JP2011055719A - Method for synthesizing polynucleotide - Google Patents

Method for synthesizing polynucleotide Download PDF

Info

Publication number
JP2011055719A
JP2011055719A JP2009205946A JP2009205946A JP2011055719A JP 2011055719 A JP2011055719 A JP 2011055719A JP 2009205946 A JP2009205946 A JP 2009205946A JP 2009205946 A JP2009205946 A JP 2009205946A JP 2011055719 A JP2011055719 A JP 2011055719A
Authority
JP
Japan
Prior art keywords
poly
polynucleotide
producing
substrate
chain length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009205946A
Other languages
Japanese (ja)
Inventor
Masami Moriyama
雅美 森山
Noriaki Uenishi
憲明 上西
Yasuo Oshima
泰郎 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009205946A priority Critical patent/JP2011055719A/en
Publication of JP2011055719A publication Critical patent/JP2011055719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enzymatic method for synthesizing a single strand polynucleotide having a desirable chain length or a double strand polynucleotide. <P>SOLUTION: The method for producing the single strand polynucleotide having the desirable chain length includes using a polyribonucleotide phosphorylase (PNP) as a substrate and adding a proper amount of oligo A as a primer to the substrate. The desirable chain length is 200-500 base pairs and the amount of the oligo A is 1/10-1/100 concentration of the substrate. In the synthesis method, a polynucleotide to be synthesized is Poly (I), Poly (C) or Poly (I:C). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリヌクレオチドの合成法にかかり、詳細には、プライマーとしてオリゴAを用いることによるPoly(I)、Poly(C)、或いはPoly(I:C)などについて、望ましい分子量、すなわち鎖長を有するポリヌクレオチドの合成法に関する。   The present invention relates to a method for synthesizing polynucleotides. Specifically, for Poly (I), Poly (C), or Poly (I: C) by using Oligo A as a primer, the desired molecular weight, that is, the chain length. The present invention relates to a method for synthesizing a polynucleotide having

二重鎖ポリヌクレオチドであるPoly(I:C)は、或いは、一重鎖ポリヌクレオチドであるPoly(I)、Poly(C)は種々の薬理作用を発揮し、近年その薬理作用に基づく応用性が注目されている。
特に、IgA抗体を誘導する経鼻投与アジュバントとして一重鎖ポリヌクレオチドであるPoly(I)又はPoly(C)、さらに二重鎖ポリヌクレオチドとしてのPoly(I:C)又はPoly(A:C)について注目がもたれている(特許文献1)。
Poly (I: C), which is a double-stranded polynucleotide, or Poly (I) and Poly (C), which are single-stranded polynucleotides, exhibit various pharmacological actions, and in recent years they have applicability based on their pharmacological actions. Attention has been paid.
In particular, Poly (I) or Poly (C) as a single-stranded polynucleotide as an intranasal adjuvant for inducing an IgA antibody, and Poly (I: C) or Poly (A: C) as a double-stranded polynucleotide It is attracting attention (Patent Document 1).

Poly(I:C)の合成方法にあっては、化学的合成法と酵素的合成法があり、それぞれ長所及び短所がある。例えば、化学的合成法では、Poly(I:C)の構成成分であるPoly(I)及びPoly(C)について予め定められた鎖長の分子を合成することができ、ほぼ同じ長さをもつPoly(I)及びPoly(C)をアニーリング(annealing)させることで、均一の二重鎖Poly(I:C)を作成することができる利点を有している。
しかしながら、必要とされる鎖長としての200−mer以上のPoly(I)やPoly(C)を合成するには、多量の出発物質を必要とし、またその製造コストは膨大なものとなる。
Poly (I: C) synthesis methods include a chemical synthesis method and an enzymatic synthesis method, each having advantages and disadvantages. For example, in the chemical synthesis method, it is possible to synthesize molecules having a predetermined chain length for Poly (I) and Poly (C), which are constituent components of Poly (I: C), and have almost the same length. By annealing Poly (I) and Poly (C), there is an advantage that uniform double-chain Poly (I: C) can be produced.
However, in order to synthesize Poly (I) or Poly (C) of 200-mer or more as the required chain length, a large amount of starting material is required, and the production cost thereof is enormous.

一方、酵素的合成法は比較的安価にPoly(I)及びPoly(C)を合成することができるが、それぞれの鎖長のコントロールが困難であり、非常に広範囲の分子量分布を持つ一重鎖のPoly(I)及びPoly(C)が合成されてくる。したがって、そのようなPoly(I)及びPoly(C)をアニーリングさせると、相補的に二重鎖を形成する部分以外にどちらかの鎖が余分になりフリーとなる。その結果、その部分に相補的な一重鎖が結合し、低分子のものから、非常に巨大な分子までの分子量分布の広い二重鎖が形成されることになる。そのため、得られた巨大Poly(I:C)を含む溶液は粘度が高くなり、容易に限外濾過膜を通過しない問題が生じ、精製をすることが困難のものとなる。   On the other hand, although the enzymatic synthesis method can synthesize Poly (I) and Poly (C) at a relatively low cost, it is difficult to control the length of each chain, and a single chain having a very wide molecular weight distribution is difficult to control. Poly (I) and Poly (C) are synthesized. Therefore, when such Poly (I) and Poly (C) are annealed, one of the strands becomes redundant and becomes free other than the portion that forms a complementary duplex. As a result, a complementary single chain is bound to the portion, and a double chain having a wide molecular weight distribution from a low molecular to a very large molecule is formed. Therefore, the obtained solution containing huge Poly (I: C) has a high viscosity, which causes a problem that it does not easily pass through the ultrafiltration membrane, and is difficult to purify.

特開2007−07703号公報JP 2007-07703 A

したがって、本発明は上記の現状を鑑み、問題点を解決した望ましい鎖長を有する一重鎖ポリヌクレオチド、或いは二重鎖ポリヌクレオチド、特にPoly(I)、Poly(C)並びにPoly(I:C)の合成法を提供することを課題とする。   Accordingly, in view of the above situation, the present invention is a single-stranded polynucleotide or a double-stranded polynucleotide having a desirable chain length that has solved the problems, and in particular, Poly (I), Poly (C), and Poly (I: C). It is an object of the present invention to provide a synthesis method.

かかる課題を解決するための本発明は、具体的には以下の構成からなる。
(1)基質に対して適当量のオリゴAを添加することによる望ましい鎖長の一重鎖ポリヌクレオチドを製造する方法。
(2)望ましい鎖長が200〜500塩基対である上記1に記載のポリヌクレオチドを製造する方法。
(3)オリゴAの量が、基質の1/10〜1/100の濃度であることを特徴とする上記1又は2に記載のポリヌクレオチドを製造する方法。
(4)基質がポリリボヌクレオチドフォスフォリラーゼ(PNP)である上記1、2又は3に記載のポリヌクレオチドを製造する方法。
(5)5’末端に一定の塩基を付加することによりランダムなアニーリングを防ぎ、望ましい鎖長の二重鎖ポリヌクレオチドを製造する方法。
(6)一重鎖ポリヌクレオチドが、Poly(I)又はPoly(C)である上記1〜4のいずれかに記載のポリヌクレオチドを製造する方法。
(7)二重鎖ポリヌクレオチドがPoly(I:C)である上記5に記載のポリヌクレオチドを製造する方法。
(7)オリゴAが、pApA(n=2)、pApApA(n=3)、pApApApA(n=4)、ApA(n=2)又はApApA(n=4)である上記1に記載のポリヌクレオチドを製造する方法。
(但し、Aはアデニンヌクレオチドを示し、pはリン酸基を示す)
である。
Specifically, the present invention for solving this problem has the following configuration.
(1) A method for producing a single-stranded polynucleotide having a desired chain length by adding an appropriate amount of oligo A to a substrate.
(2) The method for producing the polynucleotide according to 1 above, wherein the desired chain length is 200 to 500 base pairs.
(3) The method for producing a polynucleotide according to (1) or (2) above, wherein the amount of oligo A is 1/10 to 1/100 of the substrate.
(4) The method for producing a polynucleotide according to the above 1, 2 or 3, wherein the substrate is polyribonucleotide phosphorylase (PNP).
(5) A method for producing a double-stranded polynucleotide having a desired chain length by adding a certain base to the 5 ′ end to prevent random annealing.
(6) The method for producing the polynucleotide according to any one of 1 to 4 above, wherein the single-stranded polynucleotide is Poly (I) or Poly (C).
(7) The method for producing a polynucleotide according to 5 above, wherein the double-stranded polynucleotide is Poly (I: C).
(7) The polynucleotide according to 1 above, wherein the oligo A is pApA (n = 2), pApApA (n = 3), pApApApA (n = 4), ApA (n = 2) or ApApA (n = 4) How to manufacture.
(However, A represents an adenine nucleotide and p represents a phosphate group)
It is.

本発明が提供する、これまで高価な化学的な製造方法により合成されていた一重鎖ポリヌクレオチドであるPoly(I)又はPoly(C)、或いは二重鎖ポリヌクレオチドであるPoly(I:C)を、簡便な方法により安価に合成し得る利点を有している。
また、本発明法による合成されるポリヌクレオチドは望ましい鎖長を有するものであり、低分子のものから、非常に巨大な分子までの分子量分布の広い二重鎖が形成される酵素的合成法に比較して、ほぼ同じ長さをもつPoly(I)及びPoly(C)をアニーリング(annealing)させることで、均一の二重鎖Poly(I:C)を作成することができる利点を有している。
Poly (I) or Poly (C) which is a single-stranded polynucleotide synthesized by an expensive chemical production method provided by the present invention, or Poly (I: C) which is a double-stranded polynucleotide. Can be synthesized inexpensively by a simple method.
In addition, the polynucleotide synthesized by the method of the present invention has a desirable chain length, and is an enzymatic synthesis method in which a duplex having a wide molecular weight distribution from a low molecular weight molecule to a very large molecule is formed. In comparison, Poly (I) and Poly (C) having approximately the same length are annealed, thereby having the advantage that a uniform double-strand Poly (I: C) can be produced. Yes.

したがって、インフルエンザウイルスに対するワクチン療法におけるIgA抗体を誘導する経鼻投与アジュバントとしてのPoly(I)又はPoly(C)、更には、Poly(A:C)を安価に提供し得ものであり、その産業上の利点は多大なものである。   Therefore, Poly (I) or Poly (C) as a nasal administration adjuvant for inducing IgA antibody in vaccine therapy against influenza virus, and Poly (A: C) can be provided at low cost. The above advantages are enormous.

本発明のPoly(I)並びにPoly(A)の具体的製造法を示した物である。It is the thing which showed the specific manufacturing method of Poly (I) and Poly (A) of this invention. 実施例2により得られたPoly(A)の分布を示した図である。6 is a graph showing the distribution of Poly (A) obtained in Example 2. FIG. 実施例2により得られたPoly(G)の分布を示した図である。6 is a graph showing the distribution of Poly (G) obtained in Example 2. FIG.

本発明者等は、経済的に効率的な酵素法を用いることにより、合成される一重鎖のPoly(I)およびPoly(C)の分子量を制限することにより、最終的に得られ二重鎖Poly(I:C)をある一定の分子量範囲に収めることを目的とし、一重鎖Poly(I)およびPoly(C)を効率よく合成する方法検討した。   The present inventors have finally obtained a double chain by limiting the molecular weight of the synthesized single chain Poly (I) and Poly (C) by using an economically efficient enzymatic method. For the purpose of keeping Poly (I: C) within a certain molecular weight range, a method for efficiently synthesizing single-chain Poly (I) and Poly (C) was examined.

その結果、ポリリボヌクレオチドフォスフォリラーゼ(PNP)はリボ核酸二ヌクレオチドを基質としてポリリボ核酸を合成するのに用いられている。このPNPはオリゴAなどのプライマーを用いることで、その反応速度が数倍から10倍以上速くなることが知られており、この反応速度の違いを利用して、ポリリボ核酸を合成しようと試みた。
その結果、PNPを基質として用いることにより、酵素反応は選択的にプライマーを取り合うことなり、同時に起こるプライマーを利用しない反応はゆっくり進むので、大部分の基質を消費したところで、できるポリリボ核酸は短鎖のものと長鎖のものの混合物となることを確認した。
As a result, polyribonucleotide phosphorylase (PNP) has been used to synthesize polyribonucleic acids using ribonucleic acid dinucleotides as substrates. This PNP is known to increase the reaction rate from several times to 10 times or more by using a primer such as Oligo A. Using this difference in reaction rate, an attempt was made to synthesize polyribonucleic acid. .
As a result, by using PNP as a substrate, the enzyme reaction selectively contacts the primer, and the reaction that does not use the simultaneous primer proceeds slowly. Therefore, when most of the substrate is consumed, the resulting polyribonucleic acid is a short chain. It was confirmed to be a mixture of a long chain and a long chain.

しかしながら、従来の酵素法と異なり、低分子から高分子まで一様に分布するものでなく、低分子のものとある一定の鎖長をもつ高分子のものとの混合物となる。これを分子篩等の方法で分離することにより分子量分布の狭いポリリボ核酸を得ることができることことを確認した。
したがって、かかる方法を用いて、特異的な薬理作用をもつ望ましい分子量分布の限られたPoly(I:C)を製造することが可能となった。
その具体的方法の実際を図示すれば、図1に示したようにまとめられる。
However, unlike the conventional enzymatic method, it is not uniformly distributed from a low molecule to a polymer, but becomes a mixture of a low molecule and a polymer having a certain chain length. It was confirmed that a polyribonucleic acid having a narrow molecular weight distribution can be obtained by separating it by a method such as molecular sieve.
Accordingly, it has become possible to produce Poly (I: C) having a specific pharmacological action and having a desirable molecular weight distribution limited.
If the actual method is illustrated, it can be summarized as shown in FIG.

以下に本発明について、実施例を挙げて具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

実施例1:
反応組成として以下のものを使用した。
Tris-HCl(pH9.5) 74mM
EDTA 0.67mM
塩化マグネシウム 53mM
NDP(ヌクレオチド二リン酸) 6.6mM
ApApA(プライマー) 0.07mM
Enzyme 200units
全 量 200μL
反応条件としては、65℃にて60分間反応させた。
Example 1:
The following reaction compositions were used.
Tris-HCl (pH 9.5) 74 mM
EDTA 0.67mM
Magnesium chloride 53 mM
NDP (nucleotide diphosphate) 6.6 mM
ApApA (primer) 0.07 mM
Enzyme 200units
Total volume 200μL
As reaction conditions, the reaction was carried out at 65 ° C. for 60 minutes.

所望の反応時間後、過剰のCDTA又は酢酸を添加して反応を終了させ、アガロース電気泳動にて分子量分布を調べた。
その電気泳動の結果から、分子量ピークの分布は、約200塩基対(ヌクレオチド)であり、±1σでは300〜700塩基対(ヌクレオチド)であった。
なお、プライマーとしてオリゴAを用いないで反応させた場合には、反応速度が遅く、生成されるポリヌクレオチドの分子量分布が広く、±1σに相当する分子量分布は、約50〜1700塩基対(ヌクレオチド)であった。
実施例2:
After the desired reaction time, excess CDTA or acetic acid was added to terminate the reaction, and the molecular weight distribution was examined by agarose electrophoresis.
From the result of the electrophoresis, the distribution of the molecular weight peak was about 200 base pairs (nucleotides), and ± 1σ was 300 to 700 base pairs (nucleotides).
When the reaction was performed without using oligo A as a primer, the reaction rate was slow, the molecular weight distribution of the produced polynucleotide was wide, and the molecular weight distribution corresponding to ± 1σ was about 50 to 1700 base pairs (nucleotides). )Met.
Example 2:

同様の方法により、ADPからPoly(A)を合成し、その蔗糖密度勾配遠心法で分析したものを図2として示した。
また、同様の方法により、GDPからPoly(G)を合成し、その蔗糖密度勾配遠心法で分析したものを図3として示した。
図2から判明するように、Poly(A)のピークは約7sであり、200程度の塩基対(ヌクレオチド)であった。
また、図3から判明するように、Poly(G)のピークは約8sであり、300程度の塩基対(ヌクレオチド)であった。
Poly (A) was synthesized from ADP by the same method and analyzed by sucrose density gradient centrifugation as shown in FIG.
Further, Poly (G) was synthesized from GDP by the same method and analyzed by sucrose density gradient centrifugation as shown in FIG.
As can be seen from FIG. 2, the peak of Poly (A) was about 7 s, which was about 200 base pairs (nucleotides).
As can be seen from FIG. 3, the peak of Poly (G) was about 8 s, which was about 300 base pairs (nucleotides).

発明により、これまで高価な化学的な製造方法により合成されていた一重鎖ポリヌクレオチドであるPoly(I)又はPoly(C)、或いは二重鎖ポリヌクレオチドであるPoly(I:C)を、簡便な方法により安価に合成される。
本発明が提供するポリヌクレオチドは、望ましい分子量としての鎖長を有するものであり、品質も良好なものであることから、インフルエンザウイルスに対するワクチン療法におけるIgA抗体を誘導する経鼻投与アジュバントとしてのPoly(I)又はPoly(C)、更には、Poly(I:C)を安価に提供し得ものである。
したがって、その産業上の利点は多大なものである。
According to the invention, Poly (I) or Poly (C), which is a single-stranded polynucleotide that has been synthesized by an expensive chemical production method, or Poly (I: C), which is a double-stranded polynucleotide, can be conveniently used. Can be synthesized inexpensively by a simple method.
Since the polynucleotide provided by the present invention has a chain length as a desirable molecular weight and has a good quality, Poly (as a nasal administration adjuvant for inducing IgA antibody in vaccine therapy against influenza virus) I) or Poly (C), and furthermore, Poly (I: C) can be provided at low cost.
Therefore, the industrial advantages are tremendous.

Claims (8)

基質に対して適当量のオリゴAを添加することによる望ましい鎖長の一本鎖ポリヌクレオチドを製造する方法。   A method for producing a single-stranded polynucleotide having a desired chain length by adding an appropriate amount of oligo A to a substrate. 望ましい鎖長が200〜500塩基対である請求項1に記載のポリヌクレオチドを製造する方法。   The method for producing a polynucleotide according to claim 1, wherein the desired chain length is 200 to 500 base pairs. オリゴAの量が、基質の1/10〜1/100の濃度であることを特徴とする請求項1又は2に記載のポリヌクレオチドを製造する方法。   The method for producing a polynucleotide according to claim 1 or 2, wherein the amount of oligo A is 1/10 to 1/100 of the substrate. 基質がポリリボヌクレオチドフォスフォリラーゼ(PNP)である請求項1、2又は3に記載のポリヌクレオチドを製造する方法。   The method for producing a polynucleotide according to claim 1, 2 or 3, wherein the substrate is polyribonucleotide phosphorylase (PNP). 5’末端に一定の塩基を付加することによりランダムなアニーリングを防ぎ、望ましい鎖長の二本鎖ポリヌクレオチドを製造する方法。   A method for producing a double-stranded polynucleotide having a desired length by preventing random annealing by adding a certain base to the 5 'end. 一本鎖ポリヌクレオチドが、Poly(I)又はPoly(C)である請求項1〜4のいずれかに記載のポリヌクレオチドを製造する方法。   The method for producing a polynucleotide according to any one of claims 1 to 4, wherein the single-stranded polynucleotide is Poly (I) or Poly (C). 二本鎖ポリヌクレオチドがPoly(I:C)である請求項5に記載のポリヌクレオチドを製造する方法。   The method for producing a polynucleotide according to claim 5, wherein the double-stranded polynucleotide is Poly (I: C). オリゴAが、pApA(n=2)、pApApA(n=3)、pApApApA(n=4)、ApA(n=2)又はApApA(n=4)である請求項1に記載のポリヌクレオチドを製造する方法。
(但し、Aはアデニンヌクレオチドを示し、pはリン酸基を示す)
The polynucleotide according to claim 1, wherein the oligo A is pApA (n = 2), pApApA (n = 3), pApApApA (n = 4), ApA (n = 2) or ApApA (n = 4). how to.
(However, A represents an adenine nucleotide and p represents a phosphate group)
JP2009205946A 2009-09-07 2009-09-07 Method for synthesizing polynucleotide Pending JP2011055719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205946A JP2011055719A (en) 2009-09-07 2009-09-07 Method for synthesizing polynucleotide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205946A JP2011055719A (en) 2009-09-07 2009-09-07 Method for synthesizing polynucleotide

Publications (1)

Publication Number Publication Date
JP2011055719A true JP2011055719A (en) 2011-03-24

Family

ID=43944125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205946A Pending JP2011055719A (en) 2009-09-07 2009-09-07 Method for synthesizing polynucleotide

Country Status (1)

Country Link
JP (1) JP2011055719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355334A (en) * 2018-12-06 2019-02-19 江苏省农业科学院 A method of preparing poly IC

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120194A (en) * 1976-04-01 1977-10-08 Mitsubishi Chem Ind Ltd Enzymatic preparation of oligonucleotide having known base sequence
JPS5836396A (en) * 1981-08-24 1983-03-03 Agency Of Ind Science & Technol Preparation of oligoribonucleotide
JPH02227077A (en) * 1988-11-07 1990-09-10 Nippon Shinyaku Co Ltd Immobilized enzyme and utilizing method of the enzyme
JPH05219978A (en) * 1992-02-14 1993-08-31 Yamasa Shoyu Co Ltd Enzymic production of nucleic acid-related substance and enzymically prepared substance used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120194A (en) * 1976-04-01 1977-10-08 Mitsubishi Chem Ind Ltd Enzymatic preparation of oligonucleotide having known base sequence
JPS5836396A (en) * 1981-08-24 1983-03-03 Agency Of Ind Science & Technol Preparation of oligoribonucleotide
JPH02227077A (en) * 1988-11-07 1990-09-10 Nippon Shinyaku Co Ltd Immobilized enzyme and utilizing method of the enzyme
JPH05219978A (en) * 1992-02-14 1993-08-31 Yamasa Shoyu Co Ltd Enzymic production of nucleic acid-related substance and enzymically prepared substance used therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6014013803; Hartman et al.: Biopolymers Vol.20, p.2635-2648(1981) *
JPN6014013804; Breaker et al.: Biochemistry Vol.32,No.35, p.9125-9128(1993) *
JPN6014013806; Breaker et al.: Nucleic Acids Research Vol.18,No.10, p.3085-3086(1990) *
JPN6014013807; Doki Akad Nauk SSSR Vol.258,No.5, p.1242-1245(1981) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355334A (en) * 2018-12-06 2019-02-19 江苏省农业科学院 A method of preparing poly IC

Similar Documents

Publication Publication Date Title
Van Dijk et al. Library preparation methods for next-generation sequencing: tone down the bias
Chen et al. Nucleic acid modifications in regulation of gene expression
EP2546361B1 (en) Method of amplifying target nucleic acid with reduced amplification bias and method for determining relative amount of target nucleic acid in sample
JP6894501B2 (en) Isothermal nucleic acid self-amplification method
EP1871897B1 (en) Methods for production of oligonucleotides
NO20053465D0 (en) Paving of small nucleic acids
JP2005517438A5 (en)
WO2004007718A3 (en) Rna-interference by single-stranded rna molecules
JP2005517432A5 (en)
Wang et al. Preparation of small RNAs using rolling circle transcription and site-specific RNA disconnection
MX2007004686A (en) Multidomain rna molecules comprising at least one aptamer for delivering double stranded rna to pest organisms.
TW201840855A (en) Compositions and methods for template-free enzymatic nucleic acid synthesis
JP2007531528A (en) Method for amplifying a nucleic acid sequence using a promoter template
CN104928351B (en) The method of 5 hydroxymethyl cytosines in a kind of polymerase chain reaction detection DNA of boric acid mediation
CN113943764A (en) Method for preparing double-stranded RNA
Patra et al. High fidelity base pairing at the 3′-terminus
US10717759B2 (en) Non-enzymatic, salt-mediated synthesis of polynucleic acids
JP2011055719A (en) Method for synthesizing polynucleotide
EP1084266A2 (en) 5&#39;-modified nucleotides and the application thereof in molecular biology and medicine
Hefner et al. Increased potency and longevity of gene silencing using validated Dicer substrates
Zhu et al. Conformation locking of the pentose ring in nucleotide monophosphate coordination polymers via π–π stacking and metal-ion coordination
WO2021262919A3 (en) 5-halouracil-modified micrornas and their use in the treatment of cancer
JP2021534746A (en) DNA synthesis with improved yield
Arora et al. Cancer RNome: Nature & Evolution
Iijima et al. Modified oligodeoxynucleotide primers for reverse-transcription of target RNAs that can discriminate among length variants at the 3′-terminus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140730