JP2011052042A - Raw material composition for polyvinyl chloride product, and polyvinyl chloride molded product - Google Patents
Raw material composition for polyvinyl chloride product, and polyvinyl chloride molded product Download PDFInfo
- Publication number
- JP2011052042A JP2011052042A JP2009199527A JP2009199527A JP2011052042A JP 2011052042 A JP2011052042 A JP 2011052042A JP 2009199527 A JP2009199527 A JP 2009199527A JP 2009199527 A JP2009199527 A JP 2009199527A JP 2011052042 A JP2011052042 A JP 2011052042A
- Authority
- JP
- Japan
- Prior art keywords
- vinyl chloride
- polyvinyl chloride
- raw material
- material composition
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、質量効果が大きい比較的厚肉の塩化ビニル製品を、加熱処理が不要で電気・ガス・重油等のエネルギーを全く使用することなく、均質かつ容易に製造することができる塩化ビニル製品用原料組成物と塩化ビニル成形品に関するものである。 The present invention provides a relatively thick-walled vinyl chloride product having a large mass effect, which can be produced homogeneously and easily without the need for heat treatment and without using any energy such as electricity, gas or heavy oil. The present invention relates to a raw material composition and a vinyl chloride molded product.
従来から、塩化ビニル成形品は、その耐候性、耐油性、耐防曇性、耐傷性、成形加工性等に優れていることから、自動車、家電、建材、ホース類等々の分野で多用されており、塩化ビニル製品用原料組成物として種々のものが提案されている(例えば、特許文献1や特許文献2を参照)。
これらの製品は、常温で流動性のあるペーストゾルをコーティング、ディップ(キャスト)、注型、回転成形といった成形法で賦形して製品、あるいは半製品とした後、熱を加え、ゲル化、溶融、冷却工程を経て最終成形品とされている。
Conventionally, vinyl chloride molded products have been widely used in fields such as automobiles, home appliances, building materials, hoses, etc. because of their excellent weather resistance, oil resistance, anti-fogging properties, scratch resistance, moldability, etc. Various material compositions for vinyl chloride products have been proposed (see, for example,
These products are made into a product or semi-finished product by forming a paste or sol that is fluid at room temperature by a molding method such as coating, dipping (casting), casting, or rotational molding, and then applying heat to gelation, It is made the final molded product through a melting and cooling process.
図4に、従来法の成形工程の概略フロー図を示す。
図中において「ペースト樹脂」とは、直径0.02〜2μmの特殊な塩化ビニル樹脂をいい、また「ペーストゾル」とは、このペースト樹脂を液状の可塑剤、希釈剤、安定剤等の添加剤といっしょに混合・混練して得られる常温で流動性のあるものをいう。この塩ビペーストゾルを成形金型内において常温付近で賦形し、加熱・ゲル化・溶融・冷却の各工程を経て、さまざまな塩化ビニル成形品を製造している。
このように、塩化ビニル成形品の製造は、塩化ビニルが熱可塑性樹脂でありながら、熱硬化樹脂の加工方式となっているのが普通である。
FIG. 4 shows a schematic flow diagram of a conventional molding process.
In the figure, “paste resin” means a special vinyl chloride resin having a diameter of 0.02 to 2 μm, and “paste sol” means that this paste resin is added with a liquid plasticizer, diluent, stabilizer, etc. It is fluid at room temperature obtained by mixing and kneading together with the agent. This vinyl chloride paste sol is shaped in the mold at around room temperature, and various vinyl chloride molded products are manufactured through heating, gelation, melting and cooling processes.
As described above, the vinyl chloride molded article is usually processed by a thermosetting resin while vinyl chloride is a thermoplastic resin.
この成形プロセスにおいて使用する熱エネルギーには、電気・ガス・灯油等が熱源となっている。加熱に際しては、製品を外部から加熱する外部加熱方式であり、被加熱物の表面から順次内部へ熱が伝達され所望とする温度に到達する。この際に、質量効果が大なる厚肉品は、質量効果が小である薄肉品に比べ中心部の所望とする温度上昇に時間がかかり(タイムラグ)、この結果、表面と中心部の温度差が大となり、表面は固形化完了しても中心部はゾルまたはゲル状を呈し、内外部共に固形化に至らないという現象を生じる。一方、加熱時間を長くして中心部を固形化すると、表面はオーバー加熱となり、場合によっては樹脂の分解という致命的な欠陥状態を招くことがある。 The heat energy used in this molding process is electricity, gas, kerosene or the like as a heat source. The heating is an external heating method in which the product is heated from the outside, and heat is sequentially transmitted from the surface of the article to be heated to the inside to reach a desired temperature. At this time, a thick product with a large mass effect takes a longer time to increase the desired temperature at the center (time lag) than a thin product with a small mass effect, resulting in a temperature difference between the surface and the center. However, even if the solidification of the surface is completed, the central part exhibits a sol or gel shape, and a phenomenon occurs that neither the inside nor the outside is solidified. On the other hand, when the heating time is lengthened to solidify the central portion, the surface is overheated, and in some cases, a fatal defect state of resin decomposition may be caused.
従って、外部加熱方式では、製品内外部をほぼ同時期に固形化することは原理的に不可能であることから質量効果が大なる厚肉製品開発の妨げの一因となっていた。
しかしながら、耐候性や耐傷性、成形加工性等に優れている点から、例えば厚みのある側溝やU字溝への適用が検討され、従来不可能であった厚肉の塩化ビニル製品の開発が望まれるようになってきた。
Therefore, in the external heating method, it is impossible in principle to solidify the inside and outside of the product almost at the same time, and this has been a factor in hindering the development of thick-walled products with a large mass effect.
However, because of its excellent weather resistance, scratch resistance, molding processability, etc., application to thick side grooves and U-shaped grooves, for example, has been studied, and development of thick-walled vinyl chloride products that has been impossible in the past has been developed. It has come to be desired.
本発明は、前記のような問題点を解決して、熱エネルギーを全く使用せず塩化ビニル成形品を製造すること、また質量効果大なる厚肉製品であっても表面から中心部まで均一に固化することができること、また大規模な設備を必要とせず簡単に製造ができることを技術的課題とするものである。 The present invention solves the above-mentioned problems and produces a vinyl chloride molded product without using any heat energy, and even a thick product with a large mass effect can be evenly distributed from the surface to the center. The technical problem is that it can be solidified and can be easily manufactured without requiring large-scale equipment.
今回、本発明者は化学反応による塩ビペーストゾルの固形化技術に着目し、その化学反応制御剤とする(1)ポリエステル樹脂と硬化剤、(2)エポキシ樹脂と硬化剤、(3)ポリウレタン樹脂と硬化剤につき、塩ビペーストゾルに混合して試験を実施した結果、原料組成物の構成上、塩ビペーストゾルに対し(3)のポリウレタン樹脂と硬化剤、即ち、ポリオールとイソシアネートの化合物が化学反応性、材料同種の相容性、配合の自由度、既存材料の適用等々、総合的に優れていることを究明して、上述の目的を達成し得ることを見出し、本発明を完成するに至ったのである。
従って、本発明の目的は、上述の発明者が見出した事実に基づき、熱処理加工を必要とせず化学反応のみにより、しかも質量効果の影響を極力少なくして、塩ビペーストゾルをゾル(液状)状から固形へと賦形化することが可能な新規な塩化ビニル製品用原料組成物と塩化ビニル成形品を提供することである。
This time, the present inventor paid attention to the solidification technology of the vinyl chloride paste sol by chemical reaction, and used as the chemical reaction control agent (1) polyester resin and curing agent, (2) epoxy resin and curing agent, and (3) polyurethane resin. As a result of mixing and testing with a vinyl chloride paste sol, the polyurethane resin and the curing agent (3), that is, a compound of polyol and isocyanate, reacted with the vinyl chloride paste sol due to the composition of the raw material composition. The present invention has been completed by finding out that the above-mentioned objects can be achieved by investigating that it has excellent overall properties, such as compatibility, compatibility of materials, freedom of compounding, and application of existing materials. It was.
Therefore, the object of the present invention is based on the facts found by the above-mentioned inventors, and does not require a heat treatment process, only by chemical reaction, and by reducing the influence of mass effect as much as possible. It is to provide a novel raw material composition for a vinyl chloride product and a vinyl chloride molded article that can be shaped from solid to solid.
上記課題を解決するためになされた本発明の塩化ビニル製品用原料組成物は、塩化ビニルのペースト樹脂に添加剤や希釈剤を加えて得た塩ビペーストゾルに、ウレタン化反応させるための化学反応制御剤としてポリオールとイソシアネート化合物を添加し、加熱処理なしで固化可能としたことを特徴とするものである。
即ち、塩ビペーストゾル原料を基本とし、反応剤の1液であるポリオールを塩ビペーストゾル中に混合して均一に分散せしめ、次いで、2液であるイソシアネート化合物を化学反応制御剤として混合してウレタン化反応を発生させる原料組成物である点に本質的な特徴を有するものである。
The raw material composition for vinyl chloride products of the present invention made to solve the above problems is a chemical reaction for urethanizing a vinyl chloride paste sol obtained by adding an additive or diluent to a vinyl chloride paste resin. It is characterized in that a polyol and an isocyanate compound are added as control agents so that they can be solidified without heat treatment.
That is, based on a PVC paste sol raw material, a polyol, which is one component of a reactant, is mixed and dispersed uniformly in a PVC paste sol, and then a two-component isocyanate compound is mixed as a chemical reaction control agent to make urethane. It has an essential feature in that it is a raw material composition that generates a chemical reaction.
また、前記塩ビペーストゾル100重量部に対し、ポリオールとイソシアネート化合物を合計量で10〜50重量部添加することが好ましく、これを請求項2に係る発明とする。
Further, it is preferable to add 10 to 50 parts by weight of the polyol and the isocyanate compound in a total amount with respect to 100 parts by weight of the vinyl chloride paste sol, and this is the invention according to
更に、前記の塩化ビニル製品用原料組成物を、成形型内に投入し、加熱処理することなく化学反応のみで均一に固化させたことを特徴とする塩化ビニル成形品を請求項3に係る発明とする。
Furthermore, the vinyl chloride molded article according to
請求項1に係る発明では、塩化ビニルのペースト樹脂に添加剤や希釈剤を加えて得た塩ビペーストゾルに、ウレタン化反応させるための化学反応制御剤としてポリオールとイソシアネート化合物を添加したので、ウレタン化反応(または重付加反応)によって、熱エネルギーを使用することなく賦形化成形品を得ることができる。また、この成形品ではウレタン化反応である化学反応が塩ビペーストゾルに対し全部位において同時期的に起きることから、全体が均一な厚肉で質量効果が大なる成形品の製造も可能となる。
In the invention according to
また、請求項2に係る発明のように、塩ビペーストゾル100重量部に対し、ポリオールとイソシアネート化合物を合計量で10〜50重量部添加すれば、塩ビペーストゾルを確実に均一固化させることができる。
Further, as in the invention according to
請求項3に係る発明では、塩化ビニル製品用原料組成物を、成形型内に投入し、加熱処理することなく化学反応のみで均一に固化させたので、熱エネルギーが不要であり、また厚肉で質量効果が大なる成形品を容易に製造できることとなる。
In the invention according to
以下に、本発明の塩化ビニル製品用原料組成物、及びこれを用いて成形した塩化ビニル成形品につき説明する。
本発明の塩化ビニル製品用原料組成物は、塩化ビニルのペースト樹脂に添加剤や希釈剤を加えて得た塩ビペーストゾルに、ウレタン化反応させるための化学反応制御剤としてポリオールとイソシアネート化合物を添加し、加熱処理なしで固化可能とした点に特徴を有する。
ここで「ペースト樹脂」とは、直径0.02〜2μmの特殊な塩化ビニル樹脂をいい、また「塩ビペーストゾル」とは、この塩化ビニルのペースト樹脂を液状の可塑剤、希釈剤、安定剤等の添加剤といっしょに混合・混練して得られる常温で流動性のあるものをいう。
Below, the raw material composition for vinyl chloride products of this invention and the vinyl chloride molded product shape | molded using this are demonstrated.
In the raw material composition for vinyl chloride products of the present invention, a polyol and an isocyanate compound are added as a chemical reaction control agent for urethanization reaction to a vinyl chloride paste sol obtained by adding an additive or diluent to a vinyl chloride paste resin. However, it is characterized in that it can be solidified without heat treatment.
Here, “paste resin” refers to a special vinyl chloride resin having a diameter of 0.02 to 2 μm, and “vinyl chloride paste sol” refers to this vinyl chloride paste resin as a liquid plasticizer, diluent, stabilizer. It has fluidity at room temperature and is obtained by mixing and kneading together with such additives.
本発明は、塩ビペーストゾルに対して、化学反応制御剤としてポリウレタン原料で反応剤1液のポリオール反応剤と、2液のイソシアネート化合物を混合することで、ウレタン化反応(または、重付加反応)により、加熱することなくゾル状(液状)を固化して賦形化ができることを見出し、完成するに至ったものである。 In the present invention, a urethanization reaction (or polyaddition reaction) is carried out by mixing a polyvinyl reactant as a chemical reaction control agent with a one-component polyol reactant and two-component isocyanate compound as a chemical reaction control agent for a vinyl chloride paste sol. Thus, it was found that the sol form (liquid state) can be solidified without heating, and has been completed.
前記塩化ビニルのペースト樹脂は、一般に市販されているものを使用できる。これは、塩化ビニルモノマーを乳化重合法によって製造した粒子サイズが0.1〜10μmで粒子形は真球に近い形状を呈するものである。このペースト樹脂を、ゾル状とするにあたり、通常、配合剤として可塑剤、安定剤、充填剤、希釈剤、減粘剤、着色剤、難燃剤等の1種または2種以上が使用されている。用途に応じてペースト樹脂に対し、適切な添加量を決定したうえ、撹拌機能を有する混合機中で、ペースト樹脂と添加剤を均一に分散し、所定温度、所定時間撹拌混合することで流動性のある塩ビペーストゾルが得られる。
その後、固体粒子間に残留した空気や混合中に巻き込まれた空気を除去するため、減圧下で脱泡し、所望とする塩ビペーストゾルを得る。
As the vinyl chloride paste resin, commercially available products can be used. This is a particle size of 0.1 to 10 μm produced by emulsion polymerization of vinyl chloride monomer, and the particle shape is close to a true sphere. In order to make this paste resin into a sol, one or more of plasticizers, stabilizers, fillers, diluents, thinning agents, colorants, flame retardants and the like are usually used as compounding agents. . In addition to determining the appropriate addition amount for the paste resin according to the application, the paste resin and the additive are uniformly dispersed in a mixer having a stirring function, and the mixture is stirred and mixed for a predetermined time and fluidity. A PVC paste sol having
Thereafter, in order to remove the air remaining between the solid particles and the air entrained during mixing, defoaming is performed under reduced pressure to obtain a desired PVC paste sol.
ウレタン化反応(または、重付加反応)させるための化学反応制御剤としては、ポリウレタン原料を用いる。これは、一般に市販しているポリオールとイソシアネート化合物が使用できる。
これらは周知の通り多種類あり、1種のみに限定するものでなく、ポリ塩化ビニルペーストゾルに対し、第1液のポリオール(開始剤)と、第2液のイソシアネート化合物(反応生成剤)との混合使用(重合化)により、ウレタン化反応(または、重付加反応)を発生できることとなる。
A polyurethane raw material is used as a chemical reaction control agent for urethanization reaction (or polyaddition reaction). For this, commercially available polyols and isocyanate compounds can be used.
As is well known, these are many types and are not limited to only one type. For the polyvinyl chloride paste sol, the first liquid polyol (initiator) and the second liquid isocyanate compound (reaction product) The mixed use (polymerization) of can generate a urethanization reaction (or polyaddition reaction).
化学反応制御剤の添加量は、塩ビペーストゾル100重量部に対し、ポリオールとイソシアネート化合物を合計量で10〜50重量部添加することが好ましい。添加量が10重量部未満では固形化が難しく、一方、50重量部より多いと十分な耐候性や耐傷性、成形加工性が得られにくくなるからである。
また、ポリオールとイソシアネートの混合比は、5:2〜2:5の割合の割合が好ましく、使途に応じて調整し任意の硬さに調整することができる。
As for the addition amount of the chemical reaction control agent, it is preferable to add 10 to 50 parts by weight of the total amount of polyol and isocyanate compound with respect to 100 parts by weight of the vinyl chloride paste sol. If the added amount is less than 10 parts by weight, solidification is difficult, while if it is more than 50 parts by weight, sufficient weather resistance, scratch resistance, and moldability are difficult to obtain.
The mixing ratio of the polyol and the isocyanate is preferably a ratio of 5: 2 to 2: 5, and can be adjusted to any hardness by adjusting according to the usage.
このようにして得られた塩化ビニル製品用原料組成物を、成形型内に投入し、加熱処理することなく化学反応のみで均一に固化させて塩化ビニル成形品とすることができる。
図3に、本発明の成形工程の概略フロー図を示す。成形法としては、コーティング、ディップ(キャスト)、注型、回転成形等の一般的な成形法で賦形することができる。本発明では、ウレタン化反応(または、重付加反応)により固化させるため、従来のような加熱処理は不要である。
The raw material composition for a vinyl chloride product thus obtained can be put into a mold and uniformly solidified only by a chemical reaction without heat treatment to obtain a vinyl chloride molded product.
FIG. 3 shows a schematic flow diagram of the molding process of the present invention. As a molding method, it can be shaped by a general molding method such as coating, dipping (casting), casting, or rotational molding. In the present invention, since it is solidified by urethanization reaction (or polyaddition reaction), conventional heat treatment is unnecessary.
以下に、実施例につき説明する。
偏芯2軸ミキサーに平均重合度が850のポリ塩化ビニルのペースト樹脂100重量部を投入し、回転数1700rpm/minで撹拌し、[表1]に示す配合条件により各種添加剤を加え、40℃以下で温度調節をしながら50分間撹拌し、塩ビペーストゾルを得た。
Hereinafter, examples will be described.
100 parts by weight of a polyvinyl chloride paste resin having an average polymerization degree of 850 was put into an eccentric biaxial mixer, stirred at a rotational speed of 1700 rpm / min, various additives were added according to the blending conditions shown in [Table 1], and 40 The mixture was stirred for 50 minutes while adjusting the temperature at a temperature not higher than ° C. to obtain a vinyl chloride paste sol.
次いで、プロペラ撹拌機に塩ビペーストゾル100重量部に対し、ポリオール(発泡剤無含有)を所定量添加し、500〜700rpm/minの低速で空気巻き込みに注意しながら3分間混合撹拌し、ダマの発生や未分散状態がない均一分散が得られていることを確認した。その後、化学反応制御剤とするイソシアネート化合物を所定量添加し、1200rpm/minで20〜60秒間混合した。 Next, a predetermined amount of polyol (containing no foaming agent) is added to a propeller stirrer with respect to 100 parts by weight of the vinyl chloride paste sol, and mixed and stirred for 3 minutes while paying attention to air entrainment at a low speed of 500 to 700 rpm / min. It was confirmed that uniform dispersion without generation or undispersed state was obtained. Then, the isocyanate compound used as a chemical reaction control agent was added in a predetermined amount and mixed at 1200 rpm / min for 20 to 60 seconds.
混合後、反応が開始していることを確認し、容器に投入し、賦形成形品を得た。
ここで、化学反応開始時期は、明確に把握できないが、反応が開始し進行する過程では化学反応現象が起き、発熱による温度変化(温度上昇)、液状の粘度変化(粘性アップ)が反応現象として確実に現出するという考えにたち、この2点の挙動を把握することで容器投入への判断基準とした。
After mixing, it was confirmed that the reaction had started, and the mixture was put into a container to obtain a shaped product.
Here, the chemical reaction start time cannot be clearly understood, but the chemical reaction phenomenon occurs in the process where the reaction starts and progresses, and the temperature change (temperature increase) due to heat generation and the liquid viscosity change (viscosity increase) are reaction phenomena. Based on the idea that it will surely appear, we grasped the behavior of these two points and used it as a criterion for container injection.
次に、塩化ビニルペーストゾルを固形化するにおいて、ポリオールとイソシアネート化合物の合計量は、塩化ビニルペーストゾル100重量に対し、10重量以上とすれば、固形化できるが、それ以下では固形化は起こり得ない。端的に言えば、被反応対象とするボリュームに対して反応を発生する量として少ないことに他ならない。一方、50重量部より多いと十分な耐候性や耐傷性、成形加工性が得られにくくなり、好ましくない。 Next, in solidifying the vinyl chloride paste sol, the total amount of polyol and isocyanate compound can be solidified if it is 10 weights or more with respect to 100 weight of the vinyl chloride paste sol, but solidification occurs below that. I don't get it. In short, this is nothing but the amount of reaction that occurs with respect to the volume to be reacted. On the other hand, when the amount is more than 50 parts by weight, it is difficult to obtain sufficient weather resistance, scratch resistance and molding processability, which is not preferable.
固形時の品質については、従来の加熱処理品の場合、成形品に致命的となるクラックは表面に発生していないものの、内部の各部位にクラックが多数発生しており、特に、積層凝固状と観察される層間境には輪状に渡り目視可能なマイクロクラックや大きく開口している部位がある。原因としては、冷却時の内外部の温度差によって生じる応力に起因し、冷却完了後に、表面強度が内部強度を上回ったことによるものと推察される。この対応としては、応力を極力小さくするように内外部の温度差を少なくする徐冷却法が考えられるが、生産性当を考慮すると現実には難しい。 As for the quality when solid, in the case of conventional heat-treated products, cracks that are fatal to molded products have not occurred on the surface, but many cracks have occurred in each internal part, In the interlayer boundary observed, there are microcracks that are visible over a ring shape and sites that are widely open. The cause is assumed to be due to the stress caused by the temperature difference between the inside and outside during cooling, and that the surface strength exceeded the internal strength after completion of cooling. As a countermeasure for this, a slow cooling method in which the temperature difference between the inside and outside is reduced so as to minimize the stress is considered, but it is actually difficult in view of productivity.
これに対し、本発明の化学反応による成形品にはクラックの発生が認められない。これは反応開始から完了まで、内外部の全部位に同時期的に反応が起きることから、応力発生が生じず、また冷却時に応力が発生したとしても、かかる応力そのものが問題とならない程小さいと考えられるからである。 On the other hand, the occurrence of cracks is not observed in the molded product due to the chemical reaction of the present invention. This is because the reaction occurs simultaneously in all the internal and external parts from the start to the end of the reaction, so no stress is generated, and even if stress is generated during cooling, the stress itself is small enough not to cause a problem. It is possible.
化学反応制御剤とするイソシアネート化合物は1種類に限定されないことを実証するため異なる4種類のイソシアネート化合物を使用した。これらの配合割合を[表2]に示す。 In order to demonstrate that the isocyanate compound used as the chemical reaction control agent is not limited to one type, four different types of isocyanate compounds were used. These compounding ratios are shown in [Table 2].
ポリオールを固定とし、イソシアネート化合物を4種類別に混合量と割合の変化について試験を行い、得られた成形品を供試材とし、表面硬度(●)と内部中心硬度(○)をショアー硬度計(D型)で測定した。この結果は、図1に示すイソシアネート化合物の混合量と硬度の関係を示すグラフの通りとなった。図中の(2−1)〜(2−4)は、[表2]のイソシアネート化合物を示す。 A test was conducted with respect to changes in the amount and ratio of four types of isocyanate compounds with a fixed polyol, and the resulting molded product as a test material. The surface hardness (●) and internal center hardness (O) were measured using a Shore hardness meter ( D type). The results are as shown in the graph showing the relationship between the amount of isocyanate compound mixed and the hardness shown in FIG. (2-1) to (2-4) in the figure show the isocyanate compounds in [Table 2].
図1に示されるように、4種類のイソシアネート化合物は、いずれも混合量の増加と比例して硬度が上昇する。注目すべきは、表面と内部中心硬度に差が小さく混合量が24、28部については、ほとんど硬度差は無いか極小差であり、質量効果が小となっている。また、混合量が同じでも割合が逆変化すると、高度は低下傾向となり、若干ではあるが硬度差が開き始めている。このことは、厚肉品において高品質が得られるばかりか、使途に応じて配合設計の自由度が得られ、有益なる材料の特徴を現している。 As shown in FIG. 1, the hardness of all four types of isocyanate compounds increases in proportion to the increase in the amount of mixing. It should be noted that there is little difference between the surface and internal center hardness, and the mixing amount is 24 or 28 parts, there is almost no difference in hardness or minimal difference, and the mass effect is small. Moreover, even if the mixing amount is the same, if the ratio changes in the reverse direction, the altitude tends to decrease, and the hardness difference starts to open slightly. This shows not only high quality in thick-walled products, but also freedom of compounding design depending on the purpose of use, which is a useful material feature.
また、従来の外部加熱方式と、本発明の化学反応方式により成形した塩化ビニル成形品の固形化、クラック発生の有無につきチェックした結果を[表3]に示す。 Table 3 shows the results of checking for solidification and occurrence of cracks in the vinyl chloride molded product molded by the conventional external heating method and the chemical reaction method of the present invention.
以上のことから、従来の外部加熱冷却による固形化方式に比べて、本発明の化学反応方式では質量効果が大なる成形品、即ち製品肉厚が大なる成形品の製造が均一で有利に行えるとことが確認できる。 From the above, compared with the conventional solidification method by external heating and cooling, the chemical reaction method of the present invention can uniformly and advantageously produce a molded product having a large mass effect, that is, a molded product having a large product thickness. It can be confirmed.
更に、肉厚をアップした試験を実施して縦断面の硬度分布を求めた結果を図2に示す。これから言えることは、反応において、ボリュームが大きくなっても混合量が適正であれば、得られた成形品は、致命的な欠陥等が生じることがない。内外共に健全な緻密化状態の品質が得られる硬度分布よりも質量効果が小さく反応が全部位に渡って起きていることが分かる。
また図2において、一部表層付近に硬度が突出している箇所が認められる。考えられるのは、混合中の撹拌が十分でなく、反応剤の濃度が局所的に濃くなり、硬度上昇を招いたものと推察する。この事象から、反応剤を主材とする材料に混合するには、基本となる相容性、対空気混入対応はもとより、いかに主材料に対して反応剤を均一に分散させることが重要であるかを示している。
Furthermore, the result of having carried out the test which raised thickness and calculated | required the hardness distribution of a longitudinal cross-section is shown in FIG. What can be said from this is that in the reaction, even if the volume is increased, if the mixing amount is appropriate, the obtained molded article does not cause a fatal defect or the like. It can be seen that the mass effect is smaller than the hardness distribution that provides a sound densified quality both inside and outside, and that the reaction takes place over the entire site.
Moreover, in FIG. 2, the location where hardness protrudes in part near surface layer is recognized. It is conceivable that the stirring during mixing is not sufficient, and the concentration of the reactant is locally increased, leading to an increase in hardness. From this event, in order to mix the reactants into the main material, it is important to disperse the reactants uniformly in the main material as well as the basic compatibility and anti-air mixing. It shows.
Claims (3)
A vinyl chloride molded article, wherein the raw material composition for a vinyl chloride product according to claim 1 or 2 is charged into a mold and uniformly solidified only by a chemical reaction without heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009199527A JP2011052042A (en) | 2009-08-31 | 2009-08-31 | Raw material composition for polyvinyl chloride product, and polyvinyl chloride molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009199527A JP2011052042A (en) | 2009-08-31 | 2009-08-31 | Raw material composition for polyvinyl chloride product, and polyvinyl chloride molded product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011052042A true JP2011052042A (en) | 2011-03-17 |
Family
ID=43941383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009199527A Pending JP2011052042A (en) | 2009-08-31 | 2009-08-31 | Raw material composition for polyvinyl chloride product, and polyvinyl chloride molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011052042A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61250044A (en) * | 1985-04-30 | 1986-11-07 | Nippon Polyurethan Kogyo Kk | Production of polyvinyl chloride-polyurethane molding composition |
JPH0445116A (en) * | 1990-06-11 | 1992-02-14 | Sanyo Chem Ind Ltd | Polyurethane composition |
JPH06263838A (en) * | 1993-03-11 | 1994-09-20 | Mitsubishi Kasei Vinyl Co | Vinyl chloride resin composition |
JPH0733979A (en) * | 1993-07-21 | 1995-02-03 | Chisso Corp | Vinyl chloride resin composition, molding made using the same, and production of the molding |
-
2009
- 2009-08-31 JP JP2009199527A patent/JP2011052042A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61250044A (en) * | 1985-04-30 | 1986-11-07 | Nippon Polyurethan Kogyo Kk | Production of polyvinyl chloride-polyurethane molding composition |
JPH0445116A (en) * | 1990-06-11 | 1992-02-14 | Sanyo Chem Ind Ltd | Polyurethane composition |
JPH06263838A (en) * | 1993-03-11 | 1994-09-20 | Mitsubishi Kasei Vinyl Co | Vinyl chloride resin composition |
JPH0733979A (en) * | 1993-07-21 | 1995-02-03 | Chisso Corp | Vinyl chloride resin composition, molding made using the same, and production of the molding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Daniels | A brief overview of theories of PVC plasticization and methods used to evaluate PVC‐plasticizer interaction | |
WO2013017044A1 (en) | New biodegradable masterbatch and preparation method thereof | |
CN105504200B (en) | Combined polyether, polyurethane wood-imitation material and preparation method thereof | |
CN105176092B (en) | A kind of preparation method of epoxy resin composite organic insulation material | |
JP7417389B2 (en) | Masterbatches for foam molding and foam molded products | |
CN103642113A (en) | Silicon micropowder reinforced polyethylene material and preparation method thereof | |
CN109593226A (en) | A kind of method of low-shrinkage flame retardant polyurethane rigid foam material being formulated and its prepare foamed material | |
CN103992605A (en) | Polyvinyl chloride (PVC) material with high oil resistance and preparation method thereof | |
JP4662804B2 (en) | Hollow resin fine particles, method for producing hollow resin fine particles, and composite material | |
CN107226996A (en) | A kind of epoxy resin foam material base material and its preparation technology | |
JP2022544465A (en) | PVC formulations with high inorganic filler content and hydroxyl-functional organopolysiloxanes | |
JP7431541B2 (en) | Masterbatches for foam molding and foam molded products | |
CN103910921A (en) | High density polyethylene (HDPE) alloy and preparation method thereof | |
JP5829827B2 (en) | Reaction curing type heat-expandable resin composition | |
RU2492201C1 (en) | Fire-retardant cold-setting coating composition and method for production thereof | |
JP2011052042A (en) | Raw material composition for polyvinyl chloride product, and polyvinyl chloride molded product | |
JP3509085B2 (en) | Synthetic resin powder for plastisol and method for producing the same | |
CN103965640A (en) | Foamed liquid silicon rubber and preparation method thereof | |
CN105331117A (en) | Foamed liquid silicone rubber and preparation method thereof | |
CN104960189A (en) | Gypsum plastic suction mold | |
CN108102430A (en) | A kind of preparation method of ultrafine active heavy calcium carbonate | |
CN108047700A (en) | A kind of PA/ASA alloys and its preparation method and application | |
WO2006035820A1 (en) | Process for producing reclaimed modified resin compound and reclaimed modified resin compound | |
JP6418767B2 (en) | Polyamide resin composition for foam blow molding and molded product obtained therefrom | |
CN101531882B (en) | Acid resistant and high-temperature resistant binding agent and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130412 |