JP2011052277A - Rare-earth-iron-based magnet powder for bond magnet and production method therefor - Google Patents

Rare-earth-iron-based magnet powder for bond magnet and production method therefor Download PDF

Info

Publication number
JP2011052277A
JP2011052277A JP2009202357A JP2009202357A JP2011052277A JP 2011052277 A JP2011052277 A JP 2011052277A JP 2009202357 A JP2009202357 A JP 2009202357A JP 2009202357 A JP2009202357 A JP 2009202357A JP 2011052277 A JP2011052277 A JP 2011052277A
Authority
JP
Japan
Prior art keywords
iron
magnet powder
rare earth
powder
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202357A
Other languages
Japanese (ja)
Other versions
JP5387242B2 (en
Inventor
Takashi Ishikawa
尚 石川
Shinichi Hayashi
真一 林
Kunio Watanabe
邦夫 渡辺
Koichi Yokozawa
公一 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009202357A priority Critical patent/JP5387242B2/en
Publication of JP2011052277A publication Critical patent/JP2011052277A/en
Application granted granted Critical
Publication of JP5387242B2 publication Critical patent/JP5387242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare-earth-iron-based magnet powder for a bond magnet, which is superior in the moldability of a composition prepared from the powder for the bond magnet, and in mechanical strength of the bond magnet, and to provide a production method therefor. <P>SOLUTION: The rare-earth-iron-based magnet powder has a film containing Fe, P, O and RE (RE is a rare earth element) with a film thickness of 100 nm or less on its surface. The amount of Fe which exists in the film in a metallic state is 2.0% or less when the amount is determined by measuring Fe2p<SB>3/2</SB>spectrum on the surface of the magnet powder with an X-ray photoelectron spectroscopy apparatus and then calculating the amount based on the area of the obtained spectrum profile. The film is formed by bringing the magnet powder into contact with a treatment liquid containing phosphoric acid, and then heating and drying the wet film at a particular temperature. The amount of Fe in the metallic state is reduced by the operation of repeating the treatment of contacting phosphoric acid and the heating and drying treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ボンド磁石用希土類−鉄系磁石粉末とその製造方法に関し、さらに詳しくは、ボンド磁石用組成物としたときの成形性やボンド磁石の機械強度に優れるボンド磁石用希土類−鉄系磁石粉末とその製造方法に関するものである。   The present invention relates to a rare earth-iron-based magnet powder for bonded magnets and a method for producing the same, and more particularly, a rare earth-iron-based magnet for bonded magnets having excellent formability and mechanical strength of bonded magnets when used as a bonded magnet composition. The present invention relates to a powder and a manufacturing method thereof.

近年、フェライト磁石、アルニコ磁石、希土類磁石などが、一般家電製品、通信・音響機器、医療機器、一般産業機器をはじめとする種々の製品にモーターやセンサーなどとして組込まれ、使用されている。これら磁石は、主に焼結法で製造されるが、脆く、薄肉化しにくいため複雑形状への成形は困難であり、また焼結時に15〜20%も収縮するため寸法精度を高められず、研磨等の後加工が必要で、用途面で大きな制約を受けている。   In recent years, ferrite magnets, alnico magnets, rare earth magnets, and the like have been incorporated and used as motors and sensors in various products including general household electrical appliances, communication / acoustic equipment, medical equipment, and general industrial equipment. Although these magnets are mainly manufactured by a sintering method, they are fragile and difficult to be thinned, so it is difficult to mold them into complex shapes. Also, since they shrink by 15 to 20% during sintering, the dimensional accuracy cannot be increased. Post-processing such as polishing is required, and there are significant restrictions in terms of application.

これに対し、ボンド磁石(樹脂結合型磁石)は、ポリアミド樹脂、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂、あるいは、硬化剤との併用によりエポキシ樹脂、ビス・マレイミドトリアジン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの熱硬化性樹脂をバインダーとし、これに磁石粉末を充填して容易に製造できるため、新しい用途開拓が繰り広げられている。   In contrast, bonded magnets (resin-bonded magnets) are thermoplastic resins such as polyamide resins and polyphenylene sulfide resins, or epoxy resins, bis-maleimide triazine resins, unsaturated polyester resins, vinyl esters when used in combination with curing agents. Since thermosetting resins such as resins are used as binders and can be easily manufactured by filling them with magnet powder, new applications are being developed.

こうしたボンド磁石の中でも、特に、希土類元素を含む鉄系磁石粉末を用いたボンド磁石は、磁石粉末と樹脂バインダーとを混合・混練した組成物を製造するとき混練機の負荷が大きく、組成物の粘性が増大することがある。そのため、このような組成物を射出成形法、押出成形法、または圧縮成形法などで成形しようとすると、成形性が悪く良好な成形品を得にくかった。これは磁石粉末による触媒作用でバインダー樹脂が変性することが主な原因であるから、磁性粉末に種々の表面処理を施すことによって緩和される。   Among such bonded magnets, in particular, a bonded magnet using an iron-based magnet powder containing a rare earth element has a large load on the kneader when producing a composition obtained by mixing and kneading a magnet powder and a resin binder. Viscosity may increase. For this reason, when such a composition is to be molded by an injection molding method, an extrusion molding method, a compression molding method, or the like, the moldability is poor and it is difficult to obtain a good molded product. This is mainly because the binder resin is denatured by the catalytic action of the magnet powder, and can be mitigated by subjecting the magnetic powder to various surface treatments.

表面処理としては、従来高温高湿度環境下での防錆を目的として、例えば、成形体表面に熱硬化性樹脂等のコーティング膜を形成することで発錆を抑制したり、また、成形体表面に燐酸塩含有塗料による被覆処理を施したりすることで発錆を抑制することが提案されている(例えば、特許文献1参照)。   As the surface treatment, for the purpose of preventing rust in a conventional high temperature and high humidity environment, for example, by forming a coating film such as a thermosetting resin on the surface of the molded body, rusting is suppressed, or the surface of the molded body It has been proposed to suppress rusting by applying a coating treatment with a phosphate-containing paint (for example, see Patent Document 1).

また、粉末表面への表面処理については、燐酸塩処理やクロム酸塩処理などの化成処理を行うこと(例えば、特許文献2参照)、高分子被膜を形成すること(例えば、特許文献3参照)、さらには、金属めっきをすること(例えば、特許文献4参照)などの技術も提案されている。   As for the surface treatment on the powder surface, chemical conversion treatment such as phosphate treatment or chromate treatment is performed (for example, see Patent Document 2), and a polymer film is formed (for example, see Patent Document 3). Furthermore, techniques such as metal plating (see, for example, Patent Document 4) have also been proposed.

このような表面処理も、単に発錆の抑制だけでなく、樹脂の変性を抑制する効果を持っている。しかし、被膜形成により充分な効果を得るためには、数10μm程度の膜厚にする必要があるとされ、このような厚い膜では磁気特性を発現する材料の体積分率が低下し、磁気特性の低下を招いてしまう。また、上記の方法では、被膜を形成する際に微粉末同士の凝集も起こることから、異方性の磁石粉末の場合には磁化容易方向を揃えるのが困難になり、磁石成形体の磁気特性の低下が避けられなかった。   Such a surface treatment also has an effect of suppressing not only rusting but also resin modification. However, in order to obtain a sufficient effect by forming a film, it is necessary to make the film thickness about several tens of μm. With such a thick film, the volume fraction of the material that exhibits magnetic characteristics decreases, and the magnetic characteristics Will be reduced. In addition, in the above method, since fine powders also aggregate when forming a film, it is difficult to align the direction of easy magnetization in the case of anisotropic magnet powder, and the magnetic properties of the magnet compact It was inevitable that there was a decline.

従来、nmレベルの膜厚になるように磁石粉末を被膜処理する場合、粉砕溶媒中に燐酸を添加し、磁石粉末を粉砕しながら、希土類や鉄の燐酸塩を粉末表面に生成させる方法が検討されている(例えば、特許文献5参照)。この方法によれば、作製される磁石粉末の膜厚が小さいため、非磁性相による磁気特性の低下や微粉末の凝集が緩和されるが、バインダー樹脂の変性を抑える効果は十分でなく、組成物の流動性や粘性が変化してなお成形性が損なわれることがあった。さらにバインダー樹脂との界面に成形時の熱歪に起因する応力集中やバインダー樹脂との親和性不足も重なって、ボンド磁石としての成形体の機械強度が低く、加工時に破壊するなどの問題もあった。   Conventionally, when magnet powder is coated to a film thickness of nm level, a method of adding phosphoric acid to the grinding solvent and grinding the magnet powder to produce rare earth and iron phosphates on the powder surface has been studied. (For example, refer to Patent Document 5). According to this method, the film thickness of the magnet powder to be produced is small, so the decrease in magnetic properties and agglomeration of the fine powder due to the nonmagnetic phase are alleviated, but the effect of suppressing the denaturation of the binder resin is not sufficient, and the composition In some cases, the fluidity and viscosity of the product changed, and the moldability was still impaired. Furthermore, stress concentration due to thermal strain during molding and insufficient affinity with the binder resin overlap with the interface with the binder resin, resulting in problems such as low mechanical strength of the molded body as a bond magnet and destruction during processing. It was.

近年、家電機器用モーター、自動車用センサーやモーターの製造において、海外で部品を組み立てるため船などによる輸送が必要となり、その使用環境、輸送環境がさらに厳しくなり、また機器を小型化するため、上記課題を解決できるとともに磁気特性にも優れた磁石粉が要求されていた。   In recent years, in the manufacture of motors for home appliances, automobile sensors and motors, it is necessary to transport by ship to assemble parts overseas, and the use environment and transport environment become more severe, and the size of the equipment has been reduced. There has been a demand for magnet powder that can solve the problems and has excellent magnetic properties.

特開2000−208321号公報JP 2000-208321 A 特開平1−14902号公報Japanese Patent Laid-Open No. 1-14902 特開平4−257202号公報JP-A-4-257202 特開平7−142246号公報Japanese Patent Laid-Open No. 7-142246 特開2002−124406号公報JP 2002-124406 A

本発明の目的は、前述した従来技術の問題点に鑑み、ボンド磁石用組成物としたときの成形性やボンド磁石の機械強度に優れるボンド磁石用希土類−鉄系磁石粉末とその製造方法を提供することにある。   The object of the present invention is to provide a rare earth-iron-based magnet powder for bonded magnets and a method for producing the same, which is excellent in formability and mechanical strength of bonded magnets when used as a bonded magnet composition in view of the above-mentioned problems of the prior art. There is to do.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、膜厚100nm以下のFe、P、O、RE(REは希土類元素)を含む被膜を有する希土類元素−鉄系磁石粉末において、粉末表面に金属状態として存在する鉄Feの量を特定値以下に低減することによって、この磁石粉末を用いてボンド磁石用組成物にしたとき、その成形性に優れ、また得られた成形品の機械強度を改善することができることを見出した。また、このような磁石粉末を得るには、燐酸を含む溶液と希土類−鉄系磁石粉末を接触させた後、非酸化性雰囲気で、100〜300℃の温度範囲で加熱処理し、次いで、得られた希土類−鉄系磁石粉末を再び燐酸を含む溶液と接触させた後、非酸化性雰囲気で、80〜200℃の温度範囲で加熱処理すれば効率的に製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above problems, the present inventors have found that a rare earth element-iron-based magnet powder having a film containing Fe, P, O, RE (RE is a rare earth element) having a film thickness of 100 nm or less. In this case, by reducing the amount of iron Fe present as a metal state on the powder surface to a specific value or less, when this magnet powder is used as a bonded magnet composition, the moldability is excellent and the obtained molding is obtained. It was found that the mechanical strength of the product can be improved. In order to obtain such a magnet powder, a solution containing phosphoric acid and a rare earth-iron-based magnet powder are brought into contact with each other, followed by heat treatment in a temperature range of 100 to 300 ° C. in a non-oxidizing atmosphere. The present rare earth-iron-based magnet powder was again brought into contact with a solution containing phosphoric acid, and then found to be efficiently manufactured by heat treatment in a non-oxidizing atmosphere at a temperature range of 80 to 200 ° C., thereby completing the present invention. It came to do.

すなわち、本発明の第1の発明によれば、表面に膜厚100nm以下のFe、P、O、RE(REは希土類元素)を含む被膜を有する希土類元素−鉄系磁石粉末において、被膜中に金属状態で存在するFeの量が、磁石粉末表面をX線光電子分光装置でFe2p3/2スペクトルを測定した後、得られたスペクトルプロファイルの面積に基づいて算出したとき、2.0%以下であることを特徴とするボンド磁石用希土類−鉄系磁石粉末が提供される。 That is, according to the first aspect of the present invention, in the rare earth element-iron-based magnet powder having a coating film containing Fe, P, O, RE (RE is a rare earth element) having a film thickness of 100 nm or less on the surface, When the amount of Fe present in the metal state is calculated based on the area of the spectrum profile obtained after measuring the Fe2p 3/2 spectrum on the surface of the magnet powder with an X-ray photoelectron spectrometer, it is 2.0% or less. There is provided a rare earth-iron-based magnet powder for bonded magnets.

また、本発明の第2の発明によれば、第1の発明において、被膜中に金属状態で存在するFeの量は、まず、前記X線光電子分光装置で測定して束縛エネルギー705eV〜720eVの範囲で得られたFe2p3/2スペクトルプロファイルを、シャーリー法によってプロファイルのベースラインを設定し、金属状態の鉄Feの波形P1、鉄Feの酸化物形態の波形P2、鉄Feの別の酸化物形態の波形P3の3つの波形に分離し、次に、P1、P2、P3のそれぞれの波形の面積を算出して、これら3つの波形面積の合計に対する金属状態の鉄Feの波形P1の波形面積の百分率として決定することを特徴とするボンド磁石用希土類−鉄系磁石粉末が提供される。
また、本発明の第3の発明によれば、第1の発明において、希土類−鉄系磁石粉末が、NdFeB系、Sm(Co、Fe、Cu、M)17系、又はSmFeN系であることを特徴とするボンド磁石用希土類−鉄系磁石粉末が提供される。なお、Sm(Co、Fe、Cu、M)17系におけるMは、Mn、ZrまたはHfのいずれかの元素が該当する。
Further, according to the second invention of the present invention, in the first invention, the amount of Fe present in the metal state in the coating is first measured by the X-ray photoelectron spectrometer, and the binding energy is 705 eV to 720 eV. The base line of the Fe2p 3/2 spectrum profile obtained in the range is set by the Shirley method, the waveform P1 of iron Fe in the metal state, the waveform P2 of the iron Fe oxide form, another oxide of iron Fe The waveform P3 is divided into three waveforms, and then the areas of the respective waveforms P1, P2, and P3 are calculated, and the waveform area of the waveform P1 of the iron Fe in the metal state with respect to the sum of these three waveform areas A rare earth-iron-based magnet powder for bonded magnets is provided which is characterized in that it is determined as a percentage of
According to the third invention of the present invention, in the first invention, the rare earth-iron-based magnet powder is NdFeB-based, Sm 2 (Co, Fe, Cu, M) 17- based, or SmFeN-based. A rare earth-iron-based magnet powder for bonded magnets is provided. Note that M in the Sm 2 (Co, Fe, Cu, M) 17 system corresponds to any element of Mn, Zr, or Hf.

一方、本発明の第4の発明によれば、第1〜3のいずれかの発明に係り、燐酸を含む溶液と希土類−鉄系磁石粉末とを粉砕容器又は攪拌容器中で接触させる第一の工程、接触処理された希土類−鉄系磁石粉末を非酸化性雰囲気で、100〜300℃の温度範囲で加熱処理する第二の工程、加熱処理された希土類−鉄系磁石粉末を、再び燐酸を含む溶液と攪拌容器中で接触させる第三の工程、接触処理された希土類−鉄系磁石粉末を非酸化性雰囲気で、80〜200℃の温度範囲で加熱処理する第四の工程を順次行うことにより、希土類−鉄系磁石粉末の表面に、金属状態で存在するFeの量が低減した被膜を形成することを特徴とする希土類−鉄系磁石粉末の製造方法が提供される。
また、本発明の第5の発明によれば、第4の発明において、燐酸を含む溶液が、有機溶剤として、エタノールまたは2−プロパノール(IPA)から選ばれた1種以上のアルコールを含むことを特徴とするボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法が提供される。
On the other hand, according to a fourth invention of the present invention, according to any one of the first to third inventions, a first method of bringing a solution containing phosphoric acid into contact with a rare earth-iron-based magnet powder in a pulverization vessel or a stirring vessel. Step 2, a second step of heat-treating the contact-treated rare earth-iron magnet powder in a non-oxidizing atmosphere at a temperature range of 100 to 300 ° C., the heat-treated rare earth-iron magnet powder again with phosphoric acid A third step of contacting the solution containing the mixture in a stirring vessel, and a fourth step of sequentially heating the contact-treated rare earth-iron-based magnet powder in a non-oxidizing atmosphere at a temperature range of 80 to 200 ° C. Thus, a method for producing a rare earth-iron-based magnet powder, characterized in that a film with a reduced amount of Fe present in a metallic state is formed on the surface of the rare earth-iron-based magnet powder, is provided.
According to a fifth aspect of the present invention, in the fourth aspect, the solution containing phosphoric acid contains one or more alcohols selected from ethanol or 2-propanol (IPA) as the organic solvent. A method for producing a rare earth-iron-nitrogen based magnet powder for a bonded magnet is provided.

本発明のボンド磁石用希土類−鉄系磁石粉末は、膜厚100nm以下のFe、P、O、RE(REは希土類元素)を含む被膜を有する希土類元素−鉄系磁石粉末において、被膜中に金属状態で存在するFeの量が、磁石粉末表面をX線光電子分光装置でFe2p3/2スペクトルを測定した後、得られたスペクトルプロファイルの面積に基づいて算出したとき、2.0%以下に低減しているので、ボンド磁石用組成物の成形性に優れ、また得られた成形品の機械強度を改善することができる。
従って、本発明の希土類元素−鉄系磁石粉末は、例えば、一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において極めて有用であるため、その工業的価値は非常に高い。
The rare earth-iron-based magnet powder for bonded magnets of the present invention is a rare earth element-iron-based magnet powder having a film containing Fe, P, O, RE (RE is a rare earth element) having a film thickness of 100 nm or less. The amount of Fe present in the state is reduced to 2.0% or less when calculated based on the area of the spectrum profile obtained after measuring the Fe2p 3/2 spectrum on the surface of the magnet powder with an X-ray photoelectron spectrometer. Therefore, the moldability of the composition for bonded magnets is excellent, and the mechanical strength of the obtained molded product can be improved.
Therefore, since the rare earth element-iron-based magnet powder of the present invention is extremely useful in a wide range of fields such as general home appliances, communication / acoustic equipment, medical equipment, general industrial equipment, etc., its industrial value is very high. high.

従来の燐酸溶液による表面処理で得られた磁石粉末被膜のFe2p3/2プロファイルとこのプロファイルを波形分離したときのチャートである。It is a chart when the Fe2p 3/2 profile of the magnet powder film obtained by the surface treatment with the conventional phosphoric acid solution and the profile are separated into waveforms. 本発明により、燐酸溶液による表面処理された磁石粉末に対して、繰り返し燐酸溶液による表面処理を行って得られた磁石粉末のプロファイルとこのプロファイルを波形分離したときのチャートである。It is a chart when the profile of the magnet powder obtained by repeatedly performing the surface treatment with the phosphoric acid solution with respect to the magnet powder surface-treated with the phosphoric acid solution according to the present invention and the profile are separated into waveforms.

以下、本発明のボンド磁石用希土類−鉄系磁石粉末とその製造方法について説明する。なお、本発明のボンド磁石用希土類−鉄系磁石粉末を以下、表面被覆磁石粉末ということがある。   Hereinafter, the rare earth-iron-based magnet powder for bonded magnet of the present invention and the production method thereof will be described. The rare earth-iron-based magnet powder for bonded magnets of the present invention may hereinafter be referred to as surface-coated magnet powder.

1.表面被覆磁石粉末
本発明の表面被覆磁石粉末では、希土類元素を含む鉄系磁石合金からなる磁石粉末の表面に、Fe、P、O、RE(REは希土類元素)からなる厚さ100nm以下の被膜が形成され、被膜中に金属状態で存在するFeの量が、磁石粉末表面をX線光電子分光装置でFe2p3/2スペクトルを測定した後、得られたスペクトルプロファイルの面積に基づいて算出したとき、2.0%以下であることを特徴とする。
1. Surface-coated magnet powder In the surface-coated magnet powder of the present invention, a film having a thickness of 100 nm or less made of Fe, P, O, RE (RE is a rare earth element) is formed on the surface of a magnet powder made of an iron-based magnet alloy containing a rare earth element. When the amount of Fe present in a metallic state in the coating is calculated based on the area of the spectrum profile obtained after measuring the Fe2p 3/2 spectrum on the magnet powder surface with an X-ray photoelectron spectrometer 2.0% or less.

表面被覆される磁石粉末は、希土類元素を含む鉄系磁石合金の粉末であれば、その種類は特に制限されない。例えば、NdFeB系、Sm(Co、Fe、Cu、M)17系、SmFeN系などの各種磁石粉末を使用できる。
希土類元素としては、Sm、Nd、Pr、Y、La、Ce、またはGd等が挙げられ、単独若しくは混合物として使用できる。これらの中では、特にSm又はNdを5〜40原子%、Feを50〜90原子%含有するものが好ましい。また、SmFeN系合金粉末の製造方法には、鋳造法や還元拡散法などがあるが、本発明においては、特に還元拡散法が適している。
希土類元素を含む鉄系磁石粉末には、フェライト、アルニコなど、ボンド磁石や圧密磁石の原料となる各種磁石粉末を混合してもよい。
The type of the magnetic powder to be coated on the surface is not particularly limited as long as it is a powder of an iron-based magnet alloy containing a rare earth element. For example, various magnetic powders such as NdFeB, Sm 2 (Co, Fe, Cu, M) 17 and SmFeN can be used.
Examples of rare earth elements include Sm, Nd, Pr, Y, La, Ce, and Gd, and these can be used alone or as a mixture. Among these, those containing 5 to 40 atomic% of Sm or Nd and 50 to 90 atomic% of Fe are particularly preferable. The SmFeN alloy powder production method includes a casting method and a reduction diffusion method. In the present invention, the reduction diffusion method is particularly suitable.
The iron-based magnet powder containing a rare earth element may be mixed with various magnet powders such as ferrite and alnico, which are raw materials for bonded magnets and compacted magnets.

本発明においては、希土類元素を含む鉄系磁石合金からなる磁石粉末が、燐酸を含む処理液と接触し、その後、特定温度で加熱乾燥処理され、この燐酸との接触処理、加熱乾燥処理が繰り返されることで、その表面にFe、P、O、RE(REは希土類元素)を含む特定の厚さの被膜が形成されている。この被膜の厚さは、平均100nm以下であり、100nmを越えると磁気特性が低下する。平均厚さが1nm未満であると成形性があまり改善されないので、10〜90nmであることが好ましい。上記無機有機複合被膜の膜厚は、被覆処理された希土類元素を含む鉄系磁石粉末の断面の電子顕微鏡写真から確認することができる。   In the present invention, a magnet powder made of an iron-based magnet alloy containing a rare earth element is brought into contact with a treatment liquid containing phosphoric acid, and then heated and dried at a specific temperature, and the contact treatment with the phosphoric acid and the heating and drying treatment are repeated. As a result, a film having a specific thickness including Fe, P, O, and RE (RE is a rare earth element) is formed on the surface. The thickness of this film is an average of 100 nm or less, and when it exceeds 100 nm, the magnetic properties deteriorate. If the average thickness is less than 1 nm, the moldability is not improved so much, and therefore it is preferably 10 to 90 nm. The film thickness of the inorganic-organic composite coating can be confirmed from an electron micrograph of a cross section of the iron-based magnet powder containing a rare earth element that has been coated.

本発明において、被膜中に金属状態で存在するFeの量は、X線光電子分光装置(XPS)により以下のようにして測定し評価する。
まず、モノクロX線源(AlKα線)でFe2p3/2スペクトルを測定する。次に、束縛エネルギー705eV〜720eVの範囲で得られたスペクトルプロファイルをXPSに内蔵されている解析ソフトウェア(スペクトラムプロセッシング)によって、シャーリー法に基づきプロファイルのベースラインを設定し、金属状態の鉄Feの波形P1、鉄Feの酸化物形態の波形P2、鉄Feの別の酸化物形態の波形P3の3つの波形に分離する。その後、P1、P2、P3のそれぞれの波形の面積を算出して、これら3つの波形面積の合計に対する金属状態の鉄Feの波形P1の波形面積を百分率で求める。
In the present invention, the amount of Fe present in a metallic state in the coating is measured and evaluated by an X-ray photoelectron spectrometer (XPS) as follows.
First, the Fe2p 3/2 spectrum is measured with a monochrome X-ray source (AlKα ray). Next, by using the analysis software (spectrum processing) built in XPS for the spectrum profile obtained in the range of binding energy of 705 eV to 720 eV, a profile baseline is set based on the Shirley method, and the waveform of iron Fe in the metallic state The waveform is divided into three waveforms: P1, a waveform P2 in the form of iron Fe oxide, and a waveform P3 in another oxide form of iron Fe. Then, the area of each waveform of P1, P2, and P3 is calculated, and the waveform area of the waveform P1 of the iron Fe in the metallic state with respect to the sum of these three waveform areas is obtained as a percentage.

従来の燐酸溶液による表面処理方法によって得られた磁石粉末では、被膜をX線光電子分光装置でFe2p3/2プロファイルを波形分離すると、図1のようなチャートが得られた。これまで、燐酸溶液による表面処理方法によって得られた磁石粉末には、金属状態の鉄Feの形態と、鉄Feの酸化物を含む形態の少なくとも2種類からなる被膜が形成されることが明らかになっている。図1中、金属状態の鉄Feの波形がP1、鉄Feの酸化物形態の波形がP2とP3である。鉄Feの酸化物形態には、FeO、Fe、Fe、FeOOHといった酸化鉄があり、その一部が希土類元素、炭素、水素との複合酸化物になっているものと考えられる。 In the case of a magnet powder obtained by a conventional surface treatment method using a phosphoric acid solution, a chart as shown in FIG. 1 was obtained when the coating was subjected to waveform separation of the Fe2p 3/2 profile using an X-ray photoelectron spectrometer. So far, it has been clearly shown that a magnet powder obtained by a surface treatment method using a phosphoric acid solution is formed with a coating composed of at least two kinds of forms of iron Fe in a metallic state and a form containing an oxide of iron Fe. It has become. In FIG. 1, the waveform of iron Fe in the metal state is P1, and the waveforms of oxide forms of iron Fe are P2 and P3. There are iron oxides such as FeO, Fe 2 O 3 , Fe 3 O 4 , and FeOOH in the form of iron-Fe oxide, and some of them are considered to be complex oxides with rare earth elements, carbon, and hydrogen. It is done.

その後、P1、P2、P3のそれぞれの波形面積を算出して、これら3つの波形面積の合計に対する金属状態の鉄Feの波形P1の波形面積を求めると、面積百分率は3%を超えた。
更なる検討により、金属状態の鉄Feの波形P1の百分率が2.0%を超えた磁石粉末を用いると、バインダー樹脂と混練するときのトルクが高く、得られた組成物の流動性Q値が低下することが分かっている。また組成物を成形して得たボンド磁石の機械強度が低下してしまう。
Thereafter, the respective waveform areas of P1, P2, and P3 were calculated, and when the waveform area of the waveform P1 of the iron Fe in the metallic state with respect to the sum of these three waveform areas was obtained, the area percentage exceeded 3%.
As a result of further investigation, when using a magnetic powder in which the percentage of the waveform P1 of the iron Fe in the metal state exceeds 2.0%, the torque when kneading with the binder resin is high, and the fluidity Q value of the resulting composition Is known to decrease. Further, the mechanical strength of the bonded magnet obtained by molding the composition is lowered.

これに対して、本発明により、さらにこの粉末に対して燐酸溶液による表面処理を行うと、得られた磁石粉末は、被膜をX線光電子分光装置でFe2p3/2プロファイルを波形分離したとき、図2のようなチャートが得られた。金属状態の鉄Feは目視できず、鉄Feの酸化物形態の波形P2と、P2とは異なる鉄Feの酸化物形態の波形P3のみからなることが分かる。金属状態の鉄Feの波形が消失する理由は、まだ完全には解明されないが、燐酸処理を繰り返したことで金属状態の鉄Feが鉄Feの酸化物に変化したためと推測される。その後、同様にしてP1、P2、P3のそれぞれの波形面積を算出して、これら3つの波形面積の合計に対する金属状態の鉄Fe(P1)の波形面積を求めると、面積百分率は0.1%であった。
さらなる検討により、金属状態の鉄Fe(P1)の波形面積の割合が2.0%以下の磁石粉末を用いると、バインダー樹脂と混練するときのトルクが低くなり、得られた組成物の流動性Q値が上昇して、組成物を成形して得たボンド磁石の機械強度が増加することが分かっている。
On the other hand, when the surface treatment with a phosphoric acid solution is further performed on the powder according to the present invention, the obtained magnet powder is obtained by separating the coating from the Fe2p 3/2 profile with an X-ray photoelectron spectrometer. A chart as shown in FIG. 2 was obtained. It can be seen that the iron Fe in the metal state cannot be visually observed, and is composed of only the waveform P2 of the iron Fe oxide form and the waveform P3 of the iron Fe oxide form different from P2. The reason for the disappearance of the metallic iron Fe waveform has not yet been completely clarified, but it is presumed that the iron iron in the metallic state has changed to an oxide of iron Fe by repeating the phosphoric acid treatment. Thereafter, the respective waveform areas of P1, P2, and P3 are calculated in the same manner, and the waveform area of the iron Fe (P1) in the metallic state with respect to the total of these three waveform areas is obtained, the area percentage is 0.1%. Met.
As a result of further investigation, when a magnetic powder having a corrugated area ratio of metallic iron Fe (P1) of 2.0% or less is used, the torque when kneading with the binder resin is lowered, and the fluidity of the resulting composition It has been found that the Q value increases and the mechanical strength of the bonded magnet obtained by molding the composition increases.

ボンド磁石用希土類−鉄系磁石粉末は、NdFeB系の場合、そのP含有量が、0.1重量%以上のものが好ましく、また、SmFeN系の場合は、そのP含有量が、0.5重量%以上のものが好ましい。また、NdFeB系磁石、SmFeN系磁石とも、C含有量は、0.1重量%以下、H含有量は、0.1重量%以下であることが好ましい。   The rare earth-iron-based magnet powder for bonded magnets preferably has a P content of 0.1% by weight or more in the case of NdFeB, and the P content in the case of SmFeN is 0.5%. A weight percent or more is preferred. Further, in both NdFeB magnets and SmFeN magnets, the C content is preferably 0.1% by weight or less, and the H content is preferably 0.1% by weight or less.

2.表面被覆磁石粉末の製造方法
本発明の希土類元素を含む鉄系磁石粉末は、燐酸を含む溶液と希土類−鉄系磁石粉末とを粉砕容器又は攪拌容器中で接触させる第一の工程、接触処理された希土類−鉄系磁石粉末を非酸化性雰囲気で、100〜300℃の温度範囲で加熱処理する第二の工程、加熱処理された希土類−鉄系磁石粉末を、再び燐酸を含む溶液と攪拌容器中で接触させる第三の工程、接触処理された希土類−鉄系磁石粉末を非酸化性雰囲気で、80〜200℃の温度範囲で加熱処理する第四の工程を順次行うことにより、希土類−鉄系磁石粉末の表面に、金属状態で存在するFeの量が低減した被膜を形成することを特徴とする。
2. Method for producing surface-coated magnet powder The iron-based magnet powder containing a rare earth element of the present invention is subjected to a contact treatment in a first step of bringing a solution containing phosphoric acid into contact with a rare earth-iron-based magnet powder in a pulverization vessel or a stirring vessel. A second step of heat-treating the rare earth-iron-based magnet powder in a non-oxidizing atmosphere at a temperature range of 100 to 300 ° C., the heat-treated rare earth-iron-based magnet powder again with a solution containing phosphoric acid and a stirring vessel A rare earth-iron by sequentially performing a third process in which the contact is performed, and a fourth process in which the contact-treated rare earth-iron-based magnet powder is heat-treated in a non-oxidizing atmosphere in a temperature range of 80 to 200 ° C. A film having a reduced amount of Fe present in a metallic state is formed on the surface of the system magnet powder.

(第一の工程)
第一の工程は、燐酸を含む溶液と希土類−鉄系磁石粉末を粉砕容器又は攪拌容器中で接触させる工程である。
本発明で使用される燐酸を含む溶液としては、金属化合物と反応して金属燐酸塩を生成するオルト燐酸をはじめ、亜燐酸、次亜燐酸、ピロ燐酸、直鎖状のポリ燐酸、環状のメタ燐酸が挙げられる。また、燐酸アンモニウム、燐酸アンモニウムマグネシウムなども使用できる。燐酸のうち、オルト燐酸が好ましい性能を発揮するが、その理由は、これが上記の金属化合物と反応しやすく、希土類系金属を成分とする磁石粉末の表面に保護膜を形成しやすいためと考えられる。これら化合物は、単独でも複数種を組み合わせてもよく、通常、有機溶剤、キレート剤、中和剤などと混合して処理剤とされる。
有機溶剤としては、特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できるが、安全性などの観点から特にエタノール、イソプロピルアルコールが好ましい。
(First step)
The first step is a step of bringing a solution containing phosphoric acid into contact with a rare earth-iron-based magnet powder in a pulverization vessel or a stirring vessel.
Examples of the solution containing phosphoric acid used in the present invention include orthophosphoric acid that reacts with a metal compound to form a metal phosphate, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid, cyclic metaphosphoric acid. Phosphoric acid is mentioned. Ammonium phosphate, ammonium magnesium phosphate, and the like can also be used. Among phosphoric acids, orthophosphoric acid exhibits a preferable performance because it is easy to react with the above metal compound and to form a protective film on the surface of the magnet powder containing rare earth metal as a component. . These compounds may be used alone or in combination of a plurality of types, and are usually mixed with an organic solvent, a chelating agent, a neutralizing agent and the like to form a treating agent.
The organic solvent is not particularly limited, and alcohols such as isopropyl alcohol, ethanol and methanol, lower hydrocarbons such as pentane and hexane, aromatics such as benzene, toluene and xylene, ketones, and mixtures thereof are used. However, ethanol and isopropyl alcohol are particularly preferable from the viewpoint of safety.

燐酸は、磁石粉末の粒径、表面積等に合わせて最適量を添加する。通常は、磁石粉末に対してHPOとして0.1〜2mol/kg(粉末重量当たり)であり、好ましくは0.15〜1.5mol/kg、さらに好ましくは0.2〜0.4mol/kgである。燐酸の添加量が0.1mol/kg未満であると、磁石粉末の表面が十分に被覆されないために耐塩水性が改善されず、また大気中で乾燥させると酸化・発熱して磁気特性が極端に低下する。2mol/kgを超えると、磁石粉末との反応が激しく起こって磁石粉末が溶解する。燐酸の濃度は、特に制限されず、無水燐酸、50〜99%燐酸水溶液などが用いられる。 Phosphoric acid is added in an optimum amount according to the particle size, surface area, etc. of the magnet powder. Usually at 0.1 to 2 mol / kg as H 3 PO 4 with respect to the magnet powder (powder weight per), preferably 0.15~1.5mol / kg, more preferably 0.2~0.4mol / Kg. If the amount of phosphoric acid added is less than 0.1 mol / kg, the surface of the magnet powder will not be sufficiently coated, so that the salt water resistance will not be improved. descend. When it exceeds 2 mol / kg, the reaction with the magnet powder occurs vigorously and the magnet powder is dissolved. The concentration of phosphoric acid is not particularly limited, and phosphoric anhydride, 50-99% phosphoric acid aqueous solution, or the like is used.

その後、磁石粉末が、NdFeB系、Sm(Co、Fe、Cu、M)17系であれば、燐酸を含む処理液中で攪拌する。また、SmFeN系であれば、粉砕しながら攪拌することが好ましい。
攪拌時間や粉砕時間は、装置の大きさ、処理すべき磁石粉の粒径や処理量などによって異なり、一概に規定できないが、所定の燐酸濃度の処理溶剤内では0.1〜3時間、好ましくは0.1〜2時間とする。0.1時間未満では、磁石粉の表面が充分な厚さの燐酸塩被膜が形成されず、3時間を超えると磁石粉が凝集しやすくなり好ましくない。本発明の方法においては、磁石合金粉の粉砕時に燐酸を適量添加することで磁石粉表面にメカノケミカル的な作用で被膜が形成されるために乾燥時間の短縮が可能となる。
Thereafter, if the magnet powder is NdFeB-based or Sm 2 (Co, Fe, Cu, M) 17- based, it is stirred in a treatment liquid containing phosphoric acid. In the case of SmFeN, it is preferable to stir while pulverizing.
The stirring time and pulverization time vary depending on the size of the apparatus, the particle size of the magnetic powder to be treated and the amount of treatment, and cannot be defined unconditionally, but are preferably 0.1 to 3 hours in a treatment solvent having a predetermined phosphoric acid concentration. Is 0.1 to 2 hours. If the time is less than 0.1 hour, a phosphate film having a sufficient thickness is not formed on the surface of the magnet powder, and if it exceeds 3 hours, the magnet powder tends to aggregate, which is not preferable. In the method of the present invention, by adding an appropriate amount of phosphoric acid at the time of pulverization of the magnet alloy powder, a coating film is formed on the surface of the magnet powder by a mechanochemical action, so that the drying time can be shortened.

(第二の工程)
第二の工程は、引き続き、希土類−鉄系磁石粉末を不活性ガス中または真空中、100〜300℃の温度範囲で加熱処理する工程である。
ここで、第一の工程で得られる磁石粉末は、多量の処理液を含むスラリー中の合金粉ケーキとして得られる。スラリーの含液率は、5〜30重量%が好ましく、10〜30重量%になるように、スラリーを固液分離装置内で処理調整することがより好ましい。加熱処理には、ミキサー型乾燥機、処理物静置型の箱型乾燥機などを用いることができる。好ましいのは、ミキサー型乾燥機である。
(Second step)
The second step is a step of subsequently heat-treating the rare earth-iron-based magnet powder in an inert gas or in a vacuum at a temperature range of 100 to 300 ° C.
Here, the magnet powder obtained in the first step is obtained as an alloy powder cake in a slurry containing a large amount of treatment liquid. The liquid content of the slurry is preferably 5 to 30% by weight, and more preferably the slurry is treated and adjusted in the solid-liquid separator so as to be 10 to 30% by weight. For the heat treatment, a mixer type dryer, a processed product stationary type box type dryer, or the like can be used. A mixer type dryer is preferred.

熱処理雰囲気は、非酸化性雰囲気であればよく、不活性ガスを用いる場合は、窒素雰囲気、アルゴン雰囲気にすることが可能である。また、使用する装置にもよるが、昇温開始時の圧力は絶対圧力で70kPa〜100kPa、脱水エタノールの蒸発後の圧力及び乾燥操作の圧力は絶対圧力で5kPa以下とすることが好ましい。
熱処理温度は、100〜300℃の温度範囲とする。熱処理温度が100°C未満であるか300°Cを超えると、表面処理被膜に金属状態の鉄が残留し、ボンド磁石組成物の成形性や成形品の機械強度が改善されない。特に100℃未満では、表面処理被膜の緻密性が不足し、また磁石粉末に含有される炭素量、水素量が多く、保磁力低下が起こるので好ましくない。
熱処理時間は、装置の大きさ、処理すべき磁石粉の粒径や処理量などによって異なり、一概に規定できないが、なるべく短いほうが望ましい。例えば容積100リットルの攪拌型乾燥機にて磁石粉50kgを処理する場合は3時間以内、特に2時間以内とする。加熱処理時間が長くなるほど磁気特性が低下する。ただし、10分よりも短いと安定な燐酸塩被膜が形成されない場合がある。
The heat treatment atmosphere may be a non-oxidizing atmosphere, and when an inert gas is used, a nitrogen atmosphere or an argon atmosphere can be used. Moreover, although it depends on the apparatus to be used, it is preferable that the pressure at the start of temperature rise is 70 kPa to 100 kPa in absolute pressure, and the pressure after evaporation of dehydrated ethanol and the pressure in the drying operation are 5 kPa or less in absolute pressure.
The heat treatment temperature is set to a temperature range of 100 to 300 ° C. When the heat treatment temperature is less than 100 ° C. or exceeds 300 ° C., metallic iron remains on the surface treatment film, and the formability of the bonded magnet composition and the mechanical strength of the molded product are not improved. In particular, when the temperature is less than 100 ° C., the denseness of the surface-treated film is insufficient, and the amount of carbon and hydrogen contained in the magnet powder is large, so that the coercive force is lowered.
The heat treatment time varies depending on the size of the apparatus, the particle size of the magnetic powder to be treated, the amount of treatment, and the like, and cannot be defined generally, but it is desirable that the heat treatment time be as short as possible. For example, when processing 50 kg of magnetic powder with a 100 liter stirring type dryer, the time is within 3 hours, particularly within 2 hours. The longer the heat treatment time, the lower the magnetic properties. However, if it is shorter than 10 minutes, a stable phosphate coating may not be formed.

(第三の工程)
第三の工程は、第二の工程で得られた希土類−鉄系磁石粉末を、攪拌容器中で再び燐酸を含む溶液と接触させる工程である。
第二の工程で得られた希土類−鉄系磁石粉末は、前記燐酸を加えた処理液中で粉砕され、表面に燐酸塩の被膜が形成されているが、まだ必ずしも充分とはいえず、磁石微粉末が磁力などによって互いに凝集しているため流動性が悪い。そのため、燐酸を加えた有機溶剤で再び処理して、磁石粉末の接触面に被膜処理を行うのである。
(Third process)
The third step is a step of bringing the rare earth-iron-based magnet powder obtained in the second step into contact with a solution containing phosphoric acid again in a stirring vessel.
The rare earth-iron-based magnet powder obtained in the second step is pulverized in the treatment liquid to which phosphoric acid has been added, and a phosphate film is formed on the surface. Since the fine powder is aggregated with each other by magnetic force or the like, the fluidity is poor. For this reason, it is treated again with an organic solvent to which phosphoric acid is added, and a coating treatment is performed on the contact surface of the magnet powder.

燐酸の種類は、前記第一の工程に用いたものと同じく、特に制限が無く市販の燐酸を使用することができる。燐酸の添加量は、粉砕後の磁石粉末の粒径、表面積等に関係するので一概には言えないが、通常は、磁石粉末に対して0.03〜1mol/kgであり、より好ましくは0.05〜0.5mol/kgが好ましい。0.03mol/kg未満であると磁石粉末の表面処理が十分に行なわれないためにコンパウンドの流動性が改善されない。ただし、1mol/kgを超えるとボンド磁石の磁気特性が低下することがある。
処理時間は、所定の燐酸濃度の有機溶剤内では1〜60分間、好ましくは5〜30分間とする。1分間未満では、磁石粉の表面が充分な厚さの燐酸塩被膜で均一に被覆されず、60分間を超えても流動性が大きくは改善されないので好ましくない。
The kind of phosphoric acid is not particularly limited as in the first step, and commercially available phosphoric acid can be used. The amount of phosphoric acid added is generally unrelated because it is related to the particle size, surface area, and the like of the magnet powder after pulverization, but is usually 0.03 to 1 mol / kg, more preferably 0 to the magnet powder. 0.05 to 0.5 mol / kg is preferable. If it is less than 0.03 mol / kg, the surface treatment of the magnet powder is not sufficiently performed, so that the fluidity of the compound is not improved. However, if it exceeds 1 mol / kg, the magnetic properties of the bonded magnet may deteriorate.
The treatment time is 1 to 60 minutes, preferably 5 to 30 minutes in an organic solvent having a predetermined phosphoric acid concentration. If it is less than 1 minute, the surface of the magnet powder is not uniformly coated with a phosphate coating having a sufficient thickness, and if it exceeds 60 minutes, the fluidity is not greatly improved.

(第四の工程)
第四の工程は、第三の工程で得られた希土類−鉄系磁石粉末を不活性ガス中または真空中、80〜200℃の温度範囲で加熱処理する工程である。
ここで加熱雰囲気など加熱処理の条件は、処理温度以外は、前記第二の工程と同様である。処理温度は、80〜200℃の温度範囲であれば、前記第二の工程の温度よりも高くても低くても構わない。処理温度が80°C未満または200°Cを超えると、表面処理被膜に金属状態の鉄が残留し、ボンド磁石組成物の成形性や成形品の機械強度が改善されない。特に80℃未満では、表面処理被膜の緻密性が不足し、また磁石粉末に含有される炭素量、水素量が多く、保磁力低下が起こるので好ましくない。
上記のとおり、本発明では、磁石粉末が燐酸を含む処理液と接触し、その後、特定温度で加熱乾燥処理されることで被膜が形成され、この燐酸との接触処理、加熱乾燥処理が繰り返されることで金属状態のFe量が低減することになる。
(Fourth process)
The fourth step is a step of heat-treating the rare earth-iron-based magnet powder obtained in the third step in a temperature range of 80 to 200 ° C. in an inert gas or vacuum.
Here, the heat treatment conditions such as the heating atmosphere are the same as those in the second step except for the treatment temperature. The treatment temperature may be higher or lower than the temperature in the second step as long as it is in the temperature range of 80 to 200 ° C. When the treatment temperature is less than 80 ° C. or exceeds 200 ° C., metallic iron remains on the surface treatment film, and the formability of the bonded magnet composition and the mechanical strength of the molded product are not improved. In particular, when the temperature is less than 80 ° C., the denseness of the surface-treated film is insufficient, and the amount of carbon and hydrogen contained in the magnet powder is large, so that the coercive force is lowered.
As described above, in the present invention, the magnet powder is brought into contact with the treatment liquid containing phosphoric acid, and then a heat drying treatment is performed at a specific temperature to form a film, and the contact treatment with the phosphoric acid and the heat drying treatment are repeated. As a result, the amount of Fe in the metal state is reduced.

3.ボンド磁石用樹脂組成物
上記希土類−鉄系磁石粉末を樹脂バインダーと混合することでボンド磁石用組成物が得られる。
3. Bonded Magnet Resin Composition A bonded magnet composition is obtained by mixing the rare earth-iron-based magnet powder with a resin binder.

樹脂バインダーの種類は、特に限定されることはなく、各種熱可塑性樹脂単体または混合物、あるいは各種熱硬化性樹脂単体あるいは混合物であり、それぞれの物性、性状等も所望の特性が得られる範囲でよく特に限定されることはない。
熱可塑性樹脂は、磁石粉のバインダーとして働くものであれば、特に制限なく、従来公知のものを使用できる。その具体例としては、6ナイロン、6−6ナイロン、11ナイロン、12ナイロン、6−12ナイロン、芳香族系ナイロン、これらの分子を一部変性した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合樹脂、エチレン−エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂、エチレン−四フッ化エチレン共重合樹脂、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、樹脂系エラストマー等が挙げられ、これらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質での末端基変性品等が挙げられる。特に好ましいのは、6ナイロン、6−6ナイロン、11ナイロン、12ナイロン、6−12ナイロン、芳香族系ナイロン、これらの分子を一部変性した変性ナイロン等のポリアミド樹脂である。
The type of the resin binder is not particularly limited, and may be various thermoplastic resins alone or a mixture, or various thermosetting resins alone or a mixture, and their physical properties and properties may be within a range where desired characteristics can be obtained. There is no particular limitation.
The thermoplastic resin is not particularly limited as long as it functions as a binder for the magnet powder, and a conventionally known one can be used. Specific examples include 6 nylon, 6-6 nylon, 11 nylon, 12 nylon, 6-12 nylon, aromatic nylon, polyamide resins such as modified nylon partially modified from these molecules, and linear polyphenylene sulfide. Resin, cross-linked polyphenylene sulfide resin, semi-cross-linked polyphenylene sulfide resin, low density polyethylene, linear low density polyethylene resin, high density polyethylene resin, ultrahigh molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene- Ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride Fatty, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluoroethylene chloride resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, ethylene- Tetrafluoroethylene copolymer resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl Sulfone resin, polyethersulfone resin, polyetheretherketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, resin-based elastomer Mer, and the like, random copolymers of these homopolymers and other species monomer, block copolymers, graft copolymers, and end groups modified products with other substances. Particularly preferred are polyamide resins such as 6 nylon, 6-6 nylon, 11 nylon, 12 nylon, 6-12 nylon, aromatic nylon, and modified nylon obtained by partially modifying these molecules.

熱可塑性樹脂の配合量は、磁石粉100重量部に対して、通常5〜50重量部、好ましくは5〜30重量部、より好ましくは5〜15重量部である。熱可塑性樹脂の配合量が5重量部未満であると、組成物の混練抵抗(トルク)が大きくなり、流動性が低下して磁石の成形が困難となり、一方、50重量部を超えると、所望の磁気特性が得られない。本発明の目的を損なわない範囲で、ボンド磁石用組成物の加熱流動性等を向上させるために、各種カップリング剤、滑剤や種々の安定剤等を配合することができる。
磁石合金粉と樹脂バインダー等を混合、混練するには各種ミキサー、ニーダー、押出機を用いることができる。
The compounding quantity of a thermoplastic resin is 5-50 weight part normally with respect to 100 weight part of magnet powder, Preferably it is 5-30 weight part, More preferably, it is 5-15 weight part. When the blending amount of the thermoplastic resin is less than 5 parts by weight, the kneading resistance (torque) of the composition is increased, the fluidity is lowered, and it becomes difficult to mold the magnet. The magnetic characteristics cannot be obtained. Various coupling agents, lubricants, various stabilizers, and the like can be blended in order to improve the heat fluidity and the like of the composition for bonded magnets as long as the object of the present invention is not impaired.
Various mixers, kneaders, and extruders can be used to mix and knead the magnet alloy powder and the resin binder.

ボンド磁石用組成物は、メルトインデックスMI法の試験方法に基づいて測定される流動性に優れている。なお、流動性は、具体的には東洋精機(株)製メルトインデクサーを用い、樹脂バインダーがポリアミドの場合、250°Cの加熱温度、荷重:21.6kgで、ダイス:直径2.1mm×厚さ8mmの中を所定重量のコンパウンドが通過する所要時間から、流動性(cc/sec)を評価する。得られた流動性の数値が0.1cc/sec以上であるボンド磁石用組成物は実用上好ましいものであるといえる。   The composition for bonded magnets is excellent in fluidity measured based on the melt index MI method test method. The fluidity is specifically determined by using a melt indexer manufactured by Toyo Seiki Co., Ltd., and when the resin binder is polyamide, the heating temperature is 250 ° C., the load is 21.6 kg, and the die is 2.1 mm in diameter × The fluidity (cc / sec) is evaluated from the time required for a compound having a predetermined weight to pass through a thickness of 8 mm. It can be said that the obtained composition for bonded magnets having a fluidity value of 0.1 cc / sec or more is practically preferable.

4.ボンド磁石
上記ボンド磁石用樹脂組成物は、射出成形法、圧縮成形法、押出成形法又は射出プレス成形法などの成形法により成形することによりボンド磁石を製造することができる。
4). Bond magnet The bonded magnet resin composition can be manufactured by molding by a molding method such as an injection molding method, a compression molding method, an extrusion molding method, or an injection press molding method.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited at all by these Examples.

(1)成分
磁石粉末:
・SmFeN合金粉末(粗粉)[住友金属鉱山(株)製、平均粒径:30μm]
・NdFeB系合金粉末[マグネクエンチインターナショナル製、MQP−B、平均粒径:47μm]
処理液:
・85%オルト燐酸水溶液[関東化学(株)製]
バインダー樹脂:
・ポリアミド(PA12、宇部興産(株)製)
(1) Component magnet powder:
SmFeN alloy powder (coarse powder) [Sumitomo Metal Mining Co., Ltd. average particle size: 30 μm]
NdFeB alloy powder [Magnequen International, MQP-B, average particle diameter: 47 μm]
Treatment liquid:
・ 85% orthophosphoric acid aqueous solution [manufactured by Kanto Chemical Co., Inc.]
Binder resin:
・ Polyamide (PA12, manufactured by Ube Industries)

(2)評価方法
(2−1)磁石粉表面の金属Fe量
表面処理した磁石粉を導電性テープに密に固定して、X線光電子分光装置(XPS、VG Scientific社製 ESCALAB220i−XL)で状態分析した。鉄の状態分析としてFe2p3/2のスペクトルに注目し、分析面積をφ0.6mmとして試料表面の平均的な情報が得られるようにした。束縛エネルギー705eV〜720eVの範囲で得られたFe2p3/2スペクトルプロファイルを、前記XPSに内蔵されている解析ソフトウェアであるスペクトラムプロセッシングによって、シャーリー法に基づきプロファイルのベースラインを設定し、金属状態の鉄Feの波形P1、鉄Feの酸化物形態の波形P2、鉄Feの別の酸化物形態の波形P3の3つの波形に分離し、この後、P1、P2、P3の各波形面積を算出して、これら3つの波形面積の合計に対する金属状態の鉄Feの波形P1の波形面積を百分率で求めた。
波形分離は、前記スペクトラムプロッセッシングに初期値として、P1については中心値707.4eV及び半値幅1.06eV、P2については中心値711.2eV及び半値幅3.02eV、P3については中心値713.0eV及び半値幅5.3eVを入力し、この後はソフトウェア内部で以下の処理が実行される。即ち、分離された波形の合成波形と実際に測定された波形について束縛エネルギーにおける強度の差を算出し、この差が最小となるように前記の中心値と半値幅を求め、この中心値と半値幅に対応するP1、P2、P3の各々の波形面積の合計に対する金属状態のFeの波形P1の面積の百分率を、前記のスペクトラムプロッセッシングが算出する。
(2) Evaluation method (2-1) Amount of metallic Fe on the surface of the magnet powder The surface-treated magnet powder was fixed tightly on a conductive tape, and then an X-ray photoelectron spectrometer (XPS, ESCALAB220i-XL manufactured by VG Scientific). The state was analyzed. Focusing on the Fe2p 3/2 spectrum as an analysis of the state of iron, the analysis area was set to φ0.6 mm so that average information on the sample surface could be obtained. The Fe2p 3/2 spectrum profile obtained in the range of binding energies of 705 eV to 720 eV is set based on the Shirley method by spectrum processing, which is analysis software built in the XPS, and a metallic state iron is set. The waveform is divided into three waveforms: a waveform P1 of Fe, a waveform P2 of an oxide form of iron Fe, and a waveform P3 of another oxide form of iron Fe. Thereafter, the respective waveform areas of P1, P2, and P3 are calculated. The percentage of the corrugated area of the corrugated P1 of iron Fe in the metallic state relative to the sum of these three corrugated areas was determined.
As for the waveform separation, as an initial value for the spectrum processing, a center value 707.4 eV and a half-value width 1.06 eV for P1, a center value 711.2 eV and a half-value width 3.02 eV for P2, and a center value 713 for P3. 0.0 eV and a half width of 5.3 eV are input, and thereafter, the following processing is executed in the software. That is, the difference in intensity at the binding energy is calculated for the combined waveform of the separated waveforms and the actually measured waveform, and the center value and the half width are obtained so that this difference is minimized. The spectrum processing calculates a percentage of the area of the waveform P1 of Fe in the metallic state with respect to the sum of the waveform areas of P1, P2, and P3 corresponding to the value width.

(2−2)流動性(メルトインデックスMI法)
東洋精機(株)製メルトインデクサーを用い、250°Cの加熱温度、荷重:21.6kgで、ダイス:直径2.1mm×厚さ8mmの中を所定重量のコンパウンドが通過する所要時間から、流動性(cc/sec)を評価した。
(2-2) Fluidity (Melt Index MI Method)
Using a Toyo Seiki Co., Ltd. melt indexer, a heating temperature of 250 ° C, a load: 21.6 kg, a die: 2.1 mm in diameter x 8 mm in thickness From the time required for a compound to pass through a predetermined weight, The fluidity (cc / sec) was evaluated.

[実施例1〜5、比較例1〜6]
第一の工程として、SmFeN合金粉末3kgを、脱水エタノール4kgと表1に示す量の処理液との混合溶液中で媒体攪拌ミルを用いて平均粒径2.0μmまで粉砕した。ここで平均粒径は、Sympatec社製レーザー回折式粒度分布測定機HELOS&RODOSにて粒度分布を測定し、体積基準で算出したものである。なお、この処理液の量は、磁石粉末に対して0.3mol/kgに相当する。
次に、第二の工程として、粉砕したスラリーをミキサーに投入し、非酸化性雰囲気として窒素雰囲気を保持し、絶対圧力70kPaの圧力で昇温を開始し、2時間で表1に示す温度に達するようにし、更に乾燥させるために2時間保持した。昇温中に脱水エタノールが蒸発するため、蒸発が完了すると5kPaの圧力となり、この圧力を保持したまま乾燥操作をおこなった。
第三の工程として、表1に示す量の処理液を脱水エタノール3kgに分散し、冷却された磁石粉末に加えて30分攪拌した。なお、この処理液の量は、磁石粉末に対して0.1mol/kgに相当する。
引き続き、第四の工程として、非酸化性雰囲気として窒素雰囲気を保持し、70kPaの圧力で昇温を開始し、2時間で表1に示す温度に達するようにし、更に乾燥させるために2時間保持した。昇温中に脱水エタノールが蒸発するため、蒸発が完了すると5kPaの圧力となり、この圧力を保持したまま乾燥操作をおこなった。
冷却後に回収した磁石粉末は、被膜成分に対して、X線光電子分光装置で表面被膜の定性分析による元素分析を行い、また、磁石粉表面の金属Feの量を求めた。
その結果を表1に示す。比較例1については、図1に波形分離の例を示し、実施例1については、図に示した。これらの磁石粉末について、透過型電子顕微鏡にて表面被膜の厚みを確認したところ、比較例を含むすべての試料について被膜厚みが10〜50nmだった。
次に、得られた磁石粉末をバインダー樹脂と混合し、ラボプラストミルで30分間混練し、ボンド磁石組成物を得た。次に、この組成物を射出成形して40×8×2mmの成形品を得て、三点曲げによる曲げ強さを評価した。混練物中における磁石粉末の重量割合となる磁粉率、バインダー樹脂、混練温度を表1に示す。また混練30分での混練トルクと、得られた組成物の流動性Q値、さらに射出成形の温度と得られた成形体の曲げ強さも表1に示す。
[Examples 1-5, Comparative Examples 1-6]
As a first step, 3 kg of SmFeN alloy powder was pulverized to a mean particle size of 2.0 μm using a medium stirring mill in a mixed solution of 4 kg of dehydrated ethanol and a treatment liquid having an amount shown in Table 1. Here, the average particle diameter is calculated on a volume basis by measuring the particle size distribution with a laser diffraction particle size distribution analyzer HELOS & RODOS manufactured by Sympatec. Note that the amount of the treatment liquid corresponds to 0.3 mol / kg with respect to the magnet powder.
Next, as a second step, the pulverized slurry is put into a mixer, a nitrogen atmosphere is maintained as a non-oxidizing atmosphere, and the temperature is increased at an absolute pressure of 70 kPa, and the temperature shown in Table 1 is reached in 2 hours. And was held for 2 hours for further drying. Since dehydrated ethanol evaporates during the temperature rise, when the evaporation was completed, the pressure became 5 kPa, and the drying operation was performed while maintaining this pressure.
As a third step, the amount of treatment liquid shown in Table 1 was dispersed in 3 kg of dehydrated ethanol, added to the cooled magnet powder, and stirred for 30 minutes. Note that the amount of the treatment liquid corresponds to 0.1 mol / kg with respect to the magnet powder.
Subsequently, as the fourth step, a nitrogen atmosphere is maintained as a non-oxidizing atmosphere, temperature increase is started at a pressure of 70 kPa, the temperature shown in Table 1 is reached in 2 hours, and the temperature is further maintained for 2 hours for drying. did. Since dehydrated ethanol evaporates during the temperature rise, when the evaporation was completed, the pressure became 5 kPa, and the drying operation was performed while maintaining this pressure.
The magnet powder collected after cooling was subjected to elemental analysis by qualitative analysis of the surface film with an X-ray photoelectron spectrometer for the film component, and the amount of metallic Fe on the surface of the magnet powder was determined.
The results are shown in Table 1. As for Comparative Example 1, an example of waveform separation is shown in FIG. 1, and Example 1 is shown in the figure. About these magnet powders, when the thickness of the surface film was confirmed with the transmission electron microscope, the film thickness was 10-50 nm about all the samples containing a comparative example.
Next, the obtained magnet powder was mixed with a binder resin and kneaded for 30 minutes with a lab plast mill to obtain a bonded magnet composition. Next, this composition was injection molded to obtain a 40 × 8 × 2 mm molded product, and the bending strength by three-point bending was evaluated. Table 1 shows the magnetic powder ratio, the binder resin, and the kneading temperature, which are the weight ratio of the magnet powder in the kneaded product. Table 1 also shows the kneading torque after 30 minutes of kneading, the fluidity Q value of the obtained composition, the temperature of injection molding, and the bending strength of the obtained molded body.

Figure 2011052277
Figure 2011052277

[実施例6〜8、比較例7〜11]
第一の工程として、NdFeB系合金粉末3kgを、脱水エタノール4kgと表2に示す処理液との混合溶液中でミキサーを用いて30分間攪拌した。なお、この処理液の量は、磁石粉末に対して0.3mol/kgに相当する。次に、第二の工程として、表2に記載の温度以外の操作については、[実施例1〜5、比較例1〜6]に記載した第二の工程と同じ操作を行った。
第三の工程として、表1に示す処理液を脱水エタノール3kgに分散し、冷却された磁石粉末に加えて30分攪拌した。なお、この処理液の量は、磁石粉末に対して0.1mol/kgに相当する。引き続き、第四の工程として、表2に記載の温度以外の操作については、[実施例1〜5、比較例1〜6]に記載した第四の工程と同じ操作を行った。なお、比較例11については、第一工程から第四工程の処理を行っていない。
冷却後に回収した磁石粉末に対して、X線光電子分光装置で表面被膜の定性分析と金属Fe量を求めた。その結果を表2に示す。またこれらの磁石粉末について、透過型電子顕微鏡にて表面被膜の厚みを確認したところ、比較例11以外の試料については、被膜厚みが10〜90nmだった。
次に、得られた磁石粉末をバインダー樹脂と混合し、ラボプラストミルで30分間混練しボンド磁石組成物を得た。次に、この組成物を射出成形して40×8×2mmの成形品を得て、三点曲げによる曲げ強さを評価した。混練物の磁粉率、バインダー樹脂、混練温度を表2に示す。また混練30分での混練トルクと、得られた組成物の流動性Q値、さらに射出成形の温度と得られた成形体の曲げ強さも表2に示す。
[Examples 6 to 8, Comparative Examples 7 to 11]
As a first step, 3 kg of NdFeB alloy powder was stirred for 30 minutes using a mixer in a mixed solution of 4 kg of dehydrated ethanol and the treatment liquid shown in Table 2. Note that the amount of the treatment liquid corresponds to 0.3 mol / kg with respect to the magnet powder. Next, as the second step, operations other than the temperatures described in Table 2 were performed in the same manner as the second step described in [Examples 1 to 5, Comparative Examples 1 to 6].
As a third step, the treatment liquid shown in Table 1 was dispersed in 3 kg of dehydrated ethanol, added to the cooled magnet powder, and stirred for 30 minutes. Note that the amount of the treatment liquid corresponds to 0.1 mol / kg with respect to the magnet powder. Subsequently, as the fourth step, operations other than the temperatures described in Table 2 were performed in the same manner as the fourth step described in [Examples 1 to 5, Comparative Examples 1 to 6]. In addition, about the comparative example 11, the process of a 1st process to a 4th process is not performed.
A qualitative analysis of the surface coating and the amount of metallic Fe were determined with an X-ray photoelectron spectrometer for the magnet powder collected after cooling. The results are shown in Table 2. Moreover, about these magnet powders, when the thickness of the surface film was confirmed with the transmission electron microscope, about samples other than the comparative example 11, the film thickness was 10-90 nm.
Next, the obtained magnet powder was mixed with a binder resin and kneaded with a lab plast mill for 30 minutes to obtain a bonded magnet composition. Next, this composition was injection molded to obtain a 40 × 8 × 2 mm molded product, and the bending strength by three-point bending was evaluated. Table 2 shows the magnetic powder ratio, binder resin, and kneading temperature of the kneaded product. Table 2 also shows the kneading torque after 30 minutes of kneading, the fluidity Q value of the obtained composition, the temperature of injection molding, and the bending strength of the obtained molded body.

Figure 2011052277
Figure 2011052277

「評価」
SmFeNの磁石粉末の場合、金属状態のFe量が2.0%以下となる実施例は、金属状態のFe量が2.0%を越える比較例に対して、混錬トルクが小さくなり、流動性を示すQ値が大きくなるため、成形性が向上しており、また、成形体の曲げ強さは大きくなっており、機械的強度も増加している。
NdFeBの磁石粉末の場合、金属状態のFe量が2.0%以下となる実施例と、金属状態のFe量が2.0%を越える比較例との関係は、上記したSmFeNの磁石粉末の場合と同じである。
"Evaluation"
In the case of SmFeN magnet powder, the example in which the Fe amount in the metal state is 2.0% or less is smaller in the kneading torque than the comparative example in which the Fe amount in the metal state exceeds 2.0%. Since the Q value indicating the property is increased, the moldability is improved, the bending strength of the molded body is increased, and the mechanical strength is also increased.
In the case of NdFeB magnet powder, the relationship between the example in which the Fe amount in the metal state is 2.0% or less and the comparative example in which the Fe amount in the metal state exceeds 2.0% is the same as that of the above-described SmFeN magnet powder. Same as the case.

Claims (5)

表面に膜厚100nm以下のFe、P、O、RE(REは希土類元素)を含む被膜を有する希土類元素−鉄系磁石粉末において、被膜中に金属状態で存在するFeの量が、磁石粉末表面をX線光電子分光装置でFe2p3/2スペクトルを測定した後、得られたスペクトルプロファイルの面積に基づいて算出したとき、2.0%以下であることを特徴とするボンド磁石用希土類−鉄系磁石粉末。 In a rare earth element-iron-based magnet powder having a film containing Fe, P, O, RE (RE is a rare earth element) with a film thickness of 100 nm or less on the surface, the amount of Fe present in a metallic state in the film is determined by the surface of the magnet powder. After measuring the Fe2p 3/2 spectrum with an X-ray photoelectron spectrometer, it is 2.0% or less when calculated based on the area of the obtained spectrum profile. Magnet powder. 被膜中に金属状態で存在するFeの量は、まず、前記X線光電子分光装置で測定して束縛エネルギー705eV〜720eVの範囲で得られたFe2p3/2スペクトルプロファイルを、シャーリー法に基づきプロファイルのベースラインを設定し、金属状態の鉄Feの波形P1、鉄Feの酸化物形態の波形P2、鉄Feの別の酸化物形態の波形P3の3つの波形に分離し、次に、P1、P2、P3のそれぞれの波形の面積を算出して、これら3つの波形面積の合計に対する金属状態の鉄Feの波形P1の波形面積の百分率として決定することを特徴とする請求項1に記載のボンド磁石用希土類−鉄系磁石粉末。 The amount of Fe present in a metallic state in the coating is first measured using the Fe2p 3/2 spectrum profile obtained by measuring the X-ray photoelectron spectrometer in the range of binding energy of 705 eV to 720 eV based on the Shirley method. A baseline is set and separated into three waveforms: a waveform P1 of iron Fe in a metallic state, a waveform P2 of an oxide form of iron Fe, and a waveform P3 of another oxide form of iron Fe, and then P1, P2 The bond magnet according to claim 1, wherein the area of each waveform of P3 is calculated and determined as a percentage of the waveform area of the waveform P1 of iron Fe in a metallic state with respect to the sum of these three waveform areas. Rare earth-iron-based magnet powder. 希土類−鉄系磁石粉末が、NdFeB系、Sm(Co、Fe、Cu、M)17系、又はSmFeN系であることを特徴とする請求項1に記載のボンド磁石用希土類−鉄系磁石粉末。 Rare earth - iron magnet powder, NdFeB series, Sm 2 (Co, Fe, Cu, M) 17 type, or rare earth bonded magnet according to claim 1, characterized in that the SmFeN system - iron-based magnetic powder . 燐酸を含む溶液と希土類−鉄系磁石粉末とを粉砕容器又は攪拌容器中で接触させる第一の工程、接触処理された希土類−鉄系磁石粉末を非酸化性雰囲気で、100〜300℃の温度範囲で加熱処理する第二の工程、加熱処理された希土類−鉄系磁石粉末を、再び燐酸を含む溶液と攪拌容器中で接触させる第三の工程、接触処理された希土類−鉄系磁石粉末を非酸化性雰囲気で、80〜200℃の温度範囲で加熱処理する第四の工程を順次行うことにより、希土類−鉄系磁石粉末の表面に、金属状態で存在するFeの量が低減した被膜を形成することを特徴とする請求項1〜3のいずれかに記載の希土類−鉄系磁石粉末の製造方法。   A first step of bringing a solution containing phosphoric acid into contact with a rare earth-iron-based magnet powder in a pulverization vessel or a stirring vessel, the contact-treated rare earth-iron-based magnet powder at a temperature of 100 to 300 ° C. in a non-oxidizing atmosphere The second step of heat treatment in the range, the third step of bringing the heat-treated rare earth-iron-based magnet powder into contact with the solution containing phosphoric acid again in a stirring vessel, the contact-treated rare earth-iron-based magnet powder By sequentially performing a fourth step of heat treatment in a temperature range of 80 to 200 ° C. in a non-oxidizing atmosphere, a coating with a reduced amount of Fe present in a metallic state is formed on the surface of the rare earth-iron-based magnet powder. It forms, The manufacturing method of the rare earth-iron type magnet powder in any one of Claims 1-3 characterized by the above-mentioned. 燐酸を含む溶液が、有機溶剤として、エタノールまたは2−プロパノール(IPA)から選ばれた1種以上のアルコールを含むことを特徴とする請求項4に記載のボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法。   The rare earth-iron-nitrogen based magnet for bonded magnets according to claim 4, wherein the solution containing phosphoric acid contains one or more alcohols selected from ethanol or 2-propanol (IPA) as the organic solvent. Powder manufacturing method.
JP2009202357A 2009-09-02 2009-09-02 Rare earth-iron-based magnet powder for bonded magnet and manufacturing method thereof Active JP5387242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202357A JP5387242B2 (en) 2009-09-02 2009-09-02 Rare earth-iron-based magnet powder for bonded magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202357A JP5387242B2 (en) 2009-09-02 2009-09-02 Rare earth-iron-based magnet powder for bonded magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011052277A true JP2011052277A (en) 2011-03-17
JP5387242B2 JP5387242B2 (en) 2014-01-15

Family

ID=43941575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202357A Active JP5387242B2 (en) 2009-09-02 2009-09-02 Rare earth-iron-based magnet powder for bonded magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5387242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119908A1 (en) * 2021-12-24 2023-06-29 愛知製鋼株式会社 Rare-earth magnetic powder, method for manufacturing same, and bond magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209404A (en) * 2008-03-04 2009-09-17 Sumitomo Metal Mining Co Ltd Method for producing rare earth-iron-nitrogen based magnet powder for bond magnet
JP2010202974A (en) * 2009-02-03 2010-09-16 Toda Kogyo Corp Surface-treated rare earth-based magnetic powder, resin composition for bond magnet containing the rare earth-based magnetic powder, and bond magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209404A (en) * 2008-03-04 2009-09-17 Sumitomo Metal Mining Co Ltd Method for producing rare earth-iron-nitrogen based magnet powder for bond magnet
JP2010202974A (en) * 2009-02-03 2010-09-16 Toda Kogyo Corp Surface-treated rare earth-based magnetic powder, resin composition for bond magnet containing the rare earth-based magnetic powder, and bond magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119908A1 (en) * 2021-12-24 2023-06-29 愛知製鋼株式会社 Rare-earth magnetic powder, method for manufacturing same, and bond magnet
WO2023119612A1 (en) * 2021-12-24 2023-06-29 愛知製鋼株式会社 Rare earth magnet powder and production method therefor

Also Published As

Publication number Publication date
JP5387242B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2003044810A1 (en) Corrosion-resistant rare earth element magnet
CN102227784A (en) Soft magnetic material, shaped body, compressed powder magnetic core, electromagnetic component, process for production of soft magnetic material, and process for production of compressed powder magnetic core
JP2006004944A (en) Raw material for molding fuel cell separator, manufacturing method for the same. fuel cell separator and fuel cell
CN102473517A (en) Dust core and method for producing same
KR102249376B1 (en) Non-corrosive soft-magnetic powder
JP3851655B2 (en) Heat treatment of magnetic iron powder
JP5071671B2 (en) SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER
CN102543350A (en) Production process of dust core and dust core obtained thereby
JP2011146417A (en) Method for manufacturing composition for resin-bonded magnet, resin composition for magnet obtained, and the resin-bonded magnet
KR20150116841A (en) Method for producing magnetic particles, magnetic particles, and magnetic body
JP5387242B2 (en) Rare earth-iron-based magnet powder for bonded magnet and manufacturing method thereof
US11990259B2 (en) Rare earth-iron-nitrogen-based magnetic powder, compound for bonded magnet, bonded magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder
JP2018056337A (en) Method for manufacturing rare earth-iron-nitrogen based magnet powder, resin composition for bond magnet using the same, and bond magnet
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2011119385A (en) Iron-based magnet alloy powder containing rare earth element, method of manufacturing the same, resin composition for bonded magnet obtained, bonded magnet, and consolidated magnet
JP2018009200A (en) Rare earth-ferrous magnet powder for bond magnet and method for producing the same, resin composition for bond magnet and bond magnet
Farzam Mehr et al. The effect of processing parameters on magnetic properties of an epoxy resin-bonded isotropic Nd–Fe–B magnet
JP4412376B2 (en) Salt-water resistant magnet alloy powder, and resin composition for bond magnet, bond magnet or compacted magnet obtained by using the same
JP6471724B2 (en) Method for producing magnet alloy powder for bonded magnet
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JP2022035559A (en) Composite magnetic body
RU2040810C1 (en) Method for producing nonretentive material
JP2011146416A (en) Composition for resin-bonded magnet and resin bonded magnet
JP2003217916A (en) High heat resistance magnetic powder, its manufacturing method and bonded magnet using the same
KR102643789B1 (en) Improved temperature-stability soft magnetic powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5387242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150