JP2011055315A - Elastic wave element and electronic apparatus employing the same - Google Patents

Elastic wave element and electronic apparatus employing the same Download PDF

Info

Publication number
JP2011055315A
JP2011055315A JP2009203248A JP2009203248A JP2011055315A JP 2011055315 A JP2011055315 A JP 2011055315A JP 2009203248 A JP2009203248 A JP 2009203248A JP 2009203248 A JP2009203248 A JP 2009203248A JP 2011055315 A JP2011055315 A JP 2011055315A
Authority
JP
Japan
Prior art keywords
side wall
lid
acoustic wave
electrode
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009203248A
Other languages
Japanese (ja)
Other versions
JP5338575B2 (en
Inventor
Koji Kawakita
晃司 川北
Eiji Kawamoto
英司 川本
Toru Yamaji
徹 山路
Shinji Harada
真二 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009203248A priority Critical patent/JP5338575B2/en
Publication of JP2011055315A publication Critical patent/JP2011055315A/en
Application granted granted Critical
Publication of JP5338575B2 publication Critical patent/JP5338575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the mechanical strength of an elastic wave element 1. <P>SOLUTION: The elastic wave element 1 includes: an internal electrode 4 which is provided on a piezoelectric substrate 2 and electrically connected to an IDT electrode 3; a side wall 5 which is provided around the IDT electrode 3 on an upper surface of the piezoelectric substrate 2 or on an upper surface of the internal electrode 4; a cover body 7 which is provided on the side wall 5 so as to cover a space 8 on the IDT electrode 3 and provided inside rather than an outer edge of an upper surface of the side wall 5; and an adhesive layer 6 provided between the cover body 7 and the side wall 5. The adhesive layer 6 is formed to be protruded outside rather than an outer edge of the cover body 7 when watched from the upside. Tight contact between the side wall 5 and an insulator 10 is improved by the adhesive layer 6, and release on a boundary face thereof is suppressed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、弾性波素子とこれを用いた携帯電話等の電子機器に関するものである。   The present invention relates to an acoustic wave device and an electronic device such as a mobile phone using the same.

以下、従来の弾性波素子について図7を用いて説明する。図7は、従来の弾性波素子の断面模式図である。   Hereinafter, a conventional acoustic wave device will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view of a conventional acoustic wave device.

図7において、従来の弾性波素子101として、圧電基板102と、この圧電基板102の上に設けられたIDT電極103とを備え、このIDT電極103を外部環境から保護すべく、IDT電極103を覆うように絶縁体110を圧電基板102上に形成するチップサイズパッケージ素子が知られている。   In FIG. 7, as a conventional acoustic wave element 101, a piezoelectric substrate 102 and an IDT electrode 103 provided on the piezoelectric substrate 102 are provided. In order to protect the IDT electrode 103 from the external environment, the IDT electrode 103 is provided. A chip size package element in which an insulator 110 is formed on a piezoelectric substrate 102 so as to cover it is known.

この従来の弾性波素子101は、圧電基板102の上に設けられると共にIDT電極103に電気的に接続された例えばアルミニウムからなる内部電極104と、圧電基板101の上であってIDT電極103の周囲に設けられた側壁105と、この側壁105の上に接着層106を介してIDT電極103上の空間108を覆うように設けられた蓋体107とを備える。さらに、従来の弾性波素子101は、蓋体107の上に設けられた例えば銅スパッタ膜からなる蓋体下地層113と、この側壁下地層113の上に設けられた例えば銅メッキからなる蓋体補強層114とを設けることにより、蓋体107の補強を図っていた。   The conventional acoustic wave element 101 is provided on the piezoelectric substrate 102 and electrically connected to the IDT electrode 103, for example, an internal electrode 104 made of aluminum, and on the piezoelectric substrate 101 and around the IDT electrode 103. And a lid body 107 provided on the side wall 105 so as to cover the space 108 on the IDT electrode 103 with an adhesive layer 106 interposed therebetween. Further, the conventional acoustic wave element 101 includes a lid base layer 113 made of, for example, a copper sputtered film provided on the lid 107, and a lid made of, for example, copper plating provided on the sidewall base layer 113. The lid 107 was reinforced by providing the reinforcing layer 114.

尚、この出願に関する先行文献として、例えば特許文献1が知られている。   For example, Patent Document 1 is known as a prior document relating to this application.

国際公開第2006/106831号International Publication No. 2006/106831

上記従来の弾性波素子101において、側壁105として、IDT電極103を溶かしにくい有機溶剤でパターニングできる材料、例えば、ポリイミドを用いていた。一方、絶縁体110は例えばエポキシ系樹脂で形成する場合、側壁105と絶縁体110との密着性が弱く、これらの境界面で剥離が発生する。この為、弾性波素子101の機械的強度が劣化するという問題があった。   In the conventional acoustic wave device 101, a material that can be patterned with an organic solvent that hardly dissolves the IDT electrode 103, for example, polyimide, is used for the sidewall 105. On the other hand, when the insulator 110 is formed of, for example, an epoxy resin, the adhesion between the side wall 105 and the insulator 110 is weak, and peeling occurs at the boundary surface between them. For this reason, there is a problem that the mechanical strength of the acoustic wave element 101 is deteriorated.

そこで、本発明は、弾性波素子の機械的強度を向上させることを目的とする。   Accordingly, an object of the present invention is to improve the mechanical strength of an acoustic wave device.

上記目的を達成するために、本発明の弾性波素子は、圧電基板と、この圧電基板の上に設けられたIDT電極と、圧電基板の上であってIDT電極の周囲に設けられた側壁と、この側壁の上にIDT電極上の空間を覆うように設けられると共に側壁の上面の外縁部より内側に設けられた蓋体と、蓋体と側壁との間に設けられた接着層と、圧電基板、蓋体、及び側壁の上に設けられた絶縁体とを備え、接着層は、蓋体の外縁部より外側に突出するように形成されたことを特徴とする。   In order to achieve the above object, an acoustic wave device of the present invention includes a piezoelectric substrate, an IDT electrode provided on the piezoelectric substrate, and a sidewall provided on the piezoelectric substrate and around the IDT electrode. A lid provided on the side wall so as to cover the space on the IDT electrode and provided on the inner side of the outer edge of the upper surface of the side wall; an adhesive layer provided between the lid and the side wall; And an insulating layer provided on the side wall, and the adhesive layer is formed so as to protrude outward from the outer edge of the lid.

以上のように本発明の弾性波素子における接着層は、絶縁体に対する接着力が側壁より大きい材料で構成されており、この接着層によって側壁と絶縁体との密着性が向上し、これらの境界面での剥離を抑制する。即ち、弾性波素子の機械的強度を向上させることができるのである。   As described above, the adhesive layer in the acoustic wave device according to the present invention is made of a material having a larger adhesive force to the insulator than the side wall, and this adhesive layer improves the adhesion between the side wall and the insulator. Suppresses peeling on the surface. That is, the mechanical strength of the acoustic wave element can be improved.

本発明の実施の形態1における弾性波素子の断面模式図Sectional schematic diagram of an acoustic wave device according to the first embodiment of the present invention. 同弾性波素子の他の断面模式図Another cross-sectional schematic diagram of the same acoustic wave device (a)から(c)は同弾性波素子の製造工程の説明図(A)-(c) is explanatory drawing of the manufacturing process of the same acoustic wave element (d)から(g)は同弾性波素子の製造工程の説明図(D)-(g) is explanatory drawing of the manufacturing process of the elastic wave element. (h)から(k)は同弾性波素子の製造工程の説明図(H) to (k) are explanatory diagrams of the manufacturing process of the acoustic wave device. 同弾性波素子を適用した弾性波フィルタの絶縁体等を省略した上面模式図Schematic top view of the elastic wave filter to which the same acoustic wave element is applied omitting insulators, etc. 従来の弾性波素子の断面模式図Cross-sectional schematic diagram of a conventional acoustic wave device

(実施の形態1)
以下、本発明の実施の形態1における弾性波素子について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the acoustic wave device according to the first embodiment of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における弾性波素子1の断面模式図である。   FIG. 1 is a schematic cross-sectional view of an acoustic wave device 1 according to Embodiment 1 of the present invention.

図1において、弾性波素子1は、圧電基板2と、この圧電基板2の上面(圧電基板2の主面)に設けられたIDT(InterDigital Transducer)電極3とを備え、このIDT電極3を外部環境から保護すべく、IDT電極3を覆うように絶縁体10を圧電基板2上に形成するチップサイズパッケージ素子である。   In FIG. 1, an acoustic wave device 1 includes a piezoelectric substrate 2 and an IDT (InterDigital Transducer) electrode 3 provided on the upper surface of the piezoelectric substrate 2 (the main surface of the piezoelectric substrate 2). This is a chip size package element in which an insulator 10 is formed on the piezoelectric substrate 2 so as to cover the IDT electrode 3 in order to protect it from the environment.

この弾性波素子1は、圧電基板2の上に設けられると共にIDT電極3に電気的に接続された内部電極4と、圧電基板2の上面若しくは内部電極4の上面であってIDT電極3の周囲に設けられた側壁5と、この側壁5の上にIDT電極3上の空間8を覆うように設けられると共に側壁5の上面の外縁部より内側に設けられた蓋体7と、蓋体7と側壁5との間に設けられた接着層6とを備える。   The acoustic wave element 1 is provided on the piezoelectric substrate 2 and electrically connected to the IDT electrode 3, and the upper surface of the piezoelectric substrate 2 or the upper surface of the internal electrode 4 around the IDT electrode 3. A side wall 5 provided on the side wall 5, a lid body 7 provided on the side wall 5 so as to cover the space 8 on the IDT electrode 3, and provided on the inner side of the outer edge of the upper surface of the side wall 5, And an adhesive layer 6 provided between the side walls 5.

また、弾性波素子1は、蓋体7の機械的強度を向上すべく、蓋体7の上に蓋体下地層13を介して設けられたメッキ金属からなる蓋体補強層14も備える。   The acoustic wave device 1 also includes a lid reinforcing layer 14 made of a plated metal provided on the lid 7 via a lid base layer 13 in order to improve the mechanical strength of the lid 7.

さらに、上記接着層6は、上方から見て蓋体7の外縁部より外側に突出するように形成されている。   Further, the adhesive layer 6 is formed so as to protrude outward from the outer edge portion of the lid body 7 when viewed from above.

また、図2は本発明の実施の形態1における弾性波素子1の接続電極12を含む断面模式図である。   FIG. 2 is a schematic cross-sectional view including the connection electrode 12 of the acoustic wave device 1 according to Embodiment 1 of the present invention.

図2において、弾性波素子1は、内部電極4の上であって空間8からみて側壁5の外側、側壁5の外側面、及び接着層6の上に渡って設けられた電極下地層9と、この電極下地層9の上に絶縁体10を貫通するように設けられて外部電極11とIDT電極3とを電気的に接続するメッキ金属からなる接続電極12とを備える。   In FIG. 2, the acoustic wave element 1 includes an electrode base layer 9 provided on the inner electrode 4 and over the outer side of the side wall 5, the outer side surface of the side wall 5, and the adhesive layer 6 as viewed from the space 8. A connection electrode 12 made of plated metal is provided on the electrode base layer 9 so as to penetrate the insulator 10 and electrically connect the external electrode 11 and the IDT electrode 3.

さらにまた、弾性波素子1は、側壁下地層20を介して側壁5の外側面を覆うように設けられたメッキ金属からなると共に蓋体補強層と電気的に接続された側壁補強層15を備えていても良い。   Furthermore, the acoustic wave device 1 includes a side wall reinforcing layer 15 made of a plated metal provided so as to cover the outer surface of the side wall 5 through the side wall underlayer 20 and electrically connected to the lid reinforcing layer. May be.

以下、弾性波素子1の各構成について詳述する。   Hereinafter, each component of the acoustic wave device 1 will be described in detail.

圧電基板2は、板厚100〜350μm程度の単結晶圧電体からなり、例えば、水晶、タンタル酸リチウム系、ニオブ酸リチウム系、又はニオブ酸カリウム系の基板である。   The piezoelectric substrate 2 is made of a single crystal piezoelectric body having a thickness of about 100 to 350 μm, and is, for example, a quartz crystal, lithium tantalate, lithium niobate, or potassium niobate substrate.

IDT電極3は、膜厚0.1〜0.5μm程度の櫛形電極であり、例えば、アルミニウム、銅、銀、金、チタン、タングステン、白金、クロム、モリブデンの少なくとも一種からなる単体金属、又はこれらを主成分とする合金又はそれらの金属が積層された構成である。   The IDT electrode 3 is a comb-shaped electrode having a film thickness of about 0.1 to 0.5 μm. For example, a single metal made of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, and molybdenum, or these An alloy having a main component of or a structure in which these metals are laminated.

内部電極4は、IDT電極3と外部電極11とを電気的に接続する導体であり、例えば、アルミニウム、銅、銀からなる単体金属、又はこれらを主成分とする合金又はそれらの金属が積層された構成である。   The internal electrode 4 is a conductor that electrically connects the IDT electrode 3 and the external electrode 11, for example, a single metal made of aluminum, copper, or silver, an alloy containing these as a main component, or these metals are laminated. It is a configuration.

側壁5は、IDT電極3の周囲の少なくとも一部を囲む高さが5〜15μm程度の側壁で、所定の形状に加工することが容易なことから樹脂を用いている。特に、側壁5として感光性樹脂を用いることで圧電基板上に複数個の弾性波素子を作るための側壁5を精度良く所望の形状に形成することが可能である。感光性樹脂としては、感光性ポリイミド樹脂、感光性エポキシ樹脂、感光性アクリレート樹脂等、感光性を有する樹脂材料であれば様々な材料を用いることが可能である。感光性ポリイミド樹脂はガラス転移点が高く、高温環境下での信頼性が高いため、側壁5として特に好ましい。   The side wall 5 is a side wall having a height of about 5 to 15 μm surrounding at least a part of the periphery of the IDT electrode 3, and resin is used because it can be easily processed into a predetermined shape. In particular, by using a photosensitive resin as the side wall 5, the side wall 5 for making a plurality of acoustic wave elements on the piezoelectric substrate can be accurately formed in a desired shape. As the photosensitive resin, various materials can be used as long as they are photosensitive resin materials such as a photosensitive polyimide resin, a photosensitive epoxy resin, and a photosensitive acrylate resin. Photosensitive polyimide resin is particularly preferable as the side wall 5 because it has a high glass transition point and high reliability in a high temperature environment.

接着層6は、厚みが1〜10μm程度の接着剤で、単位面積当たりの絶縁体10に対する接着力が側壁5より大きい材料から構成され、例えば、エポキシ系、ポリフェニレン系、若しくはブタジエン系の樹脂、またはこれらの混合樹脂からなる。   The adhesive layer 6 is an adhesive having a thickness of about 1 to 10 μm, and is made of a material having an adhesive force with respect to the insulator 10 per unit area larger than that of the side wall 5. For example, an epoxy-based, polyphenylene-based, or butadiene-based resin, Or it consists of these mixed resin.

蓋体7は、接着層6を介して側壁5の上部に接着されることにより保持された厚みが1〜10μm程度の天板であり、圧電基板2および側壁5とともにIDT電極3を収容している。この蓋体7には、金属を用いると機械的強度に優れ、かつ導電性を有することにより蓋体7の電位を制御することが可能となる点で好ましく、さらに銅を用いると単結晶の圧電基板2と線膨張係数が略等しい点でより好ましい。蓋体7は箔状のものを用いることができ、さらにあらかじめ接着層6を形成していて、その後に側壁5の上部に貼り付ける構成にすると、製造上の取り扱いが便利である。   The lid 7 is a top plate having a thickness of about 1 to 10 μm held by being bonded to the upper portion of the side wall 5 through the adhesive layer 6, and accommodates the IDT electrode 3 together with the piezoelectric substrate 2 and the side wall 5. Yes. For the lid 7, it is preferable to use a metal because it is excellent in mechanical strength and has electrical conductivity, so that the potential of the lid 7 can be controlled. It is more preferable in that the linear expansion coefficient is substantially equal to the substrate 2. The lid 7 can be a foil-like one. Further, if the adhesive layer 6 is formed in advance and is then attached to the upper part of the side wall 5, the handling in manufacturing is convenient.

空間8は、圧電基板2、側壁5および蓋体7によって囲まれた領域である。この空間8は気密性を有するものであり、その内部にIDT電極3が収容されている。この空間8内は通常気圧の空気であっても構わないが、減圧密封されているとIDT電極3の腐食を防止できるので、なお好ましい。   The space 8 is a region surrounded by the piezoelectric substrate 2, the side wall 5, and the lid body 7. This space 8 has airtightness, and the IDT electrode 3 is accommodated therein. The space 8 may be air at normal atmospheric pressure, but it is more preferable that the space 8 is sealed under reduced pressure because corrosion of the IDT electrode 3 can be prevented.

電極下地層9は、内部電極4上であって側壁5の外側、即ち、側壁5の空間8の逆側に形成されると共に側壁5の外側面に形成された金属薄膜であり、その材質としては、チタン、銅、ニッケル、クロム、マグネシウムの少なくとも一種からなる単体金属、又はこれらを主成分とする合金など、内部電極4よりもメッキ液溶解性の低い材質からなる。特にチタンは密着性が高いので電極下地層9として好ましく、電極下地層9をチタンの上部に銅を形成する2層構造にすると、後述する接続電極12が形成しやすく好ましい。   The electrode underlayer 9 is a metal thin film formed on the inner electrode 4 and outside the side wall 5, that is, on the opposite side of the space 8 of the side wall 5 and on the outer surface of the side wall 5. Is made of a material having a lower plating solution solubility than the internal electrode 4, such as a single metal composed of at least one of titanium, copper, nickel, chromium, and magnesium, or an alloy containing these as a main component. Titanium is particularly preferable as the electrode base layer 9 because of its high adhesion, and it is preferable that the electrode base layer 9 has a two-layer structure in which copper is formed on top of titanium so that a connection electrode 12 described later can be easily formed.

絶縁体10は、圧電基板2の上であって蓋体補強層14を覆うように形成されている。さらに、この絶縁体10は、圧電基板2の主面上全体を覆うことにより機械的衝撃等からIDT電極3等を保護する機能を有している。この絶縁体10の材質としては、熱硬化性樹脂を用いると取り扱い性に優れる点で好ましく、エポキシ樹脂は耐熱性および気密性の点で特に好ましく、さらにエポキシ樹脂中に無機フィラーを含有させることで線膨張係数を低減することができ、なお好ましい。無機フィラーとしては、アルミナ粉末、二酸化珪素粉末、酸化マグネシウム粉末等を用いることができる。なお、これらの粉末に限らず様々な無機系材料の使用が可能である。   The insulator 10 is formed on the piezoelectric substrate 2 so as to cover the lid reinforcing layer 14. Further, the insulator 10 has a function of protecting the IDT electrode 3 and the like from a mechanical impact or the like by covering the entire main surface of the piezoelectric substrate 2. As the material of the insulator 10, use of a thermosetting resin is preferable in terms of excellent handleability, and an epoxy resin is particularly preferable in terms of heat resistance and airtightness. Further, by including an inorganic filler in the epoxy resin. The linear expansion coefficient can be reduced, and still more preferable. As the inorganic filler, alumina powder, silicon dioxide powder, magnesium oxide powder, or the like can be used. In addition to these powders, various inorganic materials can be used.

外部電極11は、絶縁体10の外部に形成され、接続電極12と電気的に接続する電極である。本実施の形態においては、外部電極11と側壁5との間に絶縁体10を形成することにより、外部電極11は側壁5とは直接接しない構成となっている。   The external electrode 11 is an electrode that is formed outside the insulator 10 and is electrically connected to the connection electrode 12. In the present embodiment, the insulator 10 is formed between the external electrode 11 and the side wall 5 so that the external electrode 11 is not in direct contact with the side wall 5.

接続電極12は、電極下地層9を介して内部電極4上に電解メッキ処理により形成された電極である。接続電極12の材質としては、銅、金、銀、白金、ニッケルからなる単体金属、又はこれらを主成分とする合金が考えられるが、銅を用いると機械的強度に優れ、かつ線膨張係数を圧電基板2と整合することができるため好ましい。尚、この接続電極12は、内部電極4とは電気的に接続されている。ただ、接続電極12が入出力端子に接続される場合は、蓋体7、蓋体下地層13、及び蓋体補強層14とは電気的に絶縁状態となる。一方、接続電極12がグランド端子に接続される場合は、接続電極12を蓋体7、蓋体下地層13、及び蓋体補強層14に接続することで、グランド電位の安定を図ることができる。   The connection electrode 12 is an electrode formed by electrolytic plating on the internal electrode 4 through the electrode base layer 9. As the material of the connection electrode 12, a single metal made of copper, gold, silver, platinum, nickel, or an alloy containing these as a main component can be considered. However, when copper is used, it has excellent mechanical strength and has a linear expansion coefficient. This is preferable because it can be aligned with the piezoelectric substrate 2. The connection electrode 12 is electrically connected to the internal electrode 4. However, when the connection electrode 12 is connected to the input / output terminal, the lid 7, the lid base layer 13, and the lid reinforcing layer 14 are electrically insulated. On the other hand, when the connection electrode 12 is connected to the ground terminal, the ground potential can be stabilized by connecting the connection electrode 12 to the lid 7, the lid base layer 13, and the lid reinforcement layer 14. .

蓋体下地層13は蓋体7上に形成された金属薄膜である。蓋体下地層13としては、チタン、銅、ニッケル、クロム、マグネシウムの少なくとも一種からなる単体金属、又はこれらを主成分とする合金を用いることができる。特にチタンは密着性が高いので蓋体下地層13として好ましく、蓋体下地層13をチタンの上部に銅を形成する2層構造にすると、後述する蓋体補強層14が形成しやすく好ましい。この蓋体下地層13は、電解メッキの下地となるものである。   The lid base layer 13 is a metal thin film formed on the lid 7. As the lid base layer 13, a single metal made of at least one of titanium, copper, nickel, chromium, and magnesium, or an alloy containing these as main components can be used. Titanium is particularly preferable as the lid base layer 13 because of its high adhesion, and the lid base layer 13 having a two-layer structure in which copper is formed on top of titanium is preferable because a lid reinforcing layer 14 to be described later is easily formed. The lid base layer 13 is a base for electrolytic plating.

蓋体補強層14は、蓋体下地層13の上面に電解メッキ処理により厚みが20〜40μm程度となるように形成された層であり、その材質としては、銅、金、銀、白金、ニッケルからなる単体金属、又はこれらを主成分とする合金が考えられるが、銅を用いると機械的強度に優れ、かつ線膨張係数を圧電基板2と整合することができるため好ましい。   The lid reinforcing layer 14 is a layer formed on the upper surface of the lid base layer 13 by electrolytic plating so as to have a thickness of about 20 to 40 μm, and the material thereof is copper, gold, silver, platinum, nickel However, it is preferable to use copper because copper is excellent in mechanical strength and the linear expansion coefficient can be matched with that of the piezoelectric substrate 2.

側壁下地層20は、圧電基板2上であって空間8からみて側壁5の外側、即ち、側壁5の空間8の逆側に形成されると共に側壁5の外側面若しくは上面に形成された金属薄膜であり、その材質としては、チタン、銅、ニッケル、クロム、マグネシウムの少なくとも一種からなる単体金属、又はこれらを主成分とする合金など、内部電極4よりもメッキ液溶解性の低い材質からなる。特にチタンは密着性が高いので側壁下地層20として好ましく、側壁下地層20をチタンの上部に銅を形成する2層構造にすると、側壁補強層15が形成しやすく好ましい。   The side wall underlayer 20 is formed on the piezoelectric substrate 2 on the outer side of the side wall 5 when viewed from the space 8, that is, on the opposite side of the side wall 5 from the space 8 and on the outer surface or upper surface of the side wall 5. The material is made of a material having lower solubility in the plating solution than the internal electrode 4 such as a single metal composed of at least one of titanium, copper, nickel, chromium, and magnesium, or an alloy containing these as a main component. Titanium is particularly preferable as the side wall underlayer 20 because of its high adhesion, and it is preferable that the side wall underlayer 20 has a two-layer structure in which copper is formed on top of titanium so that the side wall reinforcing layer 15 can be easily formed.

側壁補強層15は、蓋体補強層14と電気的に接続されると共に側壁下地層20を覆う様に電解メッキ処理により厚みが20〜40μm程度となるように形成された層であり、その材質としては、銅、金、銀、白金、ニッケルからなる単体金属、又はこれらを主成分とする合金が考えられるが、銅を用いると機械的強度に優れ、かつ線膨張係数を圧電基板2と整合することができるため好ましい。   The side wall reinforcing layer 15 is a layer that is electrically connected to the lid body reinforcing layer 14 and is formed to have a thickness of about 20 to 40 μm by electrolytic plating so as to cover the side wall underlayer 20. For example, a single metal made of copper, gold, silver, platinum, or nickel, or an alloy containing these as a main component can be considered. However, when copper is used, the mechanical strength is excellent and the linear expansion coefficient matches that of the piezoelectric substrate 2. This is preferable because it can be performed.

この側壁補強層15がメッキ金属から構成されるので、弾性波素子1の外部から側壁5を介して湿気が侵入することを抑制する。これにより、弾性波素子1が経時的に特性劣化することを防止する。また、この側壁補強層15により側壁5の機械的強度を向上させることで、弾性波素子1の耐衝撃性を向上させることができる。   Since the side wall reinforcing layer 15 is made of a plated metal, moisture can be prevented from entering from the outside of the acoustic wave element 1 through the side wall 5. This prevents the acoustic wave element 1 from deteriorating in characteristics over time. Further, by improving the mechanical strength of the side wall 5 by the side wall reinforcing layer 15, the impact resistance of the acoustic wave device 1 can be improved.

以上の構成の弾性波素子1において、接着層6は、蓋体7の外縁部より外側に突出するように形成され、この接着層6によって側壁5と絶縁体10との密着性が向上し、これらの境界面での剥離を抑制する。即ち、弾性波素子1の機械的強度を向上させることができるのである。   In the acoustic wave device 1 having the above configuration, the adhesive layer 6 is formed so as to protrude outward from the outer edge portion of the lid body 7, and the adhesiveness between the side wall 5 and the insulator 10 is improved by the adhesive layer 6, The peeling at these boundary surfaces is suppressed. That is, the mechanical strength of the acoustic wave device 1 can be improved.

以上のように構成された実施の形態1における弾性波素子の製造方法について、以下に説明する。   A method for manufacturing the acoustic wave device according to the first embodiment configured as described above will be described below.

図3(a)〜図5(k)は、実施の形態1における弾性波素子1の製造工程を示す図である。   FIG. 3A to FIG. 5K are diagrams showing manufacturing steps of the acoustic wave device 1 according to the first embodiment.

まず、圧電基板2の表面に、レジストを用いたフォトリソグラフィ技術にて、複数のIDT電極3をスパッタ形成すると共に、内部電極4を蒸着形成する。   First, a plurality of IDT electrodes 3 are formed by sputtering on the surface of the piezoelectric substrate 2 by a photolithography technique using a resist, and the internal electrodes 4 are formed by vapor deposition.

次に、図3(b)に示すように、感光性のポリイミド系樹脂16を圧電基板2にスピンコート法、ディスペンス法、又はスクリーン印刷法等の膜形成方法によりIDT電極3及び内部電極4を覆って圧電基板2の主面の全面に形成する。特にスピンコート法は均一な膜厚を形成する方法として好ましい。   Next, as shown in FIG. 3B, the IDT electrode 3 and the internal electrode 4 are formed on the piezoelectric substrate 2 by a film forming method such as spin coating, dispensing, or screen printing on the piezoelectric substrate 2. Covering and forming on the entire main surface of the piezoelectric substrate 2. In particular, the spin coating method is preferable as a method for forming a uniform film thickness.

そして、この上面から露光、現像を行い、そして熱硬化させることにより、図3(c)に示すように、IDT電極3を囲む側壁5を形成する。尚、側壁5を、所定の形状に加工した後、必要に応じて加熱処理を施し、材料の硬化を促進させる。   Then, exposure, development and thermal curing are performed from the upper surface, thereby forming a side wall 5 surrounding the IDT electrode 3 as shown in FIG. In addition, after processing the side wall 5 into a predetermined shape, it heat-processes as needed, and accelerates | stimulates hardening of material.

さらに、図4(d)に示す様に、蓋体7となる金属箔17を、接着剤18を介して側壁5の上面に貼り合わせ、その上からレジスト(図示せず)を用いてフォトリソグラフィにより金属箔17を所定のパターン形状にエッチングし、レジストを除去することで、図4(e)の状態を得る。この図4(e)に示す状態において、図4(d)における金属箔17は、蓋体7と接着剤除去金属箔22とに分断される。ここで、側壁5の上面の全面に蓋体7を残さないようにしている。即ち、上方からみて蓋体7が側壁5の上面の外縁部より内側に形成される。これは、側壁5の外側面にも側壁下地層20を設ける場合、上方から見て蓋体7が側壁5の上面より外側に突出していると、この後の下地層19のスパッタ形成の際、側壁5の外側面に下地層19が付着しにくくなるという問題が生じるからである。また、接着剤除去金属箔22の端部は、上方からみて側壁5の上面の外縁部より内側かつ蓋体7より外側に位置していることが望ましい。これは、上方から見て接着剤除去金属箔22の端部が側壁5の上面の外縁部より外側に位置していると、この後の接着剤18の除去工程において、接着層6が側壁5の上面より外側に突出する可能性が大きくなるからである。即ち、接着剤除去金属箔22の端部を側壁5の上面の外縁部より内側にすることで、側壁5の外側面にも側壁下地層20を設ける場合、この後の下地層19のスパッタ形成の際、側壁5の外側面に下地層19が付着しにくくなることを防止している。   Further, as shown in FIG. 4D, a metal foil 17 to be the lid 7 is bonded to the upper surface of the side wall 5 through an adhesive 18, and photolithography is performed using a resist (not shown) from above. By etching the metal foil 17 into a predetermined pattern shape and removing the resist, the state of FIG. In the state shown in FIG. 4E, the metal foil 17 in FIG. 4D is divided into the lid 7 and the adhesive-removed metal foil 22. Here, the lid 7 is not left on the entire upper surface of the side wall 5. That is, when viewed from above, the lid body 7 is formed inside the outer edge portion of the upper surface of the side wall 5. This is because, when the side wall underlayer 20 is also provided on the outer side surface of the side wall 5, if the lid 7 protrudes outward from the upper surface of the side wall 5 when viewed from above, This is because the base layer 19 becomes difficult to adhere to the outer surface of the side wall 5. Further, it is desirable that the end portion of the adhesive removing metal foil 22 is located inside the outer edge portion of the upper surface of the side wall 5 and outside the lid body 7 as viewed from above. If the edge part of the adhesive removal metal foil 22 is located outside the outer edge part of the upper surface of the side wall 5 when viewed from above, the adhesive layer 6 is removed from the side wall 5 in the subsequent step of removing the adhesive 18. This is because the possibility of projecting outward from the upper surface of the substrate increases. That is, when the side wall underlayer 20 is also provided on the outer surface of the side wall 5 by setting the end of the adhesive removing metal foil 22 to the inner side of the outer edge of the upper surface of the side wall 5, the sputter formation of the subsequent underlayer 19 is performed. At this time, the base layer 19 is prevented from becoming difficult to adhere to the outer surface of the side wall 5.

ここで、側壁5と蓋体7の接着面積より側壁5と接着剤除去金属箔22の接着面が大きくなっている。   Here, the bonding surface of the side wall 5 and the adhesive-removed metal foil 22 is larger than the bonding area between the side wall 5 and the lid 7.

その後、図4(f)に示す様に、粘着テープ23を蓋体7及び接着剤除去金属箔22との上面の全面に貼り、粘着テープ23を蓋体7等から剥がすことで、図4(g)の状態を得る。このとき、粘着テープ23と蓋体7との接着力より、接着剤18を介しての側壁5と蓋体7の接着力が大きいので、蓋体7は側壁5の上にそのまま残る。一方、接着剤18を介しての側壁5と接着剤除去金属箔22との接着力より、粘着テープ23と接着剤除去金属箔22の接着力が大きいので、粘着テープ23を蓋体7等から剥がす際に接着剤除去金属箔22も一緒に剥がされる。これにより、図4(g)に示す様に、蓋体7と接着層6によってIDT電極3上の空間8を覆い、接着層6が蓋体7の外縁部より外側に突出するように形成される。図4(g)は、一例として接着層6が側壁5上面のほぼ全面に形成されている状態を示す。   Thereafter, as shown in FIG. 4 (f), the adhesive tape 23 is applied to the entire upper surface of the lid body 7 and the adhesive-removed metal foil 22, and the adhesive tape 23 is peeled off from the lid body 7 and the like. The state of g) is obtained. At this time, since the adhesive force between the side wall 5 and the lid body 7 through the adhesive 18 is larger than the adhesive force between the adhesive tape 23 and the lid body 7, the lid body 7 remains on the side wall 5 as it is. On the other hand, since the adhesive force between the adhesive tape 23 and the adhesive removing metal foil 22 is greater than the adhesive force between the side wall 5 and the adhesive removing metal foil 22 via the adhesive 18, the adhesive tape 23 is removed from the lid 7 or the like. At the time of peeling, the adhesive removing metal foil 22 is also peeled off together. As a result, as shown in FIG. 4G, the lid 8 and the adhesive layer 6 cover the space 8 on the IDT electrode 3, and the adhesive layer 6 is formed so as to protrude outward from the outer edge of the lid 7. The FIG. 4G shows a state where the adhesive layer 6 is formed on almost the entire upper surface of the side wall 5 as an example.

その次に、図5(h)に示す様に、圧電基板2の主面上の全面に下地層19をスパッタにより形成する。この下地層19の内、蓋体7の上面に形成された部分が蓋体下地層13となり、側壁5の外側面にもメッキ金属を形成する場合は、側壁5の外側面に形成された部分が側壁下地層20となる。   Next, as shown in FIG. 5H, a base layer 19 is formed on the entire main surface of the piezoelectric substrate 2 by sputtering. Of the foundation layer 19, the portion formed on the upper surface of the lid body 7 becomes the lid foundation layer 13, and when the plated metal is also formed on the outer surface of the side wall 5, the portion formed on the outer surface of the side wall 5. Becomes the sidewall underlayer 20.

そして、フォトリソグラフィ技術にてレジスト(図示せず)を電解メッキ成長させる部分を残して形成する。具体的には、レジストは、側壁下地層20となる下地層19の上部と、蓋体下地層13となる下地層19の上部は露出させ、その他の部分を覆うように形成される。そして、1度目の電解メッキ処理を施すことにより、側壁下地層20上に側壁補強層15を形成し、同時に、蓋体下地層13上にも蓋体補強層14を形成することにより、図5(i)に示す状態を得る。このように、蓋体補強層14と側壁補強層15を形成することにより蓋体7と側壁5を補強することができ、さらにこの側壁補強層15の形成を蓋体補強層14の形成と同時に行うために、効率よく側壁補強層15を形成することができる。   Then, a resist (not shown) is formed by photolithography technology, leaving a portion for electrolytic plating growth. Specifically, the resist is formed so that the upper part of the base layer 19 to be the side wall base layer 20 and the upper part of the base layer 19 to be the lid base layer 13 are exposed and the other parts are covered. Then, by performing the first electrolytic plating treatment, the side wall reinforcing layer 15 is formed on the side wall base layer 20, and at the same time, the lid body reinforcing layer 14 is also formed on the lid base layer 13, thereby forming FIG. The state shown in (i) is obtained. In this way, the lid body 7 and the side wall 5 can be reinforced by forming the lid body reinforcing layer 14 and the side wall reinforcing layer 15, and the side wall reinforcing layer 15 is formed simultaneously with the formation of the lid body reinforcing layer 14. Therefore, the side wall reinforcing layer 15 can be efficiently formed.

さらに、接続電極(図示せず)を形成する空間を除いて圧電基板2の主面側の全面にレジスト(図示せず)を形成する。ここでは、レジストは、蓋体補強層14や側壁補強層15の上面にも形成される。その後、2度目の電解メッキ処理を施すことにより、接続電極を形成したレジストを更に上まで成長させ、更に、レジストを除去する。   Further, a resist (not shown) is formed on the entire main surface side of the piezoelectric substrate 2 except for a space for forming the connection electrode (not shown). Here, the resist is also formed on the upper surfaces of the lid reinforcing layer 14 and the side wall reinforcing layer 15. Thereafter, by performing a second electrolytic plating treatment, the resist on which the connection electrodes are formed is grown further up, and the resist is removed.

また、接続電極(図示せず)の少なくとも1つと蓋体補強層14や側壁補強層15間のレジストを除去して、1度目の電解メッキ処理の工程で接続電極と蓋体補強層14又は側壁補強層15が接続するようにしても良い。こうすることで、蓋体7および蓋体補強層14又は側壁補強層15が電気的に浮いた状態を回避し、電位を安定させることができるものである。特にグランド端子となる接続電極と接続させることで、蓋体7および蓋体補強層14又は側壁補強層15をグランド電位とすることができ、IDT電極3をノイズから保護するシールド層としての役割を持たすことが可能となる。   Further, the resist between at least one of the connection electrodes (not shown) and the lid reinforcing layer 14 or the side wall reinforcing layer 15 is removed, and the connecting electrode and the lid reinforcing layer 14 or the side wall are removed in the first electrolytic plating process. The reinforcing layer 15 may be connected. By doing so, the state in which the lid 7 and the lid reinforcing layer 14 or the side wall reinforcing layer 15 are electrically floated can be avoided, and the potential can be stabilized. In particular, the lid 7 and the lid reinforcing layer 14 or the side wall reinforcing layer 15 can be set to the ground potential by being connected to the connection electrode serving as the ground terminal, and serve as a shield layer for protecting the IDT electrode 3 from noise. It can be held.

さらに、図5(j)に示すように、側壁下地層20間を電気的に絶縁状態にする。この下地層19の除去は、エッチングで行う。なお、蓋体補強層14又は側壁補強層15と接続電極を意図的にメッキにより接続させる場合には、蓋体補強層14又は側壁補強層15と接続電極(図示せず)間の下地層19の除去は行わない。   Furthermore, as shown in FIG. 5J, the side wall underlayer 20 is electrically insulated. The underlayer 19 is removed by etching. When the lid reinforcing layer 14 or the side wall reinforcing layer 15 and the connection electrode are intentionally connected by plating, the base layer 19 between the lid reinforcing layer 14 or the side wall reinforcing layer 15 and the connecting electrode (not shown). Is not removed.

さらにまた、図5(k)に示すように、接続電極(図示せず)の上面を露出させながら、その他の圧電基板2の主面および主面上の構造物を覆う絶縁体10を形成する。この絶縁体10の形成方法としては、印刷工法を用いる。なお、絶縁体10を接続電極と全く同じ高さに形成するためには、一度、接続電極の上面より高く絶縁体10を形成し、その後に絶縁体10を機械的に削る方法を用いることもできる。この場合において、圧電基板2の主面および接続電極(図示せず)も含めた主面上の全ての構造物を覆うように絶縁体10を形成した後に、機械的に絶縁体10を削ってもよい。なお、この機械的に絶縁体10を削る際に、接続電極を全く削らないで、絶縁体10と接続電極の高さを同一にすることは困難なので、接続電極も一部削ることになるが、この分を考慮して、接続電極を電解メッキ処理で形成する際に、最終的に必要になる高さより高く形成しておくとよい。なお、この様に、絶縁体10および接続電極を削ることにより、これらの上面の高さが同一になり、さらに平面度も高くなるので、実装時には好ましい構造になる。   Furthermore, as shown in FIG. 5 (k), the insulator 10 that covers the main surface of the other piezoelectric substrate 2 and the structure on the main surface is formed while exposing the upper surface of the connection electrode (not shown). . As a method for forming the insulator 10, a printing method is used. In order to form the insulator 10 at exactly the same height as the connection electrode, it is also possible to use a method in which the insulator 10 is once formed higher than the upper surface of the connection electrode and then the insulator 10 is mechanically shaved. it can. In this case, after the insulator 10 is formed so as to cover all the structures on the main surface including the main surface of the piezoelectric substrate 2 and connection electrodes (not shown), the insulator 10 is mechanically shaved. Also good. Note that when the insulator 10 is mechanically shaved, it is difficult to make the height of the insulator 10 and the connecting electrode the same without cutting the connecting electrode at all. Considering this, it is preferable to form the connection electrode higher than the height that is finally required when the connection electrode is formed by electrolytic plating. In this way, by cutting the insulator 10 and the connection electrode, the heights of these upper surfaces become the same, and the flatness also becomes higher.

尚、蓋体補強層14と側壁補強層15上において、1度目の電解メッキ処理工程後に形成するレジスト(図示せず)が絶縁体10を兼ねてもよい。   Note that a resist (not shown) formed after the first electrolytic plating process may also serve as the insulator 10 on the lid reinforcing layer 14 and the side wall reinforcing layer 15.

最後に、接続電極(図示せず)の上面と電気的に接続される外部電極(図示せず)を形成する。そして、ダイシングにより圧電基板2および絶縁体10を同時に切断することにより、集合基板から個片の弾性波素子1を得る。   Finally, an external electrode (not shown) that is electrically connected to the upper surface of the connection electrode (not shown) is formed. Then, the piezoelectric substrate 2 and the insulator 10 are simultaneously cut by dicing to obtain individual acoustic wave elements 1 from the collective substrate.

次に、実施の形態1の弾性波素子1を弾性波フィルタに適用したときの内部電極4と側壁5のパターン配置について、図面を参照しながら説明する。   Next, the pattern arrangement of the internal electrode 4 and the side wall 5 when the elastic wave element 1 of Embodiment 1 is applied to an elastic wave filter will be described with reference to the drawings.

図6は、実施の形態1における弾性波フィルタの内部電極4と側壁5のパターン配置を示す上面図である。尚、図6において、内部電極4のうち側壁5に隠れて表示されていない部分が存在している。また、図6において、内部電極4と側壁5の配置を明確化すべく、蓋体補強層14、絶縁体10、接続電極12等は省略している。   FIG. 6 is a top view showing a pattern arrangement of the internal electrode 4 and the side wall 5 of the acoustic wave filter in the first embodiment. In FIG. 6, there is a portion of the internal electrode 4 that is not displayed hidden behind the side wall 5. In FIG. 6, the lid reinforcing layer 14, the insulator 10, the connection electrode 12, and the like are omitted to clarify the arrangement of the internal electrode 4 and the side wall 5.

実施の形態1の弾性波素子1を適用した弾性波フィルタ21は、圧電基板2の表面において、入出力端子(図示せず)に接続された2個のパッド用内部電極4aと、この2個のパッド用内部電極4aの間に配線用内部電極4bを介して直列に接続された複数の直列IDT電極3aと、グランド端子(図示せず)に接続されたグランド用内部電極4cと、このグランド用内部電極4cと配線用パッド電極4bの間に接続された並列IDT電極3bを備える。   The elastic wave filter 21 to which the elastic wave element 1 of the first embodiment is applied has two pad internal electrodes 4a connected to input / output terminals (not shown) on the surface of the piezoelectric substrate 2, and the two A plurality of series IDT electrodes 3a connected in series via internal wiring electrodes 4b between the pad internal electrodes 4a, a ground internal electrode 4c connected to a ground terminal (not shown), and the ground The parallel IDT electrode 3b connected between the internal electrode 4c for wiring and the pad electrode 4b for wiring is provided.

また、図6に示す破線は、蓋体7の配置を示す。このように、蓋体7は、側壁5の上面の外縁部より内側に設けられている。また、接着層6は、図示はしていないが、蓋体7の外縁部より外側に突出するように側壁5の上面に形成される。   Moreover, the broken line shown in FIG. 6 shows the arrangement of the lid 7. Thus, the lid body 7 is provided inside the outer edge portion of the upper surface of the side wall 5. Although not shown, the adhesive layer 6 is formed on the upper surface of the side wall 5 so as to protrude outward from the outer edge of the lid body 7.

このように、接着層6は、蓋体7の外縁部より外側に突出するように形成され、この接着層6によって側壁5と絶縁体10との密着性が向上し、これらの境界面での剥離を抑制する。即ち、弾性波素子1の機械的強度を向上させることができるのである。   Thus, the adhesive layer 6 is formed so as to protrude outward from the outer edge portion of the lid body 7, and the adhesive layer 6 improves the adhesion between the side wall 5 and the insulator 10, and at these boundary surfaces. Suppresses peeling. That is, the mechanical strength of the acoustic wave device 1 can be improved.

尚、本実施の形態1の弾性波素子1を、ラダー型フィルタだけでなくDMSフィルタ等の他のフィルタ(図示せず)に適用しても構わない。さらに、弾性波素子1を、このフィルタと、フィルタに接続された半導体集積回路素子(図示せず)と、半導体集積回路素子(図示せず)に接続された再生装置とを備えた電子機器に適用しても良い。これにより、フィルタ、及び電子機器における通信品質を向上することができるのである。   The elastic wave element 1 according to the first embodiment may be applied not only to the ladder type filter but also to other filters (not shown) such as a DMS filter. Further, the acoustic wave element 1 is applied to an electronic apparatus including the filter, a semiconductor integrated circuit element (not shown) connected to the filter, and a reproducing device connected to the semiconductor integrated circuit element (not shown). It may be applied. Thereby, the communication quality in a filter and an electronic device can be improved.

本発明の弾性波素子は、弾性波素子の耐湿性を向上するという効果を有し、移動体通信機器などの電子機器に適用可能なものである。   The acoustic wave device of the present invention has an effect of improving the moisture resistance of the acoustic wave device, and can be applied to electronic devices such as mobile communication devices.

1 弾性波素子
2 圧電基板
3 IDT電極
4 内部電極
5 側壁
6 接着層
7 蓋体
8 空間
10 絶縁体
13 蓋体下地層
14 蓋体補強層
15 側壁補強層
20 側壁下地層
DESCRIPTION OF SYMBOLS 1 Elastic wave element 2 Piezoelectric substrate 3 IDT electrode 4 Internal electrode 5 Side wall 6 Adhesive layer 7 Lid body 8 Space 10 Insulator 13 Lid base layer 14 Lid base reinforcement layer 15 Side wall reinforcement layer 20 Side wall base layer

Claims (5)

圧電基板と、
前記圧電基板の上に設けられたIDT電極と、
前記圧電基板の上であって前記IDT電極の周囲に設けられた側壁と、
前記側壁の上に前記IDT電極上の空間を覆うように設けられると共に前記側壁の上面の外縁部より内側に設けられた蓋体と、
前記蓋体と前記側壁との間に設けられた接着層と、
前記圧電基板、前記蓋体、及び前記側壁の上に設けられた絶縁体とを備え、
前記接着層は、前記蓋体の外縁部より外側に突出するように形成された弾性波素子。
A piezoelectric substrate;
An IDT electrode provided on the piezoelectric substrate;
A sidewall provided on the piezoelectric substrate and around the IDT electrode;
A lid provided on the side wall so as to cover the space on the IDT electrode and provided on the inner side of the outer edge of the upper surface of the side wall;
An adhesive layer provided between the lid and the side wall;
The piezoelectric substrate, the lid, and an insulator provided on the side wall,
The adhesive layer is an acoustic wave device formed so as to protrude outward from an outer edge portion of the lid.
前記接着層は、前記側壁の上面の外縁部より内側に形成された請求項1に記載の弾性波素子。 The acoustic wave element according to claim 1, wherein the adhesive layer is formed inside an outer edge portion of the upper surface of the side wall. 前記接着層は、前記接着層の端部が前記側壁の上面の外縁部に沿うように形成された請求項1に記載の弾性波素子。 The acoustic wave element according to claim 1, wherein the adhesive layer is formed so that an end portion of the adhesive layer is along an outer edge portion of an upper surface of the side wall. 前記接着層は、前記絶縁体に対する単位面積あたりの接着力が前記側壁より大きい材料で構成された請求項1に記載の弾性波素子。 The acoustic wave device according to claim 1, wherein the adhesive layer is made of a material having an adhesive force per unit area with respect to the insulator larger than that of the side wall. 請求項1に記載の弾性波素子と、
前記弾性波素子に接続された半導体集積回路素子と、
前記半導体集積回路素子に接続された再生装置とを備えた電子機器。
The acoustic wave device according to claim 1;
A semiconductor integrated circuit element connected to the acoustic wave element;
An electronic apparatus comprising: a reproduction device connected to the semiconductor integrated circuit element.
JP2009203248A 2009-09-03 2009-09-03 Elastic wave device and electronic device using the same Active JP5338575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203248A JP5338575B2 (en) 2009-09-03 2009-09-03 Elastic wave device and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203248A JP5338575B2 (en) 2009-09-03 2009-09-03 Elastic wave device and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2011055315A true JP2011055315A (en) 2011-03-17
JP5338575B2 JP5338575B2 (en) 2013-11-13

Family

ID=43943854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203248A Active JP5338575B2 (en) 2009-09-03 2009-09-03 Elastic wave device and electronic device using the same

Country Status (1)

Country Link
JP (1) JP5338575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159465A1 (en) * 2014-04-14 2015-10-22 株式会社村田製作所 Electronic component and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342017B2 (en) * 2014-02-18 2018-06-13 スカイワークスフィルターソリューションズジャパン株式会社 Elastic wave device and ladder filter using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208665A (en) * 2006-02-01 2007-08-16 Fujitsu Media Device Kk Elastic wave device and method for manufacturing same
JP2008182292A (en) * 2007-01-23 2008-08-07 Fujitsu Media Device Kk Surface acoustic wave device
JP2008227748A (en) * 2007-03-09 2008-09-25 Fujitsu Media Device Kk Elastic wave device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208665A (en) * 2006-02-01 2007-08-16 Fujitsu Media Device Kk Elastic wave device and method for manufacturing same
JP2008182292A (en) * 2007-01-23 2008-08-07 Fujitsu Media Device Kk Surface acoustic wave device
JP2008227748A (en) * 2007-03-09 2008-09-25 Fujitsu Media Device Kk Elastic wave device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159465A1 (en) * 2014-04-14 2015-10-22 株式会社村田製作所 Electronic component and method for manufacturing same
US10637431B2 (en) 2014-04-14 2020-04-28 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method therefor

Also Published As

Publication number Publication date
JP5338575B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP2012084954A (en) Acoustic wave element and electronic device using the same
US8531254B2 (en) Elastic wave device
JP5117083B2 (en) Elastic wave device and manufacturing method thereof
US8334737B2 (en) Acoustic wave device and electronic apparatus using the same
US7259500B2 (en) Piezoelectric device
JP4311376B2 (en) Semiconductor device, semiconductor device manufacturing method, electronic component, circuit board, and electronic apparatus
JP2012182604A (en) Elastic wave filter component
US20060006760A1 (en) Surface acoustic wave device, its manufacturing method, and electronic circuit device
US8004160B2 (en) Acoustic wave device with adhesive layer and method of manufacturing the same
JP2002261582A (en) Surface acoustic wave device, its manufacturing method, and circuit module using the same
JP2011103645A (en) Acoustic wave device and electronic apparatus using the same
CN106487350B (en) Acoustic wave device and method for manufacturing the same
JP2012199833A (en) Electronic component, electronic device, and manufacturing method of electronic component
JP5521417B2 (en) Elastic wave device and electronic device using the same
JP2008135971A (en) Elastic wave device
JP6026829B2 (en) Surface acoustic wave device
JP5434138B2 (en) Surface acoustic wave component and manufacturing method thereof
JP5873311B2 (en) Elastic wave device and multilayer substrate
JP2007081555A (en) Surface acoustic wave device
KR20170032149A (en) Acoustic wave device and manufacturing method thereof
JP5338575B2 (en) Elastic wave device and electronic device using the same
JP2011023929A (en) Acoustic wave device and electronic apparatus using the same
KR20170024520A (en) Acoustic wave device and manufacturing method thereof
US20210297057A1 (en) Method for manufacturing electronic component module and electronic component module
JP5569473B2 (en) Electronic components, circuit boards and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250