−d)及び(I−e)中、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20及びR21はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルアミノ基、ヒドロキシル基、アルコキシ基、アシル基、エステル基、シアノ基、ニトロ基、アミノ基、アルコキシアルキル基、アミノアルキル基、パーフルオロアルキル基、アリール基又は複素環基、或いは、カルボキシル基、スルホン酸基若しくはリン酸基又はそれらの金属塩、四級アンモニウム塩若しくは窒素含有複素環塩を示す。]
The photosensitizer which consists of a metal complex containing the structure represented with the following general formula (I).
Figure 2011057828


[In the formula (I), R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkylamino group, a hydroxyl group, an alkoxy group, an acyl group, an ester group, a cyano group, a nitro group, an amino group, an alkoxyalkyl group, an aminoalkyl group. A group, a perfluoroalkyl group, an aryl group or a heterocyclic group, or a carboxyl group, a sulfonic acid group or a phosphoric acid group, or a metal salt, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt thereof; R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group, nitro group, amino group, alkoxyalkyl group, amino group Alkyl group, perfluoroalkyl group, aryl group or heterocyclic group, carboxyl group, sulfo group Acid group or phosphate group or metal salt thereof, quaternary ammonium salt or nitrogen-containing heterocyclic salt, or carboxyl group, sulfonic acid group or phosphoric acid group or metal salt thereof, quaternary ammonium salt or nitrogen-containing complex R 6 represents an aryl group having a ring salt as a substituent, and R 6 represents a hydrogen atom, a halogen atom, an alkyl group, an alkylamino group, a hydroxyl group, an alkoxy group, an acyl group, an ester group, a cyano group, a nitro group, an amino group, an alkoxy group. An alkyl group, an aminoalkyl group, a perfluoroalkyl group, an aryl group or a heterocyclic group, or a carboxyl group, a sulfonic acid group or a phosphoric acid group or a metal salt thereof, a quaternary ammonium salt or a nitrogen-containing heterocyclic salt, or Carboxyl group, sulfonic acid group or phosphoric acid group or their metal salts, quaternary ammonia An aryl group having a nium salt or a nitrogen-containing heterocyclic salt as a substituent, an imino group represented by the following general formula (Ia) containing a nitrogen atom coordinated to M, or a nitrogen atom coordinated to M Including a pyridyl group represented by the following general formula (Ib), wherein X is independently a halogen atom, a hydroxy group, a cyano group, a methyl group, a hydrogen atom, a thiocyanate group, a hydrazide group, an azide group, an isocyanide group, A cyanate group, an isothiocyanate group or a nitro group is shown, and L is a bidentate ligand represented by the following general formula (Ic) or (Id) or represented by the following general formula (Ie). Z represents a carbon atom, nitrogen atom, sulfur atom or phosphorus atom, M represents an iron atom, ruthenium atom, osmium atom, cobalt atom, rhodium atom, iridium atom or rhenium Represents an atomic, p represents an integer of 0 to 2, q represents an integer of 1 to 4, r is 0 or 1. ]
Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


Figure 2011057828


[Formula (I-a), (I -b), (I-c), (I-d) and in (I-e), R 11 , R 12, R 13, R 14, R 15, R 16 , R 17 , R 18 , R 19 , R 20 and R 21 are each independently a hydrogen atom, halogen atom, alkyl group, alkylamino group, hydroxyl group, alkoxy group, acyl group, ester group, cyano group, nitro group , Amino group, alkoxyalkyl group, aminoalkyl group, perfluoroalkyl group, aryl group or heterocyclic group, or carboxyl group, sulfonic acid group or phosphoric acid group or metal salt thereof, quaternary ammonium salt or nitrogen-containing complex A ring salt is shown. ]
請求項1記載の光増感剤を含有する金属酸化物半導体層を備える、光起電力素子。
A photovoltaic device comprising a metal oxide semiconductor layer containing the photosensitizer according to claim 1.
JP2009208398A 2009-09-09 2009-09-09 Novel photosensitizer and photovoltaic device Expired - Fee Related JP5424246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009208398A JP5424246B2 (en) 2009-09-09 2009-09-09 Novel photosensitizer and photovoltaic device
PCT/JP2010/064292 WO2011030665A1 (en) 2009-09-09 2010-08-24 Novel photosensitizer and photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208398A JP5424246B2 (en) 2009-09-09 2009-09-09 Novel photosensitizer and photovoltaic device

Publications (2)

Publication Number Publication Date
JP2011057828A true JP2011057828A (en) 2011-03-24
JP5424246B2 JP5424246B2 (en) 2014-02-26

Family

ID=43732339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208398A Expired - Fee Related JP5424246B2 (en) 2009-09-09 2009-09-09 Novel photosensitizer and photovoltaic device

Country Status (2)

Country Link
JP (1) JP5424246B2 (en)
WO (1) WO2011030665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036238A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467367B (en) * 2013-09-13 2015-02-25 宁波大学 Cobalt complex having electrocatalytic activity on hydrogen peroxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504023A (en) * 1990-04-17 1993-06-24 エコール・ポリテクニツク・フエデラール・ドウ・ローザンヌ photocell
JP2002100420A (en) * 2000-09-25 2002-04-05 Konica Corp Semiconductor for photoelectric transfer material of superior photoelectric transfer efficiency and durability, photoelectric transfer element, and solar battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195349A (en) * 1997-09-24 1999-04-09 Fuji Photo Film Co Ltd Silver halide photographic sensitive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504023A (en) * 1990-04-17 1993-06-24 エコール・ポリテクニツク・フエデラール・ドウ・ローザンヌ photocell
JP2002100420A (en) * 2000-09-25 2002-04-05 Konica Corp Semiconductor for photoelectric transfer material of superior photoelectric transfer efficiency and durability, photoelectric transfer element, and solar battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013054788; Journal of the Chinese Chemical Society Vol.50, 2003, p.227-232 *
JPN6013054792; Dalton Transactions No.24, 2006, p.3025-3034 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036238A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell

Also Published As

Publication number Publication date
WO2011030665A1 (en) 2011-03-17
JP5424246B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
Sarker et al. A near-infrared dye for dye-sensitized solar cell: catecholate-functionalized zinc phthalocyanine
Dragonetti et al. A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand
JP5761024B2 (en) Photoelectric conversion element having binuclear ruthenium complex dye having substituted bipyridyl group, and photochemical battery
Bolag et al. Enhanced performance of dye-sensitized solar cells with novel 2, 6-diphenyl-4H-pyranylidene dyes
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP5780238B2 (en) Photoelectric conversion element having binuclear ruthenium complex dye having substituted bipyridyl group, and photochemical battery
JP5424246B2 (en) Novel photosensitizer and photovoltaic device
Peppas et al. Sterically demanding pyridine-quinoline anchoring ligands as building blocks for copper (I)-based dye-sensitized solar cell (DSSC) complexes
Konti et al. A Ru (II) molecular antenna bearing a novel bipyridine–acrylonitrile ligand: Synthesis and application in dye solar cells
JP5917011B2 (en) Method for producing photoelectric conversion element and method for producing photoelectrochemical cell
JP5283073B2 (en) Novel photosensitizer and photovoltaic device
JP2008138169A (en) Novel photo-sensitizer and photovoltaic element
WO2013133094A1 (en) Novel compound, and support material having said novel compound supported thereon
JP2009064680A (en) New photosensitizer and photovoltaic element
JP6086069B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
JP6308152B2 (en) Photoelectric conversion element, dye-sensitized solar cell, and dye solution
JP5487465B2 (en) Novel photosensitizer and photovoltaic device
JP5838820B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
JP5556096B2 (en) Photoelectric conversion element having a binuclear ruthenium complex dye having a linking molecule having an electron withdrawing group as a substituent, and a photochemical battery
JP2009129652A (en) Photoelectric conversion element and photochemical battery
JP2010209131A (en) New photosensitizer and photoelectromotive element
JP6265551B2 (en) Photoelectric conversion element, dye-sensitized solar cell, and dye solution
JP5446207B2 (en) Photoelectric conversion element and photochemical battery
TWI469986B (en) Novel ruthenium complex for high efficient dye-sensitized solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees